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Spontaneous scalarization is a mechanism that allows a scalar field to go undetected in weak
gravity environments and yet develop a nontrivial configuration in strongly gravitating systems. At
the perturbative level it manifests as a tachyonic instability around spacetimes that solve Einstein’s
equations. The end-point of this instability is a nontrivial scalar field configuration that can
significantly modify a compact object’s structure and can produce observational signatures of the
scalar field’s presence. Does such a mechanism exists for vector fields? Here we revisit the model that
constitutes the most straightforward generalization of the original scalarization model to a vector
field and perform a perturbative analysis. We show that a ghost appears as soon as the square of
the naive effective mass squared becomes negative anywhere. This result poses a serious obstacle in
generalizing spontaneous scalarization to vector fields.

I. INTRODUCTION

The first gravitational wave (GW) signal from a com-
pact binary coalescence detected by the LIGO-Virgo col-
laboration [1] in 2015 opened a new vista into the non-
linear and highly dynamical regime of gravity. Moreover,
and perhaps more excitingly, GWs now allow us to probe
(or constrain) new physics beyond GR and the Standard
Model [2–7]. This had so far been limited to astronomical
probes either in the weak gravitational field and slow
velocity in our Solar System or in the strong gravitational
field, but small velocity and large separation regime of
binary pulsars [8, 9].

In this context, a particularly appealing new physics
scenario is one where new fundamental fields lie “dormant”
in weak-gravity environments and yet manage to have
significant effects in strongly-gravitating bodies and sys-
tems. The prototypical theory that achieves this was first
introduced by Damour and Esposito-Farèse [10, 11] and
involves a massless scalar field ϕ. The theory is described
by the action

SDEF =
1

16π

∫
d4x
√
−g (R− 2∇µϕ∇µϕ)

+ Sm

[
Ψm; Ω2

DEF(ϕ) gµν
]
, (1)

where g is the metric determinant, R is the Ricci scalar,
Sm is the action of matter fields Ψm, which couple to
Ω2

DEF(ϕ) gµν , with ΩDEF = exp
(
βϕ2/2

)
; β being a dimen-

sionless constant.
The scalar field satisfies the field equation

�ϕ = −4πβ Ω4
DEFT̃ ϕ, (2)
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where T̃ is the trace of the matter field’s energy-
momentum tensor. Equation (2) clearly admits a van-
ishing scalar field as a solution. However this is not the
only solution for a given matter configuration. Linearized
scalar field perturbations δϕ on the background of a neu-
tron star can be shown to obey a wave equation

(�− µ2
eff)δϕ = 0, µ2

eff = −4πβ Ω4
DEFT̃ , (3)

where µ2
eff is a position dependent effective mass squared.

For a neutron star described by a perfect fluid, T̃ = 3p̃− ε̃
(where p̃ is the pressure and ε̃ the total energy density).

Typically T̃ < 0 and thus these perturbations can be-
come tachyonic when β < 0 [12, 13], with only a weak
dependence on the equation of state [14–16]. Numerical
simulations show that this linear instability is ultimately
nonlinearly quenched and thus the star becomes spon-
taneously scalarized. Due to Eq. (2), these scalarized
stars co-exist with the GR solutions [defined as stars with
ϕ = 0] and, importantly, are energetically favored: thus
they can form dynamically from stellar collapse [14, 17, 18]
or in neutron star binaries [19–24].

The Damour–Esposito-Farèse scalarization model can-
not lead to black holes scalarization unless the latter is
induced by surrounding matter [25, 26]. More general
models however, which fashion couplings with the Gauss-
Bonnet invariant, have been shown to lead to black hole
scalarization, controlled by the mass [27, 28] or by the
spin of the black hole [29–31]. Black hole scalarization
can have potentially observable effects in binary black
hole binaries [32–34]. The instability leading to scalariza-
tion can also be understood from a quantum field theory
perspective, see e.g., [35–37].

A different type of generalization of the Damour–
Esposito-Farèse mechanism that has been explored is
to extend it to vector fields [38]. Inspired by [10, 11],
Ref. [38] studied the action

Sv =
1

16π

∫
d4x
√
−g

(
R− FµνFµν − 2µ2

vAµA
µ
)

+ Sm

[
Ψm; Ω2

v(Aµ) gµν
]
, (4)
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where Fαβ = ∇αAβ−∇βAα is the antisymmetric Faraday
tensor and Aα is a vector field with bare mass µv. In
analogy with ΩDEF, the conformal factor is chosen as
Ωv = exp (βAµA

µ/2), where β is a free parameter of the
theory. The field equation of Aµ is

∇µFµα = (µ2
v − 4πβ Ω4

vT̃ )Aα. (5)

This equation promotes the bare mass µv of the Proca
field to what appears to be an effective mass squared
µ2

eff = ẑµ2
v, where

ẑ = 1− 4π(β/µ2
v)Ω4

vT̃ , (6)

for linearized vector field perturbations. This effective
mass squared can become negative in the presence of
dense matter as in the theory (1). This property is not
specific to the theory (4), and is shared with other vector-
tensor theories with curvature coupling terms [39–42] or
disformal couplings [43, 44].

