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The gravitational Faraday and its dual spin-Hall effects of light arise in space-times of non-zero
angular momentum. These effects were studied in stationary, asymptotically flat space-times. Here
we study these effects in arbitrary, non-stationary, asymptotically flat space-times. These effects
arise due to interaction between light polarisation and space-time angular momentum. As a result
of such interaction, the phase velocity of left- and right-handed circularly polarised light becomes
different, that results in the gravitational Faraday effect. This difference implies different dynamics
of these components, that begin to propagate along different paths—the gravitational spin-Hall effect
of light. Due to this effect, the gravitational field splits a multicomponent beam of unpolarized light
and produces polarized gravitational rainbow. The component separation is an accumulative effect
observed in long range asymptotics. To study this effect, we construct uniform eikonal expansion
and derive dynamical equation describing this effect. To analyse the dynamical equation, we present
it in the local space and time decomposition form. The spatial part of the equation presented in
the related optical metric is analogous to the dynamical equation of a charged particle moving in
magnetic field under influence of the Coriolis force.

I. INTRODUCTION

Gravitational field affects propagation of electromag-
netic waves, in particular light, in different ways. For
example, electromagnetic radiation emitted by hot ac-
cretion disk around a black hole into the external space
gets gravitationally redshifted. Light rays passing by a
strongly gravitating massive object, e.g. a star or a black
hole, get deflected due to the space-time curvature in the
vicinity of a massive object. The rays deflection depends
on the object’s mass and angular momentum. There is
also the gravitational Faraday effect, analogical to the
magneto-optical Faraday effect—a rotation of the polar-
ization plane of a linearly-polarized light propagating in
a transparent material in the presence of a magnetic field
along propagation of the light @] The gravitational Fara-
day effect is a rotation of the plane of polarization of an
electromagnetic wave propagating in a stationary grav-
itational field, for example, near a stationary rotating
black hole. The study and observation of this effect have
quite long history (see, e. lg—m However, despite
the clear analysis done in % in some works rotation
of the polarization vector around direction of light prop-
agation, which is due to its coupling to the space-time
angular momentum, is mixed with change of its direc-
tion due to deflection of the light rays.

It is known that in optics there is an effect dual to the
Faraday effect—the optical Magnus effect, that results
in the action of light polarization on its trajectory, caus-
ing its transverse polarization-dependent displacement.
Due to this effect, a linearly polarized light splits into
left- and right-handed circularly polarized components
propagating along different paths. This splitting effect is
known as the spin-Hall effect of light m@] Spin-Hall
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effects became quite ubiquitous in modern physics. They
are observed in condensed matter ﬂﬂ], optical m], and
high-energy systems ﬂﬁ] Classical and quantum spin-
Hall optical effects of light are described and analyzed in
many works (see, e.g., [16-20, .) The underlying
nature of these effects is the spin-orbit interaction be-
tween the spin of a photon, an electron, or an atom, and
its extrinsic angular momentum.

We may expect a dual to the gravitational Faraday ef-
fect—the gravitational spin-Hall effect of light. The grav-
itational Faraday and spin-Hall optical effects may not be
surprising phenomena if one takes a certain point of view
on the gravitational field. Namely, one can observe that
the source-free Maxwell equations in curved space-time,
i.e., in the presence of gravity, can formally be consid-
ered as equations in flat space-time in the presence of a
bi-anisotropic moving medium whose optical properties
are defined by dielectric permittivity and magnetic per-
meability tensors expressed though the space-time metric
tensor components. This point of view was proposed and
developed already more than half-century ago by several
authors E 3, |ﬁ, There is also a dual point of view
on propagation of light in the so-called metamaterials,
whose optical properties can be synthetized on a sub-
wavelength scale that allows to control propagation of
light in a nearly arbitrary way @] In this new field of
transformation optics a metric approach can be used to
calculate dielectric permittivity and magnetic permeabil-
ity tensors of a metamaterial @] Another example is
the gravitational analogue of the linear magnetoelectric
effect that was studied in [31].

Taking into account the analogy between a gravita-
tional field and a bi-anisotropic moving medium, polar-
ization of light was considered to describe its propagation
in a stationary gravitational field. For example, by using
the weak field approximation, it was shown that left- and
right-handed circularly polarized light propagating near
a rotating gravitational body get scattered in a different
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way M] To consider this effect in a strong stationary
gravitational field, the so-called modified geometric op-
tics formalism was introduced HE] This formalism was
applied to describe scattering of a polarized light propa-
gating in the stationary space-time of a rotating (Kerr)
black hole M] Later this approach was reformulated
to some extend [38] and in different context [39] in 4-
dimensional covariant form.

There are different approaches have been taken to de-
scribe dynamics of polarized light in a curved space-time
background (for a review see [4(]). For instance, ap-
proach based on dynamics of massless spinning particle
was proposed and developed in m—@] for Riemannian
and pseudo-Riemannian manifolds. A semiclassical ap-
proach to describe photon dynamics in a curved space-
time background based on the Bargmann-Wigner equa-
tions was taken in HE], and helicity-dependent photon’s
evolution was predicted for the Schwarzschild space-time.
Spin-Hall effect of light for the Schwarzschild spacetime
was also predicted in @] However, in these works the
proper orientation and propagation of the basis repre-
senting optic axes is not discussed. Thus it remains un-
clear how to measure properly the evolution of the light
polarization along a null ray. As a result, the proposed
effect is questionable. Such prediction is also contradic-
tory to the analysis presented in, e.g., B, , @, @, ],
where it was shown that left- and right-handed polar-
ization modes evolve differently due to the space-time
angular momentum only, and in static space-times there
is no distinction between propagation of these modes. In
other words, absence of the Gravitational Faraday effect
in static space-times implies that these modes evolve in
the same fashion.

