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Abstract: The study of light propagation has been a cornerstone of progress in physics and
technology. Recently, advances in control and shaping of light have created significant interest in
the propagation of complex structures of light – particularly under realistic terrestrial conditions.
While theoretical understanding of this research question has significantly grown over the last two
decades, outdoor experiments with complex light structures are rare, and comparisons with theory
have been nearly lacking. Such situations show a significant gap between theoretical models
of atmospheric light behaviour and current experimental effort. Here, in an attempt to reduce
this gap, we describe an interesting result of atmospheric models that are feasible for empirical
observation. We analyze in detail light propagation in different spatial bases and present results
of the theory that the influence of atmospheric turbulence is basis-dependent. Concretely, light
propagating as eigenstate in one complete basis is more strongly influenced by atmosphere than
light propagating in a different, complete basis. We obtain these results by exploiting a family
of the continuously adjustable, complete basis of spatial modes—the Ince-Gauss modes. Our
concrete numerical results will hopefully inspire experimental efforts and bring the theoretical
and empirical study of complex light patterns in realistic scenarios closer together.
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citation, and DOI.

1. Introduction

Complex, higher-order spatial modes of light have come under the spotlight due to its inherent
orthogonality, and discrete infinite state spaces [1–3]. Its well-developed technology of generation
[4–8] and manipulation [9–13] allows the increasing applications of free-space optical (FSO)
communication links using spatial modes. The first experiment using spatial modes to encode
information in an FSO channel was implemented by Gibson et al. in 2004 [14]. Since these
early demonstrations, the transmission rate has been increased to 100 Tbit/sec [15,16]. However,
realistic FSO links involve atmospheric turbulence which causes random fluctuations of the
intensity and distorts the phase front of the transmitted light beam [17].

A natural question that arises is, "How does atmospheric turbulence influence complex spatially
modulated beams of light?". The answer to this question would not only be practically useful
for long-distance communication schemes but would also provide scientific insights into the
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interaction of light with realistic, turbulent air – and thus potentially allow for novel measurement
techniques of atmospheric effects.
Due to the importance of the question, much effort has been made to study it. To simulate

atmospheric turbulence and its effect on complex spatial modes in laboratories, researchers have
exploited heat pipes [18,19], random phase screens generated by spatial light modulators (SLMs)
[20–23], static diffractive plates [24] and rotating random phase plates [25]. Those efforts were
based on models of the turbulent atmosphere that date back to the Kolmogorov’s seminal work
from 1941 [26–28], and further extension and advances of it [29–31].
Kolmogorov’s models have since been applied to spatial modes of light (with single phase-

screen approximations) [32,33]. Those early methods have been advanced by theories of
multi-phase planes developed for complex spatial modes of light [34] (which have been used in
beam propagation simulations already in the late 1980s [35,36]). These models allow for the
understanding of spatial light propagation in strong scintillation conditions [37] and comparison
of infinitesimal propagation with multi-phase screen propagation [38].
While the theoretical study of atmospheric turbulence effects of spatial modes of light is

flourishing, experimental results in real outdoor conditions are lacking. Only in 2014, the first
outdoor experiments with spatial modes were conducted, with long-distance transmissions up to
143 km [39,40], with high-speed data rates up to 400Gbit/sec [41,42], and in the quantum regime
with entangled photons [40] and for quantum communication [43]. These results establish the
feasibility of long-distance transmission of spatial modes of light but left open the question about
the predictive power of current models. It was only in 2017 when Lavery et al. performed an
experiment transmitting spatially modulated light in an urban environment and compared their
results with theoretical models [44].
One reason for lack of experimental studies in real-world spatial mode propagation is the

uncontrollable environment and the additional noise sources which do not exist in laboratories,
such as background stray light, humidity and light absorption. Those are particularly hazardous
for quantum experiments. Therefore, as steps to overcome the theoretical-experimental gap,
experiments with small complexity are favourable.
Here we explain a detailed numerical study of higher-order spatial modes in different bases

propagating through turbulent atmosphere, relying on the method of [44,45]. We find an at
first sight effect – the basis-dependence of atmospheric influence, which could be detected with
already existing optical setups. That means information transmitted in one basis (for instance, the
famous Laguerre-Gauss (LG) basis carrying orbital angular momentum) is stronger degraded as
if the information would have been encoded in another complete basis (such as the Hermite-Gauss
(HG) basis). This is interesting to us, as those bases span the same space of modes, and each
element of the first basis can be seen as a superposition of elements of the other basis. We find
this effect by studying a continuous space of states, the so-called Ince-Gauss (IG) modes [46],
which have both the LG as well as the HG basis as a special case. The predicted effect can
be up to 7% of the total transmission quality; thus, it should be observable in already existing
transmission links. If such an effect cannot be observed, it would raise serious questions about
some of the best models to describe spatially modulated light in the atmosphere. If the effect is
indeed physical, it will shine light on a curious property of the atmosphere and could indicate a
novel technique to measure atmospheric properties.
Generally speaking, we have made several contributions in the manuscript: 1). For the first