Based on the similarity between the field equations (2)
and (5) it is natural to expect that in the theory (4), Aµ
could also become tachyonically unstable around suffi-
ciently compact neutron stars and a spontaneous vector-
ization mechanism exists. Although nonlinear vectorized
neutron star solutions have indeed been shown to exist
in [38], the perturbative manifestation of vectorization
has not been explored yet. This leaves a number of open
questions unanswered. In particular, a massive vector
Aµ is known to propagate an additional longitudinal de-
gree of freedom. What is its role in this process? Could
vectorization be scalarization in disguise to some extent?
More generally, can it be understood intuitively, as is the
case for scalarization, as a tachyonic instability quenched
by nonlinearities? Answering these questions is impor-
tant from a model-building perspective, but also from a
phenomenological perspective. They become even more
pressing once one observes that, intuitively speaking, the
aforementioned longitudinal mode gets contributions in
its kinetic term from the AµAµ terms in the action. That
kinetic term will therefore have a nontrivial structure,
which in turn raises doubts about whether this mode is
well-behaved.

Motivated by these questions, here we revisit the model
of Ref. [38] from a perturbative perspective and indeed
uncover a ghost instability. Therefore vectorization ap-
pears to be fundamentally different from scalarization. It
also strongly suggests that the time-evolution problem
of a star undergoing vectorization is potentially ill-posed,
casting serious doubts on the viability of this theory and
other related ones. Combined with the work [45] which
also found ghost (and gradient) instabilities in generalized
Proca theories in compact object backgrounds, our work
raises serious questions about the possibility to generalize
the original mechanism of Damour and Esposito-Farèse
beyond scalars since all proposed vectorization theories
feature at least ghost instabilities.

The remainder of this paper explains how we arrived
at these conclusions. In Secs. II and III we review the

model introduced in [38], restore gauge invariance by
performing the Stuckelberg trick and analyse the resulting
field equations. In Sec. IV we linearize the theory’s action
in the background of a nonrotating, spherically symmetric
star and show how ghost instability appears. In Sec. V we
lift the assumption of linearized gauge field perturbations
and consider the complete set of field equations. We show
how ghosts, which first went unnoticed in [38], arise. In
Sec. VI we summarize our main results.

We work with geometrical units c = G = 1 and use
the (−,+,+,+) metric signature. Symmetrization of
indices is defined as A(αβ) ≡ (Aαβ + Aβα)/2 and the
antisymmetrization by A[αβ] ≡ (Aαβ −Aβα)/2.

II. A MODEL FOR SPONTANEOUS
VECTORIZATION WITH GAUGE SYMMETRY

Action (4) has been constructed in analogy with (1), but
a caveat of the resulting tensor-vector theory is absence
of gauge invariance under Aα → Aα + ∂αλ (λ being
a scalar function) due to the mass term µ2

vAµA
µ. To

restore gauge invariance, and at the same time more
easily investigate the different degrees of freedom in the
vector field, we can apply the Stueckelberg trick [46]. It
consists of introducing a scalar field ψ (the Stueckelberg
field) through the substitution

Aα → Aα + µ−1
v ∇αψ, (7)

which results in a scalar-vector-tensor theory,

S =
1

16π

∫
d4x
√
−g [R− FµνFµν

− 2gµν(µvAµ +∇µψ)(µvAν +∇νψ)]

+ Sm

[
Ψm; Ω2 (Aα,∇αψ) gµν

]
, (8)

with conformal factor

ln Ω =
β

2µ2
v

gµν(µvAµ +∇µψ)(µvAν +∇νψ). (9)

The theory is now gauge invariant under the simultaneous
transformations:

Aα → Aα +∇αλ, ψ → ψ − µvλ. (10)

We see that ψ can be set to zero by a suitable choice
of λ and thus the action (4) is a gauge-fixed version of
action (8).

Indeed, for β = 0 the conformal factor Ω becomes unity
and we recover the Stueckelberg theory minimally cou-
pled to gravity (see e.g., [47]). If we fix a gauge where
ψ = 0 (we call this the “Proca gauge”), we obtain the
nonminimally coupled Einstein-Proca theory of Ref. [38].
If we instead take µv → 0 we obtain the Einstein-Maxwell
theory with the addition of a scalar field. In Proca theory
the µv → 0 limit has an apparent discontinuity of the
longitudinal polarization mode of Aα. In the “Stueckel-
berged” version of the same theory, the µv → 0 limit is
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manifestly continuous and corresponds to the decoupling
between ψ and Aα (the latter associated with the usual
Maxwell theory). Note that, when β 6= 0, maintaining
regularity of Ω requires that β approaches zero at least
as fast as µ2

v when taking the limit µv → 0.
The action (8) is written in the Einstein frame (thus

we call gαβ the Einstein frame metric). We will refer to
g̃αβ = Ω2gαβ as the Jordan frame metric. We will use
tildes to denote objects in the Jordan frame, some of
which, as T̃ , already appeared in the introduction.

III. THE FIELD EQUATIONS

The field equations of the theory can be obtained by
varying the action (8) with respect to ψ, Aα and gαβ :

�ψ = −µv∇µAµ + (4π/µv)∇µ(αµAΩ4T̃ ), (11)

∇µFµα = µvg
µα(µvAµ + ∂µψ)− 4πααA Ω4 T̃ , (12)

Gαβ = 8π
(
T e
αβ + T s

αβ + Tαβ
)
, (13)

where,

αµA ≡
∂ ln Ω

∂Aµ
= µv

∂ ln Ω

∂(∇µψ)
=

β

µv
(µvA

µ +∇µψ), (14)

and we defined the individual energy-momentum contri-
butions from “pure electromagnetic” theory T e

µν and from
the “Stueckelberg contribution” to the action T s

µν ,

T e
αβ =

1

4π

(
FµαFνβg

µν − 1
4gαβF

µνFµν
)
, (15)