To support a possibility of the spin-Hall effect of light
in static space-times, one may appeal to the theoretical
and experimental studies of the polarization-dependent
deflection of light in a smoothly inhomogeneous isotropic
medium, where such effect was observed for light prop-
agating through a planar (without torsion) optical fiber

see, e.g., , 48]). Note, however, that according to
i@] (and also the references therein) these polarization-
dependent effects observed in planar curved optical fibers
are of the higher order. It is also stated in ﬂﬂ] that there
is no polarization-dependent ray shift can be observed in
a planar waveguide, where the Rytov-Vladimirski-Berry
phase @—@], that determines rotation of the polariza-
tion plane, vanishes identically. We would also like to
note that a gravitational field is analogical to a special
kind of bi-anisotropic moving optical medium, such that
there is no birefringence and its index of refraction is dif-
ferent for electromagnetic waves propagating in opposite
directions @]E In other words, a gravitational field is

1 One may try to describe this phenomenon in the language of
Finsler geometry, using properties of the Randers metrics. For
a nice review of the Finsler geometry and related problems see

[54).

essentially different from a material optical anisotropic
medium. Finally, we note that motion of the medium
also makes significant contribution to observed optical
phenomena and often gives rise to new effects, see, e.g.,
M] Detailed investigation of analogy between a ma-
terial optical medium and a gravitational field in context
of the related optical effects goes beyond the scope of this
paper.

In this paper, to describe the gravitational Faraday
and spin-Hall effects of light, we shall take the modi-
fied geometric optics approach HE] and extend it to ar-
bitrary non-stationary asymptotically flat space-times of
non-zero angular momentum @] In addition to station-
ary rotating black holes and stars, such space-times cor-
respond to dynamical gravitational fields due to a grav-
itational collapse, black holes and neutron stars coales-
cence, and gravitational waves. They can also represent
some cosmological models. Thus, these gravitational op-
tical effects can be widely present. To describe prop-
erly these effects, the key property of a stationary space-
time, existence of a time-like Killing vector field, was
exploited. Here we extend these results by considering
a field of static observers. The key property of such ob-
servers is that in their frame, at the spatial infinity i°, the
space-time total ADM 3-momentum vanishes. The field
of static observers naturally generalises the field of Killing
observers and coincides with it in stationary space-times.

This paper is organized as follows. In Section II we
briefly review the laws of (canonical) geometric optics in
a curved space-time. In the next Section we study the
gravitational Faraday effect of light in arbitrary (non-
stationary) space-time. In Section IV we define the field
of static observers that can properly detect and mea-
sure the gravitational Faraday effect. In Section V we
construct the uniform eikonal expansion that takes into
account contribution of light polarization to its propaga-
tion and present dynamical equations that describe the
gravitational spin-Hall effect of light, which is dual to the
gravitational Faraday effect. The gravitational spin-Hall
effect of light is presented in the local space and time
decomposition form in Section VI. The last Section VII
contains discussion of the derived results.

Here we shall use geometrized units ¢ = G = 1 and
conventions adopted in the book [6(].

II. GEOMETRIC OPTICS

Finding an exact electromagnetic wave solution to the
Maxwell equations in a curved space-time background is
a formidable problem. Moreover, often such solutions
cannot be presented in a closed analytic form. How-
ever, for waves that are highly monochromatic over some
space-time regions, an asymptotic short-wave (geometric
optics) approximation can be used @] Such approxi-
mation allows us to capture basic characteristics of light
propagation in a curved space-time background defined
by metric gog of the most general form.



The source-free Maxwell wave equation for the vector
potential A® in the Lorenz gauge

A% =0 (1)
reads
_ Aa;ﬁ;ﬂ + RaBAﬁ =0, (2)

where the semicolon stands for the covariant derivative
associated with the space-time metric gag and R is
the 4-dimensional Ricci tensor. The geometric optics ap-
proach is based on splitting of the vector potential into a
rapidly changing real phase, the eikonal 6, and a slowly
changing complex amplitude in the following way:

A% = R{(a® + eb™ + ...)e"/5} (3)

where ¢ < 1 is a dummy expansion parameter that helps
to track order of terms: a term with £”, for some inte-
ger n, varies as (A/lynin)™, where A/l < 1. Here A
is the reduced wavelength (wavelength/27) and Iy, is
the minimal of the two characteristic scales—the curva-
ture radius of the wave front, or the length of a wave
packet, and the local curvature radius of the space-time.
Substituting the vector potential into the Lorentz gauge
condition () and the wave equation ([2) and collecting
the leading terms of order e =2 and ¢! we derive the
fundamental laws of geometric optics:

Kka =0, Kk%5=0, (4)
kfoa=0, Kfes=0, (5)
(a%k*)ia = 0. (6)

Here k% = dz®/d\ is the wave vector metrically related
to the gradient k, = 6., and tangent to the light ray
T: 2 = 2*(\), where A is affine parameter of the ray,
a = (a®a’)'/? is the scalar amplitude, and f& = a®/a is
a unit complex polarization vector, such that f¢f, =0
and f¢f* =1. Here and in what follows the superscript
x stands for complex conjugation. These laws imply that
light rays are the space-time null geodesics (@), the polar-
ization vector is orthogonal to the light ray and parallel-
propagated along it (@), and the vector a?k® is a con-
served current, which defines the adiabatically conserved
number of light rays, or in quantum language, the num-
ber of photons ([@). The laws of geometric optics (@)—(6)
reflect only an approximate picture of light propagation
in a curved space-time. In this description polarization
of light does not affect its path.

