International Journal of Computer Vision (2021) 129:3136-3153
https://doi.org/10.1007/s11263-021-01498-0

®

Check for
updates

Semantic Bottlenecks: Quantifying and Improving Inspectability of
Deep Representations

Max Losch'® - Mario Fritz2 - Bernt Schiele'

Received: 24 January 2021/ Accepted: 1 July 2021/ Published online: 14 September 2021
© The Author(s) 2021

Abstract

Today’s deep learning systems deliver high performance based on end-to-end training but are notoriously hard to inspect.
We argue that there are at least two reasons making inspectability challenging: (i) representations are distributed across
hundreds of channels and (ii) a unifying metric quantifying inspectability is lacking. In this paper, we address both issues
by proposing Semantic Bottlenecks (SB), which can be integrated into pretrained networks, to align channel outputs with
individual visual concepts and introduce the model agnostic Area Under inspectability Curve (AUIC) metric to measure the
alignment. We present a case study on semantic segmentation to demonstrate that SBs improve the AUIC up to six-fold over
regular network outputs. We explore two types of SB-layers in this work. First, concept-supervised SB-layers (SSB), which
offer inspectability w.r.t. predefined concepts that the model is demanded to rely on. And second, unsupervised SBs (USB),
which offer equally strong AUiIC improvements by restricting distributedness of representations across channels. Importantly,
for both SB types, we can recover state of the art segmentation performance across two different models despite a drastic
dimensionality reduction from 1000s of non aligned channels to 10s of semantics-aligned channels that all downstream results

are based on.

Keywords Explainable Al - Inspectability - Interpretability - Semantic segmentation - Representation learning

1 Introduction

While end-to-end training is key to top performance of deep
learning, learned intermediate representations with typical
training methods remain opaque to humans. Furthermore,
assessing inspectability has remained a fairly elusive concept
since its framing has mostly been qualitative (e.g. saliency
maps). Given the increasing interest in using deep learning
in real world applications, inspectability and a quantification
of such is critically missing.

Goals for Inspectability To address this, prior work on
inspectability has proposed to improve the spatial coherency
of activation maps Zhang et al. (2018) or to cluster repre-
sentations to acquire outputs of low dimensionality either

Communicated by Zeynep Akata.

B> Max Losch
mlosch@mpi-inf.mpg.de

Max Planck Institute for Informatics, Saarland Informatics
Campus, Saarbriicken, Germany

CISPA Helmholtz Center for Information Security,
Saarbriicken, Germany

@ Springer

with supervision (Bucher et al. 2018) or without (Chen et al.
2019; Yeh et al. 2019). In contrast, we demand information
in each channel to be represented by a single semantic con-
cept. This is derived from a simple observation: distributed
representations do not lend themselves to trivial interpreta-
tion (see bottom of Fig. 1). In order to reduce distributedness
and improve inspectability we propose to adapt deep net-
works via three criteria. (i) Reduce the number of channels
to a minimum, (ii) associate them with semantic concepts,
and, at the same time, (iii) aim to lose as little overall perfor-
mance as possible. While goal (i) is not necessary to reduce
distributedness, it substantially reduces the amount of infor-
mation that needs to be interpreted by a human observer. In
our view such semantics based inspectability can be seen as a
way towards achieving true interpretability of deep networks.

Semantic Bottlenecks We propose to implement these
three goals via Semantic Bottlenecks (SBs). SBs are single
(convolutional) layers that are easy to integrate into exist-
ing, pretrained, networks which map the highly distributed
outputs to a semantically aligned space of reduced dimen-
sionality. To achieve this alignment, SBs can be constructed
either supervised or unsupervised by regularizing the dis-

http://crossmark.crossref.org/dialog/?doi=10.1007/s11263-021-01498-0&domain=pdf
http://orcid.org/0000-0001-6525-4528

International Journal of Computer Vision (2021) 129:3136-3153

3137

Input

Upstream
layers

conv conv

maps
8 8 Downstream
2 2 layers

Output

Fig. 1 Semantic Bottleneck (SB) layers can be integrated into any
model and act as inspectable basis for subsequent layers. Their activa-
tion maps are coherent and well aligned with semantic concepts (left).
The alternative, regular deep networks, have layers with highly dis-
tributed representations across hundreds of channels, making them hard
to inspect (right)

tributedness of outputs and encourage the network to learn
specialized features interpretable by humans. Our unsuper-
vised SBs activate only a single channel for any given spatial
location of its input map. While goal (ii), the semantic align-
ment, is not explicitly solvable in an unsupervised fashion,
we find our regularization results in drastically improved
channel inspectability. We show this qualitatively and more
importantly: quantitatively with a metric comparing activa-
tion maps and concept annotations.

Our Contributions are three-fold. Firstly, we introduce
two network layers we term Semantic Bottlenecks to improve
alignment with semantic concepts as described in the last
paragraph. The first—supervised SBs—improves alignment
by aligning each channel with a single visual concept and the
second—unsupervised SBs—align by restricting distribut-
edness. Secondly, we show SBs can be integrated into two
state-of-the-art models at early, intermediate or late lay-
ers without impairing performance, even when reducing the
number of channels, e.g., from 4096 to 20. Finally, we intro-
duce the novel Area Under inspectability Curve (AUIC)
metric to quantify alignment between channel outputs and

visual concepts for any model and show our SBs improve
over baselines up to six-fold.

2 Related Work

As argued in prior work (Lipton 2018), interpretability can
be largely approached in two ways. The first being post-hoc
interpretation, for which an already trained and well per-
forming model is dissected into its decisions a-posteriori to
identify important (input) features via attribution. The second
approach involves constructing inherently interpretable mod-
els, by aligning representations with semantic concepts—
supervised or unsupervised.

Input Feature Attribution A large and diverse set of
papers have been published on explaining deep network pre-
dictions by highlighting the most important input features.
Early methods investigated the propagation of feature rele-
vance from class logits back to input (Simonyan et al. 2014;
Bach et al. 2015; Sundararajan et al. 2017). Others explored
the use of input perturbation methods to determine the mod-
els sensitivity towards groups of pixels (Ribeiro et al. 2016;
Lundberg and Lee 2017; Zintgraf et al. 2017; Petsiuk, et al.
2018; Fong etal. 2019). However, recent work has shown that
many of these approaches are unfaithful to the model (Ade-
bayo et al. 2018), decreasing trust in the method of input
attribution. While some variants have been shown to be
model faithful (Selvaraju et al. 2017; Srinivas and Fleuret
2019), input attributions entail two additional issues. First,
they do not automatically increase human trust in the sys-
tem as randomized control trials have indicated (Chu et al.
2020). Secondly, the accuracy of their explanations w.r.t.
their predictions are difficult to measure. To overcome this,
several benchmarks have been introduced to estimate the
accuracy of the explanations (Samek et al. 2016; Hooker et al.
2019). These are based on removing or perturbing the most
important input features, according to the respective attri-
bution method. Assuming the input attribution is accurate,
the altered training data should result in substantial drops in
performance. The drawback: these tests are computationally
demanding and need to be reevaluated for each individual
model as attributions are model dependent.

In our work, we demand information within the model
to be inspectable to improve interpretability of the whole
process pipeline. Our semantic bottlenecks have a clear align-
ment with semantic concepts, presenting feature evidences
by default.

Deep Feature Interpretability Input feature attribution
does not offer direct insights into the inner working of deep
nets. By means of analyzing individual representations, we
can investigate what visual concepts a model is particularly
sensitive to. The earliest work visualized features (Simonyan
et al. 2014; Zeiler and Fergus 2014; Yosinski, et al. 2015;

@ Springer

3138

International Journal of Computer Vision (2021) 129:3136-3153

Mahendran and Vedaldi 2015), later ones investigated statis-
tical correlations between activations and input features (Bau
et al. 2017; Kim et al. 2018; Chen et al. 2019). Given the
distributedness of representations, it became evident that
individual channels are difficult to associate with concise
semantics (Fong et al. 2018). Hence, it was proposed to group
activations before matching them (Li et al. 2018; Fong et al.
2018; Bau et al. 2019) or alternatively: combine semantics
to match to individual channels (Mu and Andreas 2020). All
of them serve a similar purporse: utilizing a well performing
model and assigning semantics after training is finished.

In contrast, we design our semantic bottlenecks to have
semantic meaning by design for which each channel is iden-
tifiable (not just partially Bau et al. 2017).

Supervised Semantic Alignment We are not the first to
study semantic alignment by design in deep networks. Litera-
ture on supervised improvements has focused on embedding
predefined semantic concepts based on auxiliary annota-
tions (Li et al. 2015; Bucher et al. 2018; Marcos et al. 2019;
Li et al. 2010). While Bucher et al. (2018) proposes a model
based on natural language features, (Marcos et al. 2019) per-
forms piece-wise training: pretraining on semantic concepts
and training a secondary model on top for a related task. Most
closely related to our supervised semantic bottlenecks are the
justrecently published concept bottleneck models (Koh et al.
2020). Similar to our approach, they insert a linear layer of
drastically reduced dimensionality and supervise it to rep-
resent semantic concepts. While supporting our observation
of increased inspectability, they test on image classification
tasks only and do not extend their bottlenecks to unsuper-
vised concept discovery.

