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High-dimensional degrees of freedom of photons can encode more quantum information than their two-
dimensional counterparts. While the increased information capacity has advantages in quantum applications
(such as quantum communication), controlling and manipulating these systems has been challenging. Here we
show a method to perform deterministic arbitrary high-dimensional Pauli X gates for single photons carrying
orbital angular momentum. The X gate consists of a cyclic permutation of qudit basis vectors and, together with
the Z gate, forms the basis for performing arbitrary transformations. The proposed experimental setups only
use two basic optical elements such as mode sorters and mode shifters and thus could be implemented in any
system where these experimental tools are available. Furthermore the number of involved interferometers scales
logarithmically with the dimension, which is important for practical implementation.
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I. INTRODUCTION

High-dimensional quantum systems allow for encoding,
transmitting and processing more than one bit per photon. The
exploitation of large alphabets in quantum communication
protocols can significantly improve their capacity [1–3] and
security [4,5]. However, performing well-defined manipula-
tions in multilevel systems is significantly more challenging
than for qubits. Schemes for implementation of an arbitrary
unitary transformation were developed for the path degree
of freedom (DoF) already in 1994 [6–8]. However, path-
encoding schemes are very susceptible to phase changes and
it is thus very challenging to use them in real-world quantum
communication. Laguerre-Gaussian modes of light, carrying
orbital angular momentum (OAM) [9,10], represent an alter-
native to polarization that has become a popular choice in
experiments in a high-dimensional quantum domain [11–13].
The OAM of photons has been used successfully in long-
distance classical [14–17] and quantum [3,18,19] communi-
cation in the form of a “flying qudit” (Unitary transforma-
tions are well known for qudits encoded in the path DoF
[6]; however, path-encoded qudits cannot be used for long-
distance free space communication. Therefore, flying qudits
usually refer to the spatial DoF). An important open question
is how an arbitrary high-dimensional transformation can be
performed with OAM.

An arbitrary unitary transformation in a finite-dimensional
space can be expressed as a combination of Pauli X and Z
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gates and their integer powers [20], which shows that they are
important basis gates. The Z gate for OAM qudits introduces
a mode-dependent phase, which can be implemented simply
by a Dove prism [21–24]. The X gate in high-dimensional
Hilbert spaces takes the form of a cyclic permutation of
the computational basis vectors. For a fixed basis in a d-
dimensional space the cyclic transformation transforms each
basis state into its nearest neighbor in a clockwise manner
with the last state being transformed back to the first one [25].
As such, the cyclic transformation is the dth root of unity that
performs a rotation in a d-dimensional space. While efficient
methods for realizing a four-dimensional cyclic transforma-
tion in both classical and quantum realms have been exper-
imentally demonstrated [25–27], for an arbitrary dimension
such methods are still missing.

Here we present setups of X gates for arbitrary d-
dimensional qudits represented by the OAM of single pho-
tons. When developing the general method we took inspira-
tion from designs generated by the computer program MELVIN

[28]. Schemes produced by the method can be implemented
in the laboratory using accessible optical components. The
setups employ only two basic elements: holograms and OAM
beam splitters (OAM-BSs) introduced by Leach et al. [21].
Importantly, the number of OAM-BSs (which are interfero-
metric devices) scales logarithmically with the dimension of
the cycle, which is relevant for their experimental implemen-
tation.

II. ARBITRARY d-DIMENSIONAL X GATES

The main goal of this paper is to find deterministic exper-
imental setups for realizing arbitrary d-dimensional X gates
with the OAM of single photons. We would like to perform
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FIG. 1. Working principle of the general method. (a) The cyclic transformation in a three-dimensional space spanned by OAM modes
� = 0, 1, and 2. If the incoming beam possesses OAM of � = 0 (� = 1), it becomes � = 1 (� = 2) after adding +1 to the mode. The highest
OAM mode � = 2 is transformed into � = 0 by subtraction of 2 quanta of OAM. The experimentally obtained intensity profiles and computer-
generated phase profiles of OAM modes in a beam cross section are inserted for convenience. (b) Main idea: The general setup is combined by
a Separator, a Combiner, a +1 mode shifter, and an additional hologram that is inserted in the path of the highest mode. The Separator splits
the modes |d − 1〉 [green (light gray)] and |−1〉 [red (dark gray); it is an ancillary mode that is required in our scheme] into separate paths.
Then the OAM of the highest mode is changed to |−1〉, and it enters the path of mode |−1〉. Subsequently, all modes are combined again by
the Combiner into one path and acquire +1 quantum of OAM in the end. (c) Two basic elements: OAM-BSs and holograms. The label 2i

