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The Bell basis is a distinctive set of maximally entangled two-particle quantum states that forms the foundation for
many quantum protocols such as teleportation, dense coding, and entanglement swapping. While the generation,
manipulation, and measurement of two-level quantum states are well understood, the same is not true in higher
dimensions. Here we present the experimental generation of a complete set of Bell states in a four-dimensional
Hilbert space, comprising 16 orthogonal entangled Bell-like states encoded in the orbital angular momentum of
photons. The states are created by the application of generalized high-dimensional Pauli gates on an initial entangled
state. Our results pave the way for the application of high-dimensional quantum states in complex quantum protocols
such as quantum dense coding. © 2017 Optical Society of America
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1. INTRODUCTION

Quantum entanglement is not only a curious phenomenon that
radically deviates from our everyday experiences; it is also essential
for many quantum information applications. High-dimensional
entanglement [1–7] offers specific advantages over qubit entan-
glement, which is conventionally used in quantum information
applications. The use of high-dimensional entanglement can
enhance quantum communication schemes by increasing their
channel capacity [8,9] and offering improved robustness against
sophisticated eavesdropping attacks [10,11]. High-dimensionally
entangled states can potentially be used for the teleportation of
quantum states of ever-increasing complexity [12]. In addition,
such states can enhance the capacity of quantum dense-coding
schemes that allow for the sharing of more information than is
classically possible [13,14].

Quantum communication schemes such as these usually re-
quire control over a basis of maximally entangled quantum
states—the so-called Bell basis. For example, both quantum tele-
portation [15] and entanglement swapping [16] require one to
unambiguously distinguish between at least one of the Bell states.
In quantum dense coding, the generation, manipulation, and
discrimination of Bell states is essential, as they form the basis
in which information is encoded [14]. Polarization-entangled
states have proved to be the most versatile implementation of

two-dimensional Bell states thus far, and have found use in several
quantum communication protocols. In addition to the polariza-
tion degree of freedom, two-dimensional Bell states have also been
demonstrated with time-bin entangled states [17] and recently
with photons entangled in their orbital angular momentum [18,19].

Here we demonstrate the experimental generation of a com-
plete basis of four-dimensional Bell-like entangled states. Our
experiment constitutes the first demonstration to our knowledge
of a complete Bell basis beyond qubits. In the case of two-
dimensional polarization entanglement, it is well known that
one can rotate between all four Bell states with a half-wave plate
(which performs a Pauli-X transformation) and a quarter-wave
plate (performing a Pauli-Z transformation). We generate all
16 Bell states by generalizing this method to a higher-dimensional
Hilbert space.

Our states consist of two photons entangled in their orbital
angular momentum (OAM) [20,21]. The 16 orthogonal states
in this basis are created by applying high-dimensional generaliza-
tions of Pauli gates on an initial OAM-entangled state that is
produced via spontaneous parametric down-conversion. A four-
dimensional X-gate is applied to one photon of the entangled
pair, which corresponds to a cyclic transformation between the
four basis states [22–24]. The second photon is sent through
a four-dimensional Z-gate, which imparts a mode-dependent

2334-2536/17/121462-06 Journal © 2017 Optical Society of America

Research Article Vol. 4, No. 12 / December 2017 / Optica 1462

mailto:anton.zeilinger@univie.ac.at
mailto:anton.zeilinger@univie.ac.at
mailto:anton.zeilinger@univie.ac.at
mailto:anton.zeilinger@univie.ac.at
mailto:manuel.erhard@univie.ac.at
mailto:manuel.erhard@univie.ac.at
mailto:manuel.erhard@univie.ac.at
mailto:manuel.erhard@univie.ac.at
https://doi.org/10.1364/OPTICA.4.001462
https://crossmark.crossref.org/dialog/?doi=10.1364/OPTICA.4.001462&domain=pdf&date_stamp=2017-11-27


phase shift on the photon. We quantify the quality of our gen-
erated states by measuring their overlap with ideal states from
a four-dimensional Bell basis and verify the presence of four-
dimensional entanglement by measuring an appropriate entangle-
ment witness.