We discuss in this paper supervised as well as unsu-
pervised semantic bottlenecks, their application to various
locations in a deep network and apply them to a safety criti-
cal task: street scene segmentation.

Unsupervised Semantic Alignment Similar to our USBs,
(Al-Shedivat et al. 2020; Melis and Jaakkola 2018; Li et al.
2018; Yeh et al. 2019; Chen et al. 2019) embed an inter-
pretable layer into the network using unsupervised metrics.
Al-Shedivat et al. (2020), Melis and Jaakkola (2018), and
Esser et al. (2020) base their method on a reconstruction loss
that regularizes a latent code, that is used to reconstruct the
input, to be more interpretable. Such approaches are based on
the success of VAE (Kingma and Welling 2013) based frame-
works and their recent success on learning visual concepts
from simple datasets (Higgins et al. 2017; Greff et al. 2019;
Burgess et al. 2019) but have the issue that reconstruction
is more challenging than classification itself. An approach
circumventing reconstructing inputs—invertible neural net-
works (Jacobsen et al. 2018)—has recently been utilized to
create mappings to concept bottleneck layers without the
necessity to retrain any parts of the original model (Esser
et al. 2020). The main drawback: the unsupervised variant

@ Springer

explored does not lend itself to simple inspectability. Chan-
nels need to be individually probed to reveal their otherwise
hidden semantic similar to the latent code in VAEs.

Our proposed unsupervised semantic bottlenecks in com-
parison lend themselves to easy inspectability due to three
reasons. First, they substantially reduce channel dimen-
sionality, secondly they reduce distributedness across their
channels and finally, they are easy to inspect since their out-
puts are one-hot encoded.

Quantification of Concept Alignment One critical issue
obstructing effective research in the domain of interpretabil-
ity is the lack of standardized metrics. Bau et al. addressed
this issue with their seminal work “Network Dissection”
(NetDissect)—a method counting number of channels
assignable to single visual concepts (Bau et al. 2017). Here,
edges of a bipartite graph, connecting channels and concepts,
are weighted by measuring overlap between activation map
and pixel annotations. This approach showed that a frac-
tion of channels can be interpreted as individual concept
detectors, yet also highlight that a large fraction of channels
remain unidentifiable. Two additional variants enable con-
cept association by combining channels (Fong et al. 2018;
Bau et al. 2019). The most recent extension addresses the
inverse problem: associating concept combinations to single
channels (Mu and Andreas 2020). Our AUiIC metric lever-
ages the ideas of NetDissect and extends it to satisfy three
criteria we deem important for measuring inspectability—
which NetDissect does not satisfy.

In contrast to existing literature, we propose semantic bot-
tlenecks which are easy to integrate in any architecture and
offer inspectable outputs while retaining performance on a
dense prediction task. Additionally, we introduce the model
agnostic AUiIC metric enabling benchmarking of inspectabil-

ity.

3 Semantic Bottlenecks

To approach more inspectable intermediate representations
we demand information in each channel to be represented
by a single semantic concept. We propose two variants
to achieve this goal: (i) supervise channels to represent
unique concepts and (ii) restrict the distributedness of rep-
resentations across channels to produce concept-specialized
channels. We construct both variants as layers that can be
integrated into pretrained models, mapping non-inspectable
representations to an inspectable semantic space. We name
these supervised and unsupervised Semantic Bottlenecks
(SB).

Formal Definition Before we start introducing the super-
vised and unsupervised variants in detail, we first define the
integration of SBs in an arbitrary network. For an architecture

International Journal of Computer Vision (2021) 129:3136-3153

3139

with L-layers, we define its functional composition:

Net(x0) = (fL o fL—10...0 f1) (x0), (

where xq defines the input to the first layer. For clarity let’s
also name the output of each layer:

xi == (fio fi—10..0 f1) (x0), @

where 0 < i < L. We denote the output dimensionality
of each layer as x; € RV and design our SB such that it acts
as bottleneck, reducing this dimensionality:

fs @ RN — RNs)

applied to a layer f;, such that Ngg < N;. To integrate an
SB after layer f; (where 0 < i < L), we extend our network
definition from above:

fsBNet(x0) = (fLo...o fix10 fro fspo fio...o f1) (x0).
4)

Note that we also integrated an additional layer f; that
ensures its output dimensionality matches the original layer:
fi + RNsB — RN To emphasize which parameters of the
network are subject to training, we finally define the follow-
ing operator ©:

6 =0 (f),)

which returns the set of all parameters 6 for a given func-
tion f. How we setup fsp and f; and train them supervised
or unsupervised is the subject of the following Sects. 3.1
and 3.2.

Case Study To show the utility of SBs, we choose street
scene segmentation on the Cityscapes dataset (Cordts et al.
2016) since it is a difficult task that traditionally requires very
large models and has a practical application that has direct
benefits from inspectability: autonomous driving. Cityscapes
consists of 19 different classes, 2975 training images and
500 validation images, both densely labeled. We use PSP-
Net (Zhao et al. 2017) and the recent MS-OCRNet (Tao et al.
2020), both based on ResNet-101 (He et al. 2016), due to
their strong performance on Cityscapes and because resid-
ual networks are abundantly used in computer vision tasks
today. PSPNet uses a pyramid pooling module before clas-
sification and MS-OCRNet uses a hierarchical multi-scale
object-contextual representation module (Yuan et al. 2020;
Tao et al. 2020). Since both architectures are residual, we
define their general functional composition w.r.t. their stages
(also see Fig. 3):

SResNet(x0) = (fstage—L ° fstage-(L—l) ©...0 fstage»l) (xo0),

(6)

where a stage contains M residual blocks B, all retaining the
dimensionality:

fstage-i(xi—1) = By o By—10... 0 By) (x;—1). @)

Each block implementing the residual function B(x) =
F(x) + x, for a function F.

3.1 Supervised Semantic Bottlenecks (SSBs)

SSBs (fssp) perform concept supervision on each SB chan-
nel using additional annotations. Ideally, we possess pixel-
annotations for an exhaustive set of subordinate concepts
like colors, textures and parts to decide which are required to
recover performance on particular tasks. Yet, we show that
an encouragingly small task-specific selection is sufficient to
satisfy both desiderata of performance and inspectability.

Choosing Concepts for Cityscapes For our supervised
SB-layer we choose concepts based on task relevancy for
Cityscapes. Broden+ (Xiao et al. 2018) is a recent collection
of datasets which serves as a starting point for the concept
annotations we require for the SSBs. It offers thousands of
images for objects, parts, materials and textures for which
the first three types come with pixel level annotations. Here,
a pixel can have multi-label annotations. Based on the 377
part and material concepts available [351 parts sourced from
ADE (Zhaoetal. 2017) and Pascal-Part (Chenetal. 2014) and
26 materials sourced from OpenSurfaces (Bell et al. 2013)],
we compile a subset of 70 Cityscapes-relevant concepts listed
in Table 1.

Setup Let’s specify the SSB setup formally for semantic
segmentation. That is, our inputs and outputs are two dimen-
sional. In our experiments, we compose the SSB to have two
bottlenecks: one for materials, one for parts. In the general
case, an SSB may have N bottlenecks, each containing chan-
nels of a specific concept category:

fssB := E (feat-1, feat2, -

ooy fcat-N) s (8)

where E defines the concatenation along channels, such

that fssp : RNi*HxW R =1 Neawej X HXW g0 outputs
with spatial extent W and H. Recall from our fspne; defini-
tion in Eq. 4 that we need an additional function f; to revert
the dimensionality reduction. Instead of adding an additional
layer, potentially increasing representational power (not part
of our goals), we can also adapt the very first residual block
of the subsequent stage fsage-(i+1) to accept the SSB-output
dimensionality. That is, the very first convolutional layer is
replaced with a layer working on the SSB dimensionality

@ Springer

3140

International Journal of Computer Vision (2021) 129:3136-3153

Table 1 Selection of 70 Broden-concepts that we deemed relevant for street scene segmentation. The first row lists all used materials, the second
row all parts. Each part is organized into part (right) of object/concept (middle)

Materials Brick, Fabric, Foliage, Glass, Metal, Plastic, Rubber, Skin, Stone, Tile, Wood
Parts Sky Cloud
Building Window, Door, Roof, Shop, Wall
Person Leg, Head, Torso, Arm Eye, Ear, Nose, Hand, Hair, Mouth, Foot, Eyebrow, Back
Road Crosswalk
Car Window, Door, Wheel, Headlight, Mirror, Roof, Taillight, Windshield, Bumber
Van Window, Door, Wheel, Headlight, Taillight, Windshield
Truck Wheel, Windshield
Bus Window, Door, Wheel, Headlight, Mirror
Train Head, Headlight, Headroof, Coachroof
Lamp Arm, Shade, Bulb
Bike ‘Wheel, Handle, Saddle, Chain
Motorbike Wheel, Headlight, Handle

Table 2 PSPNet-SSB@pyramid trained once with and without softmax activation. With softmax activation performance during inference is

impaired substantially.