III. GRAVITATIONAL
FARADAY EFFECT OF LIGHT

To measure angle of rotation of the polarization plane
in the magneto-optical Faraday effect, we have to align
properly optic axes of a polarizer and an analyzer. For
example, we can align the polarizer and the analyzer at

the polarizer’s location and then parallel transport the
analyzer along the ray trajectory. In a curved space-time
this procedure is not so simple.

Let us present the polarization vector f¢ in the follow-
ing form

f* =em®, (7)
where m® is a unit complex vector, such that

mm, =0, mml =1, m%%,=0, (8)

me = %(e‘f‘ +icey), m* = %(e‘f —ioes), (9)
where ef 5 are real orthonormal space-like vectors. The
local complex basis {m®* m**} plays a role of optic
axes. To specify the polarization of a given wave we
use the parameter ¢ = +1, with ‘4’ for the right- and
‘—’ for the left-handed circularly polarized light @]
This definition means that the polarization vector of the
(left)right-handed circularly polarized light rotates in the
(anti)clockwise direction, when viewed from the source.
To define a change in the rotation of the polarization vec-
tor along the light ray we introduced polarization phase
. The polarization phase defines the relative change of
the polarization vector along a null ray. For example, in a
vacuum and flat space-time ¢ has a constant value in the
basis {m®, m*®} parallel-transported along the ray. The
polarization phase defines an additional angular shift of
the polarization vector due to a gravitational field.

Using the propagation equation for the polarization
vector (B]) and the expression (), we derive the propa-
gation equation for the polarization phase along the null
ray,

k.0 = imikPm® . (10)

In a space-time decomposition, spatial part of this ex-
pression, corresponding to propagation of the polariza-
tion phase along the null ray trajectory, written in mo-
mentum parametrisation, is the Rytov-Vladimirski-Berry
phase . This phase of light propagating in a helical
optical fiber was experimentally measured and discussed
in [61,62].

To compute the polarization phase for a given null ray,
we have to define a propagation law for m® along the ray.
This can be done by an observer-defined local decompo-
sition of the space-time into space and time. This is the
so-called space-time threading approach, in contrast to
the space-time slicing, which is known as the ADM ap-
proachE

2 The polarization vector is defined modulo the wave vector k¢.
This gauge freedom does not affect the results that follow. We
shall fix this gauge, as well as the rotation gauge transformation
m® — m® exp(iv)), later.

3 The threading point of view was originally developed by Mgller,
Zelmanov, and Cattaneo, and discussed in detail in @, @] It
is used in [65].



Consider a family of observers filling a 3-dimensional
space like a continuous medium. Each of the observers
defines the local frame of reference. World lines of these
observers form a congruence of integral curves of the
timelike future directed unit vector field u® = u®(x®),
u®u, = —1. The local rest space X, orthogonal to u® is
a 3-dimensional subspace of the tangent space defined at
every event on an observer’s world line. A vector from
the tangent space can be projected into the subspace >,
by means of the projection operator P = 52‘ + u®ug,
and pag = gap + uUaup defines the induced metric on ¥,,.
Applying the projection operator to k% we construct the
unit spacelike vector n® that defines the spatial direction
of a light ray. Accordingly, we have

kY = wu® +n®), (11)

where w = —ky,u® is the angular frequency of light mea-
sured by the local observer. This decomposition allows
us to express propagation of m® along k% by defining its
propagation along the vectors u® and n®,

kﬁmo‘;ﬁ :w(uﬁmo‘;ﬁ —l—nﬁmo‘;,@). (12)

We require that the basis vectors m® and m*® belong to
Y., and thus, according to (§) and (II), are orthogonal to
n®. Because the polarization vector f¢ is defined modulo
k®, this requirement can be fulfilled at some event on the
null ray. Then, as it is shown below, this orthogonality
condition is preserved along the ray.

Next we construct a right-handed, observer-adapted
orthonormal frame {e§, €%, a = 1,2, 3}, where ef = u®,
e} 5 are defined in (@), and e§ = n®. For such frame we
have e,p,5¢0¢ eded = 41, where €444 is the Levi-Civita
(pseudo) tensor. Using (T), this gives

)

Eaprsu®kPm Im? = iow, (13)

that implies
Eag.ygm*'ym‘s = E(kautg — uakg) . (14)
w

We shall also need the following property of the Levi-
Civita tensor:

€ s P = —2(5355 - 5?55) ) (15)

where 5g is the 4-dimensional Kronecker tensor.

To measure properly the polarization phase, we require
first that the basis {m®, m**} does not rotate with re-
spect to a reference basis fixed at the spatial infinity,
when it is spatially transported along a ray trajectoryé,
and second that its initial orientation does not change
when it is transported along the observer congruence.

