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Physical meaning of the radial index of Laguerre-Gauss beams
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The Laguerre-Gauss modes are a class of fundamental and well-studied optical fields. These stable shape-
invariant photons, exhibiting circular-cylindrical symmetry, are familiar from laser optics, micromechanical
manipulation, quantum optics, communication, and foundational studies in both classical optics and quantum
physics. They are characterized, chiefly, by two mode numbers: the azimuthal index indicating the orbital angular
momentum of the beam, which itself has spawned a burgeoning and vibrant subfield, and the radial index, which
up until recently has largely been ignored. In this paper we develop a differential operator formalism for dealing
with the radial modes in both the position and momentum representations and, more importantly, give the meaning
of this quantum number in terms of a well-defined physical parameter: the intrinsic hyperbolic momentum charge.
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I. INTRODUCTION

The ability to shape optical beams has increased dramat-
ically in recent years due to a number of newly developed
tools and techniques. This progress has been driven by the
many promising potential applications of the orbital angular
momentum degree of freedom, as well as more generalized
beam shaping. Allen et al. [1] showed the connection between
the azimuthal index of a Laguerre-Gauss (LG) mode (the
natural beamlike light modes exhibiting circular-cylindrical
symmetry) and the physical quantity of orbital angular mo-
mentum (OAM). This physical parameter is useful for doing
micromechanical work, is a well-defined quantum number
with applications to foundations, and informatics, and also
is important in the foundational study of optics (see Ref. [2]
and references therein).

However, despite the vast amount of attention OAM has
received over the past two decades, very little research has
been conducted on the other mode number of LG photons: the
radial index. Much of the time it is regarded as little more than
unwanted noise that unfortunately arises when one is trying
to produce pure OAM modes. In another work we referred to
this as the forgotten quantum number [3]. In this paper we
will summarize the previous work by us and by others [4,5],
then significantly extend and simplify these previous analyses,
elucidate the physical meaning of this quantum number, and
give a brief prospectus for the use of the radial number in
future quantum technologies.

Laguerre-Gauss beams are typically found by taking the
paraxial wave equation and finding solutions in the circular-
cylindrical coordinate system. The paraxial equation is the
result of making the assumption that the beam is not highly
divergent or focused. Ironically, we find that the mathematical
analysis of the radial number simplifies significantly when
this assumption is removed and exact solutions of Maxwell’s
equations are considered. This is done by taking the photonic
wave function in momentum coordinates as derived through
the Riemann-Silberstein vector formalism [6,7]. However,
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the physical meaning does remain clearer in the position
representation, an oddity we will discuss.

Our conclusion is that the radial index of Laguerre-Gauss
photons is a compound physical parameter influenced by,
but not influencing, other fundamental parameters of the
mode, as well as an additional property intrinsic to itself:
the hyperbolic momentum, which is a kind of mathematically
well-formed radial-like momentum with subtle and interesting
properties. Thus we call the radial index the hyperbolic
momentum charge. The hyperbolic momentum is the result
of the restriction that the radial coordinate is only defined for
values greater than zero, as we will explain.

This paper is organized as follows. In the following section
we review the LG beams. In Sec. III we derive the radial
mode operator in the paraxial position-space representation
and introduce the hyperbolic momentum operator. In Sec. IV
we briefly summarize the background for the exact quantum
momentum-space wave function of the photon, namely,
the Riemann-Silberstein vector, a more detailed derivation
being included in the Appendix. In Sec. V we derive the
momentum-space formalism for the radial modes. In Sec. VI
is the main purpose of this paper: the physical interpretation
of the preceding mathematics as well as a discussion of
some potential applications of the radial quantum number.
In Sec. VII we summarize.

II. LAGUERRE-GAUSS BEAMS AND THE ORBITAL
ANGULAR MOMENTUM OF LIGHT

The equation of a LG beam, under the paraxial assumption,
in circular-cylindrical coordinates (r , φ, z) is

LGnl(r,φ,z)

=
√
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FIG. 1. (Color online) Transverse spatial profiles of nine different Laguerre-Gauss beams in both intensity (left) and phase (right) at z = 0,
for three different values of the radial index and three different values of the azimuthal index. The diameter of all the plots is 6 mm.

where n and l are the radial and orbital angular momentum
quantum numbers, respectively, and L

|l|
n is the generalized

Laguerre polynomial of order n and degree |l|. The functions
wz, Rz, and ϕg are the beam waist, radius of curvature, and
Gouy phase of the fundamental beam, respectively, and are
given by

wz = w0

√
1 + 4z2

k2w4
0

, (2)

Rz = z + k2w4
0

4z
, (3)

ϕg = arctan

[
2z

kw2
0

]
, (4)

where k = 2π/λ is the overall wave number of the beam and
w0 is the beam waist at z = 0 (defined where the beam is
narrowest). The beam or photon is then completely defined by
four numbers n, l, k, and w0. In Fig. 1 we plot LG beams for
various parameters. The LG beams are solutions to the paraxial
wave equation

∇2
t E − 2ik

∂

∂z
E = 0, (5)

where ∇2
t is the transverse Laplacian and E is a complex

electric scalar field (i.e., we assume that the electric field
vector points in the same direction at every point in the
transverse plane). The paraxial wave equation is a version
of the full wavelike Maxwell equations under the small-angle
approximation for propagation. In this paper we consider both
the cases where this approximations is met and when it may
not be.