Softmax mloU
Without 74.7%
With 43.0%
Fig.2 Schematics for both o 7 .

Semantic Bottleneck (SB) types. D|sitr:|bl:Jtted SR LBHlISyEokE /'(\)llﬁnﬁs Distributed | USB Module fuss Aligned
The highly distributed S = input R output

activations x; from the original
layer are fed through one or
multiple 1 x 1-conv layers to
specialize channels by semantic

m

_ Ly .
\; N

alignment. SSBs are
concept-supervised and USBs

are regularized (via R) and material-specialization.

N
R2j=1 Neaj *HXW o £31] SSB-ResNet architecture can be
defined as follows:

SSSB—ResNet (x0) = (fstage—L O...

© fstage-(i+1) © fSSB © fstage-(i) © - * -

o ftage-1)(X0), ©)

where f’;tage_([+]) is the adapted stage. Note, that we do not
apply a non-linearity to SSB-outputs. We observed inferior
performance during inference when doing so (see Table 2).
Nonetheless, softmax (o) is applied when calculating the
cross entropy loss:

Lear-j(xi, label) = CE (U (fcat_j (xi)) , label) . (10)

@ Springer

(a) Supervised SB Module with two layers: parts-

N\ @

(b) Unsupervised SB Module with two layers.

Implementation Details For all of our SSBs, we define two
bottlenecks: one for parts and one for materials:
Sfssp = & (fpartSs fmaterials) . (11)

We follow Fig. 2a, which shows the structure of our SSBs.
Two linear bottleneck layers (blue rectangles) receive the dis-
tributed input x; from a pretrained model and are supervised
by an auxiliary loss to map them to target concepts (colored
boxes). Given the dense prediction task of our case study, we
use 1 x 1-convolutions to retain the spatial resolution:

fparts(xi) = Wparts SX + bparts (12)

(13)

Smaterials (Xi) = Winaterials = Xi + Pmaterials

In our case study, we place SSBs at three different loca-
tions in the network. Early, namely after stage3 (see Fig. 3),

International Journal of Computer Vision (2021) 129:3136-3153

3141

’ stage? H{ stage3 H{ stage4 Hﬁ stage5

(a) Simplified PSPNet architecture indicating stages. Each stage consisting

of multiple layers or residual blocks.

] stage4 Hﬂ_lézBB/ —’{ stageb U

(b) PSPNet with SB after staged.

Fig.3 Sequence of stages in PSPNet architecture and integration of an SB. MS-OCRNet follows the same structure, but replaces the pyramid and

last classification module with a context integration module

Table 3 Segmentation results on Cityscapes validation set for different placements of SSB. # denote results are obtained with models trained from

scratch by our setup.

Location Layer #concepts mloU
(Materials, parts) PSPNet: MS-OCRNeti
Vanilla N/A 77.6 79.6
Early Stage3 70 (11, 59) 76.4 78.2
(512 input feat.)
Middle Stage4 70 (11, 59) 77.4 77.8
(1024 input feat.)
Late stageS 70 (11, 59) - 71.3
(2048 input feat.)
Pyramid 70 (11, 59) 74.7 -
(4096 input feat.)

middle, namely stage4 and late. Late differs between PSP-
Net and MS-OCRNet. We apply the SSB after the pyramid
module for PSPNet and for MS-OCRNet after stageS.

Training Details The authors description of training the
MS-OCRNet is fairly extensive in contrast to PSPNet. It is
pretrained on ImageNet as well as Mapillary (Neuhold et al.
2017), utilizes the validation set for training and performs
auto-segmentation on the coarse training set to increase the
number of images (Tao et al. 2020). Since we are mainly
interested in rendering existing networks more inspectable—
instead of outperforming baselines —, we choose the training
setup of PSPNet to enable comparisons between both models.
To construct baselines, we train both models for 200 epochs
on the finely annotated Cityscapes data only, with a learning
rate of 0.01, weight decay of 5e—4 and “poly” learning rate
policy with power 0.9 (Chen et al. 2018; Zhao et al. 2017;
Xiao et al. 2018). Integration and training of SSBs is done
in two phases. The SSB-ResNet is constructed according to
Eqs. 9-12. In the first phase, only the SSB is trained on the
out-of-Cityscapes-domain Broden+ by updating the param-
eters Opasel :

OPhasel := © (fssB) , (14)

where ® returns all SSB parameters (as introduced in
Eq. 5). We run the training for 5 epochs with a learning rate
of 0.01, weight decay 5e — 3 and the same policy as for
the base models. In the second phase, all subsequent layers

are finetuned. The parameters subject to optimization are as
follows:

L
OPhase2 ‘= U ®(fstage—k)) G(fstage—(i+l))’ (15)
k=i+2

where L defines the number of stages. Phase 2 is trained
again on Cityscapes with a lower learning rate of 0.002,
keeping the policy and weight decay 5e—4. The number
of epochs is fixed to 60. We train both the PSPNet and the
MS-OCRNet on 4 GPUs with a total batchsize of 16 and
using mixed-precision. The images are cropped for the PSP-
Net to size 713 x 713. Our PSPNet achieves 77.6% mloU on
the validation set, on par with the official reported number
(78.4%). MS-OCRNet achieves 79.6% mloU with our train-
ing, which is on par with the regular OCRNet performance
(also 79.6% Yuan et al. 2020) but not as good as the best
reported number (85.1%) involving the full training scheme.

3.1.1 Recovering Performance Using SSBs

As one of our 3 goals for inspectable deep networks, we
strive to lose as little performance as possible. We test
our SSB-augmented PSP- and MS-OCRNets on the origi-
nal Cityscapes task and compare mloUs (see Table 3). We
denote an SSB after stageX as SSB@stageX. We compare the
PSPNet integrations first. Given our baseline mIoU of 77.6%,
SSB @stage4 is able to recover the full performance, while

@ Springer

International Journal of Computer Vision (2021) 129:3136-3153

3142
95
z
< 90
—
3
O 851
© 80 —eo— Relevant
_g Irrlevant
& 754 —— Baseline

T T T T

20 40 60 80
Number of concepts

Fig. 4 Task relevant concepts outperform irrelevant ones on PSPNet-
SSB@pyramid

the applications to stage3 and the pyramid layer result in
a slight decrease (76.4% and 74.7% respectively). Similarly
for the MS-OCRNet integrations, we observe only slight per-
formance drops from 79.6% down to 77.3% for stage5. As
to be expected, MS-OCRNet achieves overall higher perfor-
mance on all tested locations. Importantly, for both models:
the reduction in the number of channels is substantial (e.g.
1024 reduced to 70 for stage4), indicating room to render
complex networks more inspectable. This addresses point 1
of our 3 goals (channel reduction).

Bottleneck Tradeoff Clearly, the performance is strongly
dependent on the number of concepts used in the bottleneck.
To re-establish the original performance we investigate the
idea of increasing the bottleneck size, yet note that increas-
ing the number of concepts is dependent on availability of
annotations. In our case, there are no more than our 70 cho-
sen concepts that we deemed necessary for the task. Objects
we excluded, that could be considered relevant, are mirror,
column, stairway or door. Most of these do already exist as
parts of objects (see Table 1) or are annotated on very dif-
ferent scenes (e.g. mirror is annotated on indoor scenes). In
light of our first two goals—dimensionality reduction and
semantic alignment—we here choose a minimal set of con-
cepts for our experiments to reduce semantic overlap. To
investigate the segmentation performance impact when using
over- complete sets as well as reduced sets, we consider the
PSPNet- SSB @pyramid configuration and vary the number
of concepts from 6 to 86 - selected manually from a set of
task relevant concepts and randomly from a disjoint irrelevant
set. The set of irrelevant concepts contain all 377 Broden+
concepts minus the 86 relevant ones. We report the pixel accu-
racy results in Fig. 4 and find that relevant concepts result in
improved accuracies over irrelevant ones—at least for small
number of concepts.

3.2 Unsupervised Semantic Bottlenecks (USBs)
Clearly, the requirement for additional annotation and uncer-

tainty regarding concept choice is a limitation of SSBs. To
address this, we investigate the use of annotation free meth-

@ Springer

ods to (i) reduce number of channels, (ii) increase semantic
association and (iii) lose as little performance as possible.
Similar to SSBs, we address point (i) by integrating lay-
ers with low dimensionality. To address (ii) we propose to
enforce non-distributed representations by performing one-
hot relaxation. That is, we strive to achieve one-hot encoded
outputs for which only a single channel is active for any
given spatial location. We simplify this problem by relaxing
an arg max objective and utilize appropriate regularization.