T s
αβ =

1

4π
[(µvAα +∇αψ) (µvAβ +∇βψ)

− 1
2gαβ (µvA

µ +∇µψ) (µvAµ +∇µψ)
]
. (16)

The Jordan frame energy-momentum tensor of matter
fields and its trace are defined as

T̃αβ ≡ −
2√
−g

δSm

δg̃αβ
, and T̃ ≡ g̃µν T̃µν . (17)

We also have by construction:

∇αFβγ +∇γFαβ +∇βFγα = 0. (18)

Going back to Eq. (12) and due to ∇µ∇νFµν = 0, it
is convenient to define a current jα as:

jα = µvg
µα(µvAµ +∇µψ)− 4πααA Ω4 T̃ , (19)

which is conserved

∇µjµ = 0. (20)

In terms of jα we have:

µ2
v∇µAµ = −∇µ(µv∇µψ − 4παµA Ω4 T̃ ). (21)

In the absence of matter (T̃ = 0) and in the Proca gauge
(ψ = 0), Eq. (21) becomes the Lorenz constraint on Aα of

Proca theory. Thus, the field equation for ψ [cf. Eq. (11)]
and the Lorenz constraint on Aµ are tightly connected.

We can see the first sign of the ghost by introducing a
third metric,

gαβ = ẑ−1 gαβ , (22)

in terms of which the scalar field equation becomes

�ψ = −µvg
µν∇µAν . (23)

This third metric can, in principle, have a signature change
in some parts of the spacetime due to the ẑ−1 term. If
this happens, the field will be a ghost in at least some
region compared to any field which is coupled to a fixed
signature metric. Another potential problem is the fact
that this metric changes sign by diverging, rather than
crossing zero, in a similar vein discussed in [48, 49]. It is
unclear whether there is a rectification for such a problem,
or, worse, whether the theory can evolve from a state
where this metric has a fixed signature to another where
the signature changes.

It is also instructive to consider the limit µv = 0, with
β → 0 as fast as µ2

v. In this limit, the Stueckelberg field
ψ is no longer affected by gauge transformations, so Aµ
becomes a gauge field. Then Aµ smoothly decouples from
ψ and the matter fields. However, there is still coupling
to gravity and ψ continues to be coupled to matter. In
particular, Eq. (23) becomes,

�ψ = 0. (24)

So, ψ will become a ghost when the ḡµν metric changes
signature and, as it is coupled to gravity and matter, its
ghostly nature is physical. This same procedure is used
in the Stueckelberg picture of Proca theory to show that
ψ and Aµ decouple and hence there is no discontinuity
as µv = 0 (i.e., no degree of freedom disappears). In this
setting, one has β = 0, flat spacetime, and no matter.

One may object that ψ can be completely removed by
a gauge choice such as the Proca gauge ψ = 0, and thus
the ghost can be exorcised. For this reason we will use the
rest of the paper to assuage any doubts. We will begin
by examining the quadratic Lagrangian for scalar-vector
perturbations around a neutron star GR solution. Doing
so we will find there exists a gauge invariant scalar field
that suffers the same problems.

IV. PERTURBATIVE ANALYSIS

A. Background spacetime and overview of the
calculation

In this section we explore the test-field limit of our
theory, where we study the dynamics of ψ and Aα in a
background corresponding to a stellar solution of Ein-
stein’s field equations, i.e., a solution of the Tolman–
Oppenheimer–Volkoff (TOV) equations [50, 51] whose
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line element we write as

ds2 = −eνdt2 +
r

r − 2µ
dr2 + r2(dθ2 + sin2 θ dφ), (25)

where ν (lapse) and µ (mass function) are functions of
the radial coordinate r only.

In Sec. IV B we will linearize the field equations for
small field perturbation δψ and δAµ at the level of the
field equations (11)–(12), and show how the ghost arises
in this background. Then, in Sec. IV C, we reach the
same conclusion by directly perturbing the Lagrangian,
by expanding it to second order in the fields on the same
background.

B. Linearized field equations

We are interested in studying the dynamics of δAα and
δψ propagating on the background line element (25). To
proceed we decompose δψ and δAα in scalar and vector
harmonics respectively. This is the convenient basis to
expand scalar and vector fields on the unit two-sphere and,
thus, in problems with spherical symmetry. We follow
closely the presentation by Rosa and Dolan [52], but with
a slightly different normalization. More specifically, we
write δψ as

δψ =
1

r

∑
`m

σ`m(t, r)Y`m(θ, φ), (26)

where Y`m = Y`m(θ, φ) are the spherical harmonics with
` = 0, 1, 2 . . . , and |m| 6 `. For the vector perturbations,
we decompose δAα as

δAα =
1

r

4∑
i=1

∑
`m

ciu
`m
(i) (t, r)Z(i)`m

α (θ, φ), (27)

where c1 = c2 = 1, c3 = c4 = 1/
√
`(`+ 1), and Z

(i)`m
α

are the vector harmonics given by

Z(1)`m
α = [1, 0, 0, 0]Y`m, (28)

Z(2)`m
α = [0, 1, 0, 0]Y`m, (29)

Z(3)`m
α =

r√
`(`+ 1)

[0, 0, ∂θ, ∂φ]Y`m, (30)

Z(4)`m
α =

r√
`(`+ 1)

[0, 0, csc θ∂φ,− sin θ∂θ]Y`m. (31)

These functions are orthonormal when integrated on the
unit two-sphere, according to the inner product,∫

(Z(i)`m
µ )∗ηµνZ(i′)`′m′

ν sin θ dθ dφ = δii′δ``′δmm′ , (32)

where ηαβ ≡ diag[1, 1, (1/r2), 1/(r2 sin2 θ)].
Under parity inversion x → −x′ (or equivalently, in

spherical coordinates, θ → π − θ and φ → φ + π), the
first three harmonics (i = 1, 2, 3) pick a factor of (−1)`,

while the fourth (i = 4) picks a factor of (−1)`+1. We
follow the literature convention and call the former “even
parity” modes and the latter “odd parity” modes. The
scalar perturbation δψ is of even parity.