time, we detailed the investigation of Ince-Gaussian modes in turbulence (as a continuously
tunable, discrete, complete orthogonal basis which has LG and HG as special cases). 2). As
a result of the continuous tunable basis, we identify very concrete basis-dependent effects that
have not been reported in the literature before. 3). We present an experimental implementation
that will potentially allow for real-world investigations. Our numerically discovered effect
could be measured using strong lasers and thus, does not require single-photon or entanglement
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investigations which are highly elaborate. 4). The number of numerical predictions, due to
Ince-Gauss basis’s continuous parameter ε is large, and the number of fitting parameters are
very small, which results in an ideal target for testing theoretical models accuracy and potential
limits. 5). Motivated by the results presented from Lavery et al. [44,45], we provide potentially
interesting experimental observations in the language that requires limited technical vocabulary
perfectly suited for experimentalists.
The article is structured in the following way. We start by explaining what we mean by

basis-dependent effect and why this is interesting – especially from a quantum mechanical
standpoint in Sec. 2. Then we continue showing how it occurs using light propagation. Details
about spatial modes of light are given in Sec. 3. In Sec. 4, we describe the atmospheric
turbulence model used for our investigation. In Sec. 5, the numerical results and discussions are
shown to illustrate the effect found in our simulation, and we explain a feasible experiment to test
this prediction. The conclusions of the paper are given in Sec. 6.

2. Intuitive description of basis-dependence

First, we will give a simplified, intuitive explanation of what we call by basis-dependent effects.
Our description will be independent of any atmospheric effects and purely motivated by quantum
information considerations.

Let us consider a simple two-dimensional sub-basis in a large Hilbert space, which we use to
encode information. Let’s assume these basis modes undergo a transformation which introduces
unbiased loss (for example, scattering into other modes):

|0〉 → t|0〉 + l|L〉,
|1〉 → t|1〉 + l′ |L′〉

(1)

where t stands for a transmission coefficient and l stands for a loss transmission. The fidelity of
transmission becomes F |0〉 = |t|2 = F |1〉 , and its average F0/1 = (F |0〉 + F |1〉)/2 = |t|2, with |L〉
and its primed version being arbitrary loss modes.
However, we could have chosen to encode the information in a different basis, such as the

X-basis (with |±〉 = 1/
√
2 (|0〉 ± |1〉)). Using Eq. (1), the transformation of the |±〉 leads to

|+〉 → t|+〉 + l”|L”〉,
|−〉 → t|−〉 + l”′ |L”′〉.

(2)

We can immediately see that F |+〉 = |t|2 = F |−〉 , and its average FD/A = (F |+〉 + F |−〉)/2 = |t|2,
which is exactly the same as the transmission quality in the computation basis F0/1. Thus, such
transformations are independent of the basis. Experimentally, a neutral density filter acts in this
way.

Now we give two simple examples of basis-dependence. Consider the transformation, which
is a basis-dependent rotation, such as performed by a half-wave plate in polarization optics,

|0〉 → |0〉,
|1〉 → eiφ |1〉

(3)

It leaves the information encoded in the computation basis invariant, F |0〉 = 1 = F |1〉 . However, the
fidelity in the superposition basis is reduced, F |+〉 = |(1+ eiφ)/2|2 = F |−〉 , thus the transformation
leads to basis-dependent transmission qualities.
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Let’s consider a third example, a mode-dependent loss.

|0〉 → t|0〉 + l|L〉,
|1〉 → (t − ω)|1〉 + l′ |L′〉

(4)

The state fidelity after the transmission is F |0〉 = |t|2, F |1〉 = |t − ω |2. We find that in the
superposition basis, F |+〉 = |t − ω/2|2 = F |−〉 . The difference of the average fidelities of the two
bases is ∆F = F0/1 − FD/A = |ω |

2/2, which clearly indicates that the transmission quality of
different bases are different, even though they span the same space.

We will see that the atmospheric influence on spatial modes is basis-dependent. As we perform
a numerical study, we have to restrict ourselves to a subset of modes. We will see that the influence
is mode-dependent when we consider a complete orthogonal subspace of modes with the same
mode-order. This is particularly interesting, as the mode-order is defined independent of the basis,
and a specific mode of one basis (with order M) can be decomposed in a superposition of modes
of order M in arbitrary other bases. Of course, the considerations here are vast simplifications of
influence of the atmosphere on spatial modes, and can only be considered as a simple, intuitive
picture of how to understand such effects in general.

3. Complex spatial modes of light

The well-known solutions to the paraxial wave equation consist of the HG and LG beams, which
are derived from cartesian and circular cylindrical coordinates, respectively [47]. They both
provide in principle an infinite state space and form a complete orthogonal basis, such that one
can describe HG states in terms of LG modes and vice versa [48,49]. The HG modes are denoted
as HGnx,ny with indices nx and ny and LG modes are described as LGn,` with orbital angular
momentum (OAM) index ` [50] and radial number n [51–53].
In 2004, Bandres and Gutiérrez-Vega introduced another complete and orthogonal family

of modes, which interpolates between the LG and HG modes [46]. These modes are exact
solutions to the paraxial wave equation in elliptic coordinates, and of which the even IG modes
are described as

IGe
p,m,ε (u, v, z) =

CIGw0
wz

Cm
p (iu, ε)Cm

p (v, ε) × exp
(
−
r2

w2
z
+ i

(
kr2

2Rz
− kz − (p + 1)ϕg

))
. (5)