4 For description of optical measurements in curved space-time see,
e'g' b @] -

The first requirement is ensured by the vanishing spatial
Fermi-Walker derivative of m® along n®,

Vivm® = nbm“‘b — (a®n® — abn®my, = 0. (16)
Here a® = nbnalb and the stroke | stands for the covari-
ant derivative associated with the spatial metric p,, =
eg‘eg Pag, such that p,y . = 0. This derivative is related
to the covariant derivative associated with the space-time
metric go3 as follows: eo‘nbm“‘b = pﬁn'@mv;ﬁ. The or-
thogonality condition m®n, = m%n, = 0 is preserved
by the Fermi-Walker derivative. To fulfill the second re-
quirement, we impose that the basis {m® m**} is co-
rotating with the congruence. This implies that the
basis has no relative temporal rotation with respect to
nearby observers (and therefore with respect to the ref-
erence basis fixed at the spatial infinity.) This require-
ment is ensured by the vanishing temporal co-rotating
Fermi-Walker derivative of m® along u® (see, e.g., [63]),

a

VIm® = uPm® 5 + (wu® — wPu®)ms — w%m? = 0.

(17)
Here w® = uﬁuo‘;ﬂ is 4-acceleration and wqg = p;{p%u[wﬂ
is the vorticity tensor. The first three terms represent
the temporal Fermi-Walker derivative. The orthogonal-
ity condition m®u, = 0 is preserved by the co-rotating
Fermi-Walker derivative. The conditions (I6) and (7))
fix the scalar function ¢ = 1(x®) in the gauge transfor-
mation m® — m® exp(i)).

Using the decomposition of the null vector k£ (1), the
expressions ([2)), (I4), (I5), and the transport laws (I6)
and (IT), we can calculate the right-hand side of (I0) as
follows,

imzkﬁma;ﬁ = iwm* * wapm® = 0w ka (18)
where

W = 36" ugwys = 36 upunys (19)
is the vorticity of the observers congruence.

By using this result, we can now compute the polar-
ization phase ¢ for a given null ray I': % = 2*(\),

w= a/ Wkqd\ = 0’/ wadz® . (20)
r r

Finally, we can consider a linearly-polarized light,
viewed as a superposition of its left- and right-handed
circularly polarized components. The linear polarization
real unit vector f§ = (f® 4+ f**)/v/2 rotates with re-
spect to the basis {m®,m**} and the angle of rotation
w1, measured along the light ray I' is

or = /wadw“- (21)
T

This rotation is known as the gravitational Faraday effect
of light.



IV. FIELD OF OBSERVERS

So far we have not specified the field of observers u®.
As it follows from the expressions (20) and (21]), the grav-
itational Faraday rotation depends on vorticity of the ob-
servers congruence. For example, freely falling (inertial)
observers do not feel the gravitational field and their con-
gruence has zero vorticity. The same situation happens
for the zero angular momentum observers. Thus, such
observers do not detect the gravitational Faraday rota-
tion. Alternatively, we can consider a congruence of arbi-
trarily moving (non-inertial) observers whose congruence
has non-zero vorticity. Such observers would claim to
detect the gravitational Faraday rotation in a flat space-
time. What kind of observers one has to consider in order
to measure properly the gravitational Faraday effect?

The polarization-dependent gravitational optical ef-
fects were studied in stationary space-times. Such space-
times posses timelike Killing vector field 53), where ¢ is
the Killing time, a parameter along Killing vector field
orbits. Naturally, in such space-times the field of Killing
observers was taken, u® o 5(02). Here we consider asymp-

totically flat non-stationary space-times (see, e.g., [67]).
Such space-times do not possess timelike Killing vector
field. In this case, the best one can do is to take an
inertial frame in the asymptotically flat region and to
construct connected to the frame Cartesian coordinate
latticework. Such a latticework is assumed to be abso-
lutely rigid and extends to other regions of the space-time
as far as possibleﬁ We place identical clocks in every
point of the latticework and synchronise them modulo
the redshift factor, i.e., (proper time at some point on the
latticework) = (redshift factor at that point) x (proper
time on the latticework at the asymptotically flat region).
This construction represents a field of observers that are
situated at every point of the latticework, i.e. they have
fixed spatial coordinate position defined by asymptoti-
cally Cartesian coordinates: (z° = const, i = 1,2,3). Ac-
cordingly, in these coordinates the observers vector field
is

1

Here h > 0 is the squared redshift factor and z° = ¢
is the timelike coordinate that measures proper time of
observers sitting on the latticework in the asymptoti-
cally flat region. Using timelike threading approach @]
we can present the space-time metric in the coordinates
(2° = t,2%) in the following form:

ds? = —h(dt — gidx")* + hyda‘da? . (23)

5 Note, however, that such a latticework cannot be extended into
certain space-time regions, for example into a rotating black
hole’s ergosphere or into a black hole interior.

Here hv;; is the 3-dimensional metric that defines spatial
distance and the metric functions h, g;, and 7;; depend on
t and z°. Accordingly, the covariant form of the observers
field reads

o = VI (80 — 3L (24)

Let us now compute the vorticity (I9) of the observers
field @24)) in the metric 23]),

w = o (g, curlg)sg + ([g x g']' + (curlg))5¢
(25)
Here g° is the covariant form g; of the vector g living in
a 3-dimensional space endowed with the metric ~;;,

(a, b) = aibj’yij y [a X b]l = eijkajbk y (26)
ik
\/’_Y )
where v = det(7;5), €123 = €23 = 1 is the Levi-Civita
symbol, and the indices are raised and lowered by 7;;
in the usual way. The expressions (...) ; and (...); mean
partial derivatives of (...) with respect to ¢ and z¢. Using
[@3) we can calculate the gravitational Faraday rotation
D).

