English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Preprint

The NO2 camera based on Gas Correlation Spectroscopy

MPS-Authors
/persons/resource/persons101349

Wagner,  Thomas
Satellite Remote Sensing, Max Planck Institute for Chemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Kuhn, L., Kuhn, J., Wagner, T., & Platt, U. (2021). The NO2 camera based on Gas Correlation Spectroscopy. Atmospheric Measurement Techniques Discussions, 14. doi:10.5194/amt-2021-298.


Cite as: https://hdl.handle.net/21.11116/0000-0009-5F7D-2
Abstract
Monitoring of NO2 is in the interest of public health, because NO2 contributes to the decline of air quality in many urban regions. Its abundance can be a direct cause of asthmatic and cardiovascular diseases and plays a significant part in forming other pollutants such as ozone or particulate matter. Spectroscopic methods have proven to be reliable and of high selectivity by utilizing the characteristic spectral absorption signature of trace gasses such as NO2. However, they typically lack the spatio-temporal resolution required for real-time imaging measurements of NO2 emissions. We propose imaging measurements of NO2 in the visible spectral range using a novel instrument, an NO2 camera based on the principle of Gas Correlation Spectroscopy (GCS). For this purpose two gas cells (cuvettes) are placed in front of two camera modules. One gas cell is empty, while the other is filled with a high concentration of the target gas. The filled gas cell operates as a non-dispersive spectral filter to the incoming light, maintaining the two-dimensional imaging capability of the sensor arrays. NO2 images are generated on the basis of the signal ratio between the two images in the spectral window between 430 and 445 nm, where the NO2 absorption cross section is strongly structured. The capabilities and limits of the instrument are investigated in a numerical forward model. The predictions of this model are verified in a proof-of-concept measurement, in which the column densities in specially prepared reference cells were measured with the NO2 camera and a conventional DOAS instrument. Finally, results from measurements at a large power plant, the Großkraftwerk Mannheim (GKM), are presented. NO2 column densities of the plume emitted from a GKM chimney are quantified at a spatio-temporal resolution of 1/6 frames per second (FPS) and 0.92 m × 0.92 m. A detection limit of 1.89 · 1016 molec cm−2 was reached. An NO2 mass flux of Fm = (7.41 ± 4.23) kg h−1 was estimated on the basis of momentary wind speeds obtained from consecutive images. The camera results are verified by comparison to NO2 slant column densities obtained from elevation scans with a MAX-DOAS instrument. The instrument prototype is highly portable and cost-efficient at building costs of below 2,000 Euro.