In the paraxial limit the angular momentum of light
separates out into a spin and orbital part, both of which are
well defined [8]. The form of the differential OAM operator in

the paraxial limit, about the direction of beam propagation, is
well known and straightforward

L̂z = −i�
∂

∂φ
. (6)

The OAM is also sometimes called the winding number as
it incrementally changes the number of helical equal-phase
surfaces of the photon (see Fig. 1). If a particle absorbs a
photon with both spin (arising from the polarization of light)
and orbital angular momentum the spin will cause the particle
to rotate about its own axis, whereas the OAM will cause it to
rotate about the optical axis of the beam [9].

III. RADIAL MODES: OPERATOR FORMALISM IN THE
PARAXIAL REGIME

The orbital angular momentum of Laguerre-Gauss beams
has received an extensive amount of attention, however the
radial index (n in our notation) has been the subject of only
a handful of papers. The radial index is so called because the
intensity pattern of LG beams exhibits n + 1 concentric rings
if l �= 0 (there are n rings around a central dot for l = 0). Also,
the phase structure of the beam displays n concentric radial
discontinuities with no smooth transitions at z = 0 (see Fig. 1).
This is in contrast to the OAM azimuthal coordinate where the
phase does have smooth transitions at z = 0. Unlike the OAM
operator (6), the differential operator for the radial number has
not been studied until very recently. The operator formalism
for the radial modes of LG beams was first derived by Karimi
and Santamato [4] via group-theoretic techniques and then
independently by Plick et al. [3] via the method described
below.

We start with the Laguerre polynomial. There exists a series
of relations between Laguerre polynomials of varying order
and degree (the so-called three-point relations). One such
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relation is

nLl
n(x) = (l + 1 − x)Ll+1

n−1(x) − xLl+2
n−2(x), (7)

which, when combined with the rule for differentiation of the
polynomials

∂

∂x
Ll

n(x) = −Ll+1
n−1(x), (8)

yields [
(x − l − 1)

∂

∂x
− x

∂2

∂x2

]
Ll

n(x) = nLl
n(x). (9)

Given this differential relation, it is possible to arrive at a
relationship between the full LG modes by left multiplying the
other factors (the nonpolynomial terms) in the LG function (1)
onto Eq. (9) and commuting those factors past the differentials
on the left. Doing this we obtain[
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4
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2

]
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Now if we make the identification x = 2r2/w2
0 and perform a

change of coordinates, we obtain
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, (11)

where N̂0LGnl(r,φ,0) = nLGnl(r,φ,0) and we have defined
the differential n-mode operator for z = 0. A trivial transfor-
mation shows that this is indeed the operator derived in [4].

Further simplification is possible by identification with
other, better known, operators yielding the opportunity for
some physical insight

N̂o = −w2
0

8
∇2

t − L̂z

2
+ 1

2

(
r2

w2
0

− 1

)
. (12)

The operator is composed of the transverse Laplacian in
cylindrical coordinates and thus has a direct relationship to
the transverse momentum squared (up to some constants). For
completeness this Laplacian is defined as

∇2
t = 1

r

∂

∂r
r

∂

∂r
+ 1

r2

∂2

∂φ2
. (13)

Equation (12) also contains the OAM operator (with � = 1),
as well as a term reminiscent of a harmonic potential. It com-
mutes with the OAM operator, but not with the Hamiltonian
for free propagation due to the final potential-like term. This
indicates that n is not a conserved quantity of the beam with
respect to evolution through free space. This point will be
discussed further in Sec. VI.

It is also useful to derive a general operator for any value
of z. Continuing with the same methods as above we have

N̂z = −w2
z

8
∇2

t + iz

kw2
0

∂

∂r
r − L̂z

2
+ 1

2

(
r2

w2
0

− 1

)
, (14)

where we have, similar to before, N̂zLGnl(r,φ,z) =
nLGnl(r,φ,z), the differences being that the prefactor of the
Laplacian is now the z-dependent beam waist and an additional
term resultant from the phase imparted from the radius of
curvature Rz (this can be seen from the fact that if the LG
beam is written without the radius of curvature phase factor
then this term does not appear). Interestingly, the final term is
unchanged and remains z independent.

The z-dependent form in Eq. (14) offers another insight.
The second term (radius-of-curvature term) can be identified
as the operator for a well-formed radial momentum known as
the hyperbolic momentum.