Note, however, that the observers field u® is not
unique. One can consider another field of observers a
that have fixed spatial coordinate position on the related
latticework (7, i’ = 1/,2/,3"). This new lattice work and
the proper time 2% =t of such observers located at the
asymptotically flat infinity are related to the former ones
by the Lorentz transformation, x® = O‘ﬂ,xﬁ, (see, e.g.,
[60], p. 69). The above expressions [22)-@24) have the
same form in the primed frame. To understand how the
gravitational Faraday rotation depends on the observers
field, one has to find how the corresponding vorticity ex-
pressions are related to each other. To do it, we first
derive a relation between the observers vector fields u®
and @® in the frame e,

ijk

(curlg)’ = e¥*gy ;) eijp = ey, €9 =

i = #ﬁ(]],v) {ua + :;%5?} . (27)

Here

1 v

7, v 77
1= (vg,vy) ! 1—(v,9)

Yy (28)

where v is the 3-velocity with the constant contravariant
components (v¢ = const, i = 1,2,3), which are param-
eters of the Lorentz transformationla Accordingly, the
covariant form of the new observers field reads

aa = _7(]\/ﬁ (524 - gzé(ll) ) (29)

6 In a curved space-time region v; = ’yijvj # const.



where

g=9g+v,. (30)

Now we can compute the vorticity ([I9) of the observers

field 29) in the metric 23)),

2
o = 22 {(g cang)dg + (1§ x 3 + (curlg) )7 }
(31)
Thus, we have @® # w® and according to the expres-
sion (20), the gravitational Faraday effect is observer-
dependent. In particular, in a static space-time, such
that in the frame z® we have g; = 0, one can find an ob-
servers field of non-zero vorticity. Such observers would
claim to detect the gravitational Faraday effect propor-
tional to v?, i.e. to the parameters of the Lorentz trans-
formation. In the next section we study the gravitational
spin-Hall effect of light, which is dual to the gravitational
Faraday effect. This dual effect is, in turn, would also be
proportional to v’. In particular, for v* = 0 both the
effects vanish. This phenomenon is analogical to the rel-
ativistic Hall effect resulting in a transverse shift of the
relativistic center of inertia of a dynamical system ﬂ@]
The shift is proportional to the intrinsic angular momen-
tum of the system and to the velocity v® of the relativistic
frame, which is moving with respect to the rest frame of
the system. The key issue behind the relativistic Hall ef-
fect is that components of the 3-dimensional vector of the
relativistic center of inertia are not spatial components of
a 4-dimensional vector. Thus, they do not transform in
covariant way, that makes the location of the relativistic
center of inertia frame-dependent ﬂ@] In our case, the
analogical vector is the 3-dimensional vector g, which
transforms according to (B0)).

Thus, in the case of a non-static gravitational field
(g9; #0), the general field of observers ([27)) would detect
the gravitational Faraday rotation due to both the grav-
itational field and their own motion, i.e. via the values
of v*. This disadvantage is naturally resolved in station-
ary space-times by selecting the preferred field of Killing
observers. Our goal is to find a field of observers that is
analogical to the Killing observers in an arbitrary space-
time. In other words, we have to fix the kinematic gauge
freedom v, that brings us back to the question raised in
the first paragraph of this section.

To answer the question, we note first that an asymp-
totically flat stationary space-time has vanishing total
3-momentum, as defined with respect to the observers
field that coincides with the field of Killing observers.
We can take this property as the property that allows us
to fix the kinematic gauge and thus to define the ob-
servers field in non-stationary space-times. To begin,
we recall that asymptotic flatness structure allows the
space-time energy-momentum 4-vector P® = (E, P%) to
be well-defined at the spatial infinity i as follows (for
more details see [67], Ch. 11 and the references therein):
Here we deal with globally hyperbolic space-times. A
globally hyperbolic space-time can be foliated by Cauchy

hypersurfaces ¥; parametrized by a global time function
t. Consider a unit, time-like, future-directed, vector field
Ny o t.o. Then, the space-time metric g.3 induces a
3-dimensional spatial metric

Ha,@ = dagp + NozN,@ (32)

on each ¥;. Let ¥; be such that this metric at ° in the
asymptotically Cartesian coordinates (2%, i = 1,2, 3) has
the form 6;; +O(1/r), where 0;; is the 3-dimensional Kro-
necker tensor and r = v/z’x;. Then, the space-time total
energy E and 3-momentum P; are defined as follows:

= — hmj{ iji — Hiij)S? dA (33)

_171'7”

R-E—lim

81 r—oo S

(Kijsj - KJjSi) dA,  (34)

where summation over repeated indices is assumed. The
integrals are taken over a 2-sphere S : r = const, S*
is a unit, outward-directed, space-like vector orthogonal
to S, dA is the area element on S, which in the limit
r — oo and in spherical coordinates (r,0,¢) takes the
form dA = 2 sin® #dfd¢, and
Kij=-(LnH L (NP H, 4 Hig N, + Hy N
= ( ) 2( ij,k + kj ,i+ ik 7j)v
(35)
is the hypersurface extrinsic curvature. In this construc-
tion, the so-called ADM energy-momentum 4-vector

