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Motivation

The development of a nuclear fusion power plant is an ambitious project with the
goal to contribute to the world’s rising energy demands in a clean and sustainable
way. Substantial progress has been made in the last decades, and multiple designs
for fusion reactors have been conceived. To this date, the most advanced type is the
tokamak, a toroidal vacuum chamber equipped with strong magnetic coils. It uses
magnetic fields to trap plasma, a highly ionized, low-density gas, of temperatures so
high that no material wall could withstand prolonged contact. The plasma, often
consisting of hydrogen isotopes, is the fuel for nuclear fusion reactions. When two fuel
ions collide, their high thermal energy may cause them to fuse into heavier particles.
In this process, part of their binding energy is converted into kinetic energy, which
can be harnessed and used to generate electricity.

However, before the commercial operation of a tokamak is conceivable, a number
of challenges have to be addressed, one of which is the plasma stability. In order to
reach the high core temperatures, the particles have to be confined extremely well
within the magnetic fields. The operation in the so-called high confinement mode,
or H-Mode, is therefore favorable. This operational mode comes with a narrow
region of strongly reduced particle and heat transport, which is located close to the
edge of the plasma near the wall of the tokamak. The transport barrier establishes
a steep pressure gradient at the edge, which can drive plasma instabilities in the
region. The consequence is the onset of repeated violent expulsions of heat and
particles from the plasma to the wall of the tokamak, known as Edge Localized
Modes (ELMs). ELMs are a concern for ITER, the worlds largest tokamak, which is
currently under construction in the south of France. Due to its large plasma volume
the heat load of large ELMs could severely reduce the lifetime of the materials in
the so-called divertor region. Considerable effort within the fusion community is
therefore dedicated to the development of ELM control mechanisms, among which is
the application of small non-axisymmetric magnetic fields by external coils, known
as Resonant Magnetic Perturbations (RMPs). Despite the fact that RMP ELM
control has been demonstrated in various tokamaks, the physical mechanisms are
still subject to active research and the extrapolation to ITER still has considerable
uncertainties.

An important contribution to the physics understanding of RMPs comes from
modeling. Numerous codes have been developed to simulate different aspects of RMP
physics. Among them is the code JOREK [1], which is used for the studies carried
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out in this thesis. JOREK solves the reduced MHD equations, which describe the
behavior of the plasma as a single, conducting fluid, in realistic tokamak geometries.
The equations are discretized by a Bézier finite element grid in the 2D poloidal plane,
combined with a Fourier expansion in toroidal direction [2|. Dirichlet boundary
conditions are used for most variables, which force the values at the boundary to be
constant in time. Physically this corresponds to the effect of an ideally conductive
wall close to the plasma.

The JOREK code can be combined with its free boundary extension STAR-
WALL [3]. STARWALL calculates the effect of conductive structures surrounding
the plasma and provides the relevant information to JOREK [4]. This makes it
possible to use natural boundary conditions, where the ideally conducting wall is
replaced by the effect of realistic structures.

In previous years JOREK (without the STARWALL extension) has been used
extensively to model both ELMs [5-7] and RMPs [8, 9], as well as the RMP-ELM
interaction [10-13], including RMP-ELM control. By using JOREK-STARWALL the
RMP-ELM modeling can be improved further, as the perturbation fields can evolve
freely on the boundary.

The goal of this thesis is to carry out first-of-a-kind free boundary RMP simulations
using JOREK-STARWALL. For this purpose, the implementation of the RMP coils
in STARWALL is corrected and tested. The validation confirms that the coils can
be used reliably for RMP studies. Then, the penetration of RMPs into an ASDEX
Upgrade H-Mode plasma is simulated using free boundary conditions. The analysis of
the results shows a good qualitative agreement with the theoretical expectations. A
subsequent comparison to simulations, where fixed boundary conditions are applied,
reveals that the boundary conditions have an impact on the response of the plasma
to the RMPs. Lastly, the onset of a type-I ELM is simulated with free boundary
conditions. It is shown that in the absence of the effects of an ideal wall the stability
limits are lowered, which leads to an earlier ELM onset at lower pedestal pressure
gradients. Both the RMP penetration studies, as well as the ELM simulations, open
up many interesting questions for future investigations.

The thesis is structured as follows: In part I an overview of the main principles of
fusion research (chapter 1), magnetic confinement fusion (chapter 2) and resonant
magnetic perturbations (chapter 3) is given. Furthermore, the JOREK-STARWALL
code is introduced in chapter 4. Part II presents the results of the modeling studies
that were carried out for this thesis. The validation of the RMP coils in STARWALL
is presented in chapter 5. The first JOREK-STARWALL free boundary RMP sim-
ulations are discussed in chapter 6, which is followed by the comparison to their
fixed boundary equivalent in chapter 7. Lastly, the ELM studies are discussed in
chapter 8.
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Chapter 1
Fusion research

Nuclear fusion occurs if two ions collide with sufficient energy, so that the distance
between their nuclei becomes small enough for the strong nuclear force to outweigh
the repulsive Coulomb potential. As a consequence, the particles combine and form
heavier nuclei. In the case of light reactant nuclei fusion is generally releasing energy
in the form of kinetic energy, which originates from the difference in the binding
energy between the reactants and the products.

At present day, the reaction that is the easiest to exploit on earth is the fusion of
deuterium (D) and tritium (T) into an alpha particle (He), a neutron (n) and 17.59
MeV of kinetic energy, of which the neutron carries 14.03 MeV and the helium-nucleus
carries 3.56 MeV.

D+ T — He + n + 17.59 MeV (1.1)

The advantage of the D-T reaction is its high reaction cross-section o at relatively
low temperatures compared to other fusion reactions. The cross section quantifies
the probability of a fusion reaction to occur and it is dependent on the relative
velocity between the two particles, i.e. their kinetic energy. Figure 1.1 shows the
energy dependency of the cross section for different fusion reactions. For the D-T
fusion the cross section peaks at around 20 - 70 keV, at a far lower energy and higher
value than other fusion reactions.

At energies where fusion is likely to occur, the kinetic energy of the fuel particles
is higher than their ionization energy. Therefore, the fuel mixture is almost com-
pletely ionized, and reacts to electromagnetic fields differently than a regular gas.
An especially important property follows from the high mobility of the electrons and
ions, which may lead to a very efficient screening of externally applied fields. If the
system is overall electrically neutral, and charged regions only appear on scales much
smaller than the system size, the so-called quasi-neutrality condition is fulfilled. A
highly ionized and quasi-neutral gas is referred to as plasma.

The velocity distribution of the particles in a plasma, along with the cross section o,
determines the rate at which fusion reactions occur. The number of fusion reactions
per time and unit volume is obtained by averaging over these two properties (o(v)v).
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Figure 1.1: Cross sections o of the Deuterium-Tritium (D-T), Deuterium-Deuterium
(D-D) and Deuterium-Helium3 (D-He? fusion reactions as a function of temperature
T and center-of-mass Energy Ecoas. The D-T fusion is favorable due to its high
reaction cross section at low temperatures. (data from [14])

From the reaction rate the total power generated by fusion processes Prsion in @ D-T
plasma can be determined

Prysion = np nr <U(U)U> Etusion. (12)

Here, np and np are the particle densities of deuterium and tritium respectively,
and FErgsion = 17.59 MeV is the generated energy per D-T fusion reaction. The
maximum reaction rate is obtained for np = np = % n, when Deuterium and Tritium
are present in equal parts.

Naturally, an economically viable fusion reactor should aim at a high Prygion, while
at the same time minimizing the external energy Pieat that is needed to heat the
plasma. The ratio between output and input energy, called amplification factor @),
is therefore an important figure of merit for the efficiency of a fusion reactor

P fusion
0= 1.3
B heat ( )

The highest QQ attained in a fusion experiment so far was about Q =~ 0.64 in the
nuclear fusion reactor JET. At Q = 1 the so-called "break-even" condition would
be reached, where the fusion power balances the external heating power exactly. An
important limit for a fusion reactor is the ignition state, which is enabled by the self-
heating properties of the plasma. The D-T fusion generates alpha particles, which
carry about a fifth of the energy of the fusion reaction. The energy can be transferred
to the D-T fuel and thereby heat it. If enough alpha particles are generated, so that
the energy they provide compensates all occurring energy losses, no external heating



power needs to be injected. At this Q = oo state, a burning plasma is achieved. In
practice, a reactor would still operate at a finite Q to simplify control.
The energy loss in a fusion device is quantified by the energy confinement time g

4
PZOSS

TE (1.4)
It corresponds to the characteristic time that it takes for a plasma to cool down if
all external heating is turned off. Taking W ~ 3V nT as an estimate for the thermal
plasma energy, and P, = %Pfusion > Pioss as requirement for ignition, one can derive

AT e > 1.5 x 1022 m3keVs (1.5)

as an ignition condition for a pure D-T plasma with n = %ﬁ D= %T_LT as average
plasma density and T as average plasma temperature. This form of the ignition
condition is called Lawson criterion. The product of 7 T 7 on the left hand side is
called triple product, and it is considered another important figure of merit in fusion
research.

On earth the Lawson criterion may be fulfilled by two very different approaches.
In inertial confinement fusion, the plasma particles are “confined” only for the time
of their acceleration. The very short energy confinement times (7 =~ 107! s) are
balanced by extremely high plasma densities (n &~ 103! m~3).

The second approach is magnetic confinement fusion, where strong magnetic fields
are responsible for confining the plasma particles. Compared to inertial confinement
fusion, the energy confinement time is considerably longer, which allows for lower
plasma densities (n ~ 102° m~3). This thesis will only focus on magnetic confinement
fusion, with the tokamak as fusion device.






Chapter 2
Magnetic Confinement Fusion

Magnetic confinement fusion aims at creating a macroscopically stable plasma with
high energy confinement times by using magnetic fields. To achieve this goal, a frame-
work has to be found, that allows to describe the behavior of plasma particles in a
magnetic field. Throughout the decades, different descriptions have been developed.
To study the large scale phenomena of interest in this thesis Magnetohydrodynamics
(MHD) poses a suitable framework. The principles of MHD are introduced based on
ideal MHD in section 2.1. This simplest version of the MHD model is sufficient to dis-
cuss some of the basic principles of a magnetic confinement device: the requirements
concerning the magnetic field configuration (section 2.2), the design (section 2.3)
and some of the challenges (section 2.4). A more advanced MHD picture, that is
necessary for accurate simulations, is presented at a later time together with the
computational framework.

The contents of this chapter summarize the derivations found in popular plasma
physics textbooks [15, 16].

2.1 Ideal MHD

The description of the behavior of a plasma by the equations of motions of the N
plasma particles requires a 6N-dimensional coupled system of equations. Typically N
is of the order of 10%°, which makes such a system practically impossible to solve on
any reasonable timescale. An alternative description is provided by the MHD model.
Instead of determining the location and momentum of each individual particle, one
uses macroscopic statistical quantities to define the state of the system. The treat-
ment of the plasma as a fluid does not only lower the computational cost, but it
has the additional advantage that the macroscopic statistical quantities are directly
measurable in experiment. Because MHD equations, and even more so ideal MHD
equations, rely on assumptions about the plasma state, care has to be taken that
the phenomena of interest lie within the range of validity of the selected model. The
derivation of the ideal MHD equations is only outlined here, thorough derivations
can be found in 15, 16]
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For the transition from the 6N-dimensional system of equations to the fluid picture
it is helpful to first introduce the distribution function fq(x,v,t), which gives the
number of particles of species s (either electrons e or ions i) with velocity v at
location & and time ¢. It is a more convenient description of the system without loss
of information, since within each species the particles are indistinguishable.

The time evolution of the distribution function is described by the kinetic equation.
It is the equivalent of the Boltzmann equation for kinetic particles, but adapted to
the case of a plasma. It is given by

9 (@, 0) 40V fo(@, o)+ L(E+vx B)- Vo fy(w,0) = (W) (2.1)
ot m ot coll.

The second term on the Lh.s. corresponds to the effects of particle convection,
while the third term on the L.h.s. describes the forces acting on the particles. The
force term depends on the fields E and B, which are collectively and self-consistently
generated by the particles. For this reason, the complete system is obtained by the
coupling to the Maxwell equations. The term on the right hand side is the particle
collision operator. It is not explicitly given here, as in general it can take on various
forms depending on the system.