determines the sorting properties of the OAM-BSs. Holograms perform shifts of the OAM value by a fixed predefined amount. See Fig. 2 for
details about the structure of the OAM-BS. (d) Separator: We choose the highest mode, |9〉 [green (light gray)], in the ten-dimensional cycle.
Afterwards, it will enter into the lowest path of mode |−1〉. The Separator and the Combiner display a high degree of symmetry—they are
mirror reflections of each other, with an inversion of hologram values. It is instructive to compare our scaling behavior with the naive approach,
where (d − 1) OAM-BSs are used to reroute all d OAM modes into separate paths; d holograms are then used to shift the OAM values of all
modes; and finally additional (d − 1) OAM-BSs are necessary to recombine all modes together. Our approach therefore offers a number of
interferometers that is exponentially smaller than that of the naive approach.

an X gate that consists of a cyclic permutation of qudit
basis vectors. One example is the cyclic transformation in
three-dimensional space shown in Fig. 1(a), where the OAM
mode � = 0 is transformed into � = 1, mode � = 1 into � = 2,
and mode � = 2 back into � = 0. The main idea behind our
approach is shown in Fig. 1(b): The setup consists of a
Separator, a Combiner, a +1 mode shifter, and an additional
mode shifter that works only for the highest mode. The
Separator is used for splitting modes from one path to multiple
paths, while the Combiner does the opposite, regrouping all
modes into a single path. First, the input photon that is in

the subspace spanned by the modes |0〉 , |1〉 , |2〉 , . . . , |d − 1〉
goes through the Separator, which sends the highest mode to
its own path. Subsequently, the highest mode acquires a mode
shift and enters the path of mode |−1〉. Finally, the Combiner
sends all modes into one single path and then a mode shifter
adds +1 quantum of OAM. The Separator and the Combiner
consist of multiple OAM-BSs and holograms, respectively, as
shown in Fig. 1(c). The structure of the OAM-BS is depicted
in Fig. 2. The Separator and the Combiner display a high
degree of symmetry: The Combiner is a mirror reflection
of the Separator, with an inversion of the hologram values.
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FIG. 2. OAM beam splitter, where x and y are input and output
paths, respectively, and m specifies the angle of one Dove prism,
m = π/2α. If the input mode is 2k × m (k ∈ Z), the output path is
the same as the input path. For (2k + 1) × m it will go to the other
path. For m = 1 the OAM-BS works as a parity sorter.

Except for the highest mode, all other modes only acquire +1
quantum of OAM in total. In our method, we only need to
separate the path of mode |−1〉 and the path of the highest
mode from all other modes. As an example, we show the
ten-dimensional cycle in Fig. 1(d). The highest mode, |9〉,
will enter the lowest path of mode |−1〉 [red (dark gray)] after
going through a mode shift of −16 quanta of OAM. Due to the
symmetry of the Separator and the Combiner, mode |9〉 will
change to mode |−1〉 before the last mode shifter adds +1.
Therefore, the highest mode ends up in mode |0〉, as required.

III. SCALING

The proposed experiments for X gates involve interferome-
ters, which are demanding to stabilize experimentally. For that
reason, a small number of interferometers is favorable. One
naive approach to perform an X gate would be to transform
the OAM information to path encoding by splitting every
mode into its own path. This would require 2(d − 1) inter-
ferometers, which is linear in the dimension. The strength of
our method is that it requires only a logarithmical number of
interferometers and thus is significantly easier to implement,
especially for high dimensions.

Based on the main idea of Fig. 1, one can draw the
setup with arbitrary dimension d. In general, the setup for
the d-dimensional cycle is a combination of two differ-
ent experimental structures, namely one for powers-of-two
2M and one for odd number Q. The total dimension is
given by

d = 2M × Q. (1)

For example, the setup for the case d = 88 = 8 × 11 is
built up from two setups of dimension d = 8 and d = 11, see
the Appendix.

FIG. 3. The number of OAM-BSs scales logarithmically with the
dimension d .

Remarkably, the number NArb of OAM-BSs scales loga-
rithmically with the dimension d, as follows

NArb(d ) = N2M (d ) + NOdd(d )

= 2{M (d ) + 2�log2 Q(d )�}
� 4log2 (d − 1),

(2)

These numbers are obtained with a slightly optimized setup,
where for cycles with Q > 1 two unnecessary OAM-BSs and
unnecessary holograms are removed. An algorithmic code to
produce cyclic transformation setups for arbitrary d is shown
in the Appendix. Additionally, the power-of-two, M (d ), and
the odd part of an integer d, Q(d ), can be obtained using
these elementary functions: M (d ) = ∑d

n=1{�cos2( dπ
2n )�} and

Q(d ) = d
2M (d ) .

