English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Hyperkinetic stereotyped movements in a boy with biallelic CNTNAP2 variants

MPS-Authors
/persons/resource/persons186238

Anijs,  Midas
Neurogenetics of Vocal Communication Group, MPI for Psycholinguistics, Max Planck Society;
International Max Planck Research School for Language Sciences, MPI for Psycholinguistics, Max Planck Society;

/persons/resource/persons37905

Vernes,  Sonja C.
Neurogenetics of Vocal Communication Group, MPI for Psycholinguistics, Max Planck Society;
Donders Institute for Brain, Cognition and Behaviour, External Organizations;
University of St Andrews ;

External Resource

additional files
(Supplementary material)

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
Supplementary Material (public)
There is no public supplementary material available
Citation

Scala, M., Anijs, M., Battini, R., Madia, F., Capra, V., Scudieri, P., et al. (2021). Hyperkinetic stereotyped movements in a boy with biallelic CNTNAP2 variants. Italian Journal of Pediatrics, 47: 208. doi:10.1186/s13052-021-01162-w.


Cite as: https://hdl.handle.net/21.11116/0000-0009-65A7-9
Abstract
Background

Heterozygous variants in CNTNAP2 have been implicated in a wide range of neurological phenotypes, including intellectual disability (ID), epilepsy, autistic spectrum disorder (ASD), and impaired language. However, heterozygous variants can also be found in unaffected individuals. Biallelic CNTNAP2 variants are rarer and cause a well-defined genetic syndrome known as CASPR2 deficiency disorder, a condition characterised by ID, early-onset refractory epilepsy, language impairment, and autistic features.
Case-report

A 7-year-old boy presented with hyperkinetic stereotyped movements that started during early infancy and persisted over childhood. Abnormal movements consisted of rhythmic and repetitive shaking of the four limbs, with evident stereotypic features. Additional clinical features included ID, attention deficit-hyperactivity disorder (ADHD), ASD, and speech impairment, consistent with CASPR2 deficiency disorder. Whole-genome array comparative genomic hybridization detected a maternally inherited 0.402 Mb duplication, which involved intron 1, exon 2, and intron 2 of CNTNAP2 (c.97 +?_209-?dup). The affected region in intron 1 contains a binding site for the transcription factor FOXP2, potentially leading to abnormal CNTNAP2 expression regulation. Sanger sequencing of the coding region of CNTNAP2 also identified a paternally-inherited missense variant c.2752C > T, p.(Leu918Phe).
Conclusion

This case expands the molecular and phenotypic spectrum of CASPR2 deficiency disorder, suggesting that Hyperkinetic stereotyped movements may be a rare, yet significant, clinical feature of this complex neurological disorder. Furthermore, the identification of an in-frame, largely non-coding duplication in CNTNAP2 points to a sophisticated underlying molecular mechanism, likely involving impaired FOXP2 binding.