The fluid description uses macroscopic statistical quantities, which are derived
from the lowest order velocity moments My (x,t) of the distribution function. The
velocity moments have the form M (z,t) = [vv..vfs(z,v,t)d>v with k factors of v:

particle number density ns(x,t) = /fs(a:,v,t)d3v, (2.2)
particle flux density nsug(r,t) = /vfs(ac, v, t)d%, (2.3)
pressure tensor p(r.t)= /mgwswsfs(m,v,t)d?’v, (2.4)
heat flux density q,(r,t) = /mswzwsfs(a:,v,t)d% (2.5)

The particle flux density is used to define the flow velocity us(r,t). The pressure
tensor and the heat flux density are expressed in their more commonly used form in
the rest frame of the species, with the relative velocity ws = v — us. mg denotes
the mass of the species. In addition, some derived quantities can be defined for
convenience. The charge density is given by ps = egsns, where es is the species
charge. The trace of the pressure tensor gives the scalar pressure ps = %T’I“(Bs),
which in turn is used to define the temperature of a plasma in a thermodynamic

equilibrium T = 2=
S

The time evolution of the macroscopic quantities is obtained by taking the lowest
velocity moments of the kinetic equation. By using the notation m; = vvv...v with

10
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k factors of v, the k-th moment of the kinetic equation can be given in a general
form. m; can both be a scalar and a vector, it is written in scalar notation here.

8/mMJM+V/%m¢f%4%/@meﬁf%:/mm;m? d3v,
at 8t coll.
(2.6)

The factor [ vmy fd3v in the second term on the left hand side corresponds to
the next highest order moment. Its appearance indicates that each conservation
equation depends on the next highest moment and its corresponding conservation
equation. This means it is impossible to obtain a closed system of equations just
from the moment expansion. At some point, the expansion has to be truncated and
a suitable closure has to be found, which requires an assumption about the system.
A frequently used choice is to assume an adiabatic plasma. With this closure, and
taking the plasma to consist of one ion species and electrons, the two-fluid equations
can be derived. They are found in [15].

A further simplification of the two-fluid model leads to the MHD model, where
the plasma is treated as a single, electrically conductive fluid. The MHD quantities
(density p, one fluid flow velocity v, current density j and pressure p) are obtained
by combining the two-fluid quantities.

P = MiN; + Mene = MyN; (2.7)
v = ;(mmzuz + MeNelUe) = U; (2.8)
J=en(u; — ue) (2.9)
P =pi+Dpe (2.10)

For the derivation of equations (2.7) and (2.8), the electron mass m, is neglected
(m; > me) and the quasi-neutrality condition n, = n; = n is used.

The derivation of the MHD equations from the two fluid equations can be found
in [15]. Different versions of the MHD equations can be derived, with varying validity
ranges depending on the assumptions made during the derivation. The simplest

11
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MHD picture is given by the set of ideal MHD equations:

0
8—’; + V(pv) =0 continuity equation (2.11)
0
p <8t +v- V) v=3jxB—-Vp momentum equation (2.12)
E+vxB=0 Ohm’s law (2.13)
0B
VxE= o Faraday’s law (2.14)
V x B = upj Ampére’s law  (2.15)
V-B=0 magnetic divergence constraint (2.16)
d
— < P ) =0 adiabatic equation of state (2.17)
dt \ p7

If the plasma resistivity o is taken into account, Ohm’s Law (equation 2.13) is
replaced by its resistive equivalent o(E + v x B) = j. The set of equations is then
referred to as resistive MHD.

The MHD equations are applicable if, in addition to the earlier discussed assump-
tions to quasi-neutrality, resistivity and electron mass, certain conditions are fulfilled.
The plasma is assumed to be strongly magnetized, so that the ion Larmor radius is
smaller than the length scales of interest. Furthermore, the mean free path between
collisions is assumed to be small compared to typical gradient scales |V f|/ f appear-
ing in the plasma, so that the high collisionality ensures that the system is in a local
thermodynamic equilibrium.

Despite the fact that fusion plasmas may lie outside this formal range of validity,
the MHD equations have been found to provide a surprisingly good description of
some aspects of the plasma behavior.

2.2 Equilibrium

Ideal MHD is a suitable framework to examine which magnetic field configurations
can be expected to confine the plasma particles well. A basic condition for long
confinement times is that the plasma is held in an equilibrium, where % = 0 for all
quantities. For now we will assume the equilibrium to be static with v = 0. Apply-
ing this condition to the ideal MHD equation yields the criteria for an equilibrium

magnetic field configuration.

Vp=jxB (2.18)
V x B = ppj (2.19)
V-B=0 (2.20)

12



2.2 Equilibrium

A general property of the equilibrium can be derived from equation 2.18. From
taking the dot product with B it follows that B - Vp = 0, which implies that the
pressure along the field lines is constant.

This result is a reflection of the fact that the plasma moves freely parallel to the
field lines. Long confinement times are therefore more easily achieved, when the
field lines are not intersecting with material walls. This is the case for toroidal field
configurations, which are commonly used in magnetic confinement fusion.

2.2.1 Grad-Shafranov equation

If the configuration is not only toroidal but also axisymmetric the equilibrium prob-
lem can be reformulated in a particularly simple way [16]. Because of the axisym-
metry and V - B = 0 the magnetic field can be expressed in terms of a stream
function ¥. Ampéres Law (equation 2.15) is used to also rewrite the current density
j in terms of ¥. By introducing two free functions F?(¥) and p(¥) the 3D equi-
librium conditions can then be reduced to a single equation that only depends on
the stream function. This is the so-called Grad-Shafranov equation [17], given in
cylindrical coordinates (R, Z, ¢)

0,10 0? dp  dF?

= (= == —poR2E - 2.21

or\rorY) T oY = TR Gy T (2.21)
The Grad-Shafranov equation defines the magnetic equilibrium by the choice of

F?(¥) and p(¥) together with appropriate boundary conditions. The stream func-

tion is related to the physical poloidal magnetic flux ¥ = % [ BdS.

A solution to the Grad-Shafranov equation is schematically illustrated in figure 2.1.
The magnetic field is arranged in nested toroidal surfaces. A field line that lies on a
particular surface stays on that same surface and helically winds around the torus.
The magnetic flux that passes through any cross-section of one surface is constant.
The nested surfaces are therefore given the name flux surfaces. Since the pressure
has been found to be constant along the field lines the flux surfaces are also isobaric.

The inclination of the helically winding field lines is described by the safety factor
g, the ratio between their change in toroidal direction and their change in poloidal
direction:

_d

q(r) = —5- (2.22)

On surfaces with a rational ¢ value (¢ = m/n) the field lines close in on themselves
after n toroidal and m poloidal turns. These so-called rational surfaces are sensitive
to perturbations to the equilibrium.

13



Chapter 2 Magnetic Confinement Fusion

Figure 2.1: In one of the solutions of the Grad-Shafranov equation, the field line are
arranged on nested toroidal surfaces. (own figure)

2.2.2 Flux coordinates

Instead of the use of cylindrical coordinates, the toroidal geometry of the problems
in fusion research makes the use of the toroidal coordinate system (r, 8, ¢) often
more convenient. Here r is the minor radius, 6 is the poloidal coordinate and ¢ the
toroidal coordinate. It is shown in figure 2.2 along with the conventional cylindrical
(R,Z,0) system. In addition, the arrangement of the magnetic field lines into nested
flux surfaces also allows the use of a different, and for some problems more native,
set of coordinates. The flux coordinate system uses the normalized magnetic flux
Wy instead of r as a radial coordinate, which is easily possible, since the flux is
constant on every flux surface, with strictly monotonously increasing or decreasing
values from the center to the edge. Different variants of the flux coordinates exist
that e.g. also assign new definitions to the poloidal coordinate.

lkZ
R
o 7
R,
Ll hoY0)

Figure 2.2: The (R,Z,¢) coordinate system and the (7,0, ®) coordinate system. In
the flux coordinate systems r is replaced by ¥y (own figure)

14



2.3 Tokamak

2.3 Tokamak

2.3.1 The tokamak configuration

The tokamak is a confinement device that generates roughly the magnetic field con-
figuration shown in figure 2.1, which has been found as a solution to the Grad-
Shafranov equation. To achieve this, tokamaks are equipped with different sets of
magnetic coils, a schematic drawing is provided in figure 2.3. The toroidal and po-
loidal component that compose the total helical field are generated separately. The
toroidal field is provided directly by the toroidal field coils. The poloidal component
of the field is added by the plasma current itself, which is driven by a central solenoid
that acts as a primary transformer loop. An additional small poloidal contribution
that balances the hoop force comes from the poloidal field coils
Inner Poloidal field coils
(Primary transformer circuit)

Poloidal magnetic field Outer Poloidal field coils
(for plasma positioning and shaping)

Resulting Helical Magnetic field Toroidal field coils

Plasma electric current Toroidal magnetic field
(secondary transformer circuit)

Figure 2.3: Schematic drawing of a tokamak. The helical field results from the
superposition of the toroidal field from the toroidal field coils, and the field generated
by the plasma current. Poloidal field coils help to balance and shape the plasma.
[JET-EFDA|]

The poloidal field coils can also be used to modify the shape of the cross section.
Diverging from a simple circular cross-section, e.g. by increasing the elongation or
triangularity of the plasma, can alter, and possibly improve, the performance of the
plasma. With sufficiently high current in the shaping coils it is possible to create
so-called X-points, where the poloidal field strength is zero. Figure 2.4 shows an
example of a field configuration with X-Point. The flux surface that intersects the
X-point is called separatriz. In a tokamak configuration the separatrix encloses the
closed flux surface region, which is the toroidally confined region of the plasma. For

15



Chapter 2 Magnetic Confinement Fusion

this reason the separatrix is also called last closed flux surface (LCFS). The field lines
outside the separatrix in the open fluxr surface region intersect material components
of the tokamak. Due to the high transport along the field lines these parts are subject
to high heat and particle fluxes. In most modern tokamaks the open field lines are
directed towards the so-called divertor, a specifically designed component that is
capable of enduring these fluxes. The X-point configuration and the divertor provide
a convenient way to deal with power and particle exhaust. The ASDEX Tokamak in
Garching was the first tokamak to feature this component.

open flux

closed flux
surface

surface

separatrix

divertor

Figure 2.4: X-Point configuration. The closed flux surface region is separated from
the open flux-surface region by the separatrix. The field lines in the open flux surface
region, as well as the separatrix, intersect the material structures in the divertor
region. (own figure)

2.3.2 H-Mode

An important milestone in the history of the tokamak was the discovery of the
H-Mode, or high confinement mode, by Friedrich Wagner at ASDEX [18]|. It is
an operating regime with particularly good confinement properties that is accessed
when the external heating power exceeds a certain threshold value. The transition
from the low confinement mode (L-Mode) occurs abruptly. The physical mechanism

16



2.3 Tokamak

behind the transition is not yet fully understood, but it is believed that the suppres-
sion of turbulence by sheared flows plays an important role [19]. One of the main
characteristics of an H-Mode plasma is the transport barrier that forms just inside
the separatrix. The strongly reduced transport leads to the formation of a pedestal
in the pressure profile (figure 2.5), which helps to improve fusion performance at
equal heating power. The steep pressure gradient of the pedestal also causes a high
toroidal current density at the edge. The underlying mechanism is the generation of
a so-called bootstrap current, which is a current proportional to Vp [20].

plasma pressure
_ Pedestal

Separat‘r-i_);"m

Transport Barrier

normalized plasma radius

Figure 2.5: A typical H-Mode profile features a characteristic pedestal region. It is
associated with a steep pressure gradient due to the transport barrier right inside
the separatrix. (own figure)

2.3.3 Plasma flows in tokamaks

Another important feature of a tokamak plasma are the plasma flows that establish,
especially those perpendicular to the field lines. There exist different types of flows
with different sources, two of them will be discussed here briefly, namely the E x B-

flow uZ*B and diamagnetic flow u%®.
Ex B
uBxB % (2.23)
, B
ylia — Visgz (2.24)
S

The diamagnetic flow is a pressure-driven flow, that has practically equal mag-
nitude, but opposite directions, for electrons and ions. The combination of electron
and ion flow results in a current perpendicular to the magnetic field lines, the dia-

magnetic current jgi, = —V%XQB.

17



Chapter 2 Magnetic Confinement Fusion

In the pedestal of an H-Mode plasma, the E x B-flow is also proportional to
the pressure gradient. In this region, the E,.-profile features a well, that has been
experimentally found to to be proportional to Vp;/(en;) [21]. The E x B-flow is
therefore directed opposite to the ion diamagnetic flow, and in total the ion fluid is
almost at rest.

2.4 Stability

2.4.1 The energy principle

The magnetic field configuration of a tokamak was found as a solution to the equilib-
rium condition. However, to fulfill its purpose in nuclear fusion, the plasma equilib-
rium also needs to be macroscopically stable. The stability of a plasma is determined
by its response to a small perturbation. When a plasma in a stable configuration is
perturbed, it reacts with a restoring force that damps the perturbation. In an un-
stable configuration the perturbation would be amplified and grow into an instability.