This is shown in Fig. 3, where the number NArb is plotted
as a function of dimension d for 3 � d � 500. For example,
we can realize 500-dimensional cyclic transformation using a
setup with only 28 OAM-BSs. Such a setup is already within
reach of the present-day technology—recently an experiment
has been reported [29] where 30 interferometers were kept
stable over 72 h without any active stabilization.

Interestingly, for any given M � 1 and for all odd dimen-
sions d in the range 2M + 1, . . . , 2M+1 − 1, the number of
OAM-BSs in the generated setups stays constant, as shown in
Fig. 3, and only the connections between individual elements
differ. For example, the number of OAM-BSs is 12 for all
d = 9, 11, 13, and 15, as shown in the Appendix.

As an illustration, we depict the setup for the case d =
10 in Fig. 4. The Separator and the Combiner in Fig. 4(a)
correspond to the main idea in Fig. 1. The propagation of
three modes is shown explicitly in the figure in order to
illustrate how the experimental implementation works. The
crucial property of the setup is that only the highest-order
mode propagates through the center; hence it undergoes an
additional −23 OAM shift and then enters the lowest path of
mode |−1〉 resulting in the transformation |9〉 → |0〉 after the
last operation +1. If the path differences are matched such
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(a)

(b)

FIG. 4. (a) The experimental setup for the X gate in the ten-
dimensional space. The Separator and the Combiner here correspond
to the main idea in Fig. 1. Four different types of OAM-BSs and six
holograms are used in the setup. Unlike other modes the highest-
order mode, |9〉, propagates through the middle path and enters the
path of mode |−1〉 after receiving a −23 mode shift. (b) The setup
also works for a superposition, such as |ψin〉 = α1 |1〉 + α2 |2〉.

that they are smaller than the coherence length of the input,
the setup also works for a superposition.

IV. CONCLUSION AND OUTLOOK

We developed a method for experimental setups realiz-
ing arbitrarily high-dimensional cyclic transformations with
OAM of single photons. The total number of required inter-
ferometers scales logarithmically with the dimension. Given
that a recent experiment has been demonstrated [29] with very
high quality and stability of 30 interferometers, our method is
experimentally feasible in high dimensions. A cyclic trans-
formation in a given d-dimensional space is defined for a
specific basis, |0〉 , |1〉 , |2〉 , . . . , |d − 1〉, but also for other
sets of states without adaptation of the experimental setup,
which are shown in the Appendix. Furthermore, we can
also get arbitrary d-dimensional cyclic transformations for
OAM modes |0 + m〉 , |1 + m〉 , |2 + m〉 , . . . , |d − 1 + m〉 if
we put one hologram with value m before the setup and
another hologram with the opposite value, −m, after the setup.

The structure of the setups generated by our method is very
symmetric. Consequently, if the photon has a sufficiently
large coherence length, the original setup can be considerably
simplified. This is shown in the Appendix. Implementations
of X gates generated by the method presented here have
a very convenient property that they can be converted into
the X−1-gate implementations only by a modification of
two holograms and slight reconnection of two OAM-BSs, as
shown in the Appendix. This is beneficial in future imple-
mentations, where quick automated changes between gates
are necessary. There are still some very interesting emerging
questions.

To experimentally create arbitrary unitary transformations
one needs to combine all of the XlZm building blocks.
This recombination can be performed in the probabilistic
way, which leads to losses. An important immediate ques-
tion is how our results can be generalized so that broader
classes of transformations can be realized in a deterministic
manner.

The high-dimensional generalized controlled-NOT (CNOT)
gate is a controlled cyclic gate. Realizing arbitrary d-
dimensional CNOT gates in the OAM would be very desirable,
as it allows for more complex control and processing of
multiphotonic states.

The method works in principle in any quantum system
where experimental tools for mode sorting and mode shifting
exist. In particular, the full transverse structure of photons
consists of the orbital angular momentum mode (investigated
here) and the radial mode (p mode) [30,31]. Lossless mode
sorters for radial modes have recently been implemented
[32,33]. Thus, in order to generalize our result to radial
modes, one requires a method to increase the mode number
of radial modes—which is an interesting path for future
research.