2. TECHNIQUE

The D-dimensional Bell basis of a bipartite system AB, as gen-
eralized in the original teleportation paper by Bennett et al.
[15], can be written in the form

jψimnAB � 1ffiffiffiffi
D

p
XD−1

k�0

ei
2π
DnkjkiAjk⊕miB; (1)

where k⊕m ≡ �k � m�modD. For D � 2, this reduces to the
four well-known maximally entangled quantum states jΨ�i
and jΦ�i, which are either symmetric or antisymmetric. In
the four-dimensional case, Eq. (1) involves 16 orthogonal Bell
states that can be categorized into four distinct groups as shown
in Fig. 1(a). The four states in each group are labeled by the
variable n � 0; 1; 2; 3, which defines the phase relationships be-
tween the probability amplitudes. As defined in Eq. (1), the four-
dimensional Bell basis contains two antisymmetric and six
symmetric states, while the remaining eight states are neither
symmetric nor antisymmetric.

In the first set of states ψ0n in Fig. 1(a), photons A and B share
the same state, while the relative phase between the probability am-
plitudes varies according to n. The other three sets of states
are obtained by performing specific transformations on the
first group. To obtain the second group ψ1n, photon B is
transformed using clockwise cyclic mode transformation X
�−2 → −1 → 0 → 1 → −2�. For the groups ψ2n and ψ3n, the state
of photon B is transformed by an X 2 transformation �−2 ⇆
0; −1 ⇆ 1� and an anticlockwise cyclic transformation X †

�−2 → 1 → 0 → −1 → −2�, respectively. To transform among
states within each group, photon A undergoes a mode-dependent
phase transformation. In this manner, all 16 states in the
four-dimensional Bell basis are obtained (Fig. 1). Since this is a
bipartite maximally entangled system, it does not matter on which
photon or in which order the phase and cyclic transformations
are applied.

3. EXPERIMENT

As shown in Fig. 2, photons entangled in their OAM are ge-
nerated via a frequency-degenerate type-II spontaneous para-
metric down-conversion (SPDC) process in a periodically poled

potassium titanyl phosphate (ppKTP) crystal. The photons are
produced in the state

jΨi �
X�∞

l�−∞
clj − liAjliB; (2)

where jli represents a photon carrying an OAM of lℏ and cl
is a complex probability amplitude. For the purposes of our
experiment, we use a four-dimensional subset of this state con-
sisting of OAMmode values l varying from −2 to 1. One photon
is vertically polarized and thus reflected by the polarizing beam
splitter (PBS) into path A. The other photon is horizontally po-
larized and therefore transmitted at the PBS into path B. The
reflection at the PBS flips the sign of the OAM mode
(jli → j − li). This transforms the entangled photons into the
first state of our basis jψ00i � �j − 2; −2i � j − 1; −1i � j0; 0i �
j1; 1i�∕2. In order to create the remaining three states in the first
group, we apply a mode-dependent phase transformation with a
Dove prism (DP) in arm A. In general, a DP oriented at an angle
α introduces a phase jli → exp�i2lα�jli that depends on the
OAM value l of the incoming photon and the rotation angle
α of the prism. The effect of this element on the state can be
written as

jΨi�!DP�α�jΨ 0i � 1

2

X

l∈f−2;−1;0;1g
ei2lαjliAjliB: (3)

By orienting the DP at different angles �α � 0; π∕4;
π∕2; 3π∕4�, we obtain all four states in one group.

A fourfold clockwise cyclic transformation of OAMmodes was
recently developed through the use of the computer algorithm
Melvin [22] and implemented with coherent light as well as single
photons [23,24]. The principle idea of cyclic transformations is to
split even and odd OAM modes into two different paths and
manipulate them independently. Finally, the two paths are recom-
bined coherently. In our experiment, we implement three such
cyclic transformations (X , X 2, X †) at the single-photon level.