One of the simplest methods to examine plasma stability within the ideal MHD
picture is the energy principle. It relies on the idea that a configuration is stable
if every possible small plasma displacement £ from the perturbation results in a
positive change of potential energy of the system (W > 0). In case of a displacement
that lowers the potential energy (6W < 0) the system is unstable. To arrive at an
expression for dW the MHD equations are linearized and all perturbed quantities are
expressed in terms of €. The potential energy of the system can then be expressed
in terms of three contributions, that of the plasma volume 6, the plasma surface
6Wg and the vacuum dWy

SW = 6W, + Wy + 6Ws. (2.25)

The contribution from the vacuum is generally positive and that of the surface
is negligible in the absence of surface currents. The expression for OW),(§) derived
from the linearized MHD equations is given by [22]

2 Ho 1o

plasma

1 BY, | BY, 2 2
SWP == —= + —=(V &1 +2&1 - K&)" +ypo(VE)

—2(§1 - Vpo)(k-€1) — »-(§L x By) - B1| dV (2.26)

JI
By
Here, the subscripts L and || refer to the direction perpendicular and parallel to

the equilibrium magnetic field. Kk = (By - V)By/ By is the curvature of the magnetic
field.
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The contributions of the first three terms are always positive and therefore sta-
bilizing. The last two terms can take on either a positive or a negative sign. They
have the potential to drive MHD instabilities. The second-to-last term in equa-
tion 2.26 is proportional to the pressure gradient. The contribution is destabilizing
if the field line curvature is parallel to the pressure gradient, which is the case on
the low-field side of a tokamak. If a mode is unstable due to the contribution of this
term, the resulting instability is called pressure-driven instability. Similarly, the last
term in equation 2.26 expresses that a current density parallel to the equilibrium
field lines can destabilize the system. If this term is the dominantly destabilizing
one, the instability is referred to as current-driven instability. However, in reality
this distinction is not very strict as many MHD instabilities are a combination of
both.

2.4.2 Edge-localized modes

A prominent example for an MHD instability that is both pressure- and current
driven is the Edge-localized Mode (ELM). It occurs in the edge region of H-Mode
plasmas, which features both a steep pressure gradient and a high parallel current
density.

ELMs are characterized by rapid expulsions of heat and particles from the edge.
Several percent of the pedestal energy are expelled from the plasma within fractions
of a millisecond, which flattens the pressure and density gradients. In the phase
following an ELM crash the degraded pedestal is rebuilt until another ELM-crash
occurs. This cyclic behavior is typical for ELMs. They are often classified by the
length of such a cycle (or the repetition frequency vgry) with respect to the expelled
power. The two main kinds are the Type-I ELMs, which show a lower repetition
frequency and higher power output, and the Type-III ELMs, which are more frequent
but smaller ELM crashes [23]. In the rest of this thesis type I ELMs are meant when
referring to ELMs.

The physical understanding of ELMs is not yet complete, but many important
aspects of their onset are explained well by the peeling-ballooning model [24]. The
peeling-ballooning model assumes that an ELM crash is triggered by the coupling of
two basic edge instabilities: a pressure driven ballooning mode and a current driven
peeling mode. The linear stability limits of the two individual modes are illustrated
in figure 2.6. According to this theory, the plasma parameters follow the trajectory
in the stability diagram during an ELM cycle. The starting point of the cycle is a
state of low pedestal current and pressure, e.g. after a previous ELM crash. Due to
the H-Mode transport barrier, the pressure gradient steepens gradually (1) and the
edge approaches the ballooning limit. Simultaneously the pressure gradient gives rise
to a bootstrap current. The increased edge current density takes the plasma into
the peeling-ballooning unstable region (2) and an ELM crash follows. The expulsion
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Chapter 2 Magnetic Confinement Fusion

of heat and particles causes the edge current density and pressure gradient to drop
below the peeling-ballooning stability limit (3). From this point on the cycle restarts.

peeling

unstable
> (3)
2
Q
= @) .
s ballooning
§ unstable
Q
(0]
of
eS)
()

(1)
stable

edge pressure gradient

Figure 2.6: Linear stability limits of the peeling and the ballooning mode. During
an ELM cycle the increasing pressure gradient (1) gives rise to a high edge current
density (2), which is followed by an ELM crash (3) if the peeling-ballooning mode
stability limits are exceeded. (figure recreated from [25])

Linear MHD stability analysis is sufficient to estimate the stability limits of the
peeling-ballooning mode. However, it does not offer insights regarding the non-linear
evolution of the mode. The linear model is not capable of making quantitative pre-
dictions about the length of an ELM cycle, the amount of energy lost during an ELM
crash, or even the time-scale of the crash itself. Understanding these characteristics
of the non-linear ELM phase is vital, especially for future larger tokamaks. In a
tokamak of ITER dimensions scaling laws predict that the power expelled during
type I ELMS could strongly reduce the lifetime of the plasma facing components
[26]. The development of mechanisms to control ELMs is therefore an active field of
research.

Over the past years a variety of approaches to ELM control have been studied.
Some of them strive for an increase of the ELM frequency (ELM mitigation), rather
than a complete elimination of ELMs (ELM suppression). This might appear coun-
terintuitive at first, but when ELMs are triggered prematurely large ELM crashes
are replaced by smaller more frequent ELMs. The result is a reduced energy flux to
the plasma facing components, while at the same time the beneficial properties of
ELMs are retained: The expulsion of particles during a crash removes helium ash
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and impurities from the plasma. In case of complete ELM suppression, an alternative
mechanism for the reduction of impurity and ash content has to be exploited.

Two main ELM control techniques are currently considered to be used in the ITER
tokamak:

e Pellet pacing: The injection of small frozen Deuterium pellets may increase
the frequency of ELMs [27] in a controlled manner. Successful ELM mitigation
has been demonstrated in different tokamaks [27-29].

¢ Resonant magnetic perturbations: A set of specifically designed coils ap-
plies a small helical perturbing field to the plasma. The perturbation evokes
a range of different plasma responses, which influence the confinement proper-
ties and stability of the plasma. It has been demonstrated experimentally that
RMPs are capable of ELM mitigation as well as suppression.

In addition, the operation in a naturally ELM-free regime with good confinement
is considered a possibility to avoid ELMs. Such regimes have been found in other
tokamaks, but the extrapolation to ITER conditions is still uncertain. Alternative
ELM control techniques are also under development.
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Chapter 3
Resonant magnetic perturbations

Resonant magnetic perturbations are a promising method for ELM control in ITER.
The first successful demonstration of RMP ELM suppression was achieved in DIII-D
in 2003 [30]. Nowadays most modern tokamaks are equipped with systems suitable
for RMP application, similar to the one installed in ASDEX Upgrade, which is
described in section 3.1.

Subsequently either ELM suppression or mitigation has been demonstrated
in numerous experiments across various devices such as ASDEX Upgrade [31],
KSTAR [32], EAST [33] and JET [34]. A RMP system is also foreseen for ITER [35].
However, a reliant RMP-ELM control strategy for ITER can only be established if
the underlying physical mechanisms are well understood. At the moment there are
several theories that aim to explain RMP suppression or mitigation of ELMs, but
not sufficient evidence to support either of them fully. RMP physics is therefore still
an active field of research.

Historically, RMP penetration was treated based on the vacuum approximation
model, which is presented in section 3.2. It assumes that the total magnetic field
is given as the sum of the RMP field and the equilibrium field, without taking
the plasma response into account. However, the disagreements between theoretical
predictions and experiments made the insufficiency of this model very clear early on.
The response of the plasma alters the total perturbation field significantly, and can
therefore not be neglected. The implications are discussed in section 3.3. Finally, an
insight into RMP-ELM control theories is given in section 3.4.

3.1 ASDEX Upgrade RMP coils

In ASDEX Upgrade the RMP system consists of a set of 16 coils placed inside the
vacuum vessel at the low field side [36]. They are arranged in two rows of eight,
one row above and one below the midplane, which are evenly distributed around the
torus. A schematic drawing is given in figure 3.1.

The five-turn coils are each equipped with independent power supplies, which
allows the adjustment of the current flow. The direction and magnitude of the coil
currents are set up in a way that in total a helical perturbation field is generated. The
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Chapter 3 Resonant magnetic perturbations

field is configured to have one dominant toroidal mode number, which in ASDEX
Upgrade can range from n = 1—4. A low dominant toroidal mode number is common
for RMP fields across devices. Poloidally the perturbation has contributions from a
wider range of mode numbers. The poloidal mode spectrum is adjustable by shifting
the toroidal phase A® between the upper and lower coils. This is often referred to
as coil phasing. As an example the n = 2 configuration with A® = +90° is shown

in figure 3.1b.
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Figure 3.1: Schematic drawing of the RMP coils in ASDEX Upgrade in real space
(upper part) and the (@, 0) plane (lower part). In the lower part the current directions
of the n = 2, A® = +90° configuration are indicated. The current amplitude in the
coils marked with "4+-+" and "--" is higher compared to those marked with "+" and
"' which improves the sinusoidal shape of the perturbation

3.2 Vacuum approximation

For the vacuum approximation it is assumed that the total magnetic field is given by
B™"' = Bg+bPt, as a superposition of the equilibrium field Bg and the perturbation
field bP°'t, as it would be generated by the RMP coils in a vacuum.

The spectrum of bP'* includes a component b?,fﬁg with n, the dominant toroidal

mode number of the RMP, and m, a given poloidal mode number. On the rational
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3.2 Vacuum approximation

surface with ¢(r) = m/n, where the equilibrium field lines complete m poloidal and n
toroidal turns per revolution, the helicity of the bgfﬁ component matches the helicity
of the field lines. These rational surfaces are referred to as resonant surfaces.

Resonant flux surfaces are particularly sensitive to RMPs, because b?rf,% is constant
along the field line. In each toroidal turn the plasma is subjected to the perturb-
ation in the same direction, which displaces the field line slightly further from the
equilibrium position in every revolution. Therefore even a very small perturbation
leads to a considerable field line displacement.

Assuming a ¢-profile with % > 0, if a field line is displaced in positive r direction,
it passes through a region of higher ¢q. This causes it to advance slightly further
toroidally after one full turn compared to its equilibrium trajectory. The toroidal
shift continues until it moves into a region where the magnetic perturbation has the
opposite sign. The process then reverses and the field line moves back towards and
beyond its equilibrium position. Taking all field lines of a resonant surface together
they form the structure of a so-called magnetic island. The Poincaré plot in figure
3.2 illustrates the poloidal cross section of the flux surfaces with magnetic islands.
It is obtained by tracing field line trajectories and marking the position after each
toroidal turn. Figure 3.3 provides a three dimensional representation of the helical
structure of a magnetic island.
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Figure 3.2: The poloidal cross section in Figure 3.3: The flux surfaces of
(0,9 ) coordinates shows that magnetic a magnetic island are nested and
islands form on g=m/n resonant surfaces tube like (figure from [25])

when RMPs are applied. At Un > 0.8 the
field is stochastic (own figure).
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Chapter 3 Resonant magnetic perturbations

The field lines of a magnetic island lie on nested flux surfaces which wrap around
the torus in a tube-like manner. In contrast to the field lines of the equilibrium
configuration, which lie on surfaces with constant Wy, a field line within a magnetic
island passes through different radial positions across the width of the island. As a
consequence, the radial heat transport within an island is dominated by the parallel
transport, which is several orders of magnitude faster than the perpendicular trans-
port. The plasma volume enclosed by the magnetic island is thus basically lost, as
it does not contribute to confinement. This is also reflected in the flattening of the
pressure profile at the location of the magnetic island.

The maximum radial half-width 6,,, of an island located at the ¢ = m/n flux
surface can be estimated to be [37]

1/2
5 = i ‘bg@e’% (3.1)
"\ m(dg/dwt/2) ’ '

where bf,ir,i | is the component of b?,ir,f perpendicular to the equilibrium field line.

The b‘,sz,% component of the perturbation, often termed pitch aligned or resonant
component, impacts the island width. Above a certain threshold the islands grows
so large that islands on neighboring flux surfaces begin to overlap. The degree of
overlapping is given by the Chirikov parameter o [38]

o = dmnF Omitn (3.2)
Am,m—&—l
where Ay, 1,41 is the distance between the ¢ = m/n and the ¢ = (m+1)/n rational
surfaces. Chirikovs overlapping criterion predicts that overlapping islands are present
if o > 1. In these regions the local field line structure becomes increasingly complex
until it is completely chaotic and no longer describable by flux surfaces. This is
referred to as ergodic or stochastic field. The edge region of a tokamak plasma is
particularly prone to ergodization. Here the resonant surfaces lie closer together and
the associated island chains are more likely to overlap. In a region with stochastic
field lines a strong radial transport is expected, as field lines undergo a radial diffusion
while progressing toroidally. Due to the high electron thermal velocity electrons move
along the field lines a lot faster than the heavier ions. The electron heat transport
thus dominates to the stochastic transport.

