English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Active North Atlantic deepwater formation during Heinrich Stadial 1

MPS-Authors
/persons/resource/persons211488

Repschläger,  Janne
Climate Geochemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons231489

Zhao,  Ning
Climate Geochemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons192728

Schiebel,  Ralf
Climate Geochemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons187781

Haug,  Gerald H.
Climate Geochemistry, Max Planck Institute for Chemistry, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Repschläger, J., Zhao, N., Rand, D., Lisiecki, L., Muglia, J., Mulitza, S., et al. (2021). Active North Atlantic deepwater formation during Heinrich Stadial 1. Quaternary Science Reviews, 270: 107145. doi:10.1016/j.quascirev.2021.107145.


Cite as: https://hdl.handle.net/21.11116/0000-0009-6763-4
Abstract
Deepwater circulation significantly changed during the last deglaciation from a shallow to a deep-reaching overturning cell. This change went along with a drawdown of isotopically light waters into the abyss and a deep ocean warming that changed deep ocean stratification from a salinity-to a temperature-controlled mode. Yet, the exact mechanisms causing these changes are still unknown. Furthermore, the long-standing idea of a complete shutdown of North Atlantic deepwater formation during Heinrich Stadial 1 (HS1) (17.5–14.6 kyr BP) remains prevalent. Here, we present a new compilation of benthic δ13C and δ18O data from the North Atlantic at high temporal resolution with consistent age models, established as part of the international PAGES working group OC3, to investigate deepwater properties in the North Atlantic. The extensive compilation, which includes 105 sediment cores, reveals different water masses during HS1. A water mass with heavy δ13C and δ18O signature occupies the Iceland Basin, whereas between 20 and 50°N, a distinct tongue of 18O depleted, 13C enriched water reaches down to 4000 m water depths. The heavy δ13C signature indicates active deepwater formation in the North Atlantic during HS1. Differences in its δ18O signature indicate either different sources or an alteration of the deepwater on its southward pathway. Based on these results, we discuss concepts of deepwater formation in the North Atlantic that help to explain the deglacial change from a salinity-driven to a temperature-driven circulation mode.