As shown in Fig. 2, we use a double-path Sagnac interferom-
eter containing two DPs [25] to split even and odd OAM modes
into two different paths (green frame). In the path for even
OAM modes, different OAM manipulations are performed that
are necessary for the three cyclic transformations. The two paths
are probabilistically recombined with a beam splitter (BS),
forming a Mach–Zehnder (MZ) interferometer. In principle,
the two paths can be recombined with another parity sorter
in a deterministic way. To perform the X transformation
�−2 → −1 → 0 → 1 → −2�, a spiral phase plate (SPP) adds an
OAM quantum of �1 before the OAM sorter. After the sorter,

(a) (b)

Fig. 1. Generating 16 four-dimensional Bell states. (a) The 16 Bell states can be divided into four classes of four states each. Within each class, the states
only differ in mode-dependent phases. States from different classes differ by their OAM number. (b) By employing a mode-dependent phase trans-
formation on photon A and a cyclic mode transformation on photon B, the complete set of 16 maximally entangled four-dimensional Bell states
can be obtained.
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one of the paths of the MZ interferometer undergoes an addi-
tional reflection. A final additional reflection completes the X
transformation. For the X 2 transformation �−2 ⇆ 0; −1 ⇆ 1�,
an SPP is inserted within the MZ interferometer, adding an
OAM quanta of �2 for even OAM modes only. A single reflec-
tion at the end completes the X 2 transformation. In the case of
the X † transformation �−2 → 1 → 0 → −1 → −2�, an additional
reflection is introduced within the MZ interferometer, after which
an SPP subtracts one OAM quantum from the recombined
modes. Finally, an additional reflection completes the X † trans-
formation. Together, the three cyclic transformations on photon
B and the three phase transformations on photon A allow us to
obtain all four groups of states in the four-dimensional Bell basis.

The detection system consists of a spatial light modulator
(SLM), a single-mode fiber (SMF), and a single-photon detector.
The SLM is used to flatten the phase of an incoming photon,
transforming it into an l � 0 mode that efficiently couples to
the SMF [26]. In this manner, the OAM content of single pho-
tons can be measured for specific modes or mode superpositions.

4. RESULTS

The 16 experimentally generated Bell states are analyzed
using two different quantitative measures—their overlap with
the theoretically expected Bell states and a witness of four-
dimensional entanglement. The overlap allows us to estimate
how close we are in our experiment to the ideal Bell basis,
and the witness allows us to verify the presence of genuine
four-dimensional entanglement in our generated states.
Figure 3 shows the overlap of states within each of the four groups
ψ0n-ψ3n. The overlap is measured by calculating the fidelity
F exp � Tr�ρexpjψmnihψmnj�, where ρexp denotes the experimen-
tally created state and jψmni the ideal Bell states. Taking the
non-flat spiral bandwidth [27] of the SPDC state into account,

the maximum expected fidelity is limited to 93%. The average
fidelity to the ideal state for the first group (without any cyclic
transformation) is 82.1%� 1.1%. The decrease of the measured
fidelity of about 11% is mainly due to intermodal crosstalk. The
other three groups combined show an average fidelity to the
ideal state of 76.6%� 2.2%. This shows that the cyclic transfor-
mation lowers the average fidelity by approximately 5.5%, which
can be attributed to additional misalignments within the
interferometers that comprise the X -gates.

SLM

Fig. 2. Experimental setup of 4D Bell states. A laser creates a pair of OAM-entangled photons in a nonlinear crystal (ppKtp) that are deterministically
separated with a polarizing beam splitter (PBS). The upper path A includes a Dove prism (DP) that implements mode-dependent phase transformations
for different rotation angles. The photons transmitted through the PBS arrive at the OAM sorter (green frame). This sorter contains two DPs with a
relative angle of 90°, which results in interference that depends on the parity (odd or even) of the spatial mode. For reasons of stability, the OAM sorter is
implemented as a double-path Sagnac interferometer. There, odd modes are transmitted, while even modes are reflected (thus also changing the sign of
their OAM). To implement the three cyclic transformations (X , X 2, X †), only a spiral phase plate (SPP) and a mirror have to be installed in different
positions. A spatial light modulator (SLM) together with a single mode fiber (SMF) is used to perform projective measurements.