The original hypothesis of RMP ELM suppression was based on this mechanism.
It was thought that the increased transport would lower the edge pressure gradient
below the peeling-ballooning limit, thus stabilizing the edge region. The first RMP
ELM suppression experiments as well as the RMP coils planned for ITER [35] were

26



3.3 Plasma response

therefore designed to achieve a stochastic edge, quantified by the Chirikov parameter.
However, similar edge stochastization turned out to have varying effects on ELMs |30,
31, 39, 40]. It became apparent that models based on the vacuum approximation
were insufficient to predict ELM control and that the effects of the plasma response
had to be considered.

3.3 Plasma response

The application of RMPs generates different kinds of reactions in the plasma. Some
types of responses are capable of amplifying or reducing the magnitude of the per-
turbation compared to the vacuum approximation. The total magnetic field is then
given by Bt = By + bPert 4 pPlasma  where pPlasMa jg the magnetic field generated
by the plasma response.

3.3.1 Screening

The main effect of the screening response is the suppression of the formation of
magnetic islands on the resonant surfaces. A simplified model helps to understand
the basic idea, a more thorough treatment is found in [41].

In the model the plasma is reduced to a resonant surface with q(m,n), which is
represented by a thin conductive layer with constant W. Only the b?,fﬁg component
of the perturbation field is considered. The conductive layer is rotating relative to
the static perturbation with a slip frequency w. This setup resembles that of an
induction motor, and in an analogous manner, helical mirror currents are induced
in the conductive layer. The mirror currents in turn induce a magnetic field bplasma
of the same helicity as the external perturbation b®**, but pointing in the opposite
direction. Thus, the total perturbation is weakened compared to the vacuum approx-
imation. In the case of an ideally conducting plasma the perturbation is canceled
completely. The efficiency of the screening effect decreases with increasing resistivity.

The mirror currents have an additional effect. They exert a 7 x B torque on the
resonant surface, with the direction of the torque aimed to reduce the slip velocity.
The torque is counteracted by the viscous drag torque from the surrounding (non-
resonant) plasma layers. The rotation slows down until a torque balance between the
viscous torque and the 5 x B torque is established. If the amplitude of the external
perturbation is sufficiently strong, the 5 x B torque outweighs the viscous torque. As
a result, the velocity at the resonant surface is brought to zero locally. Without the
differential velocity between the plasma layer and the perturbation the generation of
eddy currents is stopped abruptly, and no further screening takes place. When the
coil current amplitude is increased over time, this leads to a bifurcation from a state
with small islands that are rotating with the plasma to a state with large, stationary
islands. The transition is called locked mode onset.
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Chapter 3 Resonant magnetic perturbations

The efficiency of the screening varies radially with the plasma parameters, in par-
ticular with the plasma rotation. It should be noted that from two-fluid modeling
the perpendicular electron velocity v. | arises as the relevant rotational quantity,
instead of the plasma fluid velocity [42-44].

In the core of the plasma the screening effect is generally rather robust. In most
cases, the rotation is strong and the resistivity is low due to the high temperatures,
therefore the mirror currents are typically sufficient to completely shield the resonant
component of the perturbation field. Efficient core screening is a strict necessity to be
able to use RMPs for ELM control, because the substantial confinement degradation
associated with island formation in the core has to be avoided. This circumstance
poses an upper limit on the coil current amplitude.

At the edge the conditions are quite different. The lower temperatures and weaker
plasma rotation would suggest an inefficient screening. Indeed, if mode penetration
occurs, it usually takes place at the plasma edge first. However, in the pedestal
region of an H-Mode plasma, the E x B- and diamagnetic rotation provide large
contributions to the velocity of the electron fluid. The additional rotation is often
sufficient to screen RMP fields. There are two notable exceptions: One is the bottom
of the pedestal, where high resistivity inhibits efficient screening. This region is often
found in a stochastic state. The other exception is dependent on the electron velocity
profile. If the electron perpendicular velocity reverses (ve | = 0) close to a resonant
surface, the formation of a magnetic island is very likely. We will see in section 3.4,
that this is the base for one of the ELM control theories.

3.3.2 Amplification

Apart from the screening response another type of plasma response is often observed.
Resonant magnetic perturbations can couple to and drive marginally stable MHD
modes [45-47]. In the cases relevant for ELM-RMP investigations the peeling mode
and the ballooning mode are close to their stability limits. The high n ballooning
mode does not couple easily to the low n RMPs, and therefore does not play a role
for the plasma response. On the other hand, the low-n peeling mode (also called
kink mode) couples easily to the RMPs. The observed amplification of modes just
above the resonant modes (m > gn) is called kink response. It is typically separated
into the core kink response and the edge kink response. The core kink response is
characterized by the excitation of modes with low poloidal mode numbers, with the
strongest amplification occurring in the core of the plasma. In contrast, the edge kink
response causes the excitation of higher poloidal mode numbers and is restricted to
the edge region. The name "kink response" refers to a characteristic kinking of the
field line, which, at the edge, is related to the deformation of the plasma boundary
and a displacement of the X-Point. The magnitude of the edge kink response varies
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with the poloidal spectrum of the RMPs, and is therefore strongly dependent on the
differential phase between the upper and lower coils.

The edge kink mode may couple to and amplify the resonant component of the
perturbation [12]|. It can prevent the screening of the RMPs at the edge. Since the
pitch aligned component is related to the magnetic islands width, rotation braking
and the deformation of the boundary, a strong edge kink amplification is thought to
play an important role for ELM suppression and mitigation [12, 13, 48-50].

3.3.3 Poloidal Spectrum of the perturbation

The poloidal spectrum of the perturbation can be influenced by the coil configuration
and the plasma response. It determines to a large extend the effects the RMPs have
on the plasma and possible ELMs.

The poloidal mode spectrum can be illustrated particularly well with a 2D spectral
analysis like the one shown in figure 3.4a. The n = 2 component of the perturbed flux
Whert,n—2 is split into the contributions from the individual poloidal harmonics m,
and plotted over the normalized magnetic flux W as radial coordinate. The radial
positions where ¢(¥y) = m/n (with n=2) are marked with white crosses for each
poloidal harmonic. The Wyt n—2 values at these locations correspond to the pitch
aligned (resonant) components of the perturbation. They can be extracted from
the 2D spectral analysis and plotted as a radial profile, where the (m,n)-resonant
component is given at the Wy position of the (m, n)-flux surface. An example of the
radial profile of the resonant component is given in figure 3.4b.

Another line is indicated with red markers in the spectral analysis. It highlights
the (m+2,n)-component of the perturbation, which is associated to the kink modes
situated just above resonance. The poloidal components with lower m corresponds
to the core kink response, while the higher m modes form the edge kink response.
In analogy to the radial profile of the resonant components the kink components can
also be plotted as a radial profile. The (m + 2,n)-kink components are given at the
U position of the (m,n)-flux surface, as is shown in figure 3.4c.

3.4 ELM control with RMPs

Access to ELM suppression and mitigation with RMPs is only given for a limited
region in parameter space. An important and partially still open question is to
determine how and why the individual parameters like collisionality, edge density,
edge safety factor, plasma shape or plasma rotation limit the access windows. Apart
from the equilibrium parameters the coil configuration has to be considered as well,
including the choice of amplitude of the coil current, the dominant toroidal mode
number or coil phasing. For some of the parameters general or machine-specific limits
have been found in experiment and modeling [31, 51-54]. However, an encompassing
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Figure 3.4: a) Exemplary 2D RMP mode spectrum including the plasma response,
given over the poloidal components m and the radial coordinate Wy. The (m,n)-
pitch aligned component of the perturbation are marked with white crosses. Its
radial profile is given in figure b. Figure ¢ gives the (m+2,n)-kink component, which
is indicated with red marks in figure a.

theory that fully explains the physical mechanisms behind ELM control and relates
the access windows across devices is still lacking. There are currently several working
theories based on modeling and experimentally found effects.

A phenomenon that frequently accompanies ELM suppression and mitigation is the
reduction of the edge density [55, 56], commonly referred to as "density pump-out".
The edge stochasticity is unlikely to provide the main contribution to the pump-
out, as it primarily increases the heat transport. The expected associated drop in
temperature is observed, but it is far less drastic than that of the density. The actual
origin of the density pump-out is still under investigation [57]. It could be assumed
that density pump-out alone is sufficient to cause ELM mitigation, by reducing
the pressure gradient below the peeling ballooning mode threshold. To check this
assumption cases with and without RMPs with similar pedestal parameters have
been compared. In both modeling [11] and experiment [58], ELM suppression is
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only found for the case with applied RMPs. While it is therefore unlikely that the
pressure reduction alone is responsible for ELM mitigation, the density pump-out
could still play a vital role in the overall mechanism and further non-linear effects
are likely contributing [10, 13].

The formation of a large island at the pedestal top is investigated [59, 60| as
another explanation for ELM control. This theory requires that the electron velocity
profile features a zero crossing at the position of a resonant surface located at the
top of the pedestal. Without the rotation no screening takes place and the RMPs
penetrate and form locked modes. Subsequently an island forms at the top of the
pedestal, strongly enhancing the local transport and flattening the pressure profile,
which prevents the pedestal from growing in width. The reduced width keeps the
edge region in a peeling-ballooning mode stable regime.

An alternative theory attributes ELM control to the deformation of the plasma
boundary. The helical RMPs perturb the boundary sinusoidally, which leads to the
formation of lobe-like structures around the X-point [61]. When the lobes intersect
with the divertor, the edge transport may increase, which is expected to modify the
edge profiles. In addition, stability analysis shows [62] that the boundary deformation
may lower the peeling-ballooning stability limits, which could cause ELMs to be
replaced with continuous transport across the transport barrier.
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Chapter 4
Computational Framework

The variety of physical mechanisms discussed in the previous chapter demonstrates
that the use of advanced physical and computational tools is a necessity to investigate
the RMP plasma response. While ideal MHD is sufficient for basic equilibrium and
stability considerations, it does not capture the complex mechanisms of the plasma
response well. Instead the non-linear reduced MHD picture is used as model in this
thesis . It is implemented in the highly parallelized code JOREK, which uses a finite
element method and a fully implicit time stepping scheme to solve the equations in
realistic X-Point geometries. Due to its modularity JOREK offers various physics
models with different extensions, which provides advantages for different problems.
For the scope of this thesis an extended reduced MHD version of JOREK is used
together with the free boundary extension STARWALL. In the following, brief in-
troductions to the codes JOREK and STARWALL are provided in chapter 4.1 and
chapter 4.2 respectively. The chapters outline the information given in [1], where a
detailed description of the design and full capabilities of JOREK can be found.

4.1 JOREK

4.1.1 Physics model

Reduced MHD is a simplified version of the full, resistive MHD model. It has the
advantage of using fewer variables to describe the system, which lowers the compu-
tational cost. In addition, due to assumptions made to the velocity the fastest MHD
dynamics are removed, so that larger time steps can be used in the simulation.

The derivation of the set of reduced MHD equations used in JOREK is based
around the assumption that the total magnetic field is dominated by its toroidal
component (|Bg| > |B,q|), and that By is constant in time. This assumption
allows to reformulate the magnetic field and the velocity as follows:

B =FV¢+ VU XV (4.1)
v =R’V x Vu+v B
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Symbol Definition
A* RV - ( RQV)
Apol R 8R(R8R + 822)
v |B|2B v
Vi V-V
0AOB _ OB OA
[A, B] Oz 9y — 9z oy

Table 4.1: Definition of operators in the reduced MHD equations

where By = Fy/R and Fj is a constant and ey is the toroidal coordinate. The
velocity is expressed in terms of a stream function u = ®/Fp, where @ is the electric
potential. The perpendicular velocity corresponds to the E x B velocity in the
poloidal plane.

With these assumptions for the magnetic field and the velocity the set of reduced
MHD equations can be derived from resistive MHD. They consist of five evolution
equations for the five variables: the poloidal magnetic flux ¥, the velocity stream
function u, the mass density p, the temperature 7' and the parallel velocity v,
together with two definition equations for the current density j and the vorticity w.
To simplify the notation some operators are introduced in table 4.1

The evolution equation of the poloidal flux is given by
aa\f =R[V,u] — Fogqb +1 (5 — jo) (4.3)
An artificial current source jy was defined, which can be used to e.g. keep a constant
current profile over time.

