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Emission of anisotropic gravitational radiation from a compact binary system leads to a flux of linear
momentum. This results in recoil of the system. We investigate the rate of loss of linear momentum flux in
the far zone of the source using various mass type and current type multipole moments for an inspiralling
compact binary merger in quasielliptical orbits at 2.5 post-Newtonian order. We compute the linear
momentum flux accurately up to O(e,) in a harmonic coordinate. A 2.5 post-Newtonian quasi-Keplarian
representation of the parametric solution to the post-Newtonian equation of motion for the compact binary
system has been adopted here. We also provide a closed form expression for the accumulated linear
momentum from the remote past through the binary evolution.
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I. INTRODUCTION

Anisotropic gravitational radiation leads to a flux of
linear momentum from the compact binary system [1,2]. To
conserve the total linear momentum, the system recoils.
The direction of recoil changes continuously over an orbit.
As a result, for a perfectly circular trajectory, no net recoil
builds up over an orbit. On the contrary, for inspiralling
compact binaries, the recoil accumulates over the inspiral-
ling orbits and imparts a kick to the remnant at the merger.
A reasonably high kick imparted to the binary black hole
(BBH) merger could be of great importance in under-
standing the structure formation of globular clusters. If the
kick is greater than the escape velocity of the host galaxy,
the remnant black hole (BH) may even be ejected [3] from
the galaxy. Even if the kick is not high enough to eject the
remnant BH, it might cause significant dynamical changes
at the core of the galaxy. A detailed discussion on various
astrophysical aspects of BH kicks can be found in Ref. [4].

Though a compact binary merger may have significant
eccentricity at the birth, due to the gravitational radiation, it
gets circularized [5,6]. By the time their gravitational
wave (GW) frequency enters the sensitivity bands of the
ground based interferometric GW detectors, they may have
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negligible eccentricity. Yet there may be astrophysical
processes that may retain their eccentricity even in the
late stages of their dynamical evolution. For example, in
dense stellar clusters, interactions between pairs of BBH
systems may eject one of the BHs leading to the formation
of a stable hierarchical triple system. If the two orbital
planes are tilted with respect to each other, the third body
can increase the eccentricity of the inner binary via the
Kozai mechanism [7]. Binaries in such hierarchical triple
systems may have nonzero eccentricities even toward the
late stages of the inspiral. Further, binary neutron star
systems in globular clusters may have a thermal distribution
of eccentricities [8] if formed by exchange interactions as
opposed to the formation scenario through the common
envelope. Similarly, there have been mechanisms proposed
for binaries consisting of supermassive BHs in the LISA
band [9-11] which may have detectable eccentricities.
The recent detection [12,13] of the heaviest BBH merger
event to date, GW190521, has been argued to have high
eccentricity [14—16] at merger. Motivated by these scenar-
i0s, we study the emission of linear momentum flux (LMF)
in case of nonspinning compact binary systems in qua-
sielliptical orbits.

The first formal treatment of gravitational recoil for a
general self-gravitating system in linearized gravity is
explored in Refs. [1,17]. It is valid for any kind of motion
(rotational, vibrational, or any other kind) given the
source is localized within a finite volume. Later, within
the post-Newtonian (PN) framework, the leading order
contribution (Newtonian) to the LMF and recoil of a
compact binary system is discussed in Refs. [18,19].
The first PN correction to this was computed by
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Wiseman [20] and the quasicircular orbit scenario was
discussed as a special case there. Much later, a closed form
expression for the recoil in the case of a compact binary in a
quasicircular orbit is quoted in [21] at the second PN order.
Its extension to 2.5PN order, accounting for the radiation
reaction effects, is discussed in Ref. [22]. According to
these studies, the BH recoil for nonspinning systems could
be in the range 74-250 kms~!. Using the effective one-
body (EOB) approach, the recoil estimates for BBH are
obtained considering the contributions from inspiral,
plunge, and ringdown phases in Ref. [23]. The typical
estimate obtained here lies in the range 49-172 kms~!. In
Ref. [24], BH perturbation theory is used to compute the
accumulated recoil up to the innermost stable circular orbit
(ISCO) (10-100 kms™") for a system where a test particle
inspirals into a BH. In principle, these estimates are valid
for extreme mass ratio inspirals but they have extrapolated
the results till a mass ratio of about ~0.4.