There u and v describe the two-dimensional elliptic coordinates. A continuous parameter ε
describes the ellipticity and the superscript e refers to even modes. In the limit case of ε → 0, u
and v correspond to the radial and angular coordinates of the circular cylindrical coordinates
system, respectively. (p,m) ∈ N are mode number. CIG is a normalization constant and Cm

p (·, ε)
represent the even Ince polynomials [54,55]. wz is the beam radius at position z and w0 is the
beam waist at the focus z = 0. zR is the Rayleigh range, Rz is the radius of curvature, λ is the
wavelength and k = 2π/λ is the wave number. ϕg = arctan(z/zR) denotes the Gouy phase and
the mode order isM = p. We can obtain the odd IG modes IGo

p,m,ε (u, v, z) by replacing the CIG
and Cm

p (·, ε) with SIG and Smp (·, ε), which correspond to a normalization constant and the odd
Ince polynomials respectively.
The helical IG modes (which, for simplicity, we call IG modes for the rest of the paper) are

described as superposition of even and odd IG modes [56,57], which are given by

IG±p,m,ε (u, v, z) =
1
√
2

(
IGe

p,m,ε (u, v, z) ± iIGo
p,m,ε (u, v, z)

)
. (6)

When the elliptic coordinates tend to the circular cylindrical coordinates, namely ε → 0,
the IG modes will be transferred into LG modes. In this case, the indices of states LGn,` and
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Fig. 1. Intensity and phase distributions for IG modes IGp,m,ε with different ellipticity ε . A
IG mode IGp,m,ε (ε → 0) is equivalent to a LG mode LGn,` , where p = 2n + |` | and m = |` |.
For example, the LG1,2 mode can be described as a IG4,2,ε in the limit case of ε → 0. The
upper rows describe the intensity distributions and the lower rows show the transverse phase
distributions. A prominent feature of IG modes is the vortex splitting in the phase pattern,
leading to multiple intensity nulls in the intensity which are controlled by ε .

IGp,m,ε are related as: |` | = m and n = (p − m)/2. Additionally, when the elliptic coordinates
tend to the cartesian coordinates, namely ε →∞, the IG modes will be transferred into helical
Hermite-Gaussian (HG) modes [56,58,59]. In this case, the indices of modes HGnx,ny and IGp,m,ε
are related as: nx = m and ny = (p−m). This puts the IG modes in a special position between LG
and HG, and therefore makes them an ideal workhorse for investigating basis-dependent effects.

For a fixed ellipticity ε , the IG modes IGp,m,ε with orthogonal mode indices (p,m) ∈ N form a
complete basis. Changing the value of the ellipticity ε gives another complete orthogonal basis.
In Fig. 1, we show the intensity and phase distributions of different IG modes IGp,m,ε varying
their ellipticity ε .

There are also other well-investigated types of complete sets of transverse spatial modes. One
example is the family of Bessel modes which posses intrinsic self-healing properties that could
be of interest in out-door turbulence experiments [60], or their elliptic generalizations called
Mathieu beams [61,62]. However, here we focus on the Ince-Gaussian basis.

4. Turbulence model

The inhomogeneity and anisotropy in the temperature and pressure of atmosphere results in
random fluctuations of the refractive index along the propagation path of light beam [17]. Those
variations of refractive index introduce the distortions of the spatially structured light fields
and increase intermodal crosstalk, which dramatically affects the quality of spatial modes over
long-distance link [63]. Thus understanding the turbulent behaviour of the atmosphere is very
crucial.
In 1941, the Russian mathematician Andrey Kolmogorov published three seminal articles,

which established the foundations of statistical turbulence theory [26–28]. The statistical
properties of the atmospheric turbulence are homogeneous and isotropic within scale L0 and
l0. He found that the random statistical behaviour of turbulence can be described by refractive
index power density spectrum, which describes how the kinetic energy of atmospheric turbulence
distributes with respect to frequencies. This directly relates to the phase fluctuations of light
along propagation path and later is represented by the phase power density spectrum ΦmvK

ϕ (κ)
[17]. In our study, we apply the modified von Kármán spectrum [31], which avoids the singularity
that represents energy per unit volume and becomes unbounded as the eddy size increases in
Kolmogorov spectrum model. Therefore it is numerically more stable. The turbulent phase
screens are generated using the modified von Kármán spectrum, which is described as [64,65]

Φ
mvK
ϕ (κ) = 0.023r−5/30

exp(−κ2/κ2m)
(κ2 + κ20)

11/6
. (7)
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Fig. 2. A schematic illustration of spatial modes of light propagating through atmospheric
turbulence. Here we transmit a IG mode IG7,3,2 (λ = 809nm, w0 = 25mm ) over a 1.5
km turbulent free-space link. The intensity distributions of the IG mode IG7,3,2 in the
transmitted and received planes are shown. We use the multi phase-screen method, detailed
theoretically in [34], and used to describe empirically observed effects in [44], to model the
overall turbulent link. There the total effect of atmospheric turbulence can be represented as
the approximately accumulated influence of many weakly perturbing planes. Each plane
with a random phase screen stands for the turbulence along a propagation path of 10 m,
and the scintillation strength of each plane is described by the Fried parameter r0plane . In
general, larger r0plane defines weaker turbulence and in this example the number is r0plane = 1
m (corresponding to r0 ≈ 0.05 m).

There r0 is the Fried parameter [66], which can be used to describe the strength of the
atmospheric turbulence along the propagation distance. κ is the angular spatial frequency. κm
and κ0 are constant model-dependent parameters [17,64,65].