The evolution of the flows is separated into two equations, the parallel momentum
equation and the vorticity equation:

2 P2
B2%+ivv v.v,, (%Y i[ Bﬂ—”ﬂ’a(”B)
P= "ot PUINV pol =" Vpol \ gy ) Top LY 2R? a¢
1  Rop
OV portt
RV - (R%é’;l) = [pR4w,u] ~3 {R2p, R? |Vpolu|2}
Fy 9j
— [R?, pT] + [¥, 4] — 2222 2A
[R?, pT] + [, j] R og T AY

(4.5)

For the density and the temperature evolution equations the diffusion coefficients
and sources have to be introduced. Here £ and k) are the perpendicular and parallel
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heat diffusion coefficients, D is the perpendicular particle diffusion coefficient, and
S, and St are the particle and heat sources respectively. The equations are then
given by

0 0 1 Fy 0
ap —p<—2u+ [’U”,\I/] +0U”> +R[p,u]

ot 0Z R R? 0¢
1 F() 8[)
—) (R[p, U] + R28¢> +V - (DLVip)+5, (4.6)
or u 1 Fy 9y
pa = — pT(’)/ — 1) <_28Z + E [U”,‘I’] + ﬁ% + PR[T7 u]
1 Fy oT
— py) (R[T7 U]+ RZ%) +V- (R VAT + 5V T) + S0 (47)

Lastly, the current density j and the vorticity w are obtained from definition
equations

j=A*T (4.8)
w = Apqu (4.9)

JOREK solves this set of equations in their weak form. The transformation to
the weak form is carried out by multiplication of the equations with suitable test
functions, and integration over the whole plasma volume. Additional terms can be
added to the equations to arrive at an extended reduced MHD model. This allows
the inclusion of e.g. diamagnetic effects or a realistic evolution of a bootstrap current.

4.1.2 Grid construction

The weak form of the reduced MHD equations are solved on a finite element grid.
JOREK uses different approaches for the spatial discretization in the toroidal and
poloidal direction.

In the toroidal direction the discretization is carried out via a Fourier decompos-
ition into np,, harmonics. The use of Fourier harmonics exploits the periodicity of
the toroidal system, which lowers the computational cost. In addition, the Four-
ier harmonics facilitates the distinction between different physical instabilities with
characteristic toroidal mode numbers.

The poloidal plane is discretized by Bezier elements. Each Bezier element is as-
sociated with a local (s,t)-coordinate system, with 0 <s < 1 and 0 < t < 1, with
s,t L ¢. The physical quantities within the 2D-Bézier element are expressed in the
basis of 2D-Bernstein polynomials Bg i(s,1)

3 3

X(s,t) =Y > Pi;B}(s,t). (4.10)

i=0 j=0
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P; ; denotes the physical quantity at the control point ¢, j of the element.

The finite element grid is set up so that the elements are aligned with the equi-
librium flux surfaces, which allows for an increased numerical accuracy. Therefore,
the first step in a normal JOREK simulation is the construction of the flux-aligned
grid. The equilibrium flux surfaces are calculated by solving the Grad-Shavfranov
equation on an initial grid. For the solution of the Grad-Shavfranov equation the
pressure profile p(¥,,) and the profile of FF'(¥,), with F' = RB, and F' = %F are
provided as initial conditions. The pressure profile is given in terms of the temper-
ature and density profile individually. In addition, the solver requires the poloidal
flux U(R,Z) at the boundary as input. After an initial guess the equilibrium is
found iteratively. Then, the flux-aligned grid is constructed and the equilibrium is
recalculated on the new grid for better accuracy. Finally, the physical variables are
initialized. An example for the initial and the flux-aligned poloidal grid is shown in
figure 4.1.

4.1.3 Time stepping

Once the grid and initial values of the variables are established, the variables are
evolved in time. This is done via an implicit scheme, which has the advantage that
the time step size can be chosen independently of the grid size. This would not be
the case for explicit schemes, which are restricted by the CFL condition [63].

For the time stepping the physical variables are summarized in the vector w and
the equations are brought into the form a%(tu) = B(u,t). The time evolution is then
carried out following the scheme

[(1 +6) (g’:)n — Atf (a;a)"] Ju = AtB" +¢ <?;:>n5u”1. (4.11)

u

The change of the variables from the time step n to the time step n+ 1 is given by
du™ = w1 — u™. The parameters (0, &) enable the selection of different schemes,
with e.g. the (6,&) = (1/2,0) for the Crank-Nicholson scheme. Implicit time step-
ping schemes like these represent the system of equations by a large sparse matrix.
The considerable computational cost of solving such a system at every time step is
one of the main disadvantages of implicit schemes. However, this cost is reduced
significantly in JOREK with the help of sophisticated solvers and physics-based pre-
conditioners.

The time evolution of the quantities is usually first carried out for the axisymmetric
toroidal mode (n = 0) only. This allows the plasma flows to establish from the
initial conditions to a steady state. Once the steady state is reached, the selected
non-axisymmetric (n # 0) modes are included in the simulation.
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Figure 4.1: JOREK uses two types of poloidal grids: An initial grid (gray) is used
to solve the equilibrium equation. Based on the equilibrium solution, a flux aligned
grid (red) is constructed and used for the simulation. For clarity, the resolution of
the grids is strongly reduced.

4.1.4 Boundary conditions

The modularity of JOREK can be used to employ different types of boundary con-
ditions in the simulations. Two types of boundary conditions will be used in this
thesis, termed fixed boundary and free boundary.

In fized boundary simulations, Dirichlet conditions are used, so that all variables
are fixed in time at the boundary. The boundary in the divertor region, where
the field lines intersect the boundary, are treated separately with Bohm boundary
conditions. There, the parallel velocity is set to be the ion sound speed, and free
outflow conditions are set for the density. All other variables are still fixed in time
at the boundary. Physically the application of Dirichlet boundary conditions to the
poloidal flux and the plasma current corresponds to an ideally conducting wall at
the boundary of the JOREK computational domain. In the derivation of the weak
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form of the reduced MHD equations the boundary conditions appear as integrals
over the boundary. With fixed boundary conditions the boundary integral in the
current definition equation vanishes.

In free boundary simulations, the Dirichlet boundary conditions for the poloidal
flux and the plasma current are removed, and natural boundary conditions are ap-
plied. As a consequence, the boundary integral in the current definition equation
does not vanish anymore and has to be considered in the equations. The boundary
integral can be expressed in terms of the magnetic field tangential to the compu-
tational domain boundary Bi,n, = B X m, where n is the normal vector of the
boundary. A suitable expression for By, has to be found. When surrounding struc-
tures are included in the simulation, the inductances and self-inductances between
different structures and the plasma have to be taken into account self-consistently
and time dependently. This is the task of the STARWALL code. It provides a re-
lation Biay = f(Bn, Io) between By,, and the magnetic field generated by plasma
currents B,,, and the imposed currents I in the structures. The coupling of JOREK
to the code STARWALL is described in the following section.

It should be noted that the free boundary conditions can be applied to each toroidal
harmonic individually. Within this thesis free boundary conditions will only be
applied for the n # 0 components. This way the conducting structures do not affect
the calculation of the equilibrium.

4.2 STARWALL

The STARWALL code gives the relation Bia, = f(B,) in the form of response
matrices. They are obtained by applying a finite element method to the set of equa-
tions, which describes the currents in the structures surrounding the plasma and the
plasma currents. It consists of the Maxwells equations together with Ohm’s Law for
conductive structures. The problem solved by STARWALL is also called Neumann
type problem. When the geometry of the plasma, walls and coils is provided, STAR-
WALL finds a set of matrices M,,., M., so that the following relation is fulfilled:

==vac’

Bian = M,q.Bn + M, Y. (4.12)

Here, Y is a vector containing the information of the imposed coil current I, as
well as the induced wall current potentials ®,,,;;. An evolution equation for the wall
current potentials is also provided by STARWALL, so that the wall currents can be
evolved in time by JOREK’s implicit time stepping. Since the matrices M, ,. and

M., do not depend on the plasma dynamics, they have to be calculated only once
before the start of a JOREK simulation.
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For the implementation with the finite element method the conducting structures
are represented by infinitely thin surfaces. The plasma volume is represented by a
thin shell in which virtual surface currents flow, that generate the same magnetic field
as the plasma volume. The virtual currents do not have to be calculated explicitly
as they vanish naturally from the equations. With this virtual-casing principle the
problem in STARWALL is reduced to finding the current flowing in thin surfaces
separated by vacuum regions.

The thin surfaces are then discretized as triangles. Within each triangle the current
is assumed constant, so that it can be approximated with current potentials at the
triangle nodes.

STARWALL offers three different approaches to the implementation of coils: The
first two classes of coils are either thin or broad axisymmetric bands, which are not
used in this thesis. For the third class the coil is constructed from a list of points
along the coil outline. This class of coils is used to create non-axisymmetric coils,
such as RMP coils, in a JOREK-STARWALL simulation.

4.3 Simulation setup

In this thesis, the plasma response to RMPs in realistic ASDEX Upgrade plasmas is
investigated for both fixed and free boundary simulations. The set up used for the
simulations is explained in the following.

4.3.1 Equilibrium

In order to compare the effects of the boundary conditions and coil configurations
the same equilibrium is used in all cases. A detailed description of the particular
equilibrium configuration is found in [7], where it has been used for ELM cycle
studies.

The equilibrium used in JOREK is reconstructed from a stable and stationary
experimental equilibrium after an ELM-crash in an ASDEX upgrade discharge. The
reconstruction is carried out by the code CLISTE [64], which extracts the equilibrium
parameters from the experimental shot file. The initial temperature and density
profiles are shown in figure 4.2. The edge density is relatively high, so that no RMP-
ELM suppression is expected in the simulations. The g-profile is given in figure
4.3

The radial heat and particle diffusion profiles replicate an edge transport barrier,
which leads to the build up of a pedestal region with steep pressure gradients at the
edge. Diamagnetic effects and bootstrap currents are implemented in JOREK by the
addition of extra terms. In the reduced MHD equations, the inclusion of diamagnetic
effects is, among other things, necessary for the development of the E,.-well.
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Figure 4.2: Temperature T' = T, + T; and Figure 4.3: q profile of the equi-
electron density profiles n. of the equilib- librium. The position of the q =
rium. m/2 rational surfaces is indicated

by the top axis.

Only the even toroidal mode numbers between n=0 and 12 are used for the sim-
ulations. This lowers the computational cost, while at the same time retaining the
important plasma dynamics.

4.3.2 Coil configuration

Several coil configurations are available with the ASDEX Upgrade set of RMP coils.
In this thesis, a perturbation with dominant toroidal mode number n = 2 is selected.
To achieve an approximately sinusoidal wave form the coil current pattern is similar
to the one shown in 3.1. The effective coil current I = I * Nyyrn, Where Ny = 5t
is the number of turns in an ASDEX Upgrade RMP coil, is applied with I, =
1185 At, I+ = 1205 At, I = —1185At and I__ = —1205 At. For simplicity this
will be referred to as I = 1kAt case. For some comparisons, the coil currents
are increased by a factor of 3 or 6, which will be referred to as 3kAt and 6 kAt
respectively.

4.3.3 Free boundary RMP simulations

In the simulations with free boundary resonant magnetic perturbations JOREK is
used in combination with STARWALL. For the calculation of the response matrices
STARWALL requires the position of the vessel wall and the coils. The wall is placed
at a large distance dywan to the plasma, with Rpajor > dwan, so that it does not
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influence the plasma dynamics. The coordinates of the 16 ASDEX Upgrade RMP
coils are provided in the form of individual points.

During the simulation the RMPs are turned on shortly after the initialization of
the non-axisymmetric modes, at about ¢t = 0.1 ms. The coil current was ramped up
to its nominal value, either I = 1kAt or I = 3kAt, over 0.3 ms. The comparison
between different cases are carried out once the magnetic energies have saturated.

4.3.4 Fixed boundary RMP simulations

For the fixed boundary RMP simulations the coils are not implemented directly in the
simulation. Instead, the perturbation is imposed via the boundary condition of the
poloidal flux ¥. In previous JOREK fixed boundary RMP simulations the vacuum
field of the RMPs at the computational domain boundary was provided by external
codes, such as ERGOS [65]. For this thesis, a python script has been developed,
which calculates the perturbed poloidal flux at the JOREK boundary points. The
script uses the exact same list of points for the RMP geometry as STARWALL, so
that differences in the plasma dynamics are not caused by inconsistencies in the coil
shapes between codes.