It has been known for a long time [10] that the operator for
a strictly radial momentum cannot be well defined. To see this
consider the most direct attempt p̂r = −i�∂r and its action on
the radial coordinate operator

eiγ p̂r /�r̂e−iγ p̂r /� = r̂ + γ. (15)

However, the domain of r̂ is only the non-negative real
numbers. The operator p̂r can take r̂ out of this domain and
is thus not well formed. An operator that can be well defined
in the circular-cylindrical coordinate system is the hyperbolic
momentum

P̂H = −i�

(
r

∂

∂r
+ 1

)
, (16)

which, up to constants (and the z coordinate), is the second
term in Eq. (14). The action of this on the radial coordinate is

eiγ P̂H /�r̂e−iγ P̂H /� = r̂eγ . (17)

Thus the hyperbolic momentum generates dilations, not linear
translations, and cannot cause the radial coordinate to be
negative no matter the value of γ . As linear momentum
is associated with invariance under translation, hyperbolic
momentum is associated with invariance under scale trans-
formations. However, since [∇2

t ,P̂H ] = −2i�∇2
t hyperbolic

momentum is not a conserved property of paraxial photon
propagation (unlike, obviously, the linear-z momentum and
the OAM). It is clear that in our case the position r cannot
be negative, that is, r ∈ Re+. A convenient method of dealing
with this is to make the transformation η = ln(r), which is
only defined for positive positions. The conjugate variable
to η is the hyperbolic momentum. With this construction it
is unsurprising that the hyperbolic momentum should appear
in our formalism. The hyperbolic momentum has many other
interesting properties; for a detailed investigation the interested
reader is referred to Refs. [11,12].

For the case of a LG beam the expectation value of
the hyperbolic momentum increases linearly as a function
of the propagation distance z. Thus the expectation value of
the second term in Eq. (14) as a whole has a quadratic scaling
in z. The hyperbolic momentum is always zero where the
beam waist is narrowest, since at this point the beam is neither
dilating nor contracting (see Fig. 2). If we look at the same
quantity as a function of beam waist w0 we see an exponential
decay. This latter effect can be understood from the fact that
as the beam waist increases so does the degree of collimation
of the beam, thus the beam dilates less (see Fig. 3). These
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FIG. 2. (Color online) Expectation value of the hyperbolic mo-
mentum as a function of propagation distance for five different values
of the radial index. In all cases the scaling is linear, passing through the
origin where the beam waist is smallest. Note that this does not include
the prefactor of −z/kw2

o in Eq. (14). For that whole term together
the z scaling is quadratic, which, in the far field, is equivalent to the
scaling of the Laplacian term. Note that the hyperbolic momentum is
scale invariant and thus unitless.

functions can be directly calculated as

〈P̂H 〉 =
∫

d 	x LG∗
nl(r,φ,z)P̂H LGnl(r,φ,z). (18)

See Figs. 2 and 3 for an illustration of the numerical results
calculated from Eq. (18). We will examine in more detail the
physical interpretation of the operator in Eq. (14) in Sec. VI.

It was previously noted by Karimi and Santamato in Ref. [4]
that the OAM and the radial index are inextricably linked.
From the referenced paper we know that “OAM and radial
intensity distribution are strictly correlated, and different OAM
generators produce specific (and different) distributions of

FIG. 3. (Color online) Expectation value of the hyperbolic mo-
mentum as a function of beam waist at the origin for five different
values of the radial index. The hyperbolic momentum has a finite value
at wo (not pictured due to scaling in order to show contrast between
modes). Note that the hyperbolic momentum is scale invariant and
thus unitless.

radial modes.” (We will comment again on this fact in Sec. VI.)
In that paper radial coherent (displaced vacuum) and intelligent
(minimum-uncertainty) beams are also derived, the latter of
which can be generalized to squeezed states, which was done
by Karimi et al. in Ref. [5] via a sophisticated algebraic
technique employing the raising and lowering operators on
the radial number, which form a lie algebra. It is also possible
to alternatively define the coherent state as the eigenstate of the
lowering operator, which was also done in Ref. [4]. Unlike light
in the number basis, where all three definitions are connected
via the familiar coherent state |α〉 and its generalization, the
single-mode squeezed state, in the radial representation, all
three concepts result in distinct beams.

There has also been experimental work done on the value
of the radial index as a quantum number. Again this was
carried out by Karimi et al. in Ref. [13]. They showed via
Hong-Ou-Mandel interference that the radial index is indeed
a quantum number and could in principle be used in quantum-
information tasks. However, a small caveat is that care must be
taken to ensure that the beam waists are equivalent, as stated
in that paper: “The chosen basis is beam-waist dependent; an
eigenstate for a specific beam waist turns into a superposition
of radial modes for any other beam waist.”

Several experiments have taken advantage of both the
OAM and radial indices, for example, Ref. [14]. It has also
been shown [15] that via the use of both quantum numbers,
entangled states of very high dimension may be produced, even
as high as 103 dimensions. Research has also been done on
efficiently producing radial modes [16]. It has also recently
been shown that LG beams of high radial indices exhibit
self-healing properties in the same way that Bessel beams
do [17].

IV. RIEMANN-SILBERSTEIN VECTOR, EXACT
SOLUTIONS TO MAXWELL’S EQUATIONS, AND THE

PHOTONIC WAVE FUNCTION

Here we briefly outline some previously existing mathe-
matical formalism we will need. A more complete version
is included in the Appendix. The Riemann-Silberstein (RS)
vector is a representation of the electromagnetic field given by

	F =
√

ε0

2
( 	E + ic 	B), (19)

where c is the speed of light in vacuum, ε0 is the permittivity
of vacuum, and 	E and 	B are the electric and magnetic fields,
respectively. The vector consists of three complex numbers and
many useful quantities can be calculated directly with simple
equations. For a full review of the RS vectors the interested
reader is directed to Refs. [6,7]. In the Appendix we review
this derivation in the interest of completeness and notational
consistency. The previously acquainted reader may skip it.