Our scheme for implementing arbitrarily-dimensional X

gates was discovered by interpreting and generalizing the
special-case method found by the computer program MELVIN

[28]. Various other computer programs have recently been
developed to autonomously find, optimize, or simplify
quantum experiments [34–36]. It is exciting to think about
how a computer program itself would be able to generalize
the special-case method in a manner similar to that of human
intelligence.
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APPENDIX

1. Pseudocodes

Algorithm 1. Pseudocode for arbitrary dimension

Assume: The input state is a linear combination of
modes |0〉 , |1〉 , |2〉 , . . . , |d − 1〉 and enters the first
path r0.

Assume: LIm(x, y ) stands for an OAM-BS, where
m determines into which paths (x or y) individual
OAM modes are output, as shown in Fig. 1(c).

Assume: Holog(p, v) stands for a hologram in path
p that adds value v to the OAM mode. It is shown
in Fig. 1(c).

Assume: N and bt are calculated from
Q = ∑N−1

i=0 (bi × 2i ), bi = 0 and 1. M is calculated
by d = 2M × Q.

Assume: Auxiliary indices ai are defined as
a1 = 0
for t from 1 to N − 2 do

if bt = 0 then
at+1 = at

else
at+1 = t

end if
end for
procedure CYCLE FOR ARBITRARY DIMENSION

for t from 0 to M − 1 do
LI2t (rt , rt+1)
Holog(rt+1, −2t )

end for
if N = 1 then

Holog(rM, −2M )
else

LI2M (rM, s0)
Holog(s0, +2M )
for t from 1 to N − 2 do

LI2t+M (rat +M, rt+M )
Holog(rt+M, −bt × 2t+M )

end for
LI2N−1+M (raN−1+M, rN−1+M )
Holog(rN−1+M, −2N−1+M )
for t from N − 2 down to 1 do

Holog(rt+M, +bt × 2t+M )
LI2t+M (rat +M, rt+M )

end for
for t from 1 to N − 2 do

LI2t+M (s0, st )
end for
LI2N−1+M (rN−1+M, s0)
for t from N − 2 down to 1 do

LI2t+M (rN−1+M, st )
end for
Holog(rN−1+M, −2M )
LI2M (rM, rN−1+M )

end if
for t from M − 1 down to 0 do

Holog(rt+1, +2t )
LI2t (rt , rt+1)

end for
Holog(r0,+1)

end procedure

Algorithm 2. Special case—Pseudocode for odd dimension

Assume: The input state is a linear combination of
modes |0〉 , |1〉 , |2〉 , . . . , |d − 1〉 and enters the first
path r0.

Assume: LIm(x, y ) stands for an OAM-BS, where
m determines into which paths (x or y) individual
OAM modes are output, as shown in Fig. 1(c).

Assume: Holog(p, v) stands for a hologram in path
p that adds value v to the OAM mode. It is shown
in Fig. 1(c).

Assume: N and bt are calculated via
d = ∑N−1

i=0 (bi × 2i ), bi = 0 and 1.
Assume: Auxiliary indices ai are defined as

a1 = 0
for t from 1 to N − 2 do

if bt = 0 then
at+1 = at

else
at+1 = t

end if
end for
procedure CYCLE FOR ODD DIMENSION

LI20 (r0, s0)
Holog(s0, +1)
for t from 1 to N − 2 do

LI2t (rat
, rt )

Holog(rt , −bt × 2t )
end for
LI2N−1 (raN−1 , rN−1)
Holog(rN−1,−2N−1)
for t from N − 2 down to 1 do

Holog(rt , +bt × 2t )
LI2t (rat

, rt )
end for
for t from 1 to N − 2 do

LI2t (s0, st )
end for
LI2N−1 (rN−1, s0)
for t from N − 2 down to 1 do

LI2t (rN−1, st )
end for
Holog(rN−1,−1)
LI20 (r0, rN−1)
Holog(r0, +1)

end procedure

2. Structure of setup

The general setup for the d-dimensional cycle is combined
by two different structures of powers-of-two 2M and odd
number Q. The total dimension is expressed by Eq. (1). For
example, the setup for d = 88 = 8 × 11 is combined by two
setups of dimension d = 8 and d = 11. As shown in Fig. 5.

Interestingly, the number of OAM-BSs in the generated
setups for all odd dimensions between 2M + 1 and 2M+1 − 1
keeps constant, as shown in Fig. 3. For example, the number
of OAM-BSs is 12 for all d = 9, 11, 13, and 15, as shown in
Fig. 6.