Once the boundary conditions and discretized for the JOREK grid, they are im-
ported at the beginning of the simulation. Again, the perturbation at the boundary
is ramped up over 0.3ms. During this phase the boundary condition for ¥ is not
fixed in time. However, since the plasma dynamics are not able to influence the
boundary conditions, we still refer to this as fixed boundary. Once the coil currents
are fully ramped up, the boundary conditions are fixed in time.
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Introduction

In the following part, the results of the work carried out for this thesis are presented.
First, the validation of the non-axisymmetric coils implemented in STARWALL is
shown in chapter 5. The non-axisymmetric coils represent the RMP coils in the
remaining simulations, so their correct functioning is essential to ensure accurate
results. Chapter 6 demonstrates the first free boundary RMP simulations. A detailed
analysis is carried out and the results are compared to the theoretical expectations
concerning the plasma response. In chapter 7 the free boundary RMP simulations
are compared to fixed boundary RMP simulations. The impact of the boundary
conditions on the plasma response is investigated. Particular importance is given to
the implications for the pitch aligned component of the perturbation. In addition,
the influence of the completeness of the toroidal RMP spectrum is investigated, by
comparing the RMP penetration when the the full spectrum is applied, compared to a
reduced RMP spectrum, where only the dominant toroidal mode of the perturbation
is applied. Finally, chapter 8 demonstrates the influence of the free boundary setup
on ELM stability. In addition, a first demonstration of a free boundary simulation,
where RMPs are applied to the ELM profile, is given. It is the first step towards
ELM-RMP control simulations with JOREK-STARWALL, which will be subject to
future work.
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Chapter 5

Validation of non-axisymmetric coils

In the past years, numerous benchmarks have been carried out with JOREK-
STARWALL [66-69|. However, the non-axisymmetric coils, which are used to rep-
resent RMP coils in the rest of this thesis, have not been covered yet by these tests.
For this reason, a validation is carried out in the following.

The coils can be assumed to have been implemented accurately if the correct
By, is obtained at the JOREK boundary in a JOREK-STARWALL simulation.
This quantity will therefore be used as the figure of merit. Before the results are
discussed the setup is explained in section 5.1. The validation itself is split into two
parts: First, in section 5.2 a basic test is carried out, which checks that in the absence
of other conductors the By, generated by current carrying non-axisymmetric coils
agrees with the Biot-Savart Law

ot
dBtan:den:Z—OIdlx r-r

T |r — /|3

(5.1)

The second part of the validation in section 5.3 covers the interaction between
surrounding passive conductive structures, such as the wall, with the coil and their
joint effect on the boundary. Lastly, a correction to the STARWALL code that has
been carried out in the process of this validation is discussed in section 5.4.

5.1 Validation setup

A simple circular current loop with Radius Rc = 1m is used as exemplary non-
axisymmetric coil. It’s center is placed at the midplane, at toroidal angle ¢ = 0° at
1 m distance from the computational domain boundary as shown in figure 5.1 and
its current is ramped up to Ic = 1kAt at the beginning of the JOREK-STARWALL
run. The plasma is removed in the simulation, so that it does not contribute to Biay.
The coil is highly localized, which requires a good toroidal resolution for the tests.
Therefore, the toroidal modes up to n = 15 are included. For the real space rep-
resentation of the JOREK boundary in STARWALL n, = 30 points are selected.
Convergence tests have been carried out to ensure that the resolution is sufficient.
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Figure 5.1: The setup for the validation of the 3D coils. The coil (black) is placed
at d = 1 m from the plasma boundary. The tangential magnetic field Bi,, generated
by the coil is indicated on the boundary.

5.2 Interaction of coil and plasma boundary

With the described setup the magnetic field at the computational domain boundary
is calculated using JOREK-STARWALL. In the absence of a plasma and passive
conductive structures the calculated field can be compared directly to the predictions
of the Biot-Savart Law. Figures 5.2a and 5.2b show B, at the JOREK boundary
as function of the poloidal and toroidal angle as computed by JOREK-STARWALL
and a numerical implementation of the Biot-Savart Law respectively. Figure 5.2¢
gives the poloidally averaged absolute error as a function of the toroidal angle. The
order of magnitude of the error is about two times smaller than that of the magnetic
field and the shape of the magnetic field generated by the coil is practically identical
between the two methods. The small remaining differences could be explained by
numerical effects due to the finite resolution in the computation of B,y in either
JOREK-STARWALL or in the numerical implementation of the of the Biot-Savart
Law.

5.3 Coil-wall interaction

The setup presented in section 5.1 is extended by a conductive wall placed between
the boundary and the current loop. Two cases are investigated, one with an ideally
conductive wall, and one with a highly resistive wall. In both cases, mirror currents
are induced in the wall. Their magnitude and direction is shown in figure 5.3a
based on the case with the ideally conductive wall. Figure 5.3b shows the time trace
of the poloidally averaged absolute tangential magnetic field |Biay| at the JOREK
boundary close to the coil. When an ideally conductive wall is placed between the
coil and the plasma, the coil magnetic field is shielded almost completely for the
duration of the simulation. This implies that the magnitude and direction of the
wall currents is correct, so that the induced fields cancel the external perturbation.
In the case of the resistive wall similar shielding effects are observed at first. As the
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Figure 5.2: The tangential magnetic field Byay as a function of toroidal angle ¢ and
poloidal angle # as obtained by (a) JOREK-STARWALL and (b) the Biot-Savart
Law. The poloidally averaged absolute error is shown in (c).

wall currents begin to decay the influence of the wall decreases until the fields match
the case without wall.

5.4 Correction to STARWALL code

In the course of this validation a correction to the STARWALL code has been carried
out.

As introduced in section 4.2, By, is provided by STARWALL in the form of
response matrices. For the purpose here, equation 4.12 is expanded slightly, by
splitting M., into the individual contributions from the coils (MH o> Ic) and the wall

(M, ®)

Bg;O :MvacBn + MHw(I)w + M”CIC (52)
The calculation of the coefficients of these matrices requires a summation over
the triangles, that represent the discretized thin surfaces of coils, walls and plasma.
In addition, to match with the Fourier representation of JOREK, the matrices are
calculated separately for each toroidal mode n, so that Bia, = B0 + B9,

tan tan
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Figure 5.3: a) Induced wall current stream function pot _w and wall currents (vectors)
in the ideal wall case. b) Time trace of the poloidally averaged absolute tangential
magnetic field |Byan| at the JOREK boundary.

In the calculation of the axisymmetric component of the matrices an erroneous

~ n=0
sign had been introduced in the summation over the triangles in the Mﬁw and
~ n=0

Mﬁe matrices. It effectively resulted in a sign change in the matrix coefficients.

Therefore the calculation of Bi,, was implemented as

_ _ _ ~n=0 _ ~ n=0 _

B0 = MO B0 4 (=M, )(—@570) + (=M. ) (— 1179, (5.3)
0 ~ n#0 ~ n#£0

B0 = MiZ0Bi#0 My, @570+ M7 (— 1070, (5.4)

The consequences can be considered term by term:

The first term remained unaffected.

The second term contains the effects of the induced wall potentials. The axisym-
metric wall currents were induced in the opposite direction to what is foreseen, due
to the sign error in Mﬁ;o. However, because of the cancellation of the signs the
correct contribution to Bi,, was calculated. In comparison to the non-axisymmetric
component the wall currents were induced in the opposite direction. This is physic-
ally inconsistent, but since the wall currents are linear, it does not have an impact
on Bi,,. The wall currents themselves are not used for data analysis in JOREK-
STARWALL.

The last term on the right hand side describes the influence of coils with externally

~ n=0
applied currents. As a response to the incorrect sign of Mﬁc the convention of the
direction of the coil current had been changed from Ic to —I¢c. This way, Bian, was
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obtained correctly for axisymmetric coils, where Mﬁ:ﬁ 0 _ 0. All simulations that
had been carried out to this date included only axisymmetric coils. Therefore, the
correct boundary conditions had been obtained for all these cases.

In the presence of non-axisymmetric coils the last term in equation 5.3 does not
vanish anymore. Since the coil currents are prescribed for all modes collectively,
the change of the convention of Io combined with the correct response matrices
would lead to an incorrect result. However, non-axisymmetric coils with a prescribed
current are used for the first time for this validation.

To summarize, the inconsistency in the sign of the mentioned STARWALL matrices
did not affect the plasma dynamics of any of the JOREK-STARWALL simulations
carried out to this date. The boundary conditions were calculated correctly in all
these simulations. Once the inconsistency was detected, it was resolved by adjusting
the signs of the concerned matrices. Now even in the presence of non-axisymmetric
coils the correct results can be obtained. The STARWALL extension is now func-
tioning properly for both axisymmetric and non-axisymmetric coils.
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Chapter 6
Free boundary RMP Simulations

In this chapter the results of the first JOREK-STARWALL RMP simulations are
presented. First, in section 6.1 the results are examined and compared to the the-
oretical expectations, that were introduced in chapter 3. Then, the influence of the
poloidal spectrum will be investigated by comparing RMP simulations with varying
coil phases. Unless specified otherwise, the simulations are set up as explained in
section 4.3.

6.1 General features of the plasma response to RMPs

At the beginning of the JOREK simulation the RMPs are turned off to allow the
equilibrium flows to establish. Then, the current in the RMP coils is ramped up over
At =~ 0.3 ms to the nominal I~ value. The time evolution of the normalized magnetic
energy Fiuqg.n of each toroidal mode n is shown in figure 6.1a. The penetration of
RMPs causes the magnetic energies to grow until a saturated state is reached. Differ-
ent toroidal modes saturate at different magnetic energies, with the more dominant
modes of the perturbation saturating at higher values. Here, the n=2 mode, which
is the dominant toroidal mode of the perturbation, saturates at the highest value,
followed by the n=6 mode, which is the strongest side band mode.

A poloidal cross section of the perturbed magnetic flux that establishes in the
saturated state (at ¢ = 0.6 ms) as response to the RMPs is shown in figure 6.1b. The
comparison to the vacuum approximation of the flux shown in figure 6.1c gives a
first impression of the impact of the plasma response, which is analyzed in detail in
the following.

First, we want to focus on the effects that occur in the plasma as response to the
RMPs. For this purpose three simulations with different coil currents are carried out
with I = 0kAt (no RMPs), I = 1kAt and I = 3kAt. The coil configuration
Ad = 90° is selected for this comparison, but the general features discussed in this
section appear for all coil configurations.

When RMPs are applied mirror currents establish in the vicinity of the resonant
flux surfaces. The poloidal cross section of the n = 2 currents in figure 6.2a reveals
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Figure 6.1: a) Time evolution of the magnetic energies of the individual modes.
b) Poloidal cross-section of the total W,,—o perturbed flux including the plasma re-
sponse. c¢) Poloidal cross-section of the total ¥, _y perturbed flux in the vacuum
approximation.

the helical structure of the currents. One of the effects of the mirror currents on
the plasma is the reduction of the perpendicular electron velocity v, ., due to the
J X B-torque. As can be seen in figure 6.2c, v . is reduced when RMPs are applied
(Ic = 1kAt and I = 3kAt). The velocity braking mainly occurs close to the edge,
where the largest mirror currents are induced by the RMPs. It is small for the lower
coil current, but has a distinct effect at the higher coil current of I = 3kAt. When
the coil current is increased even further, mode penetration at the rational surfaces
would be expected, where the electron perpendicular rotation drops to zero and the
resonant perturbation including the plasma response becomes similar to the vacuum
value again. However, as discussed in more detail in the following chapter, already
at coil currents below the mode penetration threshold a confinement degradation is
observed for this particular equilibrium. Mode penetration is therefore not shown
here.

In addition to the induction of mirror currents the formation of magnetic islands
chains is observed especially in the edge region of the plasma. The width of the is-
lands increases with the coil current, which can be seen when contrasting the (¥, 0)-
Poincaré plots for the three coil current amplitudes (figure 6.3a-c). It also shows that
the width of the stochastic layer and the kinking of the field lines increase with I¢.

In figure 6.3d-f the Poincaré plot is shown in (R,Z)-space. Due to the distorted
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Figure 6.2: a) Poloidal cross section of the n=2 contribution of the current, showing
the helical structure of the mirror currents. The (m, n)-resonant surfaces with n = 2
and m = 2—14 are marked with white lines. ¢) The radial profile of the perpendicular
electron velocity v, . shows the velocity braking due to the RMPs in the edge region.

boundary lobe structures form in the X-Point region. Again, the higher coil current
has a greater impact and leads to the formation of longer lobes, which may contribute
to a larger change in the edge transport behavior.