Unsupervised Semantic Alignment One-hot relaxation
does not explicitly enforce semantic alignment, yet it adapts
a high-level idea implemented implicitly using supervision:
each channel should be specialized in representing one con-
cept only. Thus, we strive to maximally specialize each
channel via approaching one-hot encodings. As we will
later discuss, we find our method resolves implicit seman-
tic alignment well, such that channels represent very specific
concepts.

3.2.1 Construction of USBs

As for SSBs, we also integrate the USBs into pretrained mod-
els.

Setup Let’s specify the USB setup formally for a residual
architecture with integration after stage fytagei. We define
the output of stage-i as x; (see Eq. 2). The composition of
the network is similar to the SSB variant (Eq. 9):
fuss == E (fusB-(1): fUSB-): - - -+ JUSB-(N)) + (16)

for N parallel bottlenecks whose outputs are concatenated
along channels via concatenation operator E, such that
fusg @ RNXHXW _ R Nuss.)xHxW (17)
We present an example setup in Fig. 2b which contains

two parallel bottlenecks. As for SSBs, we choose 1 x 1 con-
volutional layers with bias for each bottleneck fusg-(j):

fus-(j(xi) := o (WusB-(j) - Xi + buss-(j)) - (18)

Note that, unlike for SSBs, the softmax non-linearity o
is applied both during training and inference as it’s integral
part to the regularization.

One-hot Relaxation We demand our USBs to produce
efficient, sparse codes. By design, we want to have only
one active channel per spatial location: That is, arg maxy ax,
where a; defines activation of channel k. To relax this non-
differentiable problem we utilize softmax and investigate two
approaches: adding an additional entropy loss R or utilizing
a parameterization with temperature 7. For the first approach
using entropy loss, the probability distribution along chan-
nels of each fusp.(j) is used to calculate an additional loss

International Journal of Computer Vision (2021) 129:3136-3153

3143

R:

W H
A
Rusp-(j) (xi) = WH wX_:] /;H (fUSB-(j)(xi)h’w) , (19)

where H defines the Shannon entropy and x; is the output
of stage-i (fstage-i) resulting in an USB output tensor with
Nusg-(j) channels and spatial extent H x W (f USB-(j)(xi) €
RNUsB-() X HxWy) "The 1oss is scaled with factor 1. Here, the
entropy H is calculated along channels Nysg.(;j) to measure
the uncertainty w.r.t. the active feature for each spatial loca-
tion &, w. We want to minimize this uncertainty to ideally
reach maximum certainty: one-hot encoded outputs. For the
second approach, we utilize the softmax temperature param-
eter, which we anneal during training. Its parametrization can
be reduced to the following:

or(x):=0x/T). (20)

Starting with a high temperature, e.g. Tp = 1 it is reduced
quickly in 7 training iterations to approach arg max. We
define T at timestep ¢ with polynomial decay: T, = Ty +
(To — Tr) - (1 = L), where y specifies how quickly T is
decaying.

Implementation Details Entropy regularization is scaled
with factor A = 0.1 while T is kept at 1.0. For annealing we
set Top = 1.0, T; = 0.01 and y = 10.0 for rapid decay. Dur-
ing inference, we compute arg max instead of softmax to
acquire one-hot encoded outputs. We choose various bottle-
neck sizes for our USB experiments to evaluate their impact
on performance, discussed in Sect. 3.2.2.

Training Details Since the training is not dependent on
additional concept labels, we can train the USB jointly with
all subsequent layers. The set of parameters 6 subject to train-
ing is specified as:

L

U © (fuuagek) U O (futage-1) U © (fuss) . (21)
k=i+2

where O returns all parameters of a function (as introduced
in Eq. 5) and L is the number of all stages.

3.2.2 Recovering Performance Using USBs

Here, we show in two parts that first, only USBs trained
with temperature annealing produce one-hot encodings
and second, that introducing USBs result in little to no
performance impact while drastically reducing number
of channels. We compare the two regularization meth-
ods on two locations of PSPNet (stage3 and stage4) in
Table 4.

Temperature Annealing Enables One-hot Encoding
Table 4 reports number of channels and two mloU values
per USB configuration—both evaluated on the Cityscapes
validation set. The left column reports the unchanged
PSPNet-USB performance, and the right (arg max) reports
the performance when replacing the softmax with arg max
during inference. This comparison enables a simple test.
That is, how distributed (or how specialized) are the learned
USB-representations. If the representations are not dis-
tributed across channels, taking the argmax will induce
no or little performance loss. On the other hand, if rep-
resentations are distributed, a single channel per spatial
location does not express all of the required information—the
performance will drop. We compare the two differ-
ent regularization strategies—entropy loss and temperature
annealing—and find that only the latter is able to retain
performance. On stage3 we see a slight performance drop
from 74.7% to 73.3% for 4 x 50 channels and only a 0.3
percent point drop for stage4 and 2 x 50 channels. On
the other hand, entropy loss does not reduce distributed-
ness sufficiently. The best configuration—stage3 4 x 50—
drops from 74.0% to 36.7%. Thus, the representations of
temperature annealed USBs are not distributed across chan-
nels.

USBs Reduce Dimensionality Without Performance
Impact Next, we investigate the impact of temperature
annealing more broadly on multiple layer locations as well
as for both models: PSPNet and MS-OCRNet in Table 5. We
report dimensions of the bottlenecks, mloUs after arg max
application as well as the number of active channels 2.
The latter derived from an observation that some channels
are never active during evaluation (compare columns ¥ o—
active channels—and #channels). This resembles results from
recent work on differential architecture search also utiliz-
ing softmax (Liu et al. 2019; Xie et al. 2019). Overall,
this encouragingly indicates further dimensionality reduc-
tion. We highlight, that at stage4, stageS and pyramid
it appears that around 20 channels are enough to fully
retain the performance—irrespective of the model used.
Considering segmentation performance, we observe that
only stage3 on PSPNet sees a substantial impact (com-
pare the best 73.3% mloU versus vanilla PSPNet 77.6%).
We conjecture that representations at such an early loca-
tion in the network are difficult to disentangle, yet we
also find USB@stage3 for MS-OCRNet achieves a high
77.4% mloU. Overall, for MS-OCRNet, we see close to
full recovery of mloU performance across all tested loca-
tions.

Parallel Bottlenecks are not Necessary for Good Per-
formance To acquire a better understanding of the impact of
using parallel bottlenecks on mloU performance, we con-
duct a thorough sweep over USB dimensions and report
results for PSPNet in Fig. 5. For each network location, we

@ Springer

3144

International Journal of Computer Vision (2021) 129:3136-3153

Table 4 One-hot relaxation comparison on PSPNet-USBs. To test distributedness, we replace softmax with arg max during inference and compare

segmentation performances. Only annealing recovers performance.

Layer #channels N x K PSPNet
Entropy Loss Temperature annealing
softmax mloU arg max mloU softmax mloU arg max mloU
Stage3 2 x 50 73.0 0.1 73.6 71.7
4 x50 74.0 36.7 74.7 73.3
Stage4 2 x 10 75.7 32.9 75.1 75.0
2 x 50 76.0 25.8 75.8 75.5

Table 5 Performance comparison between PSPNet and MS-OCRNet
after integrating USBs regularized with temperature annealing. .
denotes number of active channels—active meaning: the channel has

an activation value greater than O at least once during validation. Bold
numbers highlight best performing configuration per model.

Location Layer #channels N x K PSPNet MS-OCRNet
.0 mloU (ss) .0 mloU (ss)
Vanilla N/A all 77.6 all 79.6
Early Stage3 2 x50 33 71.7 17 76.0
4 x 50 60 73.3 48 77.4
Middle Stage4 1 x50 18 72.4 12 75.9
2 x 10 16 75.0 11 77.5
2 x 50 14 75.5 20 71.3
Late StageS 1 x50 - 23 77.2
2 x 10 17 77.4
2 x 50 23 78.0
Pyramid 1 x50 40 717.5 -
2 x 10 19 75.4
2 x 50 31 75.6

train USBs with varying number of parallel layers N and
width K, where N € {1,2,3,4}, K € {2,5, 10, 20, 50}.
For each N we plot the mloU over the product N -
K, stating total number of channels. To decrease train-
ing time, we reduce the batchsize from 16 to 4, which
decreases PSPNets baseline performance from 77.6% to
76.2% mloU. Stage4 and pyramid reach baseline results
approaching 50 total channels with no substantial gains
after. N has the greatest impact on stage3, which reaches
highest mloUs using N = 3 (compare (N = 1,K =
50) — 61.8% versus (N = 3, K = 20) — 68.7%).
Overall, we find that using 3 parallel bottlenecks with
K = 10 is able to retain performance while having the
least total number of channels (discounting active chan-
nels X.g). However, even a single bottleneck—resulting
in one-hot outputs—with K = 50 is able to reach 75%
mloU. We conclude that USBs with parallel bottlenecks
(N > 1) improve performance quickest, yet N = 1
only require few channels more and allow true one-hot
encoding.

