
            

PAPER • OPEN ACCESS

On small beams with large topological charge
To cite this article: Mario Krenn et al 2016 New J. Phys. 18 033012

 

View the article online for updates and enhancements.

You may also like
Energy, momentum and propagation of
non-paraxial high-order Gaussian beams
in the presence of an aperture
Alexander B Stilgoe, Timo A Nieminen and
Halina Rubinsztein-Dunlop

-

The influence of nonparaxiality on the
spectral behavior in Young's experiment
illuminated by partially coherent light
Zhao Guang-Pu and Lü Bai-Da

-

Non-Paraxial Propagation of Cylindrical
Vector Vortex Beams in the Far-Field
Li-Na Guo,  , Zhi-Lie Tang et al.

-

Recent citations
Angular velocimetry for fluid flows: an
optical sensor using structured light and
machine learning
E. F. Strong et al

-

Reinventing the Zel'Dovich wheel
Cisco Gooding et al

-

Measurement of the orbital angular
momentum of an astigmatic
Hermite–Gaussian beam
V.V. Kotlyar et al

-

This content was downloaded from IP address 141.5.38.46 on 25/10/2021 at 09:03

https://doi.org/10.1088/1367-2630/18/3/033012
https://iopscience.iop.org/article/10.1088/2040-8978/17/12/125601
https://iopscience.iop.org/article/10.1088/2040-8978/17/12/125601
https://iopscience.iop.org/article/10.1088/2040-8978/17/12/125601
https://iopscience.iop.org/article/10.1088/1674-1056/18/8/056
https://iopscience.iop.org/article/10.1088/1674-1056/18/8/056
https://iopscience.iop.org/article/10.1088/1674-1056/18/8/056
https://iopscience.iop.org/article/10.1088/0256-307X/31/7/074101
https://iopscience.iop.org/article/10.1088/0256-307X/31/7/074101
https://doi.org/10.1364/OE.417210
https://doi.org/10.1364/OE.417210
https://doi.org/10.1364/OE.417210
https://doi.org/10.1103/PhysRevA.101.063819
https://doi.org/10.18287/2412-6179-2019-43-3-356-367
https://doi.org/10.18287/2412-6179-2019-43-3-356-367
https://doi.org/10.18287/2412-6179-2019-43-3-356-367


New J. Phys. 18 (2016) 033012 doi:10.1088/1367-2630/18/3/033012

PAPER

On small beams with large topological charge

MarioKrenn1,2,4,5, Nora Tischler1,2,3,4 andAntonZeilinger1,2,5

1 ViennaCenter forQuantumScience andTechnology (VCQ), Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090Vienna,
Austria

2 Institute forQuantumOptics andQuantum Information (IQOQI), Austrian Academy of Sciences, Boltzmanngasse 3, A-1090Vienna,
Austria

3 Department of Physics &Astronomy, Centre for EngineeredQuantum Systems,Macquarie University, NSW2109, Sydney, Australia
4 These authors contributed equally to this work.
5 Authors towhomany correspondence should be addressed.

E-mail:mario.krenn@univie.ac.at and anton.zeilinger@univie.ac.at

Keywords: Laguerre–Gaussmodes, nonparaxial, diffraction limit, focussing, visibility, Rayleigh criterion

Abstract
Light beams can carry a discrete, in principle unbounded amount of angularmomentum. Examples of
such beams, the Laguerre–Gaussmodes, are frequently expressed as solutions of the paraxial wave
equation. The paraxial wave equation is a small-angle approximation of theHelmholtz equation, and
is commonly used in beamoptics. There, the Laguerre–Gaussmodes havewell-defined orbital angular
momentum (OAM). The paraxial solutions predict that beamswith largeOAMcould be used to
resolve arbitrarily small distances—a dubious situation.Here we showhow to solve that situation by
calculating the properties of beams free from the paraxial approximation.Wefind the surprising result
that indeed one can resolve smaller distances with largerOAM, althoughwith decreased visibility. If
the visibility is kept constant (for instance at the Rayleigh criterion, the limit where two points are
reasonably distinguishable), largerOAMdoes not provide an advantage. The drop in visibility is due
to afield in the direction of propagation, which is neglectedwithin the paraxial limit. Ourfindings
have implications for imaging techniques and raise questions on the difference between photonic and
matter waves, whichwe briefly discuss in the conclusion.

