Supplemental Material:
TMDs as a platform for spin liquid physics:
A strong coupling study of twisted bilayer WSe,

. CLASSICAL MONTE CARLO RESULTS FOR INCOMMENSURATE PHASES

In Fig. 1(a) and (b) we show classical Monte Carlo results for the incommensurate phases, ICS-I and ICS-II (as
mentioned in the main text, ICS-III can be generated from ICS-I via a three-sublattice transformation). The spins are
coplanar within the xy-plane and the static spin structure factor exhibits four peaks, at +k; and +k,, with k{,k; being
incommensurate. The Monte Carlo results clearly indicate that the Luttinger-Tisza ordering wavevectors are indeed
correct.
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FIG. 1. Classical Monte Carlo results for (a) the ICS-I phase and (b) the ICS-II phase. In both cases, we show a portion of the
low-temperature spin configurations in real space (12 x 12 and 12 x 1 examples out of a total of 96 x 96 spins), as well as the static
structure factor in momentum space (unfortunately the sharpness of the structure factor peaks makes them somewhat difficult to
see). Since both phases exhibit ordering within the xy-plane we show only the xy-components, and, to help in making the patterns
more visible, we artificially color the spins according to the value of their x component. In (c), we show the predicted Luttinger-
Tisza ordering wavevectors, only within the area enclosed by the high-symmetry lines, for J, = 0.5 and ¢ € [0,7/2]. The regions
corresponding to the three incommensurate phases, ICS-I, II and III are marked, and the color indicates the value of ¢.

Il. PSEUDO-FERMION FUNCTIONAL RENOMALIZATION GROUP

In this section, further technical details of the pf-FRG approach are discussed. As already mentioned in the main
text, the hierarchy of differential equations at the heart of the FRG method has to be truncated to allow for a numer-
ical solution. Within the Katanin truncation, the single-scale propagator S* = *diAGA‘ZAzcmst. is replaced by a full
derivative of the dressed propagator G to partially include certain diagrammatic contributions of the three-particle
vertex in the two-particle vertex flow. The flow equations for the self energy X* and the two-particle vertex I'* then
read
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where multi-indices comprise a lattice, spin and frequency argument, e.g. 1 = (i1, 0, w;). The flow equations can
be further simplified by exploiting symmetries in real and spin space, as well as in the Matsubara frequencies. Since
these simplifications are extensively discussed in Ref. 1, we only state the most important results here. Firstly, for
time-reversal symmetric Hamiltonians, all one particle objects are diagonal in their indices and only depend on one
frequency argument. Note, that this property has already been used to simplify (1) and (2) and the self energy, for
example, should be regarded as
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where X(w) = —iy(w) is purely imaginary and anti-symmetric in frequency space. The two particle vertex, on the
other hand, is a bi-local object with purely real and purely imaginary components that encode the spin interaction of
the respective Hamiltonian. For our model, we may write
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The initial conditions for the flow equations then read
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where, for example, 1<,- 7) is should be understood as

(6)

Lo — 1 if i and j are nearest-neighbors
W =) 0 else

For our work, we extend the open-source Julia package PFFRGSolver . j12, which provides a state-of-the-art pf-

FRG solver for various lattice structures. We use a set of Ny = 500 frequencies for the self energy and N = 50 x

60 transfer/fermionic frequencies to model the two-particle vertex. The lattice truncation is fixed to L = 10, i.e.



(a) (b)
) =0.04, ¢ = 0.3437 = 0.56, ¢ = 0.3437
<10 —— h/h =00k —050n 3 J2/]1 ¢ s o . J2/ 1 ¢ n L
ey —— /1 =016, = 034377 2 2" ™ :
+ 08 —— J2/J1 =032,¢ = 034377 T 0.8 T 0.8
~ Jo/ 1 = 0.56,¢ = 0.34377 1 ' T ’
= 0.6 37 n
<5 = 0.6 = 0.6
= s 0 s 0
£ 04 = 04 S, 0.4
2 2 2
£t ~S - 02 - 02
@ » B
é 0.0 —in 3 1 1 3 00 —in 3 1 1 3 00
000 025 050 075 1.00 125 150 Sn-n-ino In & In Sr-m-ir o0 o n i
flow parameter A/|]]| [kx00] [x00]

FIG. 2. pf-FRG data at 7/3 + 7/96. In panel (a) we display representative RG flows, indicating, as expected from the consider-
ations in Sec. II of the main text, a paramagnetic phase, quenched between the long-range ordered ferromagnetic (b) and stripe /
type-III incommensurate phases (c). The incommensurate part of the correlation spectrum is generated by the in-plane correlations,
where out-of-plane spin correlators Xé\z contribute the peaks at the M points (related to stripy long-range order).

correlations are set to zero beyond 10 bonds away from a given reference site. The accuracy for the involved integration
routines has been set to ayo, o] = (10’57 10’3) for which our results were found to be well converged.

In principle, the RG flow should diverge, once symmetries of the Hamiltonian are spontaneously broken during the
flow to strong coupling. However, due to the relaxed particle number constraint and finite numerical resolution, phases
with strongly competing channels occasionally develop softened features such as pronounced shoulders. Reading off
the precise value of the characteristic scale A, in this case is rather difficult and a numerical criterion is needed
to automate this process. Here, we utilize that the bare susceptibility ¥ (w = 0) = [~ dv(G)(v))? ~ 1/A, where

Ghv)=(1- e v/ Az) /(iv) is the regularized bare propagator. Now, whenever the flow shows a distinct divergence
or a sharp peak, we set A, to the position of this respective feature. If the breakdown is more washed out, we instead
determine the scale with the strongest concavity, i.e. the largest deviation from the expected behavior of the non-
interacting, paramagnetic system. If none of these criteria apply and the flow remains convex and featureless, we
classify the ground state as non-magnetic.

lll. PF-FRG RESULTS FOR ¢ > /6

In this section we discuss numerical results beyond the [0, £] range focused on in the main text. As discussed in
Sec. II of the main text, one would expect the energy spectrum of our Hamiltonian to be repeated within periods of
7/3. While the ground state wave function, and therefore the label of the respective phase, will generally change,
the spin liquid region for which the characteristic energy scale A, vanishes, should re-appear upon varying ¢. To
illustrate this circumstance we have summarized representative pf-FRG data for ¢ = 7/3 + 7/96 in Fig. 2. Indeed,
smooth RG flows, indicating a paramagnetic ground state, are obtained within the expected J, range, accompanied
by sharp flow breakdowns in the adjacent magnetic phases. For large J,, our FRG approach implies the presence of
another stripy state in coexistence with the nearby ICS-III phase as visible from Fig. 2(c), where Bragg peaks for both
orders are visible. The incommensurate correlations are contributed by the in-plane, that is X)?X /yy> components of

the susceptibility, whereas the peaks at the M-points steam from 2.
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