@ Springer

4 Quantification of Layer Output
Inspectability

We present the Area Under inspectability Curve (AUiIC)
metric enabling model agnostic benchmarking by measur-
ing alignments between channels and visual concepts. We
specify three criteria that AUiIC has to satisfy: (i) it must be
a scalar measuring the alignment between visual concepts
and channel outputs. 0 must indicate no alignment is pos-
sible and 1 perfect overlap. (ii) The metric must be model
agnostic to allow comparisons between two different acti-
vation functions. (iii) The quantification must be computed
unbiased w.r.t. the concept area in the image. The funda-
mental ideas inspiring our metric are based on the frequently
cited NetDissect method (Bau et al. 2017). To highlight the
differences to our metric we will end this section with a dis-
cussion.

4.1 AUIC Metric

Our proposed metric consists of 3 main steps, which we
schematically present in Fig. 6. Each channel is consid-

International Journal of Computer Vision (2021) 129:3136-3153 3145
75 A 75 A + 75 A
3701 — 3701 o N=1 3797 - N=1
1S - N=2 € ~o— N= £ - N=2
65 - - N=3 65 - - N= 65 - - N=3
- N=4 - N=4 - N=4
,/o/. —— PSPNet —— PSPNet —— PSPNet
60 : : : . 60 : . : . 60 : . : :
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200

Number of total channels N - K

(a) USB@stage3

Number of total channels N - K

(b) USB@stage4

Number of total channels N - K

(¢) USB@pyramid

Fig.5 Impact of USB dimensionality trained with temperature annealing on Cityscapes mloU score for PSPNet. USBs with parallel bottlenecks
(N > 1) improve performance quickest, yet N = 1 only require few channels more and allow true one-hot encoding

Thresholded maps
. Fraction of channels
wm———* ——— e — e *max mloU > &
- . . . LS . " e . o
. . . 3] 1
How many channels
P : ; have mloU greater than
N YN 9e @ - ® - K threshold?
mloU
person/ ‘
Concept head l
0 >

annotations RTREEE AmloU
wheel
e o

1.0
mloU threshold &

Fig.6 Schematic calculation of inspectability score AUIC. First, each

magenta channel). The best mIoU scores are used to construct the AUIC

channel is considered as binary detector—by thresholding its output at
various values—and compared with concept annotations (see blue and

score. AUIC is derived by counting how many channels have a mloU
greater than a threshold (see plot to the right)

Table 6 Channel identification comparison for PSPNet-SSB @pyramid using either IoU or mIoU. The latter reducing size bias substantially,
enabling accurate identifications.

Channel Trained concept IoU assignment Our mloU assignment

16 Person/hair torso (0.07) painted (0.06) person (0.57) hair (0.55)
32 Lamp/shade painted (0.07) brown (0.06) shade (0.58) lamp (0.53)
18 Person/foot torso (0.07) black (0.05) person (0.53) foot (0.53)
69 Wood material brown (0.07) painted (0.07) wood (0.53) floor (0.52)

ered as binary detector by thresholding its output at various
values (top center in Fig. 6). For each threshold, the overlap
to concept annotations is evaluated via mIoU (bottom center
in same figure). Simply speaking, we want to identify the
concepts that best describe each channel output. For the final
scalar AUiC metric, we take only the best matching channel-
concept pair into account and count how many channels in
total have a mloU over a threshold & (right in same figure). In
the following, we will describe this process more formally.
Channel-concept Matching First, each channel needs
to be identified as a detector for a single concept. Given
dataset X containing annotations for concept set C, we com-

pare channel activations Ay and pixel annotations L., where
¢ € C. We consider binarized channel outputs M} via thresh-
olding with 6, such that My = M (k,6r) = Ar > 6 (see
thresholded activation maps in Fig. 6). Channel output My
and concept annotation L. are compared with [oU: IoU(x) =
mﬁg ZI , | -] denoting cardinality of a set. A few things need to
be considered w.r.t. to our criteria. The metric must be unbi-
ased w.r.t. size. IoU penalizes small areas more than large
ones, since small annotations are disproportionally more sus-
ceptible to noise. Consider an annotation of 2 pixels and one
false plus one true positive. The IoU scores 1/3, pulling down
the average over all samples. This would become an issue

@ Springer

3146

International Journal of Computer Vision (2021) 129:3136-3153

Channel 9 - Supervision:
Person/arm

Our assignment: Person/torso

Channel 10 - Supervision:
Person/eye

Person/head

Channel 19 - Supervision:

Channel 11 - Supervision:
Person/back

Person/ear

Person/head Person/torso

Our method

NetDissect assignment:

NetDissects’ method
(0.005 quantile)

Fig. 7 Comparison of concept assignments between NetDissects
method (lower row) and our calibration-free method (upper row) using
Cityscapes-Parts. This comparison is performed on the MSOCRNet-
SSB@stage5 for which each channel is concept-supervised. The

later on when we optimize 6. Here, a bias would lead to
wrong identifications. We address this issue using the mean

ToU of positive and negative responses to balance the label
area by its complement: mloU(x) = 4 (M + @)
’ 2 \IM ULl \MyUL|)"

M, and L. are the complements to the binary activation mask
and annotation respectively. The alignment score between
channel and concept is subsequently defined over the whole
dataset X:

5 Results

mloU (X) _ 1 2:}izeX“uk N Lc|
ke 2 Syex|Mi U L]

1 Syex|Mi N L,

1 xeX|_k _cl ' 22)
2 Txex|Mi U Ll

We sum over all samples before computing the fraction to

include samples not containing concept c.
So far, the choice of 6; has been undefined. Yet, the

alignment between channel and concept is sensitive to 6.
We keep the determination of 6; agnostic to the activation
distribution by finding critical point 9,;’" —TNow per channel
and concept—maximizing mloUy (X, 6k .)—now parame-
terized with the threshold:

@ Springer

groundtruth concept is stated above each column. Note that our thresh-
olding (heatmap overlay) is better aligned with the actual concept since
its threshold determination is an optimization procedure. Both methods
have been evaluated on 100 Cityscapes-Parts images

tree/crown

9/

g/window
vehicle/wheel

ehicl
construction/pole
sky/background

urb

trafficsign/face

vehicle/taillight
tree/trunk

ror

ub

constructi tisement
road/marking 1

constr

trafficlight/case H
vehicle/steering_control }
construction/wall

trafficli
vehicle/seat i
road/cobble 1

_leaves

sky/cloud
truck/cargo
vehicle/pantograph
vehicle/articulation

L

20 40 60 80 100
Number of images

Fig.8 Number of images containing each concept in Cityscapes-Parts.
37 out of 40 concepts are present in more than 10 out of 100 images

International Journal of Computer Vision (2021) 129:3136-3153

3147

OF . = arg max,, _mloUy (X, O). (23)

An example considering two different concepts (per-
son/head and car/wheel) is presented in Fig. 6. For each
concept, we have identified the threshold 9:‘ . that maxi-
mizes alignment. To assign each channel a single concept,
we choose the concept ¢* that maximizes mloU.

¢* = argmax, mloUy (X, 6). (24)

Each concept can be assigned to multiple channels, but not
vise versa.

Scalar quantity The second step involves summarizing
the identifiability to a scalar value—O0 indicating no channel
can be identified and 1 all. This is depicted in Fig. 6 to the
right. Given a global mloU threshold £ we can determine the
fraction of channels having a greater mloU. In order to keep
the metric agnostic to the choice of &£, we define this scalar as
the AUC under the indicator function—counting identifiable
channels—for all £ € [0.5, 1]:

1

K
D Lxse (mloUp o) dé. (25)
05,2

i 2
AUIC = —
K

We coin this scalar AUIC—Area Under inspectability-
Curve. The factor 2 normalizes the output, such that AUiC
ranges from O to 1.

Stability w.r.t.6;" . Since we still choose a single 6; . to
compute our metric, we introduce a second scalar quantity
measuring stability when varying 6 .. For a channel k we
retain the selected ¢* and marginalize 6 out of mloUy . This
results in the area under the mIoU curve when varying the
threshold:

Ao = f mloUy o+ (X, 0) d6. (26)

The ideal inspectable channel consistently responds with
perfect overlap only to concept c*. In that case Ay .+ will
be equal to mloUy (X, 6, ..) implying maximal stability.
In the general case though,’ a channel may also respond to
other concepts but with smaller activations. This results in
an inequality Ag o+ < mloUg (X, 9,2*,0*), indicating lower
stability. Subsequently, the quotient between these two terms
enables the quantification of stability. We define this quan-
tity S aggregating all channels as the fraction between AUC
under A and AUIC:

1 2 &
S = = Looe (Ag o) dE. 27
AUiCK/M]; szt (Aker) d5 @7

5.1 Setup

5.2 Discussion

We conclude by showing that AUIC satisfies our three criteria
and contrast it to the NetDissect-measure.