In order to simulate the atmospheric turbulence along a long propagation distance, we adopt a
multi-phase plane model [34,45]. In the model shown in Fig. 2, the atmosphere along 1.5 km
link is split into 150 planes of weakly turbulence separated by 10 m. The total atmospheric
turbulence r0 is approximately the accumulative effect of the turbulence of each plane r0plane . In
our numerical simulation, we satisfy geometric and aliasing constraints [64,67,68].

4.1. Turbulence strength and model

In the presence of a turbulent atmosphere, spatial modes of light experience atmospheric refractive
index variations caused by fluctuations in temperature and pressure. These atmospheric refractive
index variations distort the wavefronts of the propagated light beams [17]. A measure of the
strength of random fluctuations is the refractive index structure parameter C2

n(z), which is used to
quantify the strength of the atmospheric turbulence along the propagation path. Typical values
of C2

n(z) range from 10−17 m−2/3 in weak scintillation up to 10−13 m−2/3 in strong turbulence
[17,65].
Another parameter often used to estimate the integrated strength of turbulence, especially

in connection with astronomical imaging, is the Fried parameter r0 [69]. Stronger turbulence
corresponds to a smaller r0. For a known refractive index structure parameter C2

n(z) along the
propagation path, the Fried parameter r0 is given by [70–72]

r0 =
(
α1k2

∫
path

C2
n(z)dz

)−3/5
. (8)

There k = 2π/λ is the wavenumber and λ is optical beam wavelength (in our simulations,
a wavelength of 809nm is adopted). α1 = 0.423 is a constant number which derived in the
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case of the phase variance is approximately one [65,70]. The integral is taken over the overall
propagation path from the transmitter plane to the receiver plane.
We rely on the experimentally demonstrated model from Lavery et al. [44,45] to simulate

the atmosphere over long-distance. There the total 1.5 km turbulent link is decomposed into
many short weakly perturbing planes separated by 10 m. In general, C2

n(z) is assumed to be
roughly a constant over short time intervals or propagation distance. Using Eq. (8), we could
approximately describe the overall strength of atmosphere r0 as an accumulation of strength in
every plane r0plane , which is described as

r−5/30 ≈
z
∆z

r−5/30plane = 150r−5/30plane . (9)

The values of different turbulence conditions used for studying the propagation of spatial modes
of light are listed in Table 1.

Table 1. Strengths of atmospheric scintillation.

r0plane /m 0.25 0.55 1.0 1.5 2.0 2.5

r0 /m 0.012 0.027 0.049 0.074 0.099 0.124

C2
n /m−2/3

>10−14 10−16 ∼ 10−14

Strong Moderate

For the purpose of numerically modeling turbulence, we use the modified von Kármán phase
power spectrum ΦmvK

ϕ (κ) to generate random phase screens [31,65], which is described as

Φ
mvK
ϕ (κ) = α2k

∫
path

C2
n(z)dz

exp(−κ2/κ2m)
(κ2 + κ20)

11/6
. (10)

where κ is angular spatial frequency in rad/m. α2 = 9.7 × 10−3, κm = 5.92/l0 and κ0 = 2π/L0
are constant model-dependent parameters [64,65]. L0 and l0 are the so-called outer and inner
scale, which describe the averaged largest and smallest eddies for the kinetic energy distribution
in atmospheric turbulence. Their typical value are L0 = 100 m and l0 = 0.01 m [64]. The phase
power spectrum ΦmvK

ϕ (κ) can also be written in terms of a Fried parameter r0 by combing Eqs.
(8) and (10), which is given as

Φ
mvK
ϕ (κ) = 0.023r−5/30

exp(−κ2/κ2m)
(κ2 + κ20)

11/6
. (11)

4.2. Numerical simulation

In our simulation, we adopted a collimated light beam of beam waist w0 = 25mm and wavelength
λ = 809nm. All parameters used in our numerical simulation are presented in Table 2.
Then we investigate the propagation quality of IG modes IGp,m,ε with different ellipticity

under different turbulence conditions. The transmission fidelity describes the "closeness" of
the received propagated light field |Ψtur〉 and the undisturbed light field in the observed planes
|Ψvac〉, which is given by the squared overlapping the two light fields as

F = |〈Ψvac |Ψtur〉|
2 (12)

The average fidelity is computed by averaging all individual transmissions. For the average
fidelity of certain mode orderM, it is given by over all the modes in the same order and basis.
Furthermore, we investigate our finding by analyzing the mode cross-talk matrix for complex
spatial modes IGp,m,ε with different ellipticity ε . In the limit of ε → 0, a chosen basis with IG
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Table 2. Parameters used in our numerical
simulation.