At this point it will be useful to follow a similar pro-
cedure to [45]. We expand the Stueckelberged action (8)
around a GR solution to second order in the test field
approximation and find,

S2 [δA, δψ] =
1

4π

∫
d4x
√
−g [2(∇νδAµ)(∇[µδAν])

− z (µvδAµ +∇µδψ) (µvδA
µ +∇µδψ)],

(33)

where,

z = 1− 4π(β/µ2
v)T̃ , (34)

which is unity outside the star, where T̃ = 0. Note that
we could have arrived at an action of this form by using
the Stueckelberg trick in the Proca Lagrangian with a
“dressed mass” zµ2

v. Therefore, the results of this section
apply to any theory whose quadratic Lagrangian can be
put in this form, i.e., where one would naively expect
just a screened Proca field prone to develop a tachyonic
instability. Substituting the decompositions of δAα and
ψ in harmonics, results in a Lagrangian, with even and
odd-parity sector decoupled from one another. We look
at each sector next.

C. Monopolar even-parity quadratic Lagrangian

We first focus on the monopole perturbations (` = m =
0), which have the lowest instability threshold and belong
to the even-parity sector. Since Y00 = constant, only the
i = 1, 2 vector harmonics are defined [52]. This means

that we would need to work with three variables σ00, u
(1)
00

and u
(2)
00 ,

δAα =
1

2
√
π

[u1(t, r), u2(t, r), 0, 0], (35a)

δψ =
1

2
√
πr
σ(t, r), (35b)

where, to shorten the notation, we use σ = σ00, u1 = u
(1)
00 ,

and u2 = u
(2)
00 hereafter.

Inserting Eqs. (35) in the action (33) and integrating
over the angular coordinates leaves us with,

S
(e)
2 =

∫
dtdr

e−
ν
2
√
r − 2µ

4πr5/2

{
z

2µ2
v

[
r3(µvru1 + σ̇)2

r − 2µ

− eν(σ − r(µvru1 + σ′))2

]
+
r4

2
[u′1 − u̇2]2

}
,

(36)
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where we defined (·)′ = ∂r(·) and ˙(·) = ∂t(·). It can be
readily verified that under the gauge transformation (10)
with λ = l/(2

√
πr) that,

σ → σ − µvl, {u1, u2} → {u1, u2}+ {l̇/r, (l/r)′}, (37)

and that the action (36) is invariant under this transfor-
mation. In fact, it can be verified that, the combination,

Φ = u̇2 − u′1, (38)

is itself gauge invariant (proportional to the ` = 0 compo-
nent of the electric field). If we introduce the auxiliary
field φ such that, on shell, φ = r2Φ, we can rewrite
Eq. (36) as,

S
(e)
2 =

∫
dtdr

e−
ν
2
√
r − 2µ

4πr5/2

{
z

2µ2
v

×
[
−eν(σ − r(µvru2 + σ′))2 +

r3(µvru1 + σ̇)2

r − 2µ

]
+

1

2
φ
(
2r2Φ− φ

)}
. (39)

In this formulation, φ, u1 and u2 are all non-dynamical:
their equations of motion can be solved algebraically in
the form, e.g.,

u1 = u1[u2, ∂u2, φ, ∂φ, σ, ∂σ]. (40)

We can then replace this solution directly into the action,
“integrating out” whichever field. Integrating out u1 and
u2 one arrives at an action that is a functional of φ alone
(all terms involving σ cancel). This transfers all of the
dynamics from σ to φ. The resulting action has the form,

S
(e)
2 =

∫
dtdr

e−
ν
2
√
r − 2µ

4πr5/2

{
1

2z

[
e−ν φ̇2 −

(
1− 2µ

r

)
φ′2

−2C×
zr2

φφ′ +

(
−z +

z′C1

zr2
+
C2

4r3

)
φ2

]}
, (41)

where

C× = r(r − 2µ)z′

+ z[(r − 2µ)(4 + rν′)− 2r(1− 2µ′)], (42)

C1 = ν′r(r − 2µ) + 2rµ′ − 2µ, (43)

C2 =
r2(1− 2µ′)2

r − 2µ
− {6r(1− 2µ′)(3 + rν′) + 8r2µ′′

− (r − 2µ)
[
17 + rν′(14 + rν′)− 4r2ν′′

]
}. (44)

We see immediately that the sign of the kinetic contri-
bution changes if z does (and also diverges when z crosses
0). That is, we have shown that, in this situation, there
is a gauge invariant statement of the problems discussed
in Section II, arising from Eq. (23).