The plasma response described above changes the total perturbed field significantly
from the vacuum approximation. The poloidal spectrum of the RMPs with and
without plasma response is illustrated in the 2D spectral plot in figure 6.4. The n=2
component of the flux is shown as function of its poloidal Fourier components m and
the radial Uy coordinate. The radial location of the resonant flux surfaces (with
m = gn) is indicated in the figure with white crosses.

In the vacuum approximation the RMPs clearly excite the n=2 component of
the flux even around the resonant surfaces. Once the plasma response is included,
the amplitude of the perturbation reduces at the location of the resonant surfaces.
Especially in the core region the perturbation drops to zero, while a finite component
remains at the edge. In addition to the screening response the amplification of the
edge kink and core kink modes, with m > ¢n is seen.
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Figure 6.3: Poincare plots for different coil currents I. in (¥, #) space (a-c) as well
as real space (d-f). Field lines that originate from the same radial position in the
plasma are drawn with the same color in a-c. In d-f the position of the last closed
equilibrium flux surface is marked in red and the divertor structure in black.
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Figure 6.4: Poloidal spectrum of the n=2 flux perturbation. The magnitude of the
m-~th poloidal mode of the ¥,,_o perturbation is given over the radial coordinate for
a) the vacuum case and b) the total perturbation, including the plasma response.
In ¢) the impact of the plasma response is demonstrated by plotting the difference

A\ijert,n:2 = \ijert,n:2, total — \I’pert,n:2, vacuum
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6.1 General features of the plasma response to RMPs

A note on the choice of coil current magnitude Coil currents of up to Ic = 3kAt
are on the small side of what is used in ASDEX Upgrade RMP experiments. They
are more typically found to be about I 2 5kAt.

This motivated the execution of a test case with I = 6 kAt. However, the resulting
conclusion is that these higher coil currents are not ideal for the studies in this
thesis. They cause a strongly increased heat and particle transport, which hinders the
formation of steep pressure gradients. The edge density, pressure and temperature
profiles, as well as the particle and heat content, are shown in figures 6.5 and 6.6
respectively. Since the goal of this thesis is to provide a first step towards RMP-ELM
control studies, the cases with a steepening pressure gradient are of greater interest.
Therefore, the majority of the simulations in the remaining thesis are carried out for
I < 3kAt. In future studies the equilibrium may be modified, so that the plasma
parameters resemble those of experimental RMP studies more closely. This should
allow for higher coil currents without confinement degradation.
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Figure 6.5: Pressure, density and temperature profiles with coil currents Io =
0kAt, 1kAt,3kAt and 6 kAt at ¢ = 0.8 ms.
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Figure 6.6: Time evolution of the particle content and thermal energy of the plasma
at different RMP coil currents in the RMP penetration phase.
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Chapter 6 Free boundary RMP Simulations

6.2 Impact of the coil phase on the plasma response

While the effects described in the previous section generally occur for all coil phases,
their magnitude may vary. Therefore, the plasma response is examined for three
different coil phases A® = —90°,0°,90° for I, = 1kAt in the following.

The spectral analysis of the n=2 component of the magnetic flux is shown in
figure 6.7 for the three coil phases, together with their vacuum RMP fields, so that
the impact of the plasma response can be distinguished from the mode spectrum of
the coil configuration.
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Figure 6.7: Spectral analysis of the n=2 component of the flux perturbation for
free boundary RMP simulations (top) and the vacuum RMP field (bottom). Three

different coil configurations with I. = 1kAt are compared, with a coil phasing of a,d)
AdP = —90° b,e) 0° and c,f) 90°

First of all, the screening of the perturbation on the rational flux surfaces is clearly

observed in the core of the plasma. Especially in the core region the perturbation at
the resonant surfaces is close to zero. Then, the excitation of the kink modes is seen
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6.2 Impact of the coil phase on the plasma response

for all three coil cases in the free boundary simulation. It is of a similar magnitude
for the A® = 0° and AP = +90° coil phases and weaker in comparison weak for the
Ad = —90° case.

Particularly interesting is the effect of the plasma response on the resonant com-
ponent of the perturbation. The resonant component influences the width of the
magnetic islands and stochastic layers, length of lobes or deformation of the bound-
ary, which are quantities that have been identified to correlate with RMP-ELM
suppression. The radial profile is shown in figure 6.8. The largest pitch aligned
component at the edge is obtained for A® = +90° in both the vacuum and the
total perturbation. Due to screening effects the resonant component is lowered when
the plasma response is considered. With the A® = 0° coil phasing, the excitation
of the edge kink modes and their coupling to the resonant modes is large enough,
so that the resonant modes are amplified above the vacuum approximation at the
boundary. For the A® = —90° the screening response is dominant and even at the
plasma edge the amplitude of the perturbation is very small compared to the vacuum
approximation.

—— A®=-90°
8.0e~6 a0
—— A®=+90°
< 6.0e-6
£
8 4.0e—-6
> 1 | |
2.0e~6 | : 3 //\[
0.0e0 — : :
0.8 0.85 0.9 0.95 1
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Figure 6.8: Radial profile of the pitch aligned component W,.s for the three differ-
ent coil phases A® including the plasma response (solid lines) and in the vacuum
approximation (dashed lines).

The correlation of the pitch aligned component to the effects of the RMPs on
the plasma is also observed in the simulations. The comparison of (¥, §)-Poincaré
plots in figure 6.9a-c shows, that, as expected, the width of the magnetic islands
and the stochastic edge region is much smaller for the A® = —90° than A® = (°
and AP = 490°. It is also reflected in the displacement of the plasma in the X-Point
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Chapter 6 Free boundary RMP Simulations

region, shown in figure 6.9d-f. Here, the deformation of the field lines around the
X-Point is represented by the perturbation of the mass density p.
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© i i
092 094 096 0.98 1 .92 094 096 098 192 094 09 098 1
YN YN YN

—0.950 = N pr A J p[au]
/\_/\/ /\\///_\\J; 39001

—0.955
3.8e-01

E —0.960
N 3.7e-01
—0.965 3.6e-01
—0.970 3.5e-01

¢ [rad] ¢ [rad] ¢ [rad]

Figure 6.9: The configurations with the strongest edge kink amplification also show
the largest effects on the plasma. The size of the magnetic islands and the stochastic
layer (a) and the displacement of the plasma around the X-point (b) is smallest for
AP = —90°, followed by AP = 0° and AP = +90°. Some surfaces of constant
density are indicated by white line, to illustrate the magnitude of the displacement.

6.3 Reduced RMP spectrum

Experimentally, RMPs are applied with a single dominant toroidal mode. However,
due to the geometry of realistic coil sets, smaller sideband modes are inevitably gen-
erated. The influence of these modes can be tested by comparing simulations where

60



6.3 Reduced RMP spectrum

the full perturbation spectrum is applied to simulations where only the dominant
toroidal mode number is applied.

In JOREK-STARWALL, the application of the reduced spectrum is achieved by
using free boundary conditions only for the n = 2 mode. The other modes are
included in the simulation with fixed boundary conditions. The comparison is carried
out for the resonant case with A® = 90° and here the coil current is increased to
Ic = 6kAt, so that the differences between the full and reduced RMP spectrum are
more distinguishable.

The toroidal mode spectrum of the vacuum perturbation at ® = 0° is plotted in
figure 6.10. The spectrum is dominated by the n = 2 mode, with contributions from
the n = 6 and n = 10 modes.
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Figure 6.10: The toroidal spectrum of the applied vacuum perturbation has sidebands
of n =6 and n = 10.

The influence of the side band modes is seen clearly in the time evolution of the
magnetic energies. When the full spectrum is applied (figure 6.11a), the n = 6
and n = 10 modes saturate at higher values, compared to the case where only the
n = 2 perturbation is applied (figure 6.11b). The growth rates also indicate, that
the excitation in the reduced case occurs due to coupling to the n = 2 mode, rather
than as a direct response to RMPs.

With the sideband modes not included in the simulation, fewer magnetic island
chains form, which is seen when comparing the Poincaré plots for the full and reduced
RMP spectrum in figures 6.12a and 6.12b respectively. Since the distance between
island chains is larger, the width of the stochastic layer is slightly smaller in the
reduced case.
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Chapter 6 Free boundary RMP Simulations
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Figure 6.11: Time evolution of the magnetic energies when (a) the full perturbation
and (b) the reduced perturbation spectrum is applied.
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Figure 6.12: Poincaré plots of the case for the (a) full RMP spectrum and (b) reduced
RMP spectrum. In (a) the sideband modes contribute to the formation of more
magnetic island chains, which leads to a wider stochastic edge layer. The top axis
indicates the location of the ¢ = m/n resonant surfaces of the n = 2 mode. Those
of the n = 6 and n = 10 sidebands are not marked.
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Chapter 7

Comparison of free and fixed boundary
RMP simulations

Before this thesis, JOREK RMP simulations had only been carried out with fixed
boundary conditions as they have been defined in section 4.1. With fixed boundary
conditions, ¥ has to fulfill the vacuum approximation at the boundary, while the
bulk plasma responds to the perturbation. This changes, when free boundary condi-
tions are applied and the magnetic field can evolve freely everywhere, including the
boundary. In this chapter, the RMP penetration simulated with free boundary con-
ditions with JOREK-STARWALL, is compared to the RMP penetration calculated
with fixed boundary.

The fixed and free boundary simulations are set up as described in chapter 4.3
with a coil current of I = 1kAt. The boundary conditions are either given by
JOREK-STARWALL in the free boundary case, or provided externally from nu-
merical calculations in the fixed boundary case. Figure 7.1 shows the perturbed
magnetic flux at the boundary of the computational domain in the saturated state.
In the free boundary simulation, the perturbation clearly deviates from the vacuum
approximation prescribed for the fixed boundary.

fixed boundary ——
free boundary

2.
W [Tm’] @

2
lI‘pcrl [Tm]

- -/2 0 /2 T
0 [rad]

Figure 7.1: The perturbed magnetic flux at the boundary of the computational do-
main over the poloidal angle 6.
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Chapter 7 Comparison of free and fixed boundary RMP simulations

The different boundary conditions also affect the overall mode spectrum of the
perturbation. It is illustrated in figure 7.2 for three different coil phases A® =
—90°,0°,+90°, together with the difference AW¥ between the free boundary and the
fixed boundary perturbation spectrum.
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Figure 7.2: Poloidal spectrum of the total perturbed n = 2 flux for different coil
phases A® calculated with free boundary conditions (top) and fixed boundary condi-
tions (middle). In the bottom row, the difference A® = Wyert n—2 free — Ypert,n—2,fixed
is plotted for each coil phase.

AW shows clearly that the m+2 edge kink response is stronger when free boundary
conditions are applied. This is confirmed in the radial profile of the kink modes given
in figure 7.3.

The edge kink modes can couple to and amplify the pitch aligned components.
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However, despite the fact that a stronger edge kink response is observed for all coil
phases with free boundary conditions the effects on the pitch aligned components
vary. Figure 7.3 shows that when the coils are configured in the A® = +90° coil
phase, the difference in the magnitude of the pitch aligned components is very small.
In the A® = 0° case the pitch aligned components are smaller with free boundary
conditions than with fixed boundary conditions, while the opposite is true of the
AP = —90° coil phase.
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Figure 7.3: (a) The (m + 2,n) edge kink component Wyn, and (b) the (m,n)-pitch
aligned component W,.s on the ¢ = m/n resonant surfaces, calculated with free
boundary conditions (solid line) and fixed boundary conditions (dashed lines) for
different coil phases A®.

A possible explanation for this behavior could be that not only the edge kink re-
sponse is increased in the free boundary simulation, but also the screening response.
The screening response counteracts the amplification of the pitch aligned compon-
ents by the edge kink response. When fixed boundary conditions are applied, the
screening response can not alter the field at the boundary. With this restriction
removed at the boundary in the free boundary simulations, the perturbation may be
screened below the fixed boundary resonant component. Even if in our sample of coil
phases the A® = 90° coil phase still leads to the strongest pitch aligned components,
the varying effect of the free boundary could indicate that the ideal coil phase, with
the largest pitch aligned components, might be slightly different from that predicted
from fixed boundary simulations. In addition, the different amplitudes of kink and
screening response could modify the 7 x B torque and thus shift the coil current
amplitude required for mode penetration and affect the predicted ELM mitigation
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Chapter 7 Comparison of free and fixed boundary RMP simulations

or suppression thresholds. However, additional work has to be carried out to further
support the validity of these hypotheses.