Fig. 3. Overlap between generated states and ideal Bell states. The
overlap of 16 states is separated into four subgraphs as shown in the
figure. The x and y axes in the figure represent the experimental and
ideal Bell states, respectively. The diagonal elements indicate the fidelity
F exp between the experimentally generated states and the corresponding
target states ψmn.
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Next, we certify the entanglement dimensionality of our
generated states by using a bipartite entanglement witness for
d -dimensional systems [28,29]. We search for the maximal
overlap of an arbitrary three-dimensional quantum state with
a maximally entangled four-dimensional state (which is not
necessarily a Bell state but might have different phases). The
theoretical maximum overlap is F̄max � 75%. If we exceed this
bound in the experiment, the state is certified to be (at least)
four-dimensionally entangled.

The measured fidelity witnesses Fwit for all 16 states are plot-
ted in Fig. 4. Each of the 16 Bell states individually
exceeds the bound of 0.75 by at least three standard deviations,
and is thus certified to be four-dimensionally entangled. The error
in the fidelity is calculated by propagating the Poissonian error in
the photon-counting rates via a Monte Carlo simulation.

5. HIGH-DIMENSIONAL QUANTUM DENSE
CODING

By replacing the SPP in our experiment with computer-generated
holograms implemented on SLMs, our technique can be extended
for rapidly switching between all 16 states in the four-
dimensional Bell basis in an on-demand manner. This would con-
stitute the first step in a high-dimensional quantum dense coding
protocol [14]: by implementing both phase and cyclic transfor-
mations on one photon, Bob can encode 4 bits of information
using the two-photon four-dimensional Bell basis. In a real ap-
plication, the encoded information is lower due to crosstalk be-
tween the measured states. The experimental results of Fig. 3 lead
to a mutual information of 2.6 bits (assuming that the probabil-
ities for the not measured values, which are zero in the ideal case,
are equally distributed). That exceeds the theoretical upper limit
for two-dimensionally entangled states of 2 bits. The subsequent
step where Alice must distinguish between all 16 Bell states in
order to decode this information provides a significant challenge.
It has been shown that it is impossible to unambiguously discrimi-
nate a single high-dimensional Bell state from the others with just
linear optics [30]. However, it is possible to sort 16 Bell states into
seven classes of states that can be distinguished with a linear
optical setup, as was recently demonstrated with hyperentangled
time-polarization states [31].

With linear optics only, we could therefore extract 7·2.616 � 1.14
bits of information. However, full Bell state measurements are
possible, for instance, using nonlinear optics [32].

Our experimental technique solely involves the photonic
spatial degree of freedom and can thus be readily combined with
well-developed techniques for polarization [33] and time-bin
encoding [31], allowing for a significant increase in Hilbert space
dimensionality.

6. CONCLUSION

Here we have shown the application of recently developed high-
dimensional quantum gates to photonic quantum entanglement.
By doing so, we were able to create a complete set of four-
dimensionally entangled quantum states for which no method
of creation was previously known. The quantum states we created
are a high-dimensional generalization of the Bell basis, arguably
the most commonly used set of entangled quantum states in
two dimensions. Access to the complete high-dimensional Bell
basis allows for the exploration of strong nonclassical correlations
and their application in quantum information protocols such
as quantum dense coding. Furthermore, our technique can be
used for the generation of complete sets of high-dimensional
Greenberger–Horne–Zeilinger states [6,35]. Another possible
application is to create multi-qubit cluster states, which can be
generated by merging several different Bell states [36]. By analogy,
different types of high-dimensional multi-photon states can be
produced using the technique presented here.