D. Odd-parity quadratic Lagrangian

Having identified the presence of a ghost in the even-
parity sector, it is natural to ask whether such ghosts
also arise in the odd-parity sector, which contains a single
degree of freedom u4, with multipole ` > 1. We find, after
integration over the angular coordinates,

S
(o)
2 =

∞∑
`=1

∫
dtdr

e
ν
2
√
r − 2µ

4π`(`+ 1)r1/2

{
e−ν(u̇4)2

−
(

1− 2µ

r

)
(u′4)2 −

[
`(`+ 1)

r2
+ zµ2

v

]
u2

4

}
,

(45)

where we defined u4 = u
(4)
`0 and set m = 0 due to the

background’s spherical symmetry.
Hence, we see that u4 is prone to a tachyonic instability

controlled by the same effective mass squared zµ2
v also

responsible for inducing a ghost instability in the even-
parity sector. Indeed, the term between square brackets
is the effective potential for massive vector axial perturba-
tions found in [52], Eq. (13), for z = 1. We then conclude
that the axial sector can become tachyonic unstable, but
the dominant effect occurs at lower multipole: the ghost
instability in the even-sector.

V. UNVEILING THE GHOST IN THE PROCA
GAUGE

We have identified a ghost instability in the scalar sec-
tor of our theory, however no ghosts were reported in the
spontaneous vectorization theory introduced in Ref. [38],
or related theories investigated in Refs. [39–42]. In this
section and related appendices, we will demonstrate that
these theories contain divergent terms in their field equa-
tions irrespective of whether one uses the Stueckelberg
trick to restore gauge symmetry or not.

Recall that the Proca gauge (ψ = 0) is equivalent to the
spontaneous vectorization theory of Ref. [38]. Effectively,
this gauge undoes the Stueckelberg trick (7) and we only
need to consider Eq. (5). Since there is no separate
equation for ψ in this picture and there are no divergent
terms in this field equation, it is unclear where the ghost
lurks. This is elucidated by considering the constraint
equation.

Since∇µ∇νFµν = 0 still holds due to the antisymmetry
of Fµν in Eq. (5), we obtain

∇µ[(µ2
v − 4πΩ4βT̃ )Aµ] = 0. (46)

This is the generalized version of the ∇µAµ = 0 constraint
for a minimally coupled Proca field.

The puzzling aspect of Eq. (5) is that it does not have
any explicit indication of a ghost, however we now know
from our discussion in Sec. III that the constraint (46)
given in the form of a conserved current in Eq. (20) is
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also crucial to understand the time evolution. Indeed,
the constraint imposes a time evolution for A0 that will
reveal the ghost.1

Let us rewrite the constraint in terms of ẑ [cf. Eq. (6)],

∇µ (ẑAµ) = 0. (47)

We can convert the covariant derivatives to partial deriva-
tives to obtain

∂0(
√
−gẑA0) = ∂i(

√
−gẑAi), (48)

where i runs over the spatial coordinates. We see that
this time-evolution equation has divergent terms due to
the behavior of ẑ, even if all fields other than A0 are
regular. Outside any matter distribution ẑ = 1 and we
require ẑ < 0 in some part of spacetime if we want an
astrophysical object to vectorize. Since ẑ is continuous,
it has to vanish at some point. There is no symmetry to
ensure that

√
−gẑA0 vanishes where ẑ vanishes since ẑ

and its derivatives do not vanish at the same spacetime
points in general. This means, A0 will generically diverge
even if

√
−gẑA0 stays regular. Alternatively, we can

move the ẑ term outside the derivative on the left-hand
side, which means that now the coefficient of the leading
time derivative of A0 vanishes at certain points. This
means that the divergent terms we observed in the ghost
instabilities of ψ manifest themselves not directly in the
field equation (5), but in the constraint equation (46), or
equivalently, in Eq. (48).

The dynamics of A0 implied by Eq. (48) is first order
in time, thus not strictly of the same nature of the wave
equation obeyed by ψ. Nonetheless, the change of sign in
the time derivative leads to an analogous pathology. This
can be understood by recasting the field equation (5) into
an explicitly hyperbolic form.

Let us start by rearranging the constraint (47) as

∇µ (ẑAµ) = 0 ⇒ ∇µAµ = −Aµ∇µ ln ẑ. (49)

Next, we manipulate Eq. (5) as follows

ẑµ2
vAα = ∇µFµα,

= ∇µ∇µAα −∇µ∇αAµ,
= �Aα −∇α∇µAµ −RµνµαAν ,
= �Aα +∇α (Aµ∇µ ln ẑ)−RαµAµ, (50)

where we related the commutator of two covariant deriva-
tives to the Riemann tensor in the third line, and used

1 Note that A0 is not a dynamical degree of freedom in the standard
Hamiltonian sense [53]. The zeroth-component of the equation of
motion (5), is not a time-evolution equation; it imposes an elliptic
constraint on A0 in terms of the other components of the vector
and matter fields. However, one can indirectly calculate how A0

evolves in time through the evolution of these other degrees of
freedom, which can be obtained by the constraint.

the constraint equation (49) in the fourth line. We finally
obtain

�Aα + (∇µ ln ẑ)∇αAµ =MαµA
µ, (51)

where we defined the mass-squared tensor

Mαβ = ẑµ2
vgαβ +Rαβ −∇α∇β ln ẑ. (52)

We should be cautious about the fact that ẑ contains Aα

terms [inside the conformal factor; cf. Eq. (6)], which,
strictly speaking, means that ∇α∇β ln ẑ also belongs to
the principal part of the differential equation. However,
for perturbative values of Aα, such as in a fixed back-
ground calculation of Sec. IV, this dependence can be
ignored to leading order and Mαβ becomes a proper
mass-square tensor. Hence, Eq. (51) can be viewed as a
generalized massive wave equation.

