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ABSTRACT
The goal of text ranking is to generate an ordered list of texts re-
trieved from a corpus in response to a query. Although the most
common formulation of text ranking is search, instances of the
task can also be found in many natural language processing ap-
plications. This tutorial, based on a forthcoming book, provides
an overview of text ranking with neural network architectures
known as transformers, of which BERT is the best-known example.
The combination of transformers and self-supervised pretraining
has, without exaggeration, revolutionized the fields of natural lan-
guage processing (NLP), information retrieval (IR), and beyond.
We provide a synthesis of existing work as a single point of entry
for both researchers and practitioners. Our coverage is grouped
into two categories: transformer models that perform reranking
in multi-stage ranking architectures and learned dense represen-
tations that perform ranking directly. Two themes pervade our
treatment: techniques for handling long documents and techniques
for addressing the tradeoff between effectiveness (result quality)
and efficiency (query latency). Although transformer architectures
and pretraining techniques are recent innovations, many aspects of
their application are well understood. Nevertheless, there remain
many open research questions, and thus in addition to laying out
the foundations of pretrained transformers for text ranking, we
also attempt to prognosticate the future.
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1 OVERVIEW
The goal of text ranking is to generate an ordered list of texts
retrieved from a corpus in response to a query for a particular
task. Although the most common formulation of text ranking is
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search, instances of the task can also be found in many text pro-
cessing applications. This tutorial provides an overview of text
ranking with neural network architectures known as transformers,
of which BERT (Bidirectional Encoder Representations from Trans-
formers) [7] is the best-known example. These models produce
high quality results across many domains, tasks, and settings.

This tutorial, which is based on the preprint [21] of a forthcom-
ing book to be published by Morgan and & Claypool under the
Synthesis Lectures on Human Language Technologies series, pro-
vides an overview of existing work as a single point of entry for
practitioners who wish to deploy transformers for text ranking in
real-world applications and researchers who wish to pursue work
in this area. We cover a wide range of techniques, grouped into two
categories: transformer models that perform reranking in multi-
stage ranking architectures and learned dense representations that
perform ranking directly. In a hands-on session we demonstrate
how open-source toolkits can be used to rank documents with a
variety of these approaches.

Multi-Stage Ranking Architectures. The most straightforward
application of transformers to text ranking is to convert the task into
a text classification problem, and then sort the texts to be ranked
based on the probability that each item belongs to the relevant class.
The first application of BERT to text ranking, by Nogueira and Cho
[30], used BERT in exactly this manner. This relevance classification
approach is usually deployed in a module that reranks candidate
texts from an initial keyword search engine.

One key limitation of BERT is its inability to handle long input
sequences and hence difficulty in ranking texts beyond a certain
length (e.g., “full-length” documents such as news articles). This
limitation is addressed by a number of models [1, 4, 20, 25, 30, 39],
and a simple retrieve-then-rerank approach can be elaborated into
a multi-stage architecture with reranker pipelines [26, 33, 37] that
balance effectiveness and efficiency. On top of multi-stage ranking
architectures, researchers have proposed additional innovations,
including document expansion [32, 34] and term importance pre-
diction [3, 5].

A natural question that arises is, “What’s beyond BERT?” We
describe efforts to build ranking models that are faster (i.e., lower
inference latency), that are better (i.e., higher ranking effective-
ness), or that manifest interesting tradeoffs between effectiveness
and efficiency. These include ranking models that leverage BERT
variants [20], exploit knowledge distillation to train more compact
student models [9], and other transformer architectures, includ-
ing ground-up redesign efforts [14, 28] and adapting pretrained
sequence-to-sequence models [8, 31]. These discussions set up a
natural transition to ranking based on dense learned representa-
tions, the other main category of approaches we cover.

Learned Dense Representations. Arguably, the single biggest
benefit brought about by modern deep learning techniques to text
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ranking is the move away from sparse signals, mostly limited to
exact matches, to dense representations that are able to capture
semantic matches to better model relevance. The potential of contin-
uous dense representations for natural language analysis was first
demonstrated nearly a decade ago with word embeddings on word
analogy tasks [27]. As soon as researchers tried to build represen-
tations for any larger spans of text: phrases, sentences, paragraphs,
and documents, the same issues that arise in text ranking come into
focus. In fact, ranking with dense representations predates BERT
by many years [6, 11, 15, 29, 38, 41].

In the context of transformers, the general setup of ranking
with dense representations involves learning transformer-based en-
coders that convert queries and texts into dense, fixed-size vectors.
In the simplest approach, ranking becomes the problem of approxi-
mate nearest neighbor (ANN) search based on some simple metric
such as cosine similarity [10, 12, 13, 17, 19, 22–24, 35, 36, 40, 42].
However, recognizing that accurate ranking cannot be captured
via simple metrics, researchers have explored using more complex
machinery to compare dense representations [16, 18]. Here, as with
multi-stage ranking architectures, limitations on text length and
effectiveness–efficiency tradeoffs are important considerations. It
becomes increasingly difficult to accurately capture the semantics
of longer texts with fixed-sized representations, and increasingly
complex comparison architectures increase latency and may neces-
sitate reranking designs.

2 LOOKING AHEAD
Learned dense representations complement sparse (bag-of-words)
term-based representations central to keyword search techniques
that have dominated the landscape for more than half a century. To-
gether, hybrid multi-stage approaches (e.g., combining both ranking
and reranking) present a promising future direction.

Despite the excitement in directly ranking with dense learned
representations, we anticipate that reranking transformers will
remain important in the future. At a high level, there are three cur-
rent approaches: apply existing transformer models with minimal
modifications, adapt existing transformer models, perhaps adding
additional architectural elements, and redesign transformer-based
architectures from scratch. Which approach will prove to be most
effective? The jury’s still out.

Related, in NLP we see that the GPT family [2] continues to push
the frontier of larger models, more compute, and more data. For text
ranking, is the simple answer to build bigger models? Probably not,
since ranking has important differences with many traditional NLP
tasks. But if not, what are the evolving roles of zero-shot learning,
transfer learning, domain adaptation, and task-specific fine-tuning?
This remains an interesting open research question.

While there are aspects of text ranking with pretrained trans-
formers that are well understood, many promising directions await
further exploration. Looking ahead, we anticipate many more ex-
citing developments!
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