N =

P, = —EN, + P;é., (36)

is independent of the choice of ¥;. As a result, the space-
time total energy E and total 3-momentum P depend
only on the asymptotic behaviour of a spacelike hyper-
surface ¥, at i° and transform properly under Lorentz
boost, i.e., as the components of a 4-vector. Thus, by an
appropriate choice of the ¢ function, or, in other words,
taking a proper boost at the asymptotic spatial infin-
ity i, one can make the space-time total 3-momentum
P vanish. This choice of ¢ fixes the kinematic gauge
and defines the corresponding field of observers, that we
shall call static observers. The field of static observers
naturally generalises the field of Killing observers, which
is hypersurface-orthogonal at asymptotic infinity. Static
observers coincide with Killing observers in stationary
space-times. In what follows, to discuss the gravitational
Faraday effect and its dual gravitational spin-Hall effect,
we shall always consider the field of static observers. Ac-
cording to the conditions (I6) and (), these observers
possess unidirectional basis {m®, m*®}, adjusted to a ref-
erence basis fixed at the spatial infinity, that allows them
to measure properly these optical effects.

V. GRAVITATIONAL
SPIN-HALL EFFECT OF LIGHT

As we already noted, in the geometric optics approach
polarization does not affect light rays. A similar situation



occurs when one applies the WKB method to the Dirac
equation: electric and magnetic particle’s moments and
spin do not affect its trajectory @, @] However, the
WKB expansion is not uniformly valid in its domain. At
finite fixed distances from inhomogeneous field regions,
effects of the particle’s moments on its trajectory are of
order /i and they vanish in the classical limit 7 — 0. In
this case, the WKB method gives correct result. But for
distances of order ', the effects become of order unity
and do not vanish in the limit 7 — 0. In this case, the
WKB method fails. As it was explained in [70], to ob-
tain an expansion which is uniformly valid everywhere,
including the neighbourhood of infinity, one has to in-
clude effects of the particle’s moments and spin on its
trajectory @, 71, ] Analogously, to have an eikonal
expansion uniformly valid everywhere, one has to take
into account contribution of internal degrees of freedom
(polarization) to propagation of light [36]. Such a con-
tribution is of order € for short distances of propagation.
However, it accumulates along light ray trajectory and
for sufficiently large distances (of order e~1) it becomes
of order £°.

To construct such an expansion we have to include
polarization phase into the eikonal. As we already found,
in the geometric optics approximation,

A%~ R{a%e?/f)Y | a® =am®e”. (37)

Here the polarization phase ¢ changes along light ray tra-
jectory in accordance with (20), but this change does not
affect the trajectory. Our goal is to modify the light tra-
jectory in accordance with the polarization phase change.
To anticipate the exp(ip) term, let us rewrite this expres-
sion in the following form:

A% & R{a%ei¥el0me0)/ey (38)
This form suggests us to define the combined eikonal:
0=0—cp, (39)
where ¢ is the modified polarization phase,
F=p+, (40)

that corresponds to the combined eikonal é, and v is or-
der € contribution to the polarization phase ¢ due to the
same order modification in the eikonal ([89). Note that
we could alternatively take the opposite signs in front of
¢ and 1. However, a deeper inspection of the expressions
B7) and (B8] reveals that in (B8] the polarization phase
 is separated from the amplitude a® with the proper
sign, while to keep the vector potential A® equal to its
original form (1), it is also subtracted from the eikonal
f. Our choice ensures that the further calculations bring
us to the right expression (B6), which implies that the
contribution to the polarization phase, 1, is indeed of
order €.
With these modifications the expression (B8] reads:

A® ~ R{a%ePetf/eY . (41)

Here the amplitude a“ corresponds to the modified
eikonal ([BY). Substituting this approximation into the
Lorenz gauge condition (I) and the wave equation (2
and holding € order terms within 6 and @ we derive the
following leading order equations:

kK%, =0, dak®=0. (42)

They imply that the wave vector
ky, = é;a =0.0 —€P.a (43)

is null and electromagnetic waves are transverse. These
conditions hold along null ray defined by the wave vector.
The term ¢, is the gradient of the polarization compo-
nent of the combined eikonal. For a particular null ray
I': 2% = 2%()\), with the wave vector k® = dz®/d), the
polarization phase is [cf. (Z0)],

Q= 0/ Wk d\ = 0/ wadz® . (44)
r r

According to this expression, the gradient of the polar-
ization component of the wave front is ¢., = owa.

To construct the propagation equation for the wave
vector, we use the same method which is used in the ge-
ometric optics (see [60], p. 576). Namely, taking the co-
variant derivative of the first expression in [#2) we derive
kPkg., = 0, while the expression [@3) and the equality
9;50‘ = 9;043 give

Kgio = Kayp —€0Pap (45)
where we defined
Dop = Wpia — Wai - (46)
The expression [@H) gives us the null rays equation
kK%, = co k" . (47)

Note that this equation looks like the Lorentz force law/[]

Now we shall construct propagation equation for the
amplitude a®. We begin with the transversality condition
[the second expression in ([@2])]. This condition should
hold along a null ray, k°(d,k%).s = 0. Expanding this

3

expression and using [@7)) we derive

Kk G0 5 = coPopk®d” . (48)

7 Equation (@) can formally be derived by taking the ultrarela-
tivistic limit m — 0 of the Lorentz force law, where m is the
rest mass of a charged particle and its proper time is defined as
T =m\ Iﬁ] In this analogy the product of the particle’s charge
and the electromagnetic field tensor F, 5 corresponds to eo @,z
and wq plays the role of an electromagnetic vector potential.
Note that in analogy with the action for a charged particle mov-
ing in an electromagnetic field, equation can also be derived
from the generalized Fermat’s principle ].