Equation (51) has a divergent mass term due to various
factors of ẑ−1 on its right-hand side. We have the op-
tion of moving these factors to the left-hand side, which
means the principal part becomes ẑ�Aµ. This is a field
equation prone to a ghost instability since ẑ changes sign
as we discussed before in Eq. (23). One can also analyze
the equation of motion for each vector harmonic, which
likewise leads to divergent effective mass terms.

The behavior of ẑ is slightly modified for a vector field
with no intrinsic mass, µv = 0. In this case Eq. (6), and
correspondingly Eq. (47), are modified as

ẑ = −4πβ Ω4
vT̃ = −4πβ Ω4

v(3p̃− ε̃), (53)

where we assume the neutron star matter to behave as
a perfect fluid with Jordan frame total energy density ε̃
and pressure p̃ as before. We see that ẑ vanishes outside
the star and is generally negative within it; thus it never
crosses zero. However, there are still divergences.

The first case of the divergence in the field equations
for µv = 0 occurs at the surface of the neutron star.
The relevant part of the TOV equations for a spherically
symmetric star is [50, 51],

dp̃

dr
= − ε̃µ

r2

(
1 +

p̃

ε̃

)(
1 +

4πp̃r3

µ

)(
1− 2µ

r

)−1

. (54)

In the outer layers of the star one has p̃� ε̃ and 4πp̃r3 �
µ [54, 55], which allows us to approximate Eq. (54) as

dp̃

d%
= −ρ̃ g, (55)

where we approximated the total energy-density as equal
to the rest mass density (ε̃ ≈ ρ̃), introduced the proper
radial length % [related to the coordinate radius r as
d%/dr = (1− 2µ/r)−1/2], and defined the “local gravita-
tional acceleration” g = (µ/r2)(1− 2µ/r)−1/2 [54].

Focusing on the outer envelope of the star [56], we can
approximate the spacetime as being Schwarzschild, i.e.,
µ ≈ M and ν = ln(1 − 2M/rs) in Eq. (25), where M is
the mass and rs the radius of the star. We can further
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introduce a local proper depth ÿ = (R−r)(1−2M/rs)
−1/2,

in terms of which we can recast Eq. (55) as,

dp̃

dÿ
= gs ρ̃, (56)

i.e., the equation of a plane-parallel atmosphere with
a relativistic-corrected surface gravity gs = g(rs) =
(M/rs)(1− 2M/rs)

−1/2. In the outermost stellar layers,
the main contribution to the pressure is due to a non-
relativistic degenerate electron gas, for which Eq. (56)
can be solved exactly (see Ref. [54], Sec. 6.9), yielding
the scaling ρ̃ ∝ ÿ3/2 and, within the same assumptions,
T̃ ∝ −4πβ ÿ3/2. This, in turn, means that ∇µ ln ẑ and
the effective mass diverge on the surface, completing our
argument. The same reasoning can in principle be applied
to other systems which have an interface of vacuum and
matter, suggesting that any such interfaces would lead to
a divergence in the vector field equations in general. These
divergences at the surface of the star are not exclusive to
the vector-tensor model considered here, but are known
to also arise, albeit with a different origin, in Palatini
f(R) [57–59] and in Eddington-inspired Born-Infeld [60]
theories. See also [61, 62].

The second case of divergence in the field equations for
µv = 0 is related to massive neutron stars. Although T̃ is
negative in general, it can switch sign and become positive
in the core of such stars for some equations of state (see
e.g., [63–66]). This means that ẑ vanishes somewhere
inside the star [cf. Eq. (53)], where our previous results
for the µv 6= 0 case directly apply.

Overall, the above discussion provides a heuristic tool
to identify ghosts in spontaneous vectorization theories.
If the spacetime dependent µ2

eff vanishes in non-vacuum
regions in a theory with field equation ∇µFµα = µ2

effA
α,

this generically leads to divergent terms in the explicitly
hyperbolic field equations. In other words, despite the ap-
pearances and the naming we used, µeff is not the effective
mass of all physical degrees of freedom. A careful analysis
reveals that the true effective mass diverges as in Eq. (51),
which was overlooked in the original spontaneous vector-
ization theory of Ref. [38] and other similar theories. We
work this out explicitly in Appendix A (for the Hellings-
Nordtvedt vector-tensor theory [67, 68] studied in [39])
and in Appendix B (for the vector-Gauss-Bonnet theory
of [40, 42]).

VI. CONCLUSIONS

We revisited the tensor-vector gravity model proposed
in Ref. [38] and explored the vectorization process using
perturbation theory. This was done by working with a
gauge invariant, Stueckelberg version of the theory and
complemented with an analysis of the Lorenz constraint
in the Proca gauge. In analogy with scalarization, one
would expect to see the vector field develops a tachyonic
instability, which is then quenched nonlinearly, and this
process gives rise to the vectorized configurations found

in previous work. Instead, we have uncovered a ghost
instability. This results demonstrates quite clearly that
the strong resemblance of this model of vectorization to
the Damour–Esposito-Farèse model of scalarization is in
fact rather misleading and a phase transition process that
is physically similar to scalarization does not take place.