Along with the various analytical and semianalytical
studies, the recent progress in numerical relativity tech-
niques has led to more accurate estimates for the recoil of the
remnant BH. As quoted in Refs. [25-28], the recoil velocity
can reach up to a few hundreds of kms~' while the
component masses are nonspinning for compact binaries
in a quasicircular orbit. But for the spinning case [29-31],
the recoil velocity can be of the order of a few thousands
kms~!. In case of maximally spinning BHs, it could be as
high as 4000 kms~! [32]. Such a large recoil velocity may
lead to ejection of the merged binary from its host galaxy. A
detailed study on the multipolar analysis of the gravitational
recoil is also discussed in Ref. [33]. They have explored the
buildup of the recoil through the different phases of the
binary evolution (inspiral 4+ merger + ringdown) due to
the relative amplitude and the phases of various modes of
the GWs.

Using a formal approach within the multipolar post-
Minkowskian post-Newtonian (MPM-PN) formalism, the
leading order Newtonian contribution to the LMF and the
associated recoil of a compact binary system is explored by
Fitchett in Refs. [18,19]. The authors have assumed the
inspiralling binary to be composed of two point particles
moving in a Keplerian orbit. A rough estimate of maximum
BH recoil quoted in these studies is ~1500 km/s.
Assuming the periastron advance to be small, a crude
estimate of the recoil at 1PN is also quoted. The first
extension of these estimates at 1PN for binaries moving in
generic orbits is explored by Wiseman [20] who concluded
that higher order correction reduces the net momentum
ejection. As a special case, they also studied BNS systems
moving in quasicircular orbits. They found the upper bound
on the velocity of the center of mass very near to the
coalescence to be 1 kms~!. In another study [34], the
authors showed a 10% increase in the recoil estimate
compared to the quasicircular case for small eccentricities
(e < 0.1) using close limit approximation. They also

claimed that the maximum recoil takes place for the value
of the symmetric mass ratio of around # ~ 0.19 and the
magnitude could be as high as 216-242 km/s.

To obtain a correct recoil estimate one needs to compute
the linear momentum from the system. Here we investigate
the linear momentum flux at 2.5 post-Newtonian order for
compact binaries moving in quasielliptical orbits with
nonspinning component masses.

The paper is organized as follows. In Sec. II we discuss
the multipolar decomposition of LMF in terms of the
various source type multipole moments and their nonlinear
interactions. In Sec. III, we discuss the orbital dynamics,
and in Sec. [V we quote the instantaneous contribution to
the LMF in terms of the orbital parameters. In Secs. V and
VI we summarize the Keplerian and generalized quasi-
Keplerian representations (QKR) of the orbital dynamics
and reexpress the instantaneous contribution to the LMF in
terms of the QK parameters. Sections VII and VIII consist
of the computation of hereditary and the postadiabatic
contributions to the LMF. We quote the complete LMF at
2.5PN in Sec. IX. Finally in Sec. X we compute the
accumulated linear momentum through the inspiralling
orbits from the remote past.

II. MULTIPOLE DECOMPOSITION
OF LINEAR MOMENTUM FLUX

For an isolated source, gravitational wave generation is
well studied under the framework of multipolar decom-
position [35]. Following [35], we explicitly write down the
multipolar decomposition of far-zone linear momentum
flux (LMF) for an isolated source at the 2.5 post-Newtonian
order in terms of symmetric trace-free (STF) radiative mass
type and current type multipole moments [see Eq. (2.1) of
Ref. [22]],
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Here U§<) and VK (K =1ii,---i; represent the multi-
index structure of the tensors of order k in three dimen-
sions) are the pth-time derivatives of mass-type and
current-type radiative multipole moments, respectively.
€k 1s the usual three-dimensional Levi-Civita tensor, with
a value 41 in case of all even permutations and —1 for
all the odd ones. The multipole moments in the formula
are functions of retarded time [r— (r/c)] in radiative
coordinates, where r and ¢ denote the distance of the
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(2.1)
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source from the observer and the time of observation,
respectively.