Clear Definition in [0, 1] 0 must indicate no channel
alignment—1 perfect alignment for all channels. AUiC sat-
isfies this criterion as it integrates over all mloU thresholds.
NetDissect instead chooses a specific IoU threshold § = 0.04
that results in fuzzy scores at the bounds. At 1, NetDissects
measure gives a false sense of security since all channels only
require to pass an loU of 0.04.

Agnostic to Network Architecture To enable compar-
ison across diverse types of models, we require a metric
agnostic to the distribution of the channel outputs. Our AUiC
metric satisfies this criterion since it considers the threshold
9;"0 that maximizes mloU. In NetDissects’ measure in con-
trast, the activation binarization threshold 6y is chosen based
on the top quantile level of activations a; € Ay such that
P(ax > 6¢) = 0.005. This 0.005 quantile choice is sen-
sitive to the underlying activation distribution, failing for
non-Gaussian distributions—e.g. bi-modals and Bernoulli
(USBs have 0/1 outputs), for which 6; could wrongly be
set to 1. This results in M} being always 0. We observe
that NetDissect requires further calibration when evaluat-
ing our USBs. For example, only 4 out of 25 channels
are assigned for PSPNet-USB @stage4 with default settings
while ours assigns 20. Additionally, we observe improved
assignment results on SSBs. While the outputs here are nor-
mal distributed, the optimization procedure to find the best
thresholds is able to improve assignments especially for small
concept sizes. We show an example in Fig. 7. We choose MS-
OCRNet-SSB @stage5 for which all 70 channels are concept
supervised and plot 4 different channels with their respec-
tive activation maps. The concept assignment is performed
by comparing with 40 concepts from our Cityscapes-Parts
dataset (introduced in the next section). The first column
shows result for channel 9 which represents Person/arm.
Note that our thresholding results in activation maps that are
much closer to the target concept than NetDissects method.
Note that many concepts used for supervision (e.g. eye, ear,
back) are not present in Cityscapes-Parts. Nonetheless, our
algorithm is able to find the closest matches reliably.

Insensitivity to Size of Concept To show size bias using
IoU, we conduct a comparison between IoU and mloU. We
compare concept assignments on PSPNet-SSB @pyramid
since the channels are supervised and hence pre-assigned.
Table 6 presents the assignments of both methods (columns)
for 4 channels (rows). mloU assignments are consistent with
the trained concepts, even identifying concept wood. Using
IoU instead, concepts like painted, black or brown are among

@ Springer

3148 International Journal of Computer Vision (2021) 129:3136-3153

- background
road/marking
- road/plain
- road/cobble -
- sidewalk/curb -
- sidewalk/paved - construction/pole
[|
I
L

- building/roof - person/leg

- person/arm

vegetation/fallen_leaves vehicle/wheel

- vehicle/headlight

vehicle/tail light

- vehicle/window

sky/cloud vehicle/steering_control
- building/door construction/advertisement person/head - vehicle/seat

- building/wall construction/wall - person/torso - vehicle/mirror

Fig. 9 Examples from our Cityscapes-Parts annotations with 40 different labels focused on parts of Cityscapes objects. 100 randomly selected
images from the Cityscapes-dataset have been annotated (excluding test-sets)

vegetation/shrub vehicle/pantograph

building/stairs vegetation/field vehicle/articulation

traffic light/case

[
]
L
traffic light/lamp - tree/trunk
-
]
]
[

vehicle/body

I
L]
-
- truck/cargo
traffic sign/face -

tree/crown technology/display

sky/background

- building/window

construction/bar

early (stage3) middle (stage4) (late (stage5/pyramid))
3 80 v 801 v 801 v
23| 2 e o ° - ° v
98| 2754, 9 75 ¥ 9 751 °
20| E S ® IS
G 701 70 70]
o 804w 801 v 801 v
Q| D P o) (]] ® v
©
25| 2754, 9 751 y 9 75 °
>e| € € ® €
S 70 70 70
~U—4 ———————+ ¥ MSOCR xz=512 - ——————+ ¥ MSOCR 2=1024 - ——————+ ¥ MSOCR 2=2048 -
80] v ® PSP3=512] 80] v e PSP 3=1024 7 80] ¥ e PSP 3=4096]
5) ' ® PSPUSB z=15 =) PY ® PSPUSB z=18 =) m e PSPUSB =19
k) 2 75 4 v MSOCRUSB =17 9 75 1 V- v MSOCRUSB =12 2 75 1 () v MSOCRUSB z=17
8 E P PSPSSB =70 E ® PSPSSB =70 E PSPSSB =70
o 70] MSOCRSSB =70 70] MSOCRSSB =70 70] MSOCRSSB =70
0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6
AUIC AUIC AUIC

Fig. 10 AUiC—inspectability scores for SSBs (yellow), USBs (blue) and baselines (red). Higher values are better, 1 being perfect channel-concept
alignment. SBs substantially improve that alignment and thus: inspectability. ¥ indicates number of active channels

Table 7 Averaged stabilities over datasets.

Stability S Stage3 Stage4 Pyramid
Original 0.034 0.077 0.099
Bottleneck 0.004 0.069 0.082
SSB 0.047 0.099 0.099
USB 0.938 0.945 0.947

the identified. These concepts cover large areas in Broden on average and does not show up when using IoU. mloU on
images making them less susceptible to noise. The average the other hand computes a score for hair of 0.55 for channel
number of pixels per image of painted for example is 1087.5, 16, which is trained for hair. NetDissects metric also utilizes
resulting in an IoU of 0.06, while hair has only 93.8 pixels IoU, for which the authors manually adjusted the threshold

@ Springer

International Journal of Computer Vision (2021) 129:3136-3153

to make it unbiased (Zhao et al. 2017). Since this adjustment
is done for normal distributions, it’s not guaranteed to be
unbiased for others.

Section 3 showed drastically reduced channel numbers
while retaining performance—achieving goal (i) and (iii).
To assess the semantic alignment of channels (goal (ii)) we
utilize our AUiC metric to show improved inspectability and
highlight qualitative examples in this section.

Datasets We compare alignments with 3 different datasets:
Cityscapes-Classes, Broden (Bau et al. 2017) and a new
dataset: Cityscapes-Parts. The broadest dataset we evaluate is
Broden which covers 729 various concepts of objects, parts,
materials, textures and colors (skipping scene concepts).

Cityscapes-parts Since the Broden images are mostly out
of domain w.r.t. Cityscapes, we introduce Cityscapes-Parts
which includes annotation of subordinate concepts to the 19
Cityscapes classes. The new dataset includes 100 densely
annotated images from the Cityscapes dataset covering 40
different concepts that we chose based on the Cityscapes
classes. Vehicles including bicycles have been decomposed
into wheel, head- and taillight, door, seat, steering control
and body. Buildings have not only been decomposed into
their direct subordinate concepts like wall and window but
also into concepts that often obstruct buildings like advertise-
ments. We also distinguish between plain and cobble road as
well as their markings. Three example images are presented
in Fig. 9 and concept statistics in Fig. 8. We annotated all
images with the labelme toolbox (Wada 2016). We will make
all annotations publicly available.

Compared Models From all USB models trained, we
select one per network location that strikes the best balance
between mloU and AUIC : namely retaining performance
while reducing number of channels. For PSPNet: stage3 -
USB2x50, stage4 - USB1x50, pyramid - USB2x10. For MS-
OCRNet: stage3 - USB2x50, stage4 - USB1x50, stage4 -
USB2x10.

5.3 Quantitative Inspectability Improvements with
SBs

We compare vanilla PSPNet/MS-OCRNet with SSBs and
USBs and do so for outputs of an early layer: stage3, a middle
layer: stage4 and a late layer: pyramid/stage4. AUiCs are
collectively shown per layer in three columns in Fig. 10.
Each row shows results for a different dataset indicated by the
column headers on the left: Cityscapes-Classes, Cityscapes-
Parts and Broden. Vanilla network outputs are indicated by
color red, SSBs by yellow and USBs by blue. PSPNet and
its SB integrations are indicated by circles, MS-OCRNet by
triangles.

SSBs Enable Inspection for Subordinate Concepts On
each layer and dataset, SSBs outperform the vanilla base-
lines. Based on the AUIC improvements on the Broden

Fig. 11 Top-20 CS-Parts aligned channels only for stage4 from SSB-,
USB- and vanilla MS-OCRNet outputs. USBs and SSBs offer better
semantic alignment are easier to inspect for concept evidence

dataset on all layers—on which the SSBs outperform all
tested variants—we highlight that it is possible to align inter-
mediate representations with user defined concepts. SSBs
improve the AUiCs on Broden from under 0.05 up to 0.2 for
the late layers making a big leap forward towards inspectable
representations. In comparison to the application of unsuper-
vised USBs though— as we will discuss shortly—large AUiC
improvements are challenging to establish as they heavily
depend on the choice of concepts. A priori, it is difficult to
know which concepts can be aligned well with supervision
whilst also allowing for good segmentation performance.