A potential way out may exist if one can tame the
ghost instability nonlinearly, similar to the quenching
of the tachyonic instability in scalarization. Indeed,
“ghost-based spontaneous tensorization” has been investi-
gated [69]. In the vectorization model studied here, ghosts
appear inadvertently, and there is no explicit derivative
coupling before the introduction of the Stueckelberg mech-
anism. Yet, if a nonlinear quenching mechanism exists, it
could, in principle, suppress the ghost. Note that the ẑ
term in Eq. (47) that controls the instability approaches
its GR value of ẑ = 1 when AµA

µ → ∞ (for β < 0).
Hence, a solution with large vector field values can lead
to a case where ẑ > 1 everywhere. This suggests that the
ghost could be tamed in principle.

The main issue however with the ghost instabilities we
investigated is that it is not known whether their time
evolution can be done. Even if a vector field growing to
large values might quench the ghost, it is not clear if the
very time evolution of the vector field that leads to growth
can be formulated as a well-posed initial value problem
due to the divergent terms such as those in Eq. (51). The
resolution of this issue requires a mathematical analysis of
the partial differential equations we have, which is beyond
the scope of this work.

Spontaneous vectorization theories with restored gauge
symmetry were also conceived using the Higgs mechanism
rather than the Stueckelberg mechanism [70], inspired by
the gravitational Higgs mechanism [71–73]. However, this
theory [70] also has divergent terms in its field equations
akin to Eq. (50), hence, it is susceptible to the same
ill-posedness problems we discussed here.

We worked on the specific theory of Eq. (5), but other
spontaneous vectorization models in the literature have
similar field equations where ∇µFµα directly appears as
the principal part [39–43]. Hence, a constraint can be
obtained the same way as we did, which leads to divergent
terms using the arguments in Sec. V or related ones, as
we show in Appendices A and B.

Lastly, we stress that our results are relevant for most
known extensions of spontaneous scalarization to other
fields, not just the vectors, and our study can be consid-
ered as a first step to obtain a no-go theorem for extend-
ing spontaneous scalarization to other fields. For vector
fields, Garcia-Saenz et al. [45] has identified the presence
of ghost and gradient instabilities in the background of
compact objects in a broad class of generalized Proca
theories [74, 75]. Similar concerns were also raised in the
context of cosmology in Ref. [76]. Going beyond vector
fields, all known formulations of nonminimally coupled
spin-2 fields that could spontaneously grow are known
to lead to ghost instabilities as well [69]. Likewise, p-
form fields also have the same constraint structure we
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discussed in Sec. V, hence they suffer from similar diver-
gent terms [77]. Spontaneous growth of spinor fields as it
was introduced in Ref. [78] also contains divergent terms.

The only potential exception to our long list of problem-
atic theories is a second form of spontaneous spinorization
theory proposed in Ref. [79], whose equations of motion
are not known to feature divergences. It remains to be
seen if other well-posed theories exist. If this is the case,
understanding what distinguishes these theories at a fun-
damental level from the problematic ones may lead to
a proper no-go theorem for arbitrary generalizations of
spontaneous scalarization.
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Appendix A: The Hellings-Nordtvedt theory

In this Appendix we apply the approach of Sec. V to
examine the field equations in the Hellings-Nordtvedt [67,
68] vector-tensor theory studied in Ref. [39] as a vector-
ization model.

In this theory, the vector field obeys the field equation,

∇µFµα −
1

2
ωRAα − 1

2
ηRαµA

µ = 0, (A1)

where ω and η are dimensionless coupling constants.
Let us first obtain a generalized Lorenz constraint sat-

isfied by Aα by taking a covariant derivative of Eq. (A1)
and using ∇ν∇µF νµ = 0,

∇µ(ωRAµ + ηRµνA
ν) = 0. (A2)

We can expand this equation and replace the Ricci ten-
sor with the Einstein tensor and the Ricci scalar. The
resulting constraint equation is,

∇µAµ +Aµ∇µ[ln(ωR)] +
2η

η + 2ω

1

R
Gµν∇µAν = 0.

(A3)

We can now return to Eq. (A1), write Fαβ in terms of
Aα, follow the same steps that lead to Eq. (50), and find:

�Aα −∇α∇µAµ −
[

1

2
ωRgαµ +

(
1 +

η

2

)
Rαµ

]
Aµ = 0.

(A4)
At last, using Eq. (A3) we obtain,

�Aα +∇µ[ln(ωR)]∇αAµ +∇α
(

2η

η + 2ω

1

R
Gµν∇µAν

)
− MαµA

µ = 0, (A5)

where

Mαβ =
1

2
ωRgαβ +

(
1 +

η

2

)
Rαβ −∇α∇β ln(ωR), (A6)

which should be compared against Eq. (52). Note that
in Eq. (A5) the last term in the first line is also second
order, hence, it contributes to the principal part of the
differential equation in addition to the wave operator.
Hence, this equations is not in an explicitly hyperbolic
form, and we cannot immediately identify Mαβ as a
squared-mass tensor whose eigenvalues are related to
the effective masses of the individual degrees of freedom.
However, such identification is possible in the special case
η = 0 in which the problematic term vanishes and then:

M(η=0)
αβ = (ω/2)Rgαβ +Rαβ −∇α∇β ln(ωR). (A7)

We see, by comparing with Eqs. (A7) and (52), that ωR
plays the role of ẑ. We then conclude that a ghost arises
for the same reasons discussed in Sec. V.