Using the multipolar post-Minkowskian (MPM) formal-
ism [36-47] the two types of radiative moments (U, V)
can be expressed in terms of two canonical moments
(M;,S;) and eventually as a function of all the source
multipole moments (I;,J;,X;,W;,Y;,Z;) [48] at the
2.5PN order. Every radiative moment has two types of
contributions. One of them is only a function of retarded
time and hence called the instantaneous part. The other one
depends on the dynamical behavior of the system through-
out its entire past and is referred to as the hereditary
contributions. These contributions contain information
about various multipolar interactions the gravitational wave
undergoes, as it propagates from the source to the detector.

; 1 s 5,0
Un(U) = 12(U) + = { IoTa =2 1yl =

1
o AR) e W<1>1§j)]} + (’)(—7),
‘ &
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C —0 27 70
In the above expression, M represents the Arnowitt, Deser,

and Misner (ADM) mass of the source and hence undergoes
relativistic corrections given by M = m(1 —nx/2). The

U?j&;red ( U)

For the reader’s convenience, here we explicitly quote all
the radiative moments in terms of the source moments,
accurate up to the order necessary for the present calcu-
lation [see Egs. (3.1)—(3.18b) of Refs. [49]]. Since the
leading order term in the LMF expression [see Eq. (2.1)]
consists of the mass quadrupole moment (U/;), the desired
accuracy of U;; is 2.5PN. Furthermore, the decomposmon
of the mass quadrupole moment into instantaneous and
hereditary parts is as follows:

Uj; = Ut 4 Uhered, (2.2)
where the instantaneous and the hereditary parts explicitly
read
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1S+ S el + 4WOL; + WL
(2.3a)
G| 2 [U 3 3
(7) +CS{—7/_00 dTI(a&(T)I;)i(T)}
U-1 124627 (s) 1
2L 16 =) 2.3b
<210>+44100} 5 (007 (230)

|
The required accuracy of the mass octupole moment is
1.5PN, which is

constant 7 is related to an arbitrary length scale r, by Uijn = Ui‘;;{t U?]elged, (2.4)
79 = ro/c and was originally introduced in the MPM
formalism. and both the parts separately read
|
inst( 17y — 70 Gl 40,0 2,00 L Lie,w 3,000 L, L Le
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c

As the other two mass type multipole moments U, and U, appear in the LMF at 1PN and 2PN, respectively, the
desired accuracy for these two are 1.5 PN and 0.5PN, respectively, which read

Uiju =

n hered
Ul]kl + Ul]kl ’

(2.6)
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For the current octupole moment the two contributions
are the following:

2GM

V?jﬁ;red ( U) —

Vijk — Vlmt 4 Vhered

ijk ijk > (211)

where Vi%' and V5! are given in terms of the source

multlpole moments as
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Among the current type moments, the current quadrupole
moment is needed to be evaluated at 2.5PN order,

Vij — Viir}st 4 V?;red. (29)

The instantaneous and the hereditary parts of the current
quadrupole moments read
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(2.10a)

(2.10b)

For one other current type moment Vj;, we only need
the instantaneous part to obtain LMF at 2.5PN, which reads

i 1
VI (Ty) = Ji (T) + (9<§>. (2.13)

Using Egs. (2.2)—(2.13) we obtain the closed form expres-
sion for LMF at 2.5PN in terms of the source multipole
moments. Similar to the radiative moments, the LMF also
admits a decomposition into instantaneous and hereditary
parts. The instantaneous and the hereditary parts indicate
two distinct physical processes, and their evaluations need
separate treatments. Thus, for our convenience, we explic-
itly write the two types of contributions (instantaneous
and hereditary) to linear momentum flux separately as
follows:

fi = (fi)inst + (]:i)heredv (214)
where the instantaneous part up to 2.5PN in terms

of the source multipole moments is [see Eq. (2.2) of
Ref. [22]]
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In the above equations, symmetric trace-free projections of the multipole moments are denoted by the angular brackets (())
around their indices, and the underlined indices are excluded while taking the projection. And the hereditary contribution to