USBs Align with Cityscapes-Classes

In comparison to SSBs, USBs align much better with
Cityscapes-Classes than subordinate concepts. We see here
the greatest increase in AUiIC, e.g. from 0.05 to close to 0.6
on stage4 and 0.1 to 0.6 at stage5/pyramid. Clearly, it is much
more effective to use unsupervised semantic bottlenecks to
improve inspectability, than to force specific concepts onto
the network.

USBs Offer High Stability Shown in Table 7, we see
USBs offering a clear advantage since their outputs are one-
hot encoded: alignments are very stable. SSBs on the other
hand report only slight stability improvements over base-
lines. To answer, whether softmax enables greater stability by
default (SSBs have no non-linearity), we measure AUIC and
S for SSB with softmax. Measuring with softmax 7' = 1, we

@ Springer

3150

International Journal of Computer Vision (2021) 129:3136-3153

Fig. 12 Top-20 CS-Parts aligned channels from SSB-, USB- and vanilla MS-OCRNet outputs. Each color is mapped to a single output channel.
USBs and SSBs offer better semantic alignment are easier to inspect for concept evidence

Top-20 11th channel 8th channel

3rd channel 15th channel 5th channel

Fig. 13 Individual channel activations overlaid with the input image of MS-OCRNet-USB @stage5 are coherent and well delineated. Only bright

areas are active

find a 2-fold increase of stability to 0.20 but a 3-fold decrease
in AUIC to 0.07. While softmax alone increases stability, it
does not improve AUIC by default. As noted in Sect. 4, a
channel is stable if it responds consistently to the same con-
cept no matter the activation value (arg max USBs have only
two states). This is not the case for a regular stage4 and SSB
channel, for which the same channel may be active for mul-
tiple concepts albeit with low activation. By our definition,
this can be inspectable but is not stable. We conclude that the
linear SSB-layer is sufficient to align with semantic concepts
yet unable to increase stability by a large margin by default.
Note that simple bottlenecks show consistently reduced sta-
bility (e.g. 0.069 versus 0.077 for bottleneck versus original
on stage4).

Representations at Stage3 are Difficult to Align Com-
paring the AUiC scores between stage3 and other locations, it
becomes evident that only SSBs improve inspectability. This
indicates an intrinsic difficulty in aligning individual chan-
nels with semantics that early and could imply a necessity
for distributed representations. We leave this as a challenge
for future work.

@ Springer

Conclusion Both SSBs and USBs offer clear advantages
over baselines. SSBs are semantically supervised and thus
can offer the greatest improvements in AUiC. USBs do not
require concept supervision, yet form channels that are well
aligned with Cityscapes classes offering a different dimen-
sion of inspectability.

5.4 Qualitative Improvements with SBs

To support our quantitative results we compare visualizations
of SB-layers and baselines. We show that SB outputs offer
substantially improved spatial coherency and consistency.

Top-20 Channels To enable comparison between 1000s
and 10s of channels, we utilize the mloU scoring of our
AUIC to rank channels. We show the top-20 channels,
assign each a unique color and plot the arg max per loca-
tion. An inspectable—and thus aligned—channel will result
in coherent activations for a unique concept. Visualizations
are presented for two images in Fig. 12 for all tested layer
locations on MS-OCRNet. 9 additional images are shown in
Fig. 11 for stage4 only.

International Journal of Computer Vision (2021) 129:3136-3153

3151

MS-OCRNet Outputs in the first row (Vanilla) show
the difficulty in interpreting them, since they are highly
distributed across channels [also indicated by Fong et al.
(2018)]. While still highly irregular in its appearance, acti-
vations at stage4 and stage5 show increasing regularities that
resemble the Cityscapes classes (e.g. building in purple or
cars in light gray).

SSB and USB Outputs Attending to the first image on
the left half of Fig. 12, we see spatial coherency greatly
improved for USB outputs over baseline. SSBs offer only
slight improvements on stage4, but show clear distinctions
on stage5 into wheels (beige color for car wheels and light
blue for bicycles), car windows (purple), person-legs (dark
blue) and torso (light gray). In relation, the USBs appear to
form representations that are early aligned with the output
classes, which is already evident for USB @stage4. Compar-
ing USB @stage4 and USB @stage5 it appears the semantics
of the representations do not differ but are only refined. This
gives a clue to the inner workings of deep segmentation nets:
the stage outputs get closer to the class labels the higher we go
in the layer. Since USBs are unsupervised, they offer an easy
access into what concepts have been learned automatically.

Individual USB Channels Finally, we show activa-
tion maps of individual USB channels for MS-OCRNet-
USB @stage5 in Fig. 13. These convey four points: (i) the
maps are visually sparse, (ii) they are spatially coherent and
(iii) they are consistently active for the same image concepts.
Find the top-20 visualizations, as well as 5 of X-g = 17
channels—one per column. We consistently see the each
channel activate for the same concept irrespective of the input
sample. The left most channel (11th) activates for road, the
next to the right (8th) for buildings and the last three for per-
son, rider and bicyle/motorcycle. We highlight an interesting
redundancy in these last three: Person and rider are already
distinguished at this stage5 level and kept as individual rep-
resentations (compare the 3rd and 15th channel in row 3).
It appears to be more difficult to determine a pixel belong
to person or rider when only concept person and bicycle is
retained.

6 Conclusion

In light of the increasing number of data driven models in
real world applications like autonomous driving, we demand
models to be inspectable at intermediate layers. One issue
obstructing inspectability in typical deep networks is that
representations are distributed across hundreds of channels
and are not semantically aligned (Bau et al. 2017; Fong et al.
2018; Mu and Andreas 2020).

Consequently, in this paper, we proposed supervised and
unsupervised Semantic Bottlenecks (SSBs and USBs) to
reduce number of channels and align each channel with

human interpretable semantics while retaining performance.
Additionally, we introduced the AUiC metric quantifying
the alignment to enable model agnostic benchmarking as
well as stability of same alignment. Using our metric, we
showed, that SBs improve baseline scores up to six fold
while retaining performance. Overall, we identified USBs
to offer greatest inspectability since they are not restricted
in the choice of concepts and offer great alignment stability
given they are one-hot encoded. While SSBs only increase
AUICs over baselines three fold, they enable the alignment
to user-defined semantic concepts.

SBs are easy to integrate into existing architectures and
offer great returns in inspectability, making them a useful
extension for models used in real world applications.

For future work, we would like to address the follow-
ing points. First, we want models to have multiple SBs to
act as access points to the process pipeline. We conjecture
use cases for failure case detection when information along
layers indicate conflicting concepts. Secondly, our current
methodology involves finetuning the bottleneck as well as
all succeeding layers. A combination of USBs with invert-
ible neural networks would spare the need to retrain the target
model (Esser et al. 2020) while maintaining inspectability.
Finally, we would like to see our semantic bottlenecks applied
for other use cases like pathogen segmentation in the medical
domain.

Acknowledgements This research was supported, in part, by the Bosch
Computer Vision Research Lab Hildesheim, Germany. We thank Dim-
itrios Bariamis and Oliver Lange for the insightful discussions.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

Adebayo, J., Gilmer, J., Muelly, M., Goodfellow, 1., Hardt, M., Kim, B.
(2018). Sanity checks for saliency maps. In NeurIPS

Al-Shedivat, M., Dubey, A., Xing, E. P. (2020). Contextual explanation
networks. Journal of Machine Learning Research, 21, 194—1

Bach, S., Binder, A., Montavon, G., Klauschen, F., Miiller, K. R., Samek,
W. (2015). On pixel-wise explanations for non-linear classifier

@ Springer

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

3152

International Journal of Computer Vision (2021) 129:3136-3153

decisions by layer-wise relevance propagation. PloS one, 10(7),
e0130140

Bau, D., Zhou, B., Khosla, A., Oliva, A., Torralba, A. (2017). Network
dissection: quantifying interpretability of deep visual representa-
tions. In CVPR

Bau, D., Zhu, J.Y., Strobelt, H., Zhou, B., Tenenbaum, J.B., Freeman,
W.T., Torralba, A. (2019). Gan dissection: visualizing and under-
standing generative adversarial networks. In /CLR

Bell, S., Upchurch, P., Snavely, N., & Bala, K. (2013). Opensurfaces: a
richly annotated catalog of surface appearance. ACM Transactions
on Graphics (TOG), 32(4), 111.

Bucher, M., Herbin, S., Jurie, F. (2018). Semantic bottleneck for com-
puter vision tasks. In ACCV (pp. 695-712). Springer

Burgess, C.P., Matthey, L., Watters, N., Kabra, R., Higgins,
1., Botvinick, M., Lerchner, A. (2019). Monet: unsuper-
vised scene decomposition and representation. arXiv preprint
arXiv:1901.11390

Chen, C., Li, O., Tao, D., Barnett, A., Rudin, C., Su, J.K. (2019). This
looks like that: deep learning for interpretable image recognition.
In NeurIPS (pp. 8930-8941)

Chen, L. C., Papandreou, G., Kokkinos, I., Murphy, K., & Yuille, A. L.
(2018). Deeplab: semantic image segmentation with deep convo-
lutional nets, atrous convolution, and fully connected crfs. TPAMI,
40(4), 834-848.