It is convenient to work with the scalar function χ (which
contains the full information of 	F , up to choice of gauge, as
explained in the Appendix) as opposed to the full RS vector
	F . Given the formalism from the Appendix, we can directly

write a general beam in the Bessel-Gauss basis as

χσ
m(r,φ,z,t) =

∫
d	k ψσ (	k)e−iσ (ck−kzz)Jm(kt r) (20)
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using Eqs. (A13) and (A14). Note that we take a different
definition than is used in Ref. [18] as we pull the azimuthal
phase and Jacobian into ψ .

Now the derivation of the Laguerre-Gauss modes is facili-
tated by a change of momentum coordinates k± = (k ± kz)/2
and also time t± = t ± z/c, yielding

χσ
m(r,φ,z,t) =

∫ ∞

0
dk+

∫ ∞

0
dk−

∫ 2π

0
dkφψσ (k+,k−)

× e−iσ c(k+t−+k−t+)Jm(2r
√

k+k−). (21)

It is of key importance to note that since χ is effectively the
position-space wave function (given the caveats described in
the Appendix) that ψσ (k+,k−) is the momentum-space wave
function in the beamlike (i.e., Bessel) basis. Now if we make
the choice

ψσ (k+,k−,kφ) = eiσmkφ δ

(
k+ − �

c

)
k

n+|m|/2
− e−(w2�/c)k−k,

(22)

where n is some integer and w is some real number, we can
solve Eq. (21) exactly:

χσ
m(r,φ,z,t) = N r |m|

a(t+)n+|m|+1
e−iσ�(t−z/c−mφ)

× e−r2/a(t+)L|m|
n

(
r2

a(t+)

)
, (23)

which is clearly a form of the Laguerre-Gauss beams, with
N a normalization constant, m an angular momentum number
(we avoid calling this the orbital angular momentum since the
OAM is only completely well defined in the paraxial limit), n

the radial number, and a(t+) = w2 + iσ c2t+/�, a form of the
complex beam parameter. Thus we can identify Eq. (22) as the
exact momentum-space wave function of a Laguerre-Gauss
beam (up to normalization constants).

V. MOMENTUM-SPACE FORMALISM FOR THE
RADIAL MODES

In the previous section (and in the Appendix) we sum-
marized the mathematical tools from Ref. [18] that we will
need for the investigation of the radial number as it exists
for the exact photon wave function. From the momentum
representation of Laguerre-Gauss beams in Eq. (22) we can
easily derive a radial momentum operator

k−
∂

∂k−
ψσ =

(
k−
k

+ n + m

2
− w2�

c
k−

)
ψσ , (24)(

k−
∂

∂k−
+ i

2σ

∂

∂kφ

− k−
k

+ w2�

c
k−

)
ψσ = nψσ . (25)

Therefore, one finds the (general, nonparaxial) radial momen-
tum operator as

N̂k =
(

k−
∂

∂k−
+ i

2σ

∂

∂kφ

− k−
k

+ w2�

c
k−

)
. (26)

In order to interpret the operator, one can transform it to polar
coordinates. By using the relations

k =
√

k2
z + k2

t , (27)

k± =
√

k2
z + k2

t ± kz

2
, (28)

we find directly the polar-coordinate representation of the
radial-momentum operator in momentum space

N̂k = 1

2

[
kt

∂

∂kt

+ i

σ

∂

∂kφ

− (k − kz)

(
∂

∂kz

+ 1

k
− w2�

c

)]
.

(29)

This is the most exact form of the operator. Now if we take the
case of paraxial photons (which is in most cases the situation
of interest), the momentum along the direction of propagation
will be many orders of magnitude larger than the transverse
momentum. So if we Taylor-series expand the square root in
k− and k+ about kz we have

k− = 1

2

(√
k2
t + k2

z − kz

)
= 1

2

(
kz + k2

t

2kz

− k4
t

8k3
z

− · · · − kz

)
≈ k2

t

4kz

, (30)

k+ = 1

2

(√
k2
t + k2

z + kz

)
= 1

2

(
kz + k2

t

2kz

− k4
t

8k3
z

− · · · + kz

)
≈ kz (31)

as well as k =
√

k2
t + k2

z ≈ kz. Now, again taking Eq. (22),
or using directly Eq. (29), rewriting it in terms of these more
familiar momentum coordinates

ψσ ≈ eiσmkφ δ

(
kz − �

c

)(
k2
t

2kz

)n+|m|/2

e−(w2�/c)(k2
t /2kz)kz,

(32)

and making use of the δ function, we have up to constants

ψσ (kt ,kz,kφ) ∝ eiσmkφ k
2n+|m|
t e−(w2/2)k2

t . (33)

From this, unlike in the position-space paraxial-regime case,
it is quite straightforward to find the operator that returns the
value n. By simple inspection we can write