LMF at 2.5PN is
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III. ORBITAL DYNAMICS OF THE COMPACT
BINARY SOURCE

In the previous section, we have provided an explicit
closed form expression of the far-zone linear momentum
flux from a compact binary system in terms of various
source multipole moments. Here we specialize to the case
of a nonspinning compact binary system in quasielliptical
orbits, with the component masses m; and m, with
my > m,, the total mass m = m; + m,, and the symmetric
mass ratio # = m,m,/m?>. Since the binary constituents are
nonspinning, the motion is completely confined in a plane
with a relative separation,

X =X; — X, = i, (3.1)
with r = |x|, X; and X, are the position vectors of the
component masses, and f is the unit vector along the
relative separation vector. In polar coordinates,

n

X

— = Ccos & + sin péy, (3.2)
-

where ¢ is the orbital phase of the binary, and &,
and &, are the unit vectors along x and y axes. The
relative velocity and acceleration for the system are the
following:

dx
vV=—o
dr
= (Fcosgp— rpsing)é, + (isingp + rq}ﬁcosqﬁ)éy, (3.3)
dv  d’x
=—=—. 3.4
R TR B4

To calculate the 2.5PN accurate LMF, we need the time
derivative of the source multipole moments. Hence we need
2.5PN accurate equations of motion for the compact binary

‘gﬁ? uk(U)A d{m(z )ﬁg =5+

+ 355Gj£4wl (v) A e {m <2_ZO> %} JOU-1)+
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(2.20)

system. We use the same from Ref. [50,51] in the center of
mass frame. The equation of motion can be used to write
down the following expressions in order to obtain the
derivatives of the multipole moments:

(3.5)

'f:i[(v _ ) ta-x], (3.6)

where 7 and 7 denote the first and the second time
derivatives of the orbital separation r, respectively,
and we denote the magnitude of the orbital velocity
by v = |v|.

To evaluate the instantaneous and the hereditary con-
tributions to the LMF, we would also need the explicit
expressions for the various multipole moments for compact
binaries moving in quasielliptical orbits. These are obtained
from the long algebraic computations (see Ref. [45] for
details) using MPM-PN formalism [52]. The expressions
are too long to be explicitly quoted here. Hence we point to
Refs. [51,53] for those.

IV. INSTANTANEOUS CONTRIBUTION
TO THE LINEAR MOMENTUM FLUX

With all the ingredients provided in the previous
sections we now compute the instantaneous contribution
to the LMF using the source multipole moments. First, we
calculate all the time derivatives of the source multipole
moments using the equation of motion as quoted in
Ref. [51] at 2.5PN. Next, we perform all the contractions
in Eq. (2.15), and the resulting instantaneous linear
momentum flux in terms of dynamical variables
(r,F,v,v,Xx) is given by
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As a consistency check, we confirm that Eq. (4.1) agrees
with the result provided in Ref. [54] and the nonspinning
contribution to the LMF quoted in Ref. [55]. One may
notice here that the component of the linear momentum
flux along the radial direction (i.e., the term associated with
the radial direction, x) depends on 7, and hence in case of
quasicircular orbit contributions from these terms are 0 and
the emission of linear momentum is along the direction of
the relative velocity vector, v. Although this is true only up
to relative 2PN order.

The above expression for linear momentum flux is given
in terms of generic dynamical variables r, 7, and v. While
specializing to the case of quasielliptical orbits, it is
convenient to express these dynamical variables in terms
of the parameters associated with quasielliptical orbits,
namely the generalized QKR of the orbital dynamics. One
needs 2.5PN QKR to compute the 2.5PN LMF in terms of
the orbital parameters. In the next section we briefly start
with the description of the parametrization of Keplerian

58 264 1T
fz] +

737 G2m2> ) ]
vil.

40 360 36 r?

orbits followed by its PN generalization,
Keplerian (QK) representation.