The variation in the effect of the boundary conditions on the plasma is also reflected
in the width of the stochastic layer and island size, demonstrated in the Poincare plots
in figure 7.4. When free boundary conditions are applied, the magnetic islands size
and stochastic layer width is reduced for the A® = —90° coil phase (a,d), increased
for the A® = 0° coil phase (b,e) and unchanged for the A® = +90° coil phase (c,f)
compared to the fixed boundary conditions.

AD=+90°

.,

0.96
YN YN YN

Figure 7.4: (0, ¥ ) Poincaré plots for the coil configurations with coil phase A® for
the free boundary simulations (a-c) and the fixed boundary simulations (d-f).

In figure 7.5, the comparison to the v . profile without RMPs is given. For the
investigated case with I = 1 kAt, the velocity braking due to RMPs is very small, so
that differences between the boundary conditions are practically indistinguishable.
Only for the A® = 0° coil phase a slightly stronger velocity braking is observed
when free boundary conditions are applied. This could be due to the fact that the
increased edge kink response amplifies the resonant component of the perturbation.
In turn, slightly stronger mirror currents are induced, which generate a greater 3 x B
torque. However, this should only be treated as a first preliminary conclusion, as it
is based on differences that are very small in comparison to the absolute v .. To
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confirm these findings it is necessary to conduct additional studies with coil currents
that are closer to the mode penetration threshold.
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Figure 7.5: The radial profile of the perpendicular electron velocity v .. The RMP
coil current of I = 1kAt only causes a small reduction of v ., so that the influence
of the boundary conditions is barely noticeable for the A® = —90° and A® = +90°

coil phase. A slightly stronger velocity braking is observed for the A® = 0° coil
phase.
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Chapter 8

ELM Simulations with free boundary
conditions

After investigating the effect of free boundary conditions on the RMP penetration,
the next step is to examine the influence on ELMs and the ELM-RMP interaction.
First results of ELM simulations with free boundary conditions are presented in the
following. Section 8.1 compares a type-I ELM onset for fixed and free boundary
conditions without the application of RMPs. In section 8.2 RMPs are applied to the
ELM profile with free boundary conditions, and the differences to the RMP-free case
are outlined. A detailed analysis of the results is beyond the scope of this thesis and
will be subject to future work.

8.1 Comparison of free boundary and fixed boundary
ELM studies

The equilibrium profile used for the RMP penetration studies in the previous chapters
is based on the state of an experimental ASDEX Upgrade discharge after an ELM
crash taken similarly to |7]. In the following, the same equilibrium will be used to
investigate the onset of a type I ELM with both free and fixed boundary conditions.
For this purpose, no RMPs are applied and the simulation is continued beyond the
time period used in the previous chapters. Since the long computational times of
full ELM simulations put them outside the scope of a master thesis, only the ELM
onset is studied here.

The time evolution of the magnetic energies of the ELM simulation with fixed
boundary conditions is shown in figure 8.3a. Shortly after the non-axisymmetric
modes are initialized, the simulation enters a phase with linearly growing magnetic
energies. They correspond to resistive peeling-ballooning modes that are destabil-
ized below the ideal peeling-ballooning stability limit. Their peeling-ballooning like
structure is illustrated in figure 8.2. At about ¢ = 2ms they are stabilized by the
growing F,-well, which forms together with the growing pedestal due to the increas-
ing pressure gradient. This behavior is also described in [7]. However, due to slight
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Figure 8.1: The non-axisymmetric Figure 8.2: As the resistive-peeling
temperature components 7T,,~g reveal ballooning modes begin to stabilize, a
the peeling-ballooning mode structure (4,2) mode develops in the core of the
of the perturbation. plasma.

differences in the resistivity, the modes don’t fully stabilize as in |7] and instead a
(4,2) mode develops in the core, which is visible in the poloidal cross section of the
temperature in figure 8.2. This mode may alter the plasma dynamics and its de-
velopment should be avoided in future ELM studies by e.g. adjusting the resistivity.
Despite its appearance the basic dynamics of the ELM crash are preserved and the
case is suitable for the investigations here.

At t =~ 5ms, the n = 2 and n = 6 modes begin to destabilize. They non-linearly
drive the n = 4 and high-n modes, whose growth sets in later but steeper. In
addition, low frequency oscillations can be seen, especially in the n = 4 mode. This
type of precursor activity is commonly observed before ELM crashes [70, 71]. The
precursor phase, with the steadily rising growth rates, terminates in the explosive
onset of an ELM. It is marked by a very fast increase in the magnetic energies and
followed by a turbulent phase. Due to the strong non-linearity, the simulation of the
ELM requires very small times steps, which is why it is terminated a few tenths of
a millisecond after the ELM onset in this thesis.

When free boundary conditions are applied, the magnetic energies (figure 8.3b)
follow a qualitatively similar evolution. However, the onset of the precursor activity
occurs at a far earlier point in the simulation, and the n = 4 mode seems to drive
the higher n modes. Since the time scale of the precursor activities is smaller, the
growth rates are also steeper compared to the fixed boundary case.

The evolution of the magnetic energies suggests that the stability threshold is
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Figure 8.3: The time evolution of the magnetic energies when (a) fixed boundary and
(b) free boundary conditions are applied.

crossed earlier in free boundary simulations. The ELM onset occurs at t ~ 4 ms,
instead of t =~ 9 ms as with fixed boundary conditions. Right before the free boundary
ELM onset the radial profiles of the edge pressure, electron density and potential
match the profiles of the fixed boundary simulations. The ELM onset with fixed
boundary conditions occurs only when the edge profiles have steepened further due
to continuous heating (figure 8.4). This means that the earlier ELM onset can be
clearly attributed to the impact of the boundary conditions on the stability limits,
rather than an impact on the parameter profiles. It is likely that the modification
of the stability limits occurs, because the stabilizing effects of an ideally conducting
wall at the JOREK boundary are removed in the free boundary simulations.

The expulsion of heat and particles during the ELM is seen in the drop in the
particle and thermal energy content in figure 8.5 and the change in the pedestal
profiles in figure 8.6

8.2 Free boundary ELM simulations with RMPs

As final step in this thesis, the free boundary ELM simulations are repeated, this
time with the addition of RMPs. The set up is equal to that of the previous chapters,
with a coil current of I, = 1kAt and in the A® = 90° coil configuration. Due to
the parameter range of this ELM case, especially the high edge density, RMP-ELM
suppression at good plasma confinement is not expected here.

The magnetic energies are shown in figure 8.7. After the RMP ramp up and initial
saturation, the growth of instabilities exciting in particular the higher n modes (start-
ing at t=0.7ms) signifies the destabilization of resistive peeling ballooning modes,
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Figure 8.4: Radial profiles of (a) the pressure p, (b) the electron density n. and (c)
the electric potential ® for the free boundary and the fixed boundary conditions, at
t ~ 4.2 ms, before the ELM onset occurs in the free boundary simulation, and before
the onset of the ELM in the fixed boundary simulation at ¢t &~ 7.5 ms.
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Figure 8.5: The time evolution of the thermal energy and particle content of the
ELM simulations with free and fixed boundary.
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Figure 8.6: Edge profiles of pressure, density and temperature before the ELM onset
and after the ELM onset at the end of the simulation.
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8.2 Free boundary ELM simulations with RMPs

similarly to the case without RMPs in section 8.1. The oscillations of the magnetic
energies correspond to the rotation of magnetic islands in the RMP field. At about
t ~ 0.9ms the growth phase then transitions into a non-linear saturation phase,
where modes are growing and decaying quickly without a dominating one. In the
simulations without RMPs, these modes are stabilized by the growing pedestal. How-
ever, when RMPs are applied, the onset of the non-linear phase is correlated with a
drop in the edge density and temperature, presumably due to interaction of the res-
istive peeling-ballooning modes with the RMPs. It keeps the pedestal from forming
to the same extent as in the case without RMPs. As a consequence, the peeling-
ballooning turbulence is not stabilized, and instead leads to loss of particles and heat,
as seen in the lower part of figure 8.7. Between ¢ =~ 1.4ms — 1.7 ms the confinement
improves and then degrades again. Starting from ¢ &~ 3ms, the rapid growth and
decay of the individual modes stops and is replaced by saturated modes, with n = 4
slightly dominating. A difference in rotation is not observed. It has been found
in [7] that a lowered separatrix density may stabilize the resistive peeling-ballooning
modes and allow the pedestal to evolve. This could be a possible explanation for
the mode saturation and the improvement of the particle confinement from ¢ = 3 ms
onward. Additional simulation time is needed to confirm this theory.
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Figure 8.7: (top) Time evolution of the magnetic energies. (bottom) Time evolution

of the thermal energy and particle content.

The edge pressure, density and temperature profiles are plotted in figure 8.8 at
different points in time, illustrating the profile at the end of the linear mode growth at
t = 0.9 ms, as well as the degraded pedestal during the turbulent phase at t = 2.4 ms.
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Chapter 8 ELM Simulations with free boundary conditions

The profiles of the simulation without RMPs at the same points in time are given
for comparison.
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Figure 8.8: Edge pressure, electron density and temperature profiles at the end of
the linear growth phase at ¢ = 0.9 ms and during the turbulent phase at ¢ = 2.4ms

Figure 8.9 shows a time trace of the pressure, electron density and temperature at
WUy = 0.92 during the non-linear phase of the simulation. It shows that the height
of the pedestal oscillates slightly, similar to the small ELM regime described in [7],
albeit at a lower frequency and featuring an additional continuous decrease.
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Figure 8.9: Time trace of the edge pressure, electron density and temperature at
Uy = 0.92 during the non-linear phase.

As mentioned above, this first of a kind simulation of the interaction of RMPs with
edge instabilities is not yet done in an experimentally interesting regime and con-
sequently only degraded pedestal confinement is observed. However, it demonstrates
the feasibility of such kind of simulations and forms the basis for future studies in
different plasma regimes, where experiments show ELM mitigation or suppression at
good pedestal confinement. Such simulations are planned and will include scans in
plasma parameters and shaping.
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Conclusion and outlook

In this thesis simulations of the RMP penetration into ASDEX Upgrade H-Mode
plasmas were carried out with JOREK-STARWALL.

Chapter 5 presented the validation of the type of coils, that is used to represent the
non-axisymmetric RMP coils in the STARWALL extension of the code. After a cor-
rection, the non-axisymmetric coils are fully functional in the code, which was shown
by validating their magnetic field at the JOREK computational domain boundary,
and by testing the interaction of the active coil with passive conducting structures.

Chapter 6 showed the first results of free boundary RMP simulations with JOREK-
STARWALL. It was demonstrated, that the results match the theoretical expecta-
tions concerning the plasma response. The effects of RMPs on the plasma, like helical
mirror currents, the generation of magnetic island chains and a stochastic layer, or
the distortion of the plasma boundary were investigated. The magnitude of the ef-
fects was shown to be related to the resonant component of the perturbation, which
was varied by applying different coil currents and using different coil configurations.

In Chapter 7 the effect of the free boundary conditions on the penetration of RMPs
was determined, by comparison with fixed boundary simulations. The results suggest
that the free boundary conditions allow an amplified edge kink response and that
the impact on the resonant component is coil configuration dependent.

Finally in Chapter 8 the results of the first ELM-RMP simulations with free bound-
ary conditions were shown. It was demonstrated, that in the absence of RMPs, the
ELM onset occurs at lower pedestal gradients, which can be attributed to the ab-
sence of the stabilizing ideally conducting wall. The application of RMPs to this
case has been demonstrated.

Future work has to be done, to further support the analysis of the effect of free
boundary conditions in RMP simulations. In particular, this could include the com-
parison of a wider range of coil currents, especially closer to the mode penetration
threshold. It would be expected that some effects on the plasma are more pronounced
near this threshold. In addition, simulations with a better resolved coil phase scan
could be performed. This might help to obtain a more precise understanding of the
effect of the free boundary on the poloidal spectrum, and in particular the resonant
components.

A considerable amount of interesting work has yet to be carried out concerning
ELM-RMP simulations with free boundary JOREK-STARWALL. First of all, the
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Conclusion

results presented in chapter 8 can be analyzed in more detail, to improve the un-
derstanding of the effects of the free boundary. Then, additional simulations can be
performed for altered equilibrium parameters. At a lower edge density RMP-ELM
suppression is more likely to be observed. Conducting parameter scans would allow
to explore the RMP-ELM suppression and mitigation access windows with JOREK-
STARWALL.

Overall, the work carried out in this thesis can be seen as a first step towards future
improved ELM RMP studies. It builds a solid basis for many upcoming interesting
projects, which are likely to provide answers to relevant questions in the field of RMP
and ELM physics.
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