N̂ ′
k = 1

2

(
kt

∂

∂kt

+ i

σ

∂

∂kφ

+ w2k2
t

)
, (34)

which has the most straightforward form. The first term is
similar to the hyperbolic momentum operator, however it lacks
the i in front. This is nontrivial as without the i its action on
the radial coordinate is given by

eiγ kt (∂/∂kt )/�r̂e−iγ kt (∂/∂kt )/� = r̂eiγ , (35)
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where the radial position coordinate is defined in the momen-
tum representation as

r̂ ≡ −i�
∂

∂kt

. (36)

Obviously this is problematic as the radial coordinate must
remain a real number. Also, without the i the first term (by
itself) is not in general Hermitian. Its potentially interesting to
note that if the action γ is a multiple of π then it generates a
real (periodic) scaling. Whether this can have some physical
meaning is unknown to us as of yet.

The second term is again the OAM operator, scaled by
the helicity. The final term is the transverse Laplacian in
momentum coordinates scaled by the beam waist at the origin.
There are also a couple other advantages of writing the operator
in this way. It is propagation invariant, that is, this is the
operator for all time (as the momenta are conserved quantities).
Also, the transverse momentum coordinate may be rescaled (as
k′
t = wkt ) to make the operator independent of the beam waist,

should this be desirable.
We want to test is its Hermiticity (in total). Does

〈N̂ ′
kψ

σ |ψσ 〉 = 〈ψσ |N̂ ′
kψ

σ 〉? A straightforward computation
shows that if we desire real eigenvalues, then N̂ ′

k cannot, in gen-
eral, be Hermitian. It is Hermitian instead only on a restricted
class of wave functions where ψ(kt ,kφ) = �(kt )�(kφ), where
�(kt ) is a real function. Only in such beams can N̂k be
considered a valid observable. Some examples of such beams
are the Bessel beams and the Laguerre-Gauss beams, which
are our main interest.

VI. PHYSICAL INTERPRETATION AND
TECHNOLOGICAL PROSPECTS

Now that we have laid down the mathematical foundations
for the radial index operator we can investigate the meaning
of the radial index. Though the RS vector momentum-
representation version of the operator (34) is accurate and
simple, its interpretation is more difficult to parse than
the paraxial coordinate-representation operator (14). This is
indicative of the fact that the radial-index operator is not
representative of a general quantum observable like its partner
the OAM operator. Instead n can be considered a proper
observable in a restricted class of scenarios, more specifically,
for beams whose momentum-space wave function is separable
into radial and angular portions and for which the radial
part is always real. The radial-index operator also requires
additional information to write down, specifically, the beam
waist at origin, the propagation distance, and the orbital
angular momentum.

This latter point has implications for future potential uses
of the radial index as a tool in quantum technologies. Suppose
we wish to measure the (unknown) radial index of a single
photon. A common technique for doing this would be to shine
the photon on a phase pattern that takes a photon of the radial
index in question and turns it into the fundamental Gaussian
mode; this photon then either couples, or does not couple, to a
single mode fiber. This constitutes a projective measurement
onto the chosen radial number. However, in order to choose
the correct phase pattern, the OAM index, the beam waist,
and the distance of propagation must be known. Note that

this is not merely a problem with a particular experimental
implementation of radial-index sorting, but a general problem.
If we examine the paraxial version of the operator (14) we
can see that it contains all three of the other parameters (z,
w0, and l), meaning that we must know these values a priori
(or measure them simultaneously) in order to get a meaningful
result from a radial-index measurement. It may also be possible
to perform a measurement if the other parameters can be
measured passively, that is, nondestructively for the same
photon (for example, OAM may be passively measured with a
mode sorter [19]).

To further illuminate this problem it should be noted that
Laguerre-Gauss beams of a different radial index do not
have zero overlap if they are at different distances in their
propagation. Mathematically, that is,∫

r dr

∫
dφ LG∗

nl(r,φ,z)LGn′l(r,φ,z′) �= 0. (37)

In Fig. 4 we plot the overlap of a beam of a particular
n with several others for increasing propagation-distance
mismatches.

However, if these problems can be overcome (which can be
achieved by careful calibration), then indeed the radial index
can be used as a carrier of quantum information in realistic
scenarios. This was demonstrated recently by two separate
experiments, as discussed earlier. These experiments show
that the radial index can be a valuable resource in quantum
experiments, but one needs to be careful to satisfy the subtle
requirements in the measurements.

The maxim “One man’s noise is another man’s data” may
also find some application for the radial modes. To wildly
speculate, it could be the case that the index’s sensitivity to dis-
tance and beam-width mismatch could find some application
and that by (for example) measuring one n mode’s projection
onto n ± 1 some information about propagation distance or
dilation could be obtained.