the quasi-

V. KEPLERIAN AND QUASI-KEPLERIAN
PARAMETRIZATION

The Keplerian parametrization for the Newtonian motion
of a compact binary system is widely used in describing
celestial mechanics. In polar coordinates and in the center
of mass frame, the parametrization is given by

ry = ay(l —eycosu), (5.1a)

N ="V, (5.1b)

In=n(t—1ty) =u—esinu, (5.1¢)
2

v = Vy(u) = 2arctan [G t:) tan (g)} (5.1d)
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where subscript N denotes the Newtonian quantities. ry
and ¢y together define the relative separation vector,
ry = ry(cos ¢y, singy,0). The semimajor axis of the
orbit is ay with an eccentricity ey. Both of these can be
written in terms of the conserved orbital energy and angular
momentum which completely define the orbits. Here u, v, [
are the eccentric, true, and mean anomalies and » is the
mean motion, n = 2z/P, where P is the radial orbital
(periastron to periastron) period.

Having discussed the Keplerian representation (KR), we
now describe the PN extension of the KR, the quasi-
Keplerian representation at 2.5PN. In 1985, Damour and
Deruelle generalized this parametrization up to 1PN [56]
and proposed a “Keplerian like parametrization.” Later in
Refs. [57-59] the 2PN extension of the parametric solution
has been quoted. The 3PN extension of the same is
discussed in Ref. [60]. The 3PN QK parametrization is
obtained considering 3PN conservative contributions to the
binary motion, and it admits very similar expressions as the
Keplerian one but with more complex structure. To obtain
2.5PN accurate LMF, it is sufficient to use 2PN accurate
QKR of the orbital motion. Hence, in this section we only
describe the 2PN QKR of the conservative dynamics as an
extension of Egs. (5.1),

r=a,(l —e,cosu), (5.2a)
p=r1+W(n,e,), (5.2b)
A= +kn(t—1) +c,, (5.2¢)
W(lin,e) = (1+k)(v—1) +%sin2v
+ gc“;” sin 3, (5.2d)
l=n(t—1ty)+¢
=u—e, smu—i—i‘”( —u)+ &smv (5.2e)

v=V(u)=2arctan [Gj::) 2tan <;>} . (5.2f)

The expressions of the functions f4;, gar» fags fep, and
gag are given in Ref. [60]. a, is some 2PN equivalent
“semimajor axis.” Unlike the KR, in QKR, there appear
three eccentricities e,, e;, and e;, instead of one to
completely parametrize the motion. These eccentricities
can also be written in terms of the 2PN conserved energy
and the angular momentum. In the literature, it has been
found to be convenient to use only e, and the mean motion
n as the constants of motion and express all the dynamical
variables in terms of these two [23]. Additionally one uses a
combination of total mass and n given by { = Gmn/c?, as a
PN expansion parameter. However, it is equivalent to use

x [~ with @ being the orbital frequency] and e,
instead of ¢ and e,. Since the convenient choice for a binary
moving in quasi-circular orbit would be to use x as the PN
expansion parameter, we stick to the variable x to express
all our quantities here. One may notice that the PN
expansion of LMF, Eq. (4.1), is expressed as a series in
1/c. One can easily use the relation between n, ¢, ¢, and x
in order to get the correct expression of the concerned
quantity at every PN order. For the convenience of the
readers, we provide the explicit expression, used in our
calculation, for ¢ in terms of x, e, below,

(G

32

9 33
+x2[—5+717+ <—Z—g>e,2+

VI. INSTANTANEOUS LMF FOR COMPACT
BINARIES IN TERMS OF QUASI-KEPLERIAN
PARAMETERS IN THE SMALL
ECCENTRICITY LIMIT

We have provided all the necessary ingredients to
compute LMF from a compact binary moving in quasiel-
liptical orbit in terms of its orbital elements. As a next step,
we reexpress the instantaneous contribution to the LMF in
terms of QK parameters. To be precise, we use Egs. (5.2) to
reexpress Eq. (4.1) in terms of {x,e,, u, and¢}. For the
instantaneous contributions we do not assume the orbital
eccentricity to be small and quote the complete closed form
expression valid for arbitrary values of eccentricity. We find
it convenient to express the quantities in terms of ¢ and u
both which help to obtain the circular orbit limits quite
straightforwardly. Finally, we quote the instantaneous
contribution to the LMF emitted by a nonspinning compact
binary system in a quasielliptical orbit,