Parameters Values Units

optical wavelength λ 809 nm

optical beam waist w0 0.025 m

propagation distance z 1500 m

distance interval ∆z 10 m

scintillation strength r0 0.05 m

outer scale L0 100 m

inner scale l0 0.01 m

number of turbulent planes n 150 -

number of grids N 1024 -

side length at source plane L1 0.25 m

side length at receiver plane Ln 0.5 m

indices set (p,m) can be rewritten as a LG indices (n, `). Thus, in the cross-talk matrix labeled
columns represent the modes with index `, meanwhile labeled rows represent the modes with
index n. Each element in the matrix is given by an inner product measurement of the transmitted
field |Ψtur〉 and each undisturbed mode (individually) from the set of basis |vacj〉, which is given
by

Fj =
��〈Ψvacj |Ψtur

〉��2 (13)

5. Results and discussion

What is the quality of spatial modes of light propagating through atmospheric turbulence over
long-distance? We start with transmitting an IG mode IG4,0,ε over a 1.5 km turbulent channel.
We call radial-like modes for IG states IGp,m,ε when they are equivalent to radial modes LGn,0 in
the limit case of ε → 0. Analogously, we call OAM-like modes for IG states IGp,m,ε when they
are equivalent to OAM modes LG0,` in the limit case of ε → 0. Therefore, the IG mode IG4,0,ε
used in our simulation corresponds to a radial-like mode, with two intensity rings with ellipticity
ε = 0.

Here a question naturally arises: What role does the ellipticity play on the transmission quality
of IG modes under different turbulent conditions? For simplicity, we use two different ellipticity
ε → 0 and ε = 4 and propagate the IG modes through the atmosphere of different turbulent
strength r0. The average fidelity of IG4,0,ε through different turbulent strengths are described in
Table 3 and Fig. 3 (a). There the fidelity is in percentage and the error is given by the standard
deviation of the mean.
The result clearly shows the fact that under weak scintillation (equivalent to the case of large

r0), the quality is better than that under strong turbulence. Interestingly, we find that the ellipticity
plays an interesting role in the transmission quality of IG modes along the turbulent path. To our
surprise, there is a significant increase for the radial-like modes with a large ellipticity propagating
through strong turbulence. In Fig. 3 (b), we show the fidelity difference versus various turbulent
strengths. We find that there is a large fidelity difference when the turbulent strength is r0 ≈ 0.05
m, which is a realistic turbulence condition (we use this r0 for the rest of our simulations). With
this observation, we would expect that the difference will continue to increase by enlarging the
ellipticity of the radial-like mode IG4,0,ε . This indicates that helical HG modes, corresponding to
radial-like modes in the case of ε →∞, perform better under strong turbulence than that by LG
radial modes.
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Fig. 3. The propagation quality of IG modes under different turbulence conditions. a: We
transmit a radial-like mode IG4,0,ε (ε : 0, 4) over 1.5 km turbulent link of different strengths
r0. Large r0 describes weak scintillation and indicates good transmission fidelity. We find
that the quality of IG modes in the case of ε = 4 is significantly better than that in the case
of ε → 0. b: We show the fidelity difference versus turbulent strength r0. There is a large
difference when the turbulent strength is r0 ≈ 0.05 m. If we continue to increase r0 (which
means turbulence becomes weak until there is no turbulence), the difference will vanish.

Table 3. The propagation fidelity of IG4,0,ε through different
turbulent conditions r0. The iterations are not round numbers
as they have been stopped (because of large computational

costs) when all results where statistically significant.

iteration r0(m)
average fidelity F (in %) 4FIG−LG

IG: ε → 0 IG: ε = 4 (significance: σ)

670 0.012 0.95±0.04 1.77±0.08 0.81±0.09 (9σ)

3136 0.027 5.00±0.11 8.36±0.16 3.36±0.19 (17σ)

4640 0.049 15.77±0.23 21.32±0.27 5.55±0.36 (15σ)

4828 0.074 29.65±0.31 34.86±0.36 5.21±0.48 (11σ)

3798 0.099 43.76±0.38 47.53±0.44 3.77±0.58 (6.5σ)

3112 0.124 54.98±0.41 57.80±0.47 2.82±0.62 (4.5σ)

The transmission quality for radial-like modes increases when we increase the ellipticity ε .
We would therefor expect that this increase is compensated by OAM-like modes whose quality
decreases when we increase ε , such that the transmission quality for a complete order of modes
stay constant. However, the results in Table 4 and Fig. 4 show that the transmission quality of all
other modes with order M = 4 remains constant (within significant uncertainty). This means
that the average propagation quality of orderM = 4 increases when we change to a basis with a
large ellipticity. This means that the atmosphere influences bases with small ε in a stronger way
than bases with large ε . Every mode with orderM of a specific basis can be decomposed into a
coherent sum of modes of orderM in another basis. For that reason, observing the effect in order
M = 4 is sufficient to conclude a basis-dependent effect. This is the basis-dependent effect of
atmospheric turbulence we present here, and its investigation is the main results of our paper.
Furthermore, we find that this effect consistently exists for orderM = 2 up toM = 6 (which

contains 3 and 7 modes, respectively). For mode order M = 0 and M = 1, the ellipticity does not
change the modes. Therefore, mode orderM = 2 is the smallest that we investigate here. We show
the results in Table 5. An interesting insight into this effect is a cross-talk matrix of the radial-like
mode IG4,0,ε with small and large ellipticity. Indeed, in Fig. 5 we observe that small ellipticity
leads to larger cross-talk with other modes of this basis, whereas larger ellipticity reduces the
cross-talk. In addition, when we rotate the HG modes and IG4,0,ε modes with higher ε , such
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Fig. 4. The propagation fidelity of IG modes with different ellipticity through atmospheric
turbulence. Here we analyse a set of states of mode orderM = 4 (IG4,0,ε , IG4,4,ε , IG4,2,ε )
with 9 different ε . In the case of ε → 0, such a IG mode set is equivalent to the LG mode
set (LG2,0, LG0,4, LG1,2). The insets describe the theoretical intensities of these IG modes
(ε : 0, 4). The result shows that, with a large ε , there is a significant increase in the fidelity
of radial-like modes and there is no decrease in the fidelity of OAM-like modes.