Returning to the question of physical meaning, it is
more illuminating to consider the paraxial version of the
operator (14), which we rewrite below for the convenience
of the reader:

N̂z = −�w2
z

8
∇2

t − z

kw2
0

P̂H − L̂z

2
+ �

2

(
r2

w2
0

− 1

)
, (38)

where we have multiplied through by � and substituted the
second term with the hyperbolic momentum operator (16).
There are four terms, three of which are related to fundamental
properties of the beam that can be identified with quantities
other than, and independent of, the radial index. That is to say,
these three parameters influence, but are not influenced by, the
radial index. This leaves a single term that represents the degree
of freedom that the radial index arises from. The first term in
Eq. (38) is the transverse Laplacian scaled by the z-dependent
beam waist and a numerical constant. In the free-space paraxial
regime the transverse Laplacian alone is the Hamiltonian (and,
of course, a constant of motion). The third term is the OAM.
The final term produces, up to constants, the second moment
of the radial position at z = 0, which is clearly related to
the transverse spatial variance, i.e., the spatial confinement at
origin. These are three independent parameters of the beam
(and of individual photons that occupy these modes).
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FIG. 4. (Color online) Graphs of the overlap function of two
Laguerre-Gauss modes with unequal radial indices as a function of
the mismatch in the distance the modes have propagated. In both
graphs the black line represents the mode’s overlap with itself. In (a)
we show the n = 0 mode’s overlap with the five next higher indexed
modes. It is clear from the graph that very quickly the depicted modes
no longer add to one. This is due to the fact that as the beam propagates
it acquires nontrivial overlaps with more and more modes. After only
about 15 m, 20 modes are necessary to describe the beam to good
accuracy (not shown). In (b) we show the overlap of an n = 5 mode
with a mode of higher index and a mode of lower index. Scaling
is different than in (a) to highlight detail. The oscillatory behavior
is due to the fact that after moving from one mode to an adjacent
one, the photon may then move back as it continues to spread in the
radial-index space.

It is the second term, however, that is most important for
understanding the physical meaning of the radial index. This is
the hyperbolic momentum operator, which generates dilations.
As discussed previously, it is a mathematically-well-formed
kind of radial momentum operator. It is, however, not a
constant of motion (as is demonstrated in Fig. 2) and thus does
not have one of the quantities we would traditionally expect
from a momentum. Nonetheless, if the propagation distance is
accounted for in the operator itself (as is the case in N̂z), then
it is sensible to speak of it as an intrinsic property; here we
see why the operator must be z dependent in the coordinate
representation and becomes somewhat unmanageable in the
momentum representation. In other words, the radial index
is best understood in the coordinate picture, as in that
representation the fact that it is not conserved under time

evolution is easy to account for, however the momentum
representation deals best with quantities that are preserved
for all time.

The radially transverse momentum of a photon must be
dependent on the total transverse momentum, as well as the
orbital angular momentum (as the orbital part of the total
transverse momentum needs to be compensated for), and on
the degree of spatial confinement of the beam (because greater
confinement must lead to higher divergence and greater radial
momentum). However, this does not account for intrinsic
freedom of the hyperbolic momentum. The radial index can
then be seen as representing the promotion of the radial-like
hyperbolic momentum itself to a quantum observable. We
therefore believe that the radial index could best be described
as the intrinsic hyperbolic momentum charge.

We might have initially expected the radial index to be
related to the radial momentum, as the azimuthal index is
related to a rotational momentum, completing the set of
two momenta necessary to move about in the transverse
two-dimensional plane. We have found that, while N̂z does
not correspond to a full radial momentum operator (as no
such well-formed operator exists), the hyperbolic momentum
operator, which is up to scalings (z/kw2

0) and other observables
(the paraxial Hamiltonian −∇2

t , the OAM L̂z, and the radial
position squared r2) of the operator we find, has a direct
connection to the momentum along the radial coordinate.

It has been shown [14] that the radial index is conserved in
the process of spontaneous parametric down-conversion. More
specifically, in the ideal case, the two daughter photons will
have the same radial index as each other. In the nonideal case
(finite crystal length and width) there is a spread in the radial
index of the down-converted photons. As we have seen in the
research in this paper, the radial index can only be said to be
well defined given a precise propagation distance, OAM, and
beam width; therefore, we gain insight into why the effect of
crystal length (and thus uncertainty in the point of origin of the
down-conversion and walkoff) should blur the resultant radial
indices. This is in addition to a similar effect from a limited
transverse spatial extent of the crystal, investigated in detail in
Ref. [20].

Since this paper and previous work of ours and others
have shown that both the orbital angular momentum and
the intrinsic hyperbolic momentum charge are well-formed
quantum numbers with a physical meaning (in the proper
circumstances), it follows that that the mode indices of beams
with different symmetries (noncircular cylindrical, e.g., elliptic
or Cartesian) are also well-formed quantum numbers. These
other mode indices are just algebraic combinations of l and
n. Therefore, it should follow that these other numbers should
have interesting physical meanings as well. For the case of
paraxial photons with elliptic symmetry, the so-called Ince-
Gauss modes [21], it has been shown that their mode indices
can be be entangled [22] and also that their OAM properties
are nontrivial and show interesting complexity [23]. It may
be the case that these effects could be better understood by
combining the concepts of orbital and hyperbolic momentum.

There are still some unanswered questions. Most sig-
nificantly, it is not clear what should be considered the
conjugate variable. Also, we do not yet understand why the
intrinsic hyperbolic momentum charge (radial index) should
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take discreet values. Furthermore, it is unknown why the
hyperbolic momentum should be tied to the number of rings
in the transverse spatial pattern of the beam.