The right-hand side of this expression is of order . The
corresponding order complement comes from the sub-
leading order e wave equation (2,

1
Kiap = —5aak’ 5 — iGak’ G5 (49)

Combining these expressions we derive the propagation
equation for the complex amplitude a®,

ik’ p.5 . (50)

3

1
k0% = co®pa’ — Ak —

Now we multiply this equation by the complex conjugate
amplitude a** and add to it its complex conjugate form
multiplied by a®. As a result, we derive

(@°k*).o =0, (51)

where @ = (@%Gxq)'/? is the scalar amplitude. The de-
rived equation implies adiabatic conservation of photons
propagating along null curves defined by {T). To com-
plete the construction of equations corresponding to the
combined eikonal ([B9) we introduce the unit complex po-
larisation vector £ = a“/a, such that £f, = 0 and
£*f* = 1. Then, the second expression in ([@2]) and the

expression ([B0) give
k“f, =0, (52)
k7£% 5 = eo d%f7 — it*k’ 5. (53)

The expressions [{@2)), [@1), GI), (52), and B3]) represent

the modified geometric optics corresponding to the com-
bined eikonal ([BY). The last step is to show that in the
limit ¢ — 0 polarization phase 1 does not change along
the modified null rays. To begin with we present the
polarisation vector £* in the form [cf. ()]

£ = en® . (54)

Here v is measured with respect to the complex basis
{m* m**}, which is analogical to the previously consid-
ered basis {m®,m} (see Sec. III). Accordingly, one can
repeat the steps in Sec. IIT and derive [cf. ([IS)]

im*akﬁma;ﬂ =kYp.q. (55)

Then, from the relations @), B3), B4), and (BH) it

follows that:

« € « §
k 1/);(1 e E{:‘ag.ﬂ;u ke (56)

Thus, as we already noted, the change of the polarization
phase along the modified light ray is of order €. This
implies that the internal degree of freedom, the order
€% polarization phase ¢, was indeed included into the
combined eikonal.

Using the combined eikonal (39), we can compute
phase velocity of each polarization component defined
with respect to its geometric optics null ray,

kou® w
kon

(57)

VUph = — .
P w — eowan®

This expression implies that the phase velocity of left-
and right-handed circularly polarised light is different.
This difference results in the gravitational Faraday effect
discussed in Sec. III.

Let us now consider the dynamical equation for light
rays [T). Its right-hand side depends on light polariza-
tion 0 = +1 and represents the force of interaction be-
tween the light polarisation and space-time angular mo-
mentum. This force is orthogonal to the wave vector k.
This type of polarization-dependent force is a manifes-
tation of the gravitational spin-Hall effect of light: the
back reaction of the changing polarization phase onto
light trajectory results in its transverse, polarization-
dependent displacement. As a result of such displace-
ment, a linearly polarized beam of light propagating in a
gravitational field of non-zero angular momentum along
the space-time null geodesic will split into components of
left- and right-hand circular polarizations and each com-
ponent will propagate along a different null world line.
These world lines get gradually displaced away in the
opposite direction from the null geodesics. The group ve-
locity of these components, which is the locally measured
Poynting vector divided by the electromagnetic energy
density, is equal to speed of light in vacuum. According
to the generalized Fermat’s principle m—@], the expres-
sion (@7) in the next Section, integrated along a light ray
trajectory, is stationary for null geodesics with respect to
null variations. Thus, the propagation time ¢ for these
components is greater than that of the corresponding null
geodesic.

In the next section we shall discuss the gravitational
spin-Hall effect in local space and time decomposition.
To conclude, we recall that source-free Maxwell equa-
tions in a 4-dimensional space-time are conformally in-
variant. Accordingly, the expressions above are invariant
with respect to the conformal transformation of the met-
ric gog = Q2%gap accompanied by the following conformal
transformations:

K¢ = Q—21_<oz

a2 = 0232,

u® = Qg (58)
U= QY Q7R (59)

where the scalar function x solves equation
k% o + 1Kk, + £%Q0 =0, (60)

while w, and ®,4 are conformally invariant, and the local
angular frequency of light transforms as w = Q™ '@.

VI. LOCAL SPACE AND TIME
DECOMPOSITION

Let us now present the dynamical equation (@7 in a lo-
cal decomposition defined by a static observer’s 4-velocity
u®. To simplify our computations, we will work in the
metric gop conformally related to the space-time metric
23) via the conformal factor Q% = h. In what follows,

we shall drop the bar signs. Because of the conformal



invariance of the dynamical equation, our final expres-
sions will be valid in the original space-time metric gqgs,
assuming that all dynamical quantities are transformed
accordingly, as shown in the end of the previous section.

To compute the expression (@8] we need the covariant
form of the vorticity vector (see (28] and the text below),

wo =044;, A=1 ([g x g% + curlg) . (61)
Now we can calculate @z,
i =&,  Dij = eiuB", (62)
where we defined
E=-A,;,, B=curlA. (63)

The 3-dimensional fields £ and B can be considered as
“electric” and “magnetic” components of ®z.