Laguerre–Gauss (LG)modes can be specified by twomode numbers, ℓ and n, which are the orbital angular
momentum (OAM)mode number or topological charge, and the radialmode number, respectively [1]. For the
rest of this note, we consider beamswith the radialmode number n=0 and look at the transverse beampatterns
in the planewhere z=0.

Laguerre–Gauss beams can be found as solutions of the paraxial wave equation and described in cylindrical
coordinates j( )r, by
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wherew0 is the beamwaist andN is a normalization constant. The intensity is given by

j j=( ) | ( ) | ( )ℓI r r, LG , , 22

which results in an intensity ring for >ℓ 0.The intensitymaximumof the ring in the radial direction is at

=
ℓ ( )r w
2

. 3max 0

The radius ofmaximum intensity scales with the square-root of theOAM [2]. Superpositions of two LG-
modeswith oppositeOAMhave the same radial dependence (consequently, the intensitymaximum is at the
same rmax), but they exhibit intensity oscillations in the azimuthal directionwith ℓ2 intensitymaxima and
minima. The distance between two petals (intensitymaxima) is therefore
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For afixed beamwaist, the distance between two petals becomes smaller with increasing ℓ.Apotential
application of these superposition beams is the use of the azimuthally varying intensity pattern to probe small
structures. Then the distanceD between twomaximawill have a bearing on the achievable resolution. Based on
the paraxial solution from equation (1) it seems as if we should be able to resolve arbitrarily small structures
sinceD can be decreased by increasing ℓ.Wecould resolve in the sub-wavelength regime, but also further in the
sub-atomic or in the extreme case even Planck-length regime (whichwould be found for ℓ∼1062, where a
modewith∼100 μmbeamwaist has a diameter of the observable universe). This would obviously constitute a
very curious situation and the question is how it can be resolved.

The calculation above is based on the paraxial approximation, which is only valid for sufficiently large
beams: it is known that the paraxial wave equation is a zero-order approximation of theMaxwell’s equations

with terms of the order Oa = l( )w0
ignored, whereλ is thewavelength [3–5]. Here, we test if these

considerations withstand amore rigorous analysis free from the paraxial approximation.We use forward-
propagating LGmodeswhich are full solutions ofMaxwell’s equations. In order to calculate full solutions of LG
beams, we use two distinctmethods proposed in the literature. Thefirstmethod is based on the elegant
framework of the Riemann–Silberstein vector [6, 7]. Thefinite energy, analytical solution of LGbeams is derived
in [8]. The secondmethod to calculate fullMaxwell solutions of LGbeams is based on the aplanatic lensmodel
[9–11]which is a standardway to describe focusedfields. The familiar paraxial properties of themodes are
recovered by the solutions of bothmethods. For small beamswith largeOAM the twomethods show the same
behavior, which deviates from the predictions obtained using the paraxial approximation. Specifically, both
methods unanimously show that the visibility of the intensity fringes in the azimuthal direction decreases. This is
due to an increasing field component in the direction of propagationwhich is out of phase with the transverse
components. This solves the curious situation explained above. Usually, the smallest distance one can resolve is

given by the diffraction limit = ld .
2
Although the LG solutions in the Riemann–Silberstein formalism are

analytic, they aremore difficult to interpret with respect to the diffraction limit as they are notmonochromatic.
Therefore, we continuewith the aplanatic lensmodel.

The aplanatic lensmodel can be used to calculate strongly focused fields that are obtained by the use of a
microscope objective or similar elements. Based on properties of the focusing optics and the incident field, the
model provides the focused electric field, which is a solution of the fullMaxwell’s equations. The properties
specifying the focusing optics are the focal length, the numerical aperture (NA), and the transmission
coefficients for s- and p-polarization.We assume an idealmicroscope objective by setting theNA to 1 and by
letting the s and p transmission coefficients be unity, which is the goal of antireflection coatings. For the incident
field, we use the LGmodes specified by (1), with circular polarization s s= +ˆ ˆ ˆ( ) ( )u r x y, i .1

2
Such a circularly

polarized collimated beam is to a very good approximation a helicity eigenstate (with eigenvalue s ), and the
helicity (i.e. circular polarization of each planewave composing the totalfield) is preserved throughout the
focusing process owing to the equal s- and p-transmission coefficients [11].