We would also like to briefly sketch some potential techno-
logical applications and concerns tied to the radial index. As
we have mentioned already, it has been shown experimentally
that the radial index is indeed a valid quantum number [13]
and could be used for quantum communication. However, the
fact that different n modes can have nonzero overlap if there is
mismatch in the beam waist w0, or propagation distance z, adds
some additional complication, especially in realistic scenarios
where complete control or knowledge of the distances and
amount of focusing involved may not be available. However,
if we take the z = 0 form of the radial-index operator (12), we
find that this is exactly the Hamiltonian of a graded-index
fiber [24]. Graded-index fibers are commercially available
fibers that have a linear radial variation of their refractive
indices. It is possible that a hyperbolic-momentum-carrying
photon could be matched with standard optics to such a fiber
(i.e., beam waist matched to the correct steepness of index
variation) and then the radial index would be intrinsically
preserved under propagation in the fiber. This would allow
for quantum or classical communication multiplexing using
the radial index in a widely available kind of fiber. This is an
exciting prospect that we believe merits further investigation.

VII. CONCLUSION

In this paper we have developed the differential-operator
formalism for the radial index of Laguerre-Gauss modes in
both the paraxial coordinate representation and in the exact
momentum-space representation. We identified the various
parts of these operators with certain physical parameters,
most of which are tied to beam characteristics that are not
influenced by the radial index but are influential on it. Put
another way, for each value of these parameters (beam waist,
orbital angular momentum, and propagation distance) there
is a different representation of the radial-index operator.
There is one remaining part of the operator that is not tied
to other properties of the photon that we have identified:
the hyperbolic momentum that generates dilations. It is this
term that corresponds to the true degree of freedom that is
not represented by other mode numbers (l, k, and w0) in
our operator and thus we call the radial index the intrinsic
hyperbolic momentum charge. We have shown that the radial
index is not tied exclusively to the transverse spatial profile of
the beam but also has a physical meaning. We hope that this
opens up a new area of investigation and inspires some new
potential technological prospects.

We briefly outlined one such potential application, which
is that the radial index may be naturally preserved under
propagation in a graded-index fiber. This may have application
to fiber-optic multiplexing in the classical and quantum
domains.

In conclusion, we conjecture that, despite the resources
devoted to the study of the orbital angular momentum mode
number, the radial mode number is vastly richer due to its
mathematical complexity and the plethora of questions that
remains unanswered.
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APPENDIX: DERIVATION OF THE PHOTON
WAVE FUNCTION

This section is for the most part a summary of the formalism
collected or derived in Ref. [18]. Note, however, that some
definitions and notation will differ.

In the RS vector formalism, Maxwell’s equations in free
space reduce to

∂

∂t
	F (	x,t) = −ic∇ × 	F (	x,t), (A1)

∇ · 	F (	x,t) = 0. (A2)

The RS vector can also be expressed as a complex vector field
	Z:

	F (	x,t) = ∇ ×
(

i

c
	Z(	x,t) + ∇ × 	Z(	x,t)

)
. (A3)

The function 	Z satisfies the wave equation(
1

c2

∂

∂t
− ∇2

)
	Z(	x,t) = 0, (A4)

where ∇2 is the full Laplacian. The potential 	Z can itself be
recast in a more tractable form 	Z = (e1,e2,e3)χ (	x,t), where
χ is a field and the e’s may be chosen to suit the situation at
hand (i.e., the desired symmetries of the system to be studied),
for beams propagating in a straight line 	Z = (0,0,1)χ (	x,t) is
common.

All solutions to the wave equation (A4) may be expressed
as a superposition of plane waves, so

χ (	x,t) =
∫

d	k N (	k)[ψ+(	k)e−iωkt+i	k·	x + ψ−(	k)eiωkt−i 	x·	r ],

(A5)

where N (	k) represents a normalization factor. Then the RS
vector can be written as

	F (	x,t) =
∫

d	k	e(	k)[ψ+(	k)e−iωkt+i	k·	x + ψ−(	k)eiωkt−i 	x·	r ],

(A6)

where 	e is a k-dependent complex polarization vector that is
determined by the choice of the vector part of the potential 	Z
and includes the normalization factor. This represents a gauge
freedom. Note that the polarization vector factors completely
from the rest of the expression. It can thus be considered a part
of the transformation from momentum space to position space.
This is a special feature of the RS formulation. The weight
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functions ψ−(	k) and ψ+(	k) are the positive and negative
frequency components of the RS vector in momentum space,
the choice of which completely defines the physical degrees
of freedom of the EM field in momentum space.

In our treatment we wish for a fully-well-formed construc-
tion, so we will have as our objective to end up in momentum
space, since it has been long known that the definition of the
photon wave function in position space is problematic. This
is due to the fact that a position operator does not exist for
photons [eigenstates of momentum for photons (plane waves),
though nonphysical, can be mathematically tractable, but the
idea of a position eigenstate for photons is not nonsensical even
at the conceptual level as photons are inherently delocalized].
A probabilistic position representation can be generated for
photons, but we will not take this route. For more information
on this and connected topics please see Refs. [6,7].