The next step is to apply the projection operators
—u“ug and p§ = 52‘ + u®ug to the dynamical equa-
tion. These operators project 4-dimensional objects onto
u® and its local orthogonal 3-dimensional hypersurface
3., that gives their local space and time decomposition.
However, it is more convenient to use the decomposition
of the wave vector k* = w(u® + n®) [cf. ()], where the
light ray frequency w = —k%u, is measured by a local
static observer and the unit space-like vector n®, orthog-
onal to u®, defines spatial direction of the light ray. Then,
we contract the expression ([@F) with u” and n” separately
and apply the projection operators. Contraction with u?
gives us an expression lying entirely in 3,, and involving
time derivatives of the frequency and the unit space-like
vector. Contraction with n? followed by projection onto
u® gives us (naturally) the same expression contracted
with n®,

w

5 (2nigi,t+ninj*yij7t) =co&n’. (64)

(14+gm")w ¢+n‘w ;+
Finally, projecting the expression (@3] contracted with n”
onto ¥, and using a local triad e defined on X, gives
us the light ray dynamical equation on ¥,

a w,b a a EOT a
nbnlszﬂb—i—ﬂnxA] +U[HXBQ] , (65)
B, =B+ (€ xg]. (66)
Here nbnalb is the covariant derivative defined in the met-

ric yap = €l €17, along a light ray trajectory with the unit
tangent vector n® = dx®/dl = en®, where dl = wdX is
the proper distance in the 3-dimensional hyperspace ¥,
and 1% = 4 —nn’ is the 3-dimensional projection op-
erator onto a local 2-dimensional subspace orthogonal to
n®. The proper distance dl is related to the time coordi-
nate t as follows:
dt

where the scalar product is defined in the metric 4. The
expressions ([64), ([65), and (G1) represent the local space
and time decomposition of the dynamical equation (@1]).

Let us now analyse the derived result. Our main object
is the dynamical ray equation (G3]). To understand better
its physical meaning, we introduce the optical metric mg
and the 3-dimensional wave vector k, as follows:

Tab = WYy, kg =wn,. (68)
Then, the dynamical ray equation (G0 takes the follow-
ing form:

Dk eo
d£_2[kXA]+w[kXBg]' (69)
Here Dk/d{ is the covariant derivative of the wave vec-
tor defined in the optical metric, d¢ = wdl is the optical
length, and the vector products are defined in the op-
tical metric. This equation is similar to the dynamical
equation of a charged particle moving in a non-inertial ro-
tating frame in the presence of a magnetic field, i.e. the
term 2[n x A] is the Coriolis force and the next term
is the Lorentz force. This last term is the transverse,
polarization-dependent force that gives rise to the grav-
itational spin-Hall effect of light. This force depends on
light frequency. Thus, the resultant splitting of a non-
monochromatic beam of light onto left- and right-handed
circularly polarized components is frequency dependent.
Namely, the low frequency part of the beam gets more
deflected in the transversal direction, as compared to the
high frequency part. As a result of such deflection, we
have a polarized gravitational rainbow.

To conclude, we remark that in the case of a stationary
space-time, our static observers are Killing observers and
the results above reduce to those derived in @]

VII. DISCUSSION

Here we presented the study of the gravitational Fara-
day and spin-Hall effects of light in arbitrary, non-
stationary, asymptotically flat space-of non-zero angular
momentum. This is a generalisation of the modified ge-
ometric optics formalism developed in @] and applied
to propagation of polarized light in the stationary space-
time of a rotating (Kerr) black hole [37]. The key concept
of this generalisation is the field of static observers de-
fined in Sec. IV. In a stationary space-time, this field
of observers naturally reduces to the field of Killing ob-
servers. The field of observers is uniquely defined in ac-
cordance with vanishing space-time ADM 3-momentum.
The gravitational Faraday and spin-Hall effects are de-
scribed properly by such static observers. One may try to
explore the formalism developed here in the language of
Finsler geometry and the related Randers metric applied
to sationary spacetimes in ﬂﬂ]

The natural limitation of our formalism is breakdown
of the geometric optics applicability and the concept of
the static observers field. As we already pointed out
in Sec. IV (see footnote 4), such observers cannot ex-
ist in space-time regions where a rigid static latticework



spreading out of asymptotically flat region cannot be de-
fined, for example in ergoregions or black hole interior.
Also, light emitted form the vicinity of the space-time
ergoregions or form the vicinity of a static black hole
horizon and propagating to the asymptotically flat re-
gion of the space-time gets strongly redshifted, such that
its frequency can take very small values. This results
in breakdown of the geometric optics approach. Let us
also note that detection of the gravitational Faraday and
spin-Hall effects of light requires measurements of a very
high sensitivity. These effects are due to strong non-
static gravitational fields and they accumulate during
light propagation. The angular split of left- and right-
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handed circularly polarized light components is propor-
tional to the space-time angular momentum @4%, b],
whereas spatial separation of these components is an ac-
cumulative effect and proportional to the propagation
distance. Thus, the effect may not easily be observable
in weak gravitational fields and relatively small spatial
regions, e.g., within the Solar System [34], but it could
potentially be detected in the light emerged from strongly
gravitating systems, such as vicinity of a black hole, and
propagated sufficiently large distance. Finally, we remark
that the approach developed here can be adapted to de-
scribe gravitational Faraday and spin-Hall effects of weak
gravitational waves.
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