For the general case η 6= 0 it is more convenient to
analyse the constraint (A2) which we write as,

∇α
(
ΞαβA

β
)

= 0, (A8)

where

Ξαβ = η Gαβ + (ω + η/2)Rδαβ . (A9)

Let us focus on the perturbative regime where the
background metric is fixed and the Einstein equations
hold, i.e., Gαβ = 8πTαβ [39]. For a static, spherically
symmetric perfect fluid star with energy density ε and
pressure p,

Ξαβ = 4πη[(ε− p)δαβ − 2(ε+ p)δα0 δ
0
β ]

+ 8πω(ε− 3p)δαβ , (A10)

which is diagonal. The constraint can then be written as

∂0(
√
−g Ξ0

0A
0) = −

∑
k

∂k(
√
−g ΞkkA

k), (A11)

where we wrote the summation over the spatial coordi-
nates k explicitly to avoid confusion. This means the
diagonal elements have the role of a generalized ẑ in
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the massless case in Eq. (53). We see that ∂0A
0 has a

contribution in the form of

∂0A
0 =

∂r(Ξ
r
r)

Ξ0
0

Ar + . . . (A12)

The behavior of this term is given by the dependence of the
energy density and the pressure on the radial coordinate
at the surface of the star. We normally encounter power
law dependence in stars due to the TOV equations as we
mentioned in relation to Eq. (53). Hence, ∂0A

0 diverges
for generic configurations of Aµ.

We conclude by noticing that the constraint equations of
disformally coupled vector-tensor theories of Ref. [43, 44]
have a similar structure to Eq. (A8), which would lead to
similar results in terms of divergences.

Appendix B: Vector-Gauss-Bonnet theory

In this Appendix we apply the approach of Sec. V to
examine the field equations in the vector-Gauss-Bonnet
theory introduced in Ref. [40], and further studied in
Ref. [42]. The motivation behind these theories is to
generalize the spontaneous scalarization of black holes [27,
28] to vector fields.

In this theory, the vector field obeys the field equation,

∇µFµα = vAα − f GAα, (B1)

with

v =
1

2

dV (AµA
µ)

d(AµAµ)
, f =

1

2

dF (AµA
µ)

d(AµAµ)
, (B2)

where V is the vector field’s self-interaction potential, F
prescribes the coupling between the vector field and G ,
the Gauss-Bonnet invariant. For small field perturbations,
the potential V and coupling function F considered in
Ref. [42] reduce to:

v = µ2
v, f = β/2, (B3)

where µ2
v is the bare mass of Aα and β a coupling constant.

As with Eq. (5), one could identify an “effective mass
squared” µ2

eff = ẑµ2
v, but where now ẑ = 1− (β/µ2

v) G /2.

We can now proceed in the same manner as in Sec. V
to obtain

�Aα + (∇µ ln ẑ)∇αAµ −MαµA
µ = 0, (B4)

where

Mαβ = µ2
vẑgαβ −∇β∇α ln ẑ, (B5)

[compare against Eqs. (51)–(52)] where the absence of
the Ricci tensor is due to the assumption of the GR
background being Ricci flat [42]. Therefore, this theory
suffers from a ghost instability as the one considered in
Ref. [38].

For a Schwarzschild black hole, G is positive every-
where. Thus, for v = 0 the above argument cannot be
repeated verbatim. However, G , and hence the effec-
tive mass squared, changes sign in some regions outside
the event horizon of black holes with dimensionless spin
& 0.5 [83]. Therefore, these commonly encountered astro-
physical systems lead to divergent field equations in such
theories.

Neutron stars also feature divergences for the case of
v = 0. On a fixed general relativistic background, the
Gauss-Bonnet invariant of a static spherically symmetric
perfect fluid star of energy density ε and pressure p is
given by [28]

G (r) =
48µ2

r6
− 128π

(
2πp+

µ

r3

)
ε, (B6)

which is positive definite outside the star. On the other
hand, near the center of the star r = rc, the TOV equa-
tions imply that the mass function is approximately

µc = µ(rc) ≈ 4
3πεcr

3
c , (B7)

where εc = ε(rc) is the central energy density. We then
find that in the star’s center,

Gc ≈ −256π2 (pc + εc/3) εc, (B8)

where pc = p(rc) is the central pressure. The right hand
side of Eq. (B8) is negative meaning that G , and thus
µ2

eff , change sign within the star, numerically found to
happen near the surface [28].
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disformal coupling leads to spontaneous tensorization,
Phys. Rev. D 100, 084026 (2019), arXiv:1910.02801 [gr-
qc].

[44] M. Minamitsuji, Spontaneous vectorization in the pres-
ence of vector field coupling to matter, Phys. Rev. D 101,
104044 (2020), arXiv:2003.11885 [gr-qc].

[45] S. Garcia-Saenz, A. Held, and J. Zhang, Destabilization
of Black Holes and Stars by Generalized Proca Fields,
Phys. Rev. Lett. 127, 131104 (2021), arXiv:2104.08049
[gr-qc].

[46] H. Ruegg and M. Ruiz-Altaba, The Stueckelberg field, Int.
J. Mod. Phys. A 19, 3265 (2004), arXiv:hep-th/0304245.

[47] A. Belokogne and A. Folacci, Stueckelberg massive elec-
tromagnetism in curved spacetime: Hadamard renormal-
ization of the stress-energy tensor and the Casimir effect,
Phys. Rev. D 93, 044063 (2016), arXiv:1512.06326 [gr-qc].

[48] M. Minamitsuji and H. O. Silva, Relativistic stars in
scalar-tensor theories with disformal coupling, Phys. Rev.
D 93, 124041 (2016), arXiv:1604.07742 [gr-qc].
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