However, for reasons of clarity we will start in position
space and then switch to momentum. The time-dependent
Schrödinger equation is

i�
∂

∂t
�(	x,t) = Ĥ�(	x,t), (A7)

where Ĥ is the Hamiltonian. One immediately recognizes
the similarity between this and Eq. (A1), the first Maxwell
equation for the RS vector. We can thus equate the Hamiltonian
to the appropriate part of that equation Ĥ� = −ic∇ × � with
the RS vector becoming the photonic wave function.

In order to proceed from here we will rewrite the curl
operator. Take a vector 	̂s, the components of which are the
spin-1 matrices

ŝx =
⎡⎣0 0 0

0 0 −i

0 i 0

⎤⎦, ŝy =
⎡⎣ 0 0 i

0 0 0
−i 0 0

⎤⎦,

ŝz =
⎡⎣0 −i 0

i 0 0
0 0 0

⎤⎦.

Written in index summation notation, the tensor 	̂s = sijk is
equivalent to both the Levi-Cività symbol εijk times a factor
of −i and the spin-1 matrices in quantum mechanics (when
these matrices are acting on the Cartesian vector components
of the wave function and not the eigenstates of ŝz). Since it is
the case that 	a × 	b = εijkajbk and 	a · 	b = aibi , it is also the
case that

∇ × � = −i 	̂s · ∇�, (A8)

where p̂ = −i�∇ is the very-well-known momentum opera-
tor. Slightly less well known is the helicity operator in optics
and particle physics, which is the sign of the projection of the
angular momentum on the momentum

�̂ = sgn[M̂ · p̂] (A9)

= sgn[(−i�	r × ∇ + �	̂s) · (−i�∇)] (A10)

= 1

pT

	̂s · p̂. (A11)

where the momentum and angular momentum operators are
substituted for their definitions on the second line (the latter is

composed of an orbital and spin part) pT =
√

p2
x + p2

y + p2
z

and the simplification on the last line is due to the fact that
(	r × ∇) · ∇ = 0. So we can see directly by comparing the
above to Eq. (A8) that the helicity operator (up to constants)
is the Hamiltonian. The helicity operator generates the duality
rotation and is associated with that symmetry in free space.
Other than the fact that it serves as the Hamiltonian for a
Schrödinger equation with the RS vectors as wave functions,
the properties of �̂ are not strictly relevant to our work here;
nonetheless, the interested reader is redirected to Refs. [25,26].

It will be convenient to find the eigenfunctions of the
helicity (and thus the energy eigenstates) in a beamlike basis.
We return to Eq. (A6) and utilize the following expansion in
cylindrical coordinates:

ei	k·	x = eikzz

∞∑
m=−∞

imeim(φ−kφ )Jm(kt r), (A12)

where kφ and kt are the polar and radial coordinates in
momentum space, respectively. Note that the radial coordinate
in momentum space is also the transverse momentum. The
functions Jm are Bessel functions of the first kind. This affects
a change of basis from plane waves to Bessel waves, which
also forms a complete set. Now Eq. (A5) becomes

χ (	x,t) =
∑
m,σ

∫
d	k χσ

m(	k)ψσ (	k), (A13)

where σ can take values ±1 and the χ±
m are defined as

χ±
m (	x,	k) = (±i)m

kkt

√
2
e±i(ωkt−kzz−m(φ−kφ )Jm(kt r). (A14)

We then obtain, via choosing the beamlike form of the potential
( 	Z = (1,0,0)χ ) and by direct calculation for a particular m

and 	k,

	Fσ
kt kzm

=
⎡⎣Fr

Fφ

Fz

⎤⎦ = (iσ )m

k
√

2
e−iσ (ωkt−kzz−mφ)

×

⎡⎢⎣iσkz
∂

∂(kt r) + i km
kt r

−σk ∂
∂(kt r) − kzm

kt r

kt

⎤⎥⎦Jm(kt r). (A15)

The number σ represents whether the photon is right or left
circularly polarized. It is the case that �̂ 	Fσ

kt kzm
= σ 	Fσ

kt kzm
. The

wave functions in Eq. (A15) form a basis of solutions to the
photonic Schrödinger equation. It is important to note that,
since the helicity takes the place of the Hamiltonian, there are
solutions to the Schrödinger equation that at first glance might
seem to have negative energy. These solutions (those of left-
circularly-polarized photons) do not represent antiparticles
as photons have no antiparticles. They should be interpreted
merely as opposite-helicity photons. These beamlike solutions
are in fact the Bessel beams, which have come to be objects of
interest due to their diffraction-free properties [27]. However,
much like plane waves, these beams are not physical as they
turn out to have infinite energy. Typically these beams are made
physical without breaking the assumption of monochromicity
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by convolving them with a Gaussian function (the Bessel-
Gauss beams). However, these beams are no longer exact
solutions to the Maxwell equations. However, by dropping the
assumption of a monochromatic beam (also usually implicit

in the paraxial wave equation) we can use the Bessel-beam
basis defined in Eq. (A15) and continue to have exact
solutions to the photon wave function that are valid under all
circumstances.
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