The aplanatic lensmodel essentially associates real space field coefficients of the input beamwith planewave
decomposition amplitudes of the focused field, and gives us the following output field (see appendix):
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is the beamwaist after focusing the incoming beam (withwaist )win with a lens of focal length

f. f( )k k k, ,r z and ( )k k k, ,x y z are cylindrical andCartesian coordinates inmomentum space, with

= + = + + = p
l

k k k k k kr z x y z
2 2 2 2 2 2 denoting thewave number and l being the optical wavelength. The

integration of kr is cut off at =k kmax which implies a numerical aperture of the focusing objective of 1, and
effectively avoids evanescent waves as we are only interested in propagating fields. The factor

= -( ) ( )g k k k1r r
24 / comes from energyflux conservation during focusing, and is responsible for a damping

of high radial k-components at very strong focusing.
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The helicity is given by s,which can be+1 or−1 for left- or right-circular polarization. sˆ ( )u k, is a
normalized circular-polarization vector [8] in Cartesian coordinates. Aswewould like to produce superposition
of LGmodes, we can simply add two fundamental solutions: = +s s s + -( ) ( ( ) ( ))ℓ ℓ ℓE E Er t r t r t, , ,,

1

2 , , .

Nowwe study the intensity distribution of very small beamswith non-zeroOAMsuperposition. The
intensity can simply be calculated as j µ å +=( ) { } { }ℓ { }I r R E c R B, e e ,i x y z, , i

2 2
i

2 whereRe{} denotes the real
part. The intensity j( )ℓI r, is related to the full energy of the electromagnetic field. It is alsomeaningful in
quantumphysics due to its interpretation as the probability density for the case of single photons [7, 12].

Wefix ourwavelength to l = 800 nm. Infigure 1we plot the intensity of a beamwith =ℓ 15,which leads
to 30 petals in the ring. In 1A–B, the beamwaist isw0=10 μm,whereas in 1C–Dw0=1 μmis used. In the
smaller beam, the intensityminima are significantly filled in due to a largefield component in z-direction (in the
example, themaximumof the field in z-direction is roughly 32%of the full intensity’smaximum). The
z-component is shifted azimuthally by exactly half a period compared to the x- and y-components. The visibility
(defined as = -

+
vis I I

I I
max min

max min
at the radial position of the intensitymaximum) drops from almost unity to 48.6%.

Infigure 2, we show theOAMdependence of the beamwaistw0, themaximum radius rmax and the distance
between differentmaximaD. If no other restrictions are applied andw0 remains constant, indeed rmax scales like
the square root of theOAM, thereforeD decreases—exactly as predicted by the paraxial solution.However, if
one takes into account the decrease of the visibility, which is a significantmeasure for resolution, the situation
changes.When the visibility isfixed (by adjustingw0), themaximum radius rmax increases linearly with the
OAM,which leads to a constant behavior of theD.The behavior is analyzed for different visibilities of
superposition fringes: 95%, 80%50%and 15.1%. The last one resembles the Rayleigh criterion, the limit at
which twopoints can be reasonably distinguished. These results show thatOAM superpositions cannot be used
to decrease the distance between twomaximawhile keeping theminima small—whichmight be a significant
result forOAM-based resolution techniques.

These conclusions are based on the natural choice of using the radius at which the total energy of thefield is
maximal. One interestingmatter is the amplitude of the fringes. In all cases presented abovewe have analyzed

Figure 1. LGbeamswithλ=800 nmand =ℓ 15 with different beamwaistw0. (A): intensity profile of the LGmodewith
w0=10 μm. (B): intensity in azimuthal direction for r=rmax. The visibility of the fringes is close to unity, which is very close to the
paraxial case. (C)& (D): the same properties for a LGbeamwithw0=1 μm.Theminima arewashed out significantly, the visibility
drops to roughly 49%,which is a pure non-paraxial effect.
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the visibility in the radial position ofmaximal intensity.We also analyzed azimuthal visibilities for r≠rmax, and
see that the visibility decreases for smaller r (in regionswhere there is still a considerable amount of intensity)
(see appendix). However, it is known that situations can exist where high frequency oscillationswith perfect
visibilities can be achieved, in places where the intensity is exponentially small [13].We conjecture that there is a
criterionwhich jointly takes into account the overall amplitude of the fringes and their visibility, and indicates
the usefulness for resolution. A different workaround for the limitations explained in this work could be the use
of amethod that is only sensitive to certain parts of the electromagnetic field, such as the electric energy or the
transverse components of thefield.