Table 4. The transmission fidelity of IG4,0,ε with
different ε through turbulence with strength r0 ≈ 0.05

m.

IGp,m,ε
average fidelity F (in %) 4FIG−LG

IG: ε → 0 IG: ε = 4 (significance: σ)

IG4,0,ε 14.23±0.46 20.37±0.56 6.15±0.73 (8.4σ)

IG4,2,ε 14.18±0.48 14.64±0.49 0.45±0.68 (0.5σ)

IG4,4,ε 15.87±0.52 16.88±0.53 1.01±0.74 (1.3σ)

mode-dependence effect still exit, see Appendix A for more details. We have already explained
an intuitive way of understanding this mode-dependence in Sec. 2, and a fully mathematical
description of this effect would be exciting, but that is out of the scope of this manuscript.

Table 5. Average fidelity for modes with different orders M from a different basis.
We calculate all modes in the same order M (each mode with 2000 iterations). The
average fidelity is over all modes in the same order M in the same basis, such as

order M = 2 contains 3 different modes in one basis. The fidelity is in percentage, and
the standard deviation of the mean gives the error. The result indicates that the

atmosphere introduces a basis-dependent effect. An intuitive description is given in
Sec. 2.

order average fidelity F (in %) 4FIG−LG 4FHG−LG

M LG: IG ε → 0 IG: ε = 4 HG (significance: σ) (significance: σ)

2 23.35±0.27 25.23±0.28 26.57±0.28 1.88±0.38 (5.0σ) 3.22±0.39 (8σ)

3 18.62±0.20 20.23±0.21 22.05±0.22 1.61±0.29 (5.5σ) 3.43±0.30 (11σ)

4 15.57±0.16 17.37±0.17 18.99±0.18 1.80±0.24 (7.5σ) 3.42±0.24 (14σ)

5 13.46±0.13 14.84±0.14 16.75±0.15 1.38±0.19 (7.1σ) 3.28±0.20 (16σ)

6 11.90±0.11 13.41±0.12 15.00±0.13 1.51±0.16 (9.5σ) 3.10±0.17 (18σ)

There is now one important question that remains: Is this a physical effect or an artefact of a
currently well-trusted model for the propagation of complex spatial modes? This question can
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Fig. 5. The mode cross-talk matrix for radial-like modes IG4,0,ε propagating through
turbulence (500 iterations). In the limit of ε → 0, a chosen basis with IG indices set (p,m)
can be rewritten as a LG indices (n, `), where p = 2n + |` | and m = |` | and in our example
` ∈ (-7,7) and n ∈ (0,6). Each element in the matrix stands for the fidelity between the mode
after transmission of 1.5 km, and an undisturbed mode. In a vacuum, only one element
would have value F=1, and everything else would be zero. a: The mode cross-talk matrix
for IGp,m,ε with ε → 0. b: The mode cross-talk matrix for IGp,m,ε with ε = 4. We can see
that in the case ε → 0 (LG modes), the fidelity is spreading over significantly more modes
than for ε = 4. The physical reason for this phenomenon should be a target for a follow-up
investigation.

only be solved by experiments. An experimental investigation would require a long-distance
outdoor link for transmitting spatial modes of light, which already exists in several places
worldwide. At the sender, one requires a high-quality construction of complex spatial modes,
for instance, using the technique presented in [73]. At the receiver, the mode needs to be
measured – for example by transforming it to a Gaussian mode with high-quality [74] and using a
Single-Mode Fiber as a filter [75,76]. Atmospheric conditions (in particular the Fried parameter
r0) are stable for long enough to perform measurements in the form of Figs. 4 and 5 successfully.
The experiment is well within reach of current technology. It could be one interesting target for
detailed investigations of turbulence models using a complex, continuously class of complete,
orthogonal spatial mode families. In particular, with merely one free fit-parameters r0 (which
could be measured by other means), the experiments can test many predictions, such as fidelities
of different modes, such as shown in Figs. 4 and 5, and in particular, the important quantity of
mode-dependence ∆F in Table 5 . Other tests could involve varying of beam radii (which we
didn’t explicitly calculate), but which can be performed in the same setup with only adjusting the
computer-generated holograms.
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6. Related work

Several recent studies have compared properties between Hermite-Gauss modes and OAMmodes
(a subset of Laguerre-Gaussian modes) in terms of their classical communication quality. In
2016, Restuccia et al. have shown that in real-world communication, the finite-size apertures of
sending and detection systems degrade the quality of the communication channel. The authors
have shown that in such cases, Laguerre-Gaussian beams are more suitable than Hermite-Gauss
modes [77]. We do not take finite-size effects of the measurement systems into account as we
are interested in the fundamental physical properties of light propagation (and we are – for the
moment – agnostic to technical implementations).
An alternative result has been obtained by the authors of [78], which has been recently