3. Different basis states

The experimental setup shown in Fig. 5(d) implements
the 11-dimensional cyclic transformation not only for states
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FIG. 5. (a) The experimental setup for the X gate in the 88-dimensional space. That is d = 88, for which M = 3 and Q = 11 according
to d = 2M × Q. The setup is a combination of setups for d = 8 and d = 11. Unlike other modes the highest-order mode, |87〉, propagates
through the middle path and enters the path of mode |−1〉. There are only 18 OAM-BSs in the setup for d = 88. (b) The setup works for a
superposition, such as |ψin〉 = α1 |0〉 + α2 |15〉. (c) The experimental setup for realization of the X gate in an 8-dimensional space. The setup
works for an arbitrary complex linear combination of modes |0〉 through |7〉. For example, the input state |ψin〉 = α1 |2〉 + α2 |7〉 is transformed
into the output state |ψout〉 = α1 |3〉 + α2 |0〉. (d) The experimental setup for the X gate in dimension d = 11. The device works for coherent
superposition, as is shown for the example |ψin〉 = α1 |1〉 + α2 |10〉.

(a) (b)

(c) (d)

FIG. 6. (a)–(d) The experimental setups for the X gate in dimensions d = 9, 11, 13, and 15, respectively. The number of OAM-BS is
12 in all cases. While individual elements are connected differently in each setup, the overall structure does not change. The superposition
α1 |3〉 + α2 |8〉 goes through different paths in different setups.
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FIG. 7. Possible 11-dimensional cyclic transformations implemented by the setup in Fig. 5(d). Each closed hendecagon shows the set of
11 OAM modes that can be cycled through with our experimental setup.

Algorithm 3. Special case—Pseudocode for power-of-two
dimension

Assume: The input state is a linear combination of
modes |0〉 , |1〉 , |2〉 , . . . , |d − 1〉 and enters the first
path r0.

Assume: LIm(x, y ) stands for an OAM-BS, where
m determines into which paths (x or y) individual
OAM modes are output, as shown in Fig. 1(c).

Assume: Holog(p, v) stands for a hologram in path
p that adds value v to the OAM mode. It is shown
in Fig. 1(c).

Assume: M = log2 d .
procedure CYCLE FOR 2M DIMENSION

for t from 0 to M − 1 do
LI2t (rt , rt+1)
Holog(rt+1, −2t )

end for
Holog(rM,−2M )
for t from M − 1 down to 0 do

Holog(rt+1, +2t )
LI2t (rt , rt+1)

end for
Holog(r0,+1)

end procedure

|0〉 , . . . , |10〉 but also for infinitely many additional sets of
states, three of which are shown in Fig. 7. This feature also
exists in other dimensions.

4. Simplification

The structure of setups generated by Algorithm 1 and
demonstrated in Fig. 5 is very symmetric—in the first part

FIG. 8. The simplified experimental setup implementing the 11-
dimensional cycle. In Fig. 5(d), the right part is not necessary as the
left part can be used both to reroute and to recombine individual
OAM modes.

individual modes entering the setup are rerouted into different
paths, the second part treats the highest mode separately from
the other modes, and finally the third part again recombines
all modes into a single output path. Similarity of the third,
recombination, part and the first, rerouting, part allows us to
remove the third part altogether. Provided that the photon has
a sufficiently large coherence length the original setup can be
simplified considerably.

As an example, we suppose that the photon has sufficiently
long coherence length and simplify the 11-dimensional cycle
in Fig. 5(d). Four OAM-BSs can thus be removed and paths
leading to them are reconnected as demonstrated by red (dark
gray) and green (light gray) lines in Fig. 8. The number of
OAM-BSs for dimension d = 11 is thus reduced from 12 to 8.
For dimension 500, such a simplification leads to a reduction
from 28 to 16. In general, the total number of OAM-BSs used
in the simplified setup is equal to

NS = M + 2�log2 Q� + 2, (A1)

which is approximately a half of the OAM beam splitters
used in the original setup [cf. Eq. (2)]. Even though the
scaling is still logarithmic, especially for high-dimensional
cyclic transformations the reduction in complexity of actual
experimental setups may be of great usefulness.

5. X−1 gate

In Fig. 9 one can see the setup for the X−1 gate in the
88-dimensional Hilbert space, where differences from the
implementation of the corresponding X gate in Fig. 5 are
highlighted.

FIG. 9. The X−1 gate implementation in the 88-dimensional state
space. The differences from the implementation of the X-gate in
Fig. 5 are highlighted. Specifically, the final hologram is moved
to the beginning, the central hologram is inverted and two central
OAM-BSs are connected differently to their neighbors and to each
other.
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