464 ¢* *211/2 1
Fins = 105G i x —e?)* (1 —e,cosu)'!
| i, ;?:;HCM " R] e
singg —cos¢] | €

coss¢N+x*7:cos¢lPN+x ‘Fcosq&ZPN

5/2 Tinst
+ x5 F, cos ;2.5PN>

= {1—3e%+3e§‘—e?+x(—3+6e,2—3e;‘)

(-4}

(5.3)

inst  __
cos ¢

(6.2)

where the explicit contributions at different PN orders are
the following:

iy =5 (1= 2 (1 = e, cosu)’

X (9—6e? —4e,cosu+ e?cos2u)sinu, (6.3)
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Fost s ipN = e 6(1—et)(1—e,cosu)zsinu[52(183 +295) +€2(7396 — 131905 — 77 [2986 — 27275 + 7 [10920— 7407x)])

—de,cosu(6948 — 17547 — 2 [1369— 25861 + #3193 — 8324]) + 2¢2 cos2u( 1804 — 957+ 4e2[404 — 677
—e}[648—363n]) —e; (4cos[3u][145+2n+ €2 (251 —2n)] —3e,cos[4u][46 +n+ 2 (20—7)])], (6.4)

pis ([ [L2473 483137 1645 ) (1537571 462007 481315 ] T 2106595
cosg2PN =\ €1\ 75745745036 1 12528 34452 ' 45936 1 137808 | M T4 | T 20068

15373855 +26021_ 233005 4004795 +1027127 cos[2u] | + 1327349 2556193
275616 ' 9504 5742 275616 ' 275616 ! 34452 22968

929135 , 120299 207 8803 L\ o) S[334223 51793 25052307
352" )+ |\ Tiasa ~e3s" T arona” ) LU\ € | T0ss ~Tiozaea " 1102464 "

1826369 19955 1280395 , 2 cos(2u] + 38389 603781 61339 2 cosfu | et 14490317
34452 594 1 137808 “\ 17226 " 367488" 1102464 uyrer 68904

65655203 _ 13503565 , IS71803_ 6006811 _ 37231 )\ oo (599 166543
275616 " 275616 ““\ 45936 5512327 551232 M\ 13927551232

PRECLI cosisul 47 6995893 45896101 25446325 , (25213079 22646075
335 Al el _ _
501127 1177183744~ 551232 1T 551232 551232 2204928

21076241 164939 26933 46213 685 20551 1
S it ) [2u] < 939 _269 2> cos[4u]+< - + 2 772> cos[6u]]

2204928 1 551232 20416 551232 61248 734976 " 734976

g| (137465 13144529 +4279205 cosu 1923539+393389 142867 2\ cos[3u] + 281
1584 137808 | 137808 91872 ' 275616 275616 8352

89009 | 335 cosisul| +¢? L9437 26338153 41S3147 ,  (SB4SOBI1 1107319
275616 ' 25056 " "177056 T 367488 1 122496 T ~ \ 1102464 ' 367488

6780793 373913 87121 835 1891 10073
[2u]— cos[4u|+ —_—

~Tio2a6a" 275616 367488 1102464" 122496 367488

91 ol + 274789 179717 1525295 7345 146081 16189 , -
— COS COS COS
367488 ul| +e’ |\ a8 T 2736167 275616 " ““\4176 "551232 50112" "

617 8075 35 O\ o] [ 173407 a5 184603
4176 5512327 50112 e 1715312 7 45936 T 22968

3565 4368883 1584883 3031 29509 2521 ,
[2u] + cos[4u]

696 734976 1~ 734976 " 15312 91872 "91872"

15 1493 a1 1
- - - —J1-eZe,(1- 2)(1- 3
<2552 734976 734976’7)Cosm"‘]])sm”zﬂ rei(1=€t)(5=2n)(1-e,cosu)
x sinu(252—10e,cosu—e?(256 —24cos[2u]) — e} (11 cosu—cos[3ul)),