APPENDIX A: SUPPLEMENTARY MATERIAL

1. Deviations from the Ideal States

Deviations from the ideal states can be explained by three main
effects: non-equal distribution of modes from the original state,
crosstalk between modes, and loss of coherence in the interferom-
eters. The spiral bandwidth of the OAM distribution is not flat,
thus the state created in the down-conversion process is not max-
imally entangled. In our experiment, we measure an initial state
of jψi � αj0; 0i � βj1; 1i � βj − 1; −1i � γj2; 2i with α∕β �
0.69 and α∕γ � 0.45. Thus the maximum possible fidelity with
a maximally entangled Bell state is limited by 93%. This inherent
unbalancing of the created modes can be overcome with a
Procrustean filtering technique [2,37]. Another issue that lowers
the fidelity is the crosstalk between different modes, and we find
that in the computation basis, cross-talkcounts

allcounts
� 0.11�3�. The cross-

talk limits the fidelity to 91%. These impurities mainly stem from
misalignments of the OAM sorter and the Mach–Zehnder inter-
ferometer, which can be reduced by active stabilization. The co-
herence of the off-diagonal elements in this experiment has been
measured to be 0.97(6)% on average. Taking these three limiting
factors into account, the expected fidelity witness values are given
by Fwit � 0.81�5�. Hence, the observed average fidelity witness
of Fwit � 0.808� 0.016 is mainly due to unbalancing and cross-
talk in the diagonal elements.

2. Overlap Between States

Here we show the data from which Fig. 3 has been created. It
shows the overlap between different states from the same class,
with the same OAM values but different phases.

Fig. 4. Fidelity witness. Our 16 states exceed the bound for the overlap
with a three-dimensionally entangled state (red line), certifying that they
are all (at least) four-dimensionally entangled. The fidelity is classified
into four groups (jψ0ni, jψ1ni, jψ2ni, jψ3ni) in the figure. The error
is calculated using Monte Carlo simulation, and the red line denotes
the theoretical bound for four-dimensional entanglement.
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ψ0;0 ψ0;1 ψ0;2 ψ0;3

ψ0;0 0,810 0,063 0,011 0,048
ψ0;1 0,024 0,823 0,041 0,002
ψ0;2 0,015 0,060 0,818 0,049
ψ0;3 0,027 0,006 0,032 0,835

ψ1;0 ψ1;1 ψ1;2 ψ1;3

ψ1;0 0,762 0,004 0,058 0,046
ψ1;1 0,053 0,748 0,002 0,074
ψ1;2 0,030 0,053 0,780 0,009
ψ1;3 0,005 0,025 0,044 0,811

ψ2;0 ψ2;1 ψ2;2 ψ2;3

ψ2;0 0,788 0,100 0,020 0,003
ψ2;1 0,010 0,784 0,008 0,017
ψ2;2 0,027 0,041 0,751 0,066
ψ2;3 0,098 0,020 0,001 0,764

ψ3;0 ψ3;1 ψ3;2 ψ3;3

ψ3;0 0,773 0,042 0,076 0,003
ψ3;1 0,022 0,745 0,056 0,089
ψ3;2 0,055 0,076 0,740 0,031
ψ3;3 0,076 0,061 0,018 0,747

From there, the average expected fidelity can be calculated to
be F̄ exp � 0.78� 0.03.

3. Entanglement Witness

First, we calculate the overlap Fwit between our state and a
d -dimensional maximally entangled target state. Then, we com-
pute a d -dimensional entanglement bound B�d � � Pd−1

l�0 λ
2
i ,

which is the sum of the squares of all but the smallest Schmidt
coefficients of the target state. If the overlap, Fwit exceeds the
bound for a d -dimensional entangled state; then the measure-
ment data can only be explained with a (d � 1)-dimensionally
entangled state.

4. Combining the Beams Probabilistically

In our experiments, we combine the two photon paths for photon
B probabilistically. The beam splitter in Fig. 2 is implemented via
a half-wave plate at 45° in the horizontal arm (after which the
polarization is diagonal), and PBS. In order to erase the which-path
information, we could use a polarizer at 45°. However, we use half-
wave plate at 45°, which rotates horizontal to diagonal and vertical
to anti-diagonal; afterwards we use the SLM as an effective polar-
izer, as the SLM only works with horizontally polarized light.
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