Our result shows that equation (1) leads to incorrect predictions in the regime of small beamswith large ℓ.
This is for two distinct reasons. First of all, thefield component in the z-direction, which is neglected in the
paraxial approximation, causes reduced visibilities, with possible implications for imaging applications or
optical lattices [14]. Secondly, limiting the field to propagatingmodes imposes a cut-off in the radialmomentum
components, which becomes significant for even smaller beamwaists or larger ℓ (see equation (5)). A
fascinating question is the behavior ofmatter waveswith large orbital angularmomentum [15–17]. As they are
described by the Schrödinger equation, which has the same form as the paraxial wave equation, the visibility
issue inOAMsuperpositions does not apply—indicating an interesting difference between propagation of
photons [18] andmatter waves [19, 20]. However, the physical constraint on themaximal transverse
momentum for propagatingmodes is valid formatter waves and poses a limitation on their use for resolution
applications, similarly as in the case of photons. The paraxial wave equation, for which equation (1) is a solution,
is an approximation of an optical Dirac equation [21], in a formally very similar way as the Schrödinger equation
is an approximation of themassiveDirac equation. It would be interesting to investigate whether similar non-
paraxial effects presented here exist in some form for relativisticmatter waves aswell.

Figure 2. (A): if wefix the visibility of the intensity in the azimuthal direction, we find that the beamwaistw0 increases as a square root
of theOAM. (B): this leads to a linear scaling of themaximum radius of the intensity pattern. (C): as a consequence, the distance D
stays constant. For all plots the points represent calculated values and the line stands for square-root or linear interpolation. The cases
where significant portions (more than 50%of the energy) of the beam are cut off due to the cut-off kmax from equation (5) are
indicated by squares.
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Appendix

A.1. Derivation of the focused LGfield
To arrive at (5), we use the LGmodes of equation (1)with circular polarization s s= +ˆ ˆ ˆ( ) ( )u r x y, i1

2
as

j=( ) ( )E r Et r t, , , 0, .in in Thismeans that the beamwaist of the paraxial beam is at the input of themicroscope
objective. Then the coefficients of the planewave decomposition for the focused field are obtained bymaking the

substitutions r ,
f k

k
r j  fk for the coordinates of the inputfield, andmultiplication by the energy flux

conservation factor = -( ) ( )g k k k1r r
24 / .

The polarization vectors in the planewave decomposition can be obtained as follows: we start with a helicity
eigenstate and our aplanatic lens conserves that helicity, whichmeans that each planewave of the focused field
must have circular polarizationwith the same handedness as the incident field. sˆ( )u k, from equation (5) fulfills
these requirements: it is a normalized circular-polarization vector [8] in Cartesian coordinates, which is tilted
such that it is transverse to themomentumvector k, and has its handedness specified byσ. Specifically, sˆ( )u k,
can be derived by startingwith s s= +ˆ ˆ ˆ( ) ( )u r x y, i ,1

2
and rotating this vector by ( )k karcsin r/ about the

y axis, and by fk about the z axis. Then an s fe ki factor is applied in order to attain the correct total angular
momentum J= l+σ, which is the total angularmomentumof the input beam that is conserved by the
cylindrically symmetric focusing optics.

The above construction results in the planewave decomposition

s= ⋅ ⋅s f f( ) ( ) ˆ( ) ( ) ( )E u kk k g k k k w, LG , , , , A1l r r r, 0

with ( )g kr and f( )k k wLG , ,r 0 as specified in themain text. Thefinal step consists in a Fourier transform to
obtain the real space field of equation (5).

A.2. Visibility versus radius
In themain text, we analysed the visibility in azimuthal direction at the radial positionwhere the intensity is
maximal. This is a natural choice if we are interested, for instance, in the usefulness for resolution.However, we

Figure A1.The visibility of beamswith different waists and differentOAM is calculated as a function of the radial coordinate (not only
at the radius ofmaximum intensity—as used in themain text). The blue shape represents the intensity of the LGmode in radial
direction. The red line shows the visibility.
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can also look at different radii and analyse the visibility there. Infigure A1, we calculate the visibilities for
different regions of the beam, for differentOAM l and different beamwaistsw0.

The visibility is calculated for all radii where the intensity is at least 0.1%of themaximum intensity–
excluding regions of negligible intensity, which are expected to be unusable in imaging applications.Wefind
that for smaller radii, the visibility only decreases. For larger radii, it increases.

In order to calculate the visibility in other regimeswhere the intensity is even lower, robust numerical
methods need to be used in order to deal with exponentially small intensities.
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