experimentally simulated in the lab [79]. The authors show that a subset of Hermite-Gauss modes
is less perturbed than doughnut modes (a subset of Laguerre-Gaussian modes with the radial
mode index n=0) by single-phase screens for approximating turbulence effects. The effect stems
from larger robustness against lateral translation because Hermite-Gauss modes are azimuthally
asymmetric. Their work, which is essential for applications in classical communications (for
instance, see [80,81]) differs in several ways from our findings: First, we investigate the full
two-dimensional spatial basis of light, which is defined by two-mode numbers of Laguerre-
Gaussian mode. This involves the azimuthal part (which the authors examine) and the radial
part (which is not investigated, and which is known to have different physical properties, for
instance, see [52]). Only the combination of all spatial mode numbers lets us make conclusions
about the physical effect of the basis-dependent phenomena. Second, the results obtained by the
authors are qualitatively similar (but quantitative different) compared to our findings, and it is
not immediately clear why some asymmetric Ince-Gaussian modes (as shown by the orange and
green line in Fig. 4) do not improve the fidelity when the asymmetry (ellipticity) is increased.
Furthermore, we use an empirically suggested model of light propagation through turbulence
because single-phase approximations cannot cover all experimentally observed effects [44]. We
would argue that the best way to understand this effect is actually to perform the real-world
experiment.
A different, fascinating recent work is conceptually related to our investigation: The authors

investigate the propagation of doughnut modes (Laguerre-Gaussian beam with radial mode
number n=0) through simulated turbulence. They present that for an OAM mode under realistic
turbulence conditions, the spiral spectrum develops two maxima. One of the maxima is on the
negative axis, and one is on the positive axis of the spectrum, while OAM=0 is very unlikely to
appear [82]. It would be exciting to observe the predicted effect in a real-world experiment.

The mode-dependent influence of turbulence has been seen in theoretical calculations several
times, for example, [32,83]. However, those studies did not investigate general full-field sets of
modes (but mainly the subset of OAM modes) or didn’t make concrete predictions about the
basis-dependence that only Ince-Gaussian modes allows.

7. Conclusion

We employ a state-of-the-art numerical simulation model and use it to investigate the propagation
of very general spatial modes of light in realistic conditions. Therewith, we find the interesting
effects that the atmosphere is basis-dependent. That means information encoded in one complete
basis of spatially-modulated beams can be transmitted with different quality depending on which
basis one uses. This is interesting as all complete spatial bases cover the same space, and modes
of one basis can be expressed as a linear combination of modes in another basis. What is more,
the influence of this effect can be up to 7% of the total transmission quality, which makes it
suitable for experimental observation. To observe this result, we describe an experiment which is
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feasible with today’s technology and communication channels that have already been established
in several locations worldwide.
Finally, in order to reduce the gap between theoretical understanding of atmospheric models

and its empirical investigations, we would like to advocate a scientific program, which we
call the phenomenology of complex atmospheric light propagation: Here, the goal is to distill
new, empirically observable predictions of light propagation from the best existing atmospheric
turbulence models. Those results will allow physicists to perform interesting real-world, outdoor
experiments to observe novel, potentially unintuitive phenomena.

In particular phenomena that distinguish between different models, or show the effect of (the
absents of) certain theoretical approximations could inspire real-world experimental campaigns.
Especially proposals for the strong-light regime could be accessible to state-of-the-art technology.

An interesting question that follows from our study is “What set of mode is most robust against
influence of atmospheric turbulence". The behavior of controlled propagation through scattering
material [84] and eigenmodes of multi-mode fibers [85] are well understood. However, the
time-dependence of turbulence (in the order of 1/100sec) makes it a challenging dynamic (and
computational expensive) optimization problem.
Likewise, publically sharing of systematically recorded experimental outdoor data, which

is not available at all today, could further help the modeling of real-world phenomena on a
theoretical level. For the sharing of data, well-established scientific data-sharing platforms such
as datadryad or scientific data journals such as Nature: Scientific Data are adequate resources
[86].

We believe that this program could lead to flourishing experimental endeavours, which – apart
from its pure scientific purpose – might have an impact in practical questions such as classical
and quantum communication, or potentially novel methods to measure properties of atmosphere
and thereby weather dynamics.

Appendix

A. Additional details on numerical simulation

We show some values of the mode cross-talk matrix of IG modes IG4,0,ε in Tables 6 and 7. We
can see that the mode cross-talk becomes less for radial-like modes by increasing ε and the
fidelity of the propagated mode (highlight in green) is significantly larger than that with small ε ,
as described in the main text in Fig. 5.

Table 6. The average fidelity for mode cross-talk matrix of IG4,0,ε in the
case of ε → 0. The fidelity unit is %.

n ` -2 -1 0 1 2

0 0.80±0.012 1.31±0.017 1.21±0.018 1.32±0.018 0.77±0.011

1 4.72±0.052 4.54±0.060 5.13±0.049 4.61±0.063 4.64±0.052

2 1.44±0.020 5.28±0.073 15.47±0.224 5.41±0.073 1.46±0.021

3 0.74±0.011 2.13±0.025 4.63±0.049 2.15±0.025 0.76±0.011

4 0.37±0.006 0.85±0.012 1.65±0.020 0.86±0.012 0.36±0.006

We show each mode fidelity for HG modes in different order M in Table 8. We can clearly see
that when one of the index of HG mode is zero, the mode performs better than other modes in
the same order. The average fidelity for each modes are over 2000 iterations of propagations.
The unit for fidelity is percentage and the error is described by standard deviation of the mean.