Chen, R., Chen, H., Ren, J., Huang, G., Zhang, Q. (2019). Explain-
ing neural networks semantically and quantitatively. In ICCV (pp.
9187-9196)

Chen, X., Mottaghi, R., Liu, X., Fidler, S., Urtasun, R., Yuille, A. (2014).
Detect what you can: detecting and representing objects using
holistic models and body parts. In CVPR

Chu, E., Roy, D., Andreas, J. (2020). Are visual explanations use-
ful? A case study in model-in-the-loop prediction. arXiv preprint
arXiv:2007.12248

Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benen-
son, R., Franke, U., Roth, S., Schiele, B. (2016) The cityscapes
dataset for semantic urban scene understanding. In CVPR

Esser, P., Rombach, R., Ommer, B. (2020). A disentangling invert-
ible interpretation network for explaining latent representations.
In CVPR (pp. 9223-9232)

Fong, R., Patrick, M., Vedaldi, A. (2019). Understanding deep networks
via extremal perturbations and smooth masks. In /ICCV

Fong, R., Vedaldi, A. (2018). Net2vec: quantifying and explaining how
concepts are encoded by filters in deep neural networks. In CVPR
(pp. 8730-8738)

Greff, K., Kaufmann, R.L., Kabra, R., Watters, N., Burgess, C., Zoran,
D., Matthey, L., Botvinick, M., Lerchner, A. (2019). Multi-object
representation learning with iterative variational inference. arXiv
preprint arXiv:1903.00450

He, K., Zhang, X., Ren, S., Sun, J. (2016). Deep residual learning for
image recognition. In CVPR

Higgins, 1., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick,
M., et al. (2017). beta-vae: learning basic visual concepts with a
constrained variational framework. ICLR, 2(5), 6.

Hooker, S., Erhan, D., Kindermans, P.J., Kim, B. (2019) A benchmark
for interpretability methods in deep neural networks. In Advances
in neural information processing systems (pp. 9737-9748)

Jacobsen, J.H., Smeulders, A.W., Oyallon, E. (2018). i-revnet: deep
invertible networks. In International conference on learning rep-
resentations (ICLR)

Kim, B., Wattenberg, M., Gilmer, J., Cai, C., Wexler, J., Viegas, F.,
et al. (2018). Interpretability beyond feature attribution: quantita-
tive testing with concept activation vectors (tcav). In ICML

Kingma, D.P.,, Welling, M. (2013). Auto-encoding variational bayes.
arXiv preprint arXiv:1312.6114

Koh, P.W., Nguyen, T., Tang, Y.S., Mussmann, S., Pierson, E., Kim, B.,
Liang, P. (2020). Concept bottleneck models. In /ICML. PMLR

@ Springer

Li, L.J., Su, H., Fei-Fei, L., Xing, E.P. (2010). Object bank: a high-level
image representation for scene classification & semantic feature
sparsification. In NeurIPS

Li, O., Liu, H., Chen, C., Rudin, C. (2018). Deep learning for case-based
reasoning through prototypes: a neural network that explains its
predictions. In AAAI

Lin, D., Shen, X., Lu, C., Jia, J. (2015) Deep lac: deep localization,
alignment and classification for fine-grained recognition. In CVPR
(pp- 1666-1674)

Lipton, Z. C. (2018). The mythos of model interpretability. Queue,
16(3), 30.

Liu, H., Simonyan, K., Yang, Y. (2019). DARTS: differentiable archi-
tecture search. In /CLR

Lundberg, S.M., Lee, S.I. (2017). A unified approach to interpreting
model predictions. In NeurlPS

Mahendran, A., Vedaldi, A. (2015). Understanding deep image rep-
resentations by inverting them. In Proceedings of the IEEE
conference on computer vision and pattern recognition (CVPR)

Marcos, D., Lobry, S., Tuia, D. (2019). Semantically interpretable acti-
vation maps: what-where-how explanations within cnns. arXiv
preprint arXiv:1909.08442

Melis, D.A., Jaakkola, T. (2018). Towards robust interpretability with
self-explaining neural networks. In NeurlPS

Mu, J., Andreas, J. (2020). Compositional explanations of neurons. In
NeurlPS

Neuhold, G., Ollmann, T., Rota Bulo, S., Kontschieder, P. (2017).
The mapillary vistas dataset for semantic understanding of street
scenes. In ICCV (pp. 4990-4999)

Petsiuk, V., Das, A., Saenko, K. (2018). Rise: randomized input sam-
pling for explanation of black-box models. In BMVC

Ribeiro, M.T., Singh, S., Guestrin, C. (2016). Why should i trust you?:
explaining the predictions of any classifier. block In Proceedings
of the 22nd ACM SIGKDD international conference on knowledge
discovery and data mining

Samek, W., Binder, A., Montavon, G., Lapuschkin, S., Miiller, K.R.
(2016). Evaluating the visualization of what a deep neural network
has learned. In /EEE transactions on neural networks and learning
systems

Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra,
D., et al. (2017). Grad-cam: visual explanations from deep net-
works via gradient-based localization. In ICCV (pp. 618-626)

Simonyan, K., Vedaldi, A., Zisserman, A. (2014). Deep inside con-
volutional networks: visualising image classification models and
saliency maps. In /CLR

Srinivas, S., Fleuret, F. (2019). Full-gradient representation for neural
network visualization. In Advances in neural information process-
ing systems (pp. 4124-4133)

Sundararajan, M., Taly, A., Yan, Q. (2017). Axiomatic attribution for
deep networks. In ICML

Tao, A., Sapra, K., Catanzaro, B. (2020). Hierarchical multi-scale atten-
tion for semantic segmentation. arXiv preprint arXiv:2005.10821

Wada, K. (2016). labelme: image polygonal annotation with python.
https://github.com/wkentaro/labelme

Xiao, T., Liu, Y., Zhou, B., Jiang, Y., Sun, J. (2018). Unified perceptual
parsing for scene understanding. In ECCV

Xie, S., Zheng, H., Liu, C., Lin, L. (2019). SNAS: stochastic neural
architecture search. In /CLR

Yeh, C.K., Kim, B., Arik, S.O., Li, C.L., Ravikumar, P., Pfister, T.
(2019). On concept-based explanations in deep neural networks.
arXiv preprint arXiv:1910.07969

Yosinski, J., Clune, J., Nguyen, A., Fuchs, T., Lipson, H. (2015).
Understanding neural networks through deep visualization.
arXiv:1506.06579

Yuan, Y., Chen, X., Wang, J. (2020). Object-contextual representations
for semantic segmentation. In ECCV

http://arxiv.org/abs/1901.11390
http://arxiv.org/abs/2007.12248
http://arxiv.org/abs/1903.00450
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1909.08442
http://arxiv.org/abs/2005.10821
https://github.com/wkentaro/labelme
http://arxiv.org/abs/1910.07969
http://arxiv.org/abs/1506.06579

International Journal of Computer Vision (2021) 129:3136-3153

3153

Zeiler, M.D., Fergus, R. (2014). Visualizing and understanding convo-
lutional networks. In ECCV

Zhang, Q., Nian Wu, Y., Zhu, S.C. (2018). Interpretable convolutional
neural networks. In CVPR (pp. 8827-8836)

Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J. (2017). Pyramid scene parsing
network. In CVPR

Zhou, B., Bau, D., Oliva, A., Torralba, A. (2017). Interpreting deep
visual representations via network dissection. arXiv e-prints
arXiv:1711.05611

Zhou, B.,Zhao, H., Puig, X., Fidler, S., Barriuso, A., Torralba, A. (2017).
Scene parsing through ade20k dataset. In CVPR

Zintgraf, L.M., Cohen, T.S., Adel, T., Welling, M. (2017). Visualiz-
ing deep neural network decisions: prediction difference analysis.
arXiv:1702.04595

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

@ Springer

http://arxiv.org/abs/1711.05611
http://arxiv.org/abs/1702.04595

	Semantic Bottlenecks: Quantifying and Improving Inspectability of Deep Representations
	Abstract
	1 Introduction
	2 Related Work
	3 Semantic Bottlenecks
	3.1 Supervised Semantic Bottlenecks (SSBs)
	3.1.1 Recovering Performance Using SSBs

	3.2 Unsupervised Semantic Bottlenecks (USBs)
	3.2.1 Construction of USBs
	3.2.2 Recovering Performance Using USBs

	4 Quantification of Layer Output Inspectability
	4.1 AUiC Metric

	5 Results
	5.1 Setup
	5.2 Discussion
	5.3 Quantitative Inspectability Improvements with SBs
	5.4 Qualitative Improvements with SBs

	6 Conclusion
	Acknowledgements
	References