(6.5)

T 25PN = 10440(1 — €7)?n[—20508 + 12700¢, cos[u] — 7(82035 — 149499 cos[2u]) — €; (56418 cos u + 5878 cos[3u])

+ €}(235851 — 271998 cos[2u] — 1129 cos[4u]) + €7 (46952 cos u + 4179 cos[3u] + cos[5u]) — %(136804

— 124158 cos[2u] — 1401 cos[4u] — 29 cos[6u]). | (6.6)
J/Elsrfrft(/ JTLTS(/ N T x‘7:§1n(/ PN T X Fsmf/ 2PN T x5/2‘7:lsr1]r§l¢25PN’ (6.7)
where the explicit contributions at different PN orders are the following:
. 1
Fin = 3% (1 —e2)>2(1 — e, cos u)*([29 — de, cos u — (22 + 3 cos 2u)e?] cos ), (6.8)
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in 1
]:sistqsnPN - _m

(1 —e2)32(1 — e, cos u)*(10848 + 45561 + €2(39054 — 276761

— €2[49881 — 305125 — 3¢2(3953 — 27947)])
— e, cos u(49878 — 101367 — €2[26067 — 6446y] — ¢*[8259 — 2394y
+ 22 cos[2u] (6708 — 1396y — €2(3255 — 1276n) — 3¢*(719 — 4n))

— 3e; cos[3u](13 + 70n — €?[589 + 227]) — 3e} cos[4u](151 — 4n + €2[65 — 144])),

1

(6.9)

Fost o= i (1—e?)(5=2n)(1—e,cosu)?(638 — 1588¢7 + 896¢; + (468 —458¢? +47e})e, cosu

1
= (130~136¢7)e7 cos[2u] = 3(4 — 7 )ej cosBu]) + 7o/ 1= € (33742320 + 315369129 +23536167°

+ €2(226059048 — 7567588817 — 3343360057 ) — e (27954300 + 1734553500 — 1223858302 ) — €0 (334128948
— 4742345401 + 1590911887%) + €5 (173846220 — 2404414385 +7927071017%) — e1°(8196120 — 294560644
+122338087%) + (e,(10048432 — 851187361 + 187984961%) — €3 (526309724 — 4474254121 + 782513601°)
+ €7(685925776 — 5431878485 4 791093441%) — ] (106001292 — 557949725 + 92275687) — €7 (57233736

— 537776883 +92599201%)) cos u + (€2 (109669752 — 187309921 + 6020645%) — e7 (3309896 + 38646144,
—13112728%%) — €%(143996252 — 1038633155 420703521777 + €5 (26676538 4 66445745 4 45613661%)
+e10(8117568 — 21607135+ 19105837%)) cos[2u] + (—e} (64308804 — 129413405 — 27575375%)

+ 7 (66212382 — 107321341+ 3410608%>) — e] (11366016 + 124621561 — 466481%)

+ €7 (9854478 + 59048701 — 628440n%)) cos[3u] + (e} (12816100 — 21816425 + 4074587?)

—e0(8141924 — 4869481 + 5793801%) — €5 (3024980 + 12541621 — 1227701%)

—¢19(1400904 — 1950721 —942961) ) cos[4u] + (—e; (1457262 — 6543185 + 33360%)

+ €] (429228 + 7604641 + 611765%) + €7 (897354 + 345781 — 515761%)) cos[Su] + (€9(1332 — 154947y — 875%)

+ 8(67230 — 999661 + 453072 — e10(48960 — 375097 + 879%2)) cos|[6u])),

1

(6.10)

FintaseN = = 10420 (1 — €2)>/2ysin u[890669¢, — 1329517¢; + 476628¢; — ?(446788 — 390148¢?) cos u

+ €3 (24447 — 2667¢?) cos[2u] — 2320e} cos[3u] — 600e; cos[4u]].