In order to verify the mode-dependent effect described in the article is not a numerical artefact,
we perform sanity checks involving the analyzation of the normalization, decomposition and
orthogonality of different spatial modes in different basis and particularly perform a calculation
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Table 7. The average fidelity for mode cross-talk matrix of IG4,0,ε in the
case of ε = 4. The fidelity unit is %.

n ` -2 -1 0 1 2

0 0.37±0.007 1.41±0.023 0.96±0.022 1.42±0.024 0.37±0.007

1 2.11±0.029 5.96±0.071 5.53±0.070 5.95±0.072 2.07±0.028

2 1.74±0.027 7.39±0.088 21.39±0.271 7.60±0.091 1.78±0.027

3 0.68±0.011 2.45±0.031 5.75±0.072 2.46±0.031 0.70±0.011

4 0.31±0.005 0.96±0.015 2.13±0.033 0.98±0.016 0.31±0.005

Table 8. The average fidelity for HGnx ,ny (each mode with
2000 iterations). The fidelity unit is %. The results shows that

HG modes with one index (nx = 0 or ny = 0) perform better than
other modes in the same order number M .

order: M = nx + ny HG mode: HGnx ,ny average fidelity F (in %)

M = 2
HG0,2 27.88±0.50

HG1,1 23.87±0.47

HG2,0 27.94±0.50

M = 3

HG0,3 24.37±0.47

HG1,2 19.81±0.42

HG2,1 19.65±0.42

HG3,0 24.37±0.46

M = 4

HG0,4 22.09±0.44

HG1,3 17.32±0.39

HG2,2 16.32±0.37

HG3,1 17.21±0.38

HG4,0 22.00±0.43

M = 5

HG0,5 20.41±0.41

HG1,4 15.65±0.36

HG2,3 14.34±0.34

HG3,2 14.30±0.34

HG4,1 15.59±0.35

HG5,0 20.20±0.40

of pure LG modes comparing to pure HG modes for the same orderM = 2 with a even large grid
number N=2048 in Table 9. There the average fidelity is over all the modes from the same basis
in the same order, such as orderM = 2 contains 3 different modes (each modes with more than
3000 iterations). We see those values are within the statistical uncertainty to the values in the
main text and show the effect described in the article. Our chosen discrete parameter fulfills the
geometrical and aliasing constraints for numerical beam propagation [64,67,68]. Therefore we
are confident that the results presented in the paper are due to the model instead of the numerical
inaccuracy.
Furthermore, we rotate the HG modes and IG modes with higher ellipticity ε = 4 by the

angle φ = 45 degree and propagate these modes through atmospheric turbulence. Then we
compare with the LG modes and un-rotated HG or IG modes to further indicate our result is a
basis-dependence effect. There we only consider the modes in the same order M = 2 and the
fidelity is over all the modes in the same order from one basis. Due to the expensive computation
resource, we only calculate around 1400 samples for rotated HG modes with N=1024 and 1000
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Table 9. Here we perform a very careful test where the size
of the sender and receiver plane are L1 = Ln = 0.5m. We

calculate all three modes of mode order M = 2 from LG and
HG basis propagating through turbulence with the grid

number N = 2048. The average fidelity is over all the modes
in the same order. The results are the same as those in the
main text within the statistic uncertainty. In particularly, we
also see our main finding – the basis-dependent effect. This

is a clear indication that the effect is not a numerical
artefact but a real result of the model.

distance z (m)
average fidelity F (in %) 4FHG−LG

LG HG (significance: σ)

500 55.37±0.24 56.93±0.26 1.56 ±0.35 (4.4σ)

1000 34.63±0.25 37.27±0.26 2.64±0.36 (7.3σ)

1500 23.77±0.21 26.58±0.22 2.81±0.31 (9.1σ)

Table 10. Rotating the HG mode with angle φ = 45 degree and compare with
LG mode and un-rotated HG modes for order M = 2. The average fidelity is over
all the modes in the same order and fidelity unit is %. The original data for LG

and HG modes are around 6000 samples (N=1024) while the HGφ=45 is with
1395 sample point under N=1024.

average fidelity F (in %) 4FHGφ=45−LG 4FHGφ=45−HG

LG HG HG (φ = 45) (significance: σ) (significance: σ)

23.35±0.27 26.57±0.28 26.95 ±0.59 3.60±0.65 (5.54 σ) 0.38±0.65 (0.58σ)

Table 11. Rotating the IG mode (ε = 4) with angle φ = 45 degree and compare
with LG mode and un-rotated IG modes (ε = 4) for order M = 2. The average

fidelity is over all the modes in the same order and fidelity unit is %. The
original data for LG and IG modes are around 6000 samples (N=1024) while the

IGφ=45 is with 1077 sample points under N=2048.

average fidelity F (in %) 4FIGφ=45−LG 4FIGφ=45−IG

LG IG IG (φ = 45) (significance: σ) (significance: σ)

23.35±0.28 25.23±0.28 25.71±0.65 2.36±0.70 (3.37 σ) 0.48±0.71 (0.68σ)

samples for rotated IG modes with N=2048 (for reducing the numerical error introduced by
rotating matrix) . The results are described in Table 10 and 11. Interestingly, our results confirm
that the HG and IG modes with higher ellipticity perform better than the LG modes through
turbulence, and these values are within the statistical uncertainty. Our results indicate that rotating
these HG and IG modes has no influences to our presented results in the main text, which further
predicts the basis-dependence effect is not a numerical artefact but a real result of the model.
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