We find that in the circular orbit limit where ¢, — 0,
Eq. (6.1) agrees with the 2PN LMF expression provided in
Eq. (1) of [21] except for the 1.5PN term, which is a
hereditary contribution discussed later in Sec. VIL. We also
confirm that in the same limit, our instantaneous contri-
bution at 2.5PN in Eq. (6.1) agrees with Eq. (3.13) of
Ref. [22] provided an additional postadiabatic contribution
[which is given in Eq. (8.9)] is added. Next, we cross-check
various limiting cases of these results. In the Newtonian
limit, Eq. (6.1) does not represent Eq. (2.23) of Ref. [18] in
its present form. By accurately replacing u with ¢, we
recover the correct limit. To be noted here, the replacement
of u in terms of ¢ at each successive order leads to
aperiodic terms, having linear or quadratic dependence
on ¢ along with all the periodic terms in ¢. Here, one would
readily agree that only the periodic terms in ¢ contribute to

(6.11)

the expression of the recoil for quasicircular orbits, since
the other contributions are functions of eccentricity and
hence 0. The aperiodic terms in ¢ arise due to the fact that
in this coordinate system defined by (a,, e,, and ¢), along
with the mass asymmetry that gives rise to the emission of
LMF in the first place, there is another asymmetry in the
orbital motion. Since the origin of the reference frame is at
one of the foci of the elliptical orbits, the velocity at the
pericenter is not the same as the velocity at the apocenter.
As a result, there is a flux of linear momenta emitted along
the preferred (toward the y axis in Ref. [18]) direction. This
effect is discussed at the Newtonian order in Eq. (2.23) of
Ref. [18]. In order to avoid these aperiodic terms which
give rise to the diverging terms with respect to time, we
choose to keep all the expressions in terms of x, e,, u, and
¢. Having discussed the instantaneous contributions, we
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now focus on the hereditary contribution at 1.5PN and
2.5PN in the next section.

VII. HEREDITARY CONTRIBUTION TO THE
LINEAR MOMENTUM FLUX

Due to nonlinearity of Einstein’s field equations, the time
varying source moments couple to themselves and to the
others. This gives rise to the hereditary contributions which
depend on the entire history of the system [42]. The leading
order hereditary interaction between the mass quadrupole
moment (/;;) and mass monopole (M or the ADM mass)
appears at relative 1.5PN order. To estimate the 2.5PN
accurate LMF, we need to calculate the 1.5PN and 2.5PN
hereditary contributions to it. The explicit contributions to
the hereditary part from various source type multipole
moments are quoted in Eq. (2.20).

There are different methods proposed in the literature to
compute the hereditary contributions. The first one is a
semianalytical method in the frequency domain, proposed
in Ref. [61]. It is based on the Fourier decomposition of
Keplerian motion [62]. The general prescription of this
decomposition at arbitrary PN order is discussed in [61].
The Fourier decompositions of the multipole moments at
Newtonian order simply read

I(U)= Y T, (7.1)
p=—0o0
Jp-1(U) = Z T e, (7.2)
p=—00
with the inverse relation to be
1 [2= -
=5 | der e, (7.3)
1 [2= .
jL—l = —/ deL_l(U>€_lpf. (74)
27 0

All the Fourier coefficients in Eqs. (7.3) and (7.4) can easily
be obtained as combinations of Bessel functions. With the
correct normalization factors depicted in Eqs (5.1a) and
(5.1b) of Ref. [61], these coefficients are quoted in the
Appendix of the same. This procedure can very well be
adopted in order to compute hereditary contributions.
However, another method is proposed in Ref. [63] where
the hereditary integrals are executed in the time domain. We
employ this method here in order to obtain the 2.5PN
hereditary contribution to LMFE, (F)pe.eq- The closed form
expressions of the 2.5 PN hereditary contributions [see
Eq. (2.20)] consist of several integrations on the various
combinations of the source moments over time starting
from the remote past to the current retarded time. All the
terms are evaluated following the similar procedure. In this

method, we first obtain every integral in terms of QK
variables x, e,, [, A and then perform the time integrations.
For example, we choose the first term in Eq. (2.20),
and for the reader’s convenience we rewrite it here, in

Eq. (7.5),
4G2m (4) © T 11

S ) [T a2 ) 4+ —

63c10 <lﬂ<>()/0 1™, T2

(5)
X 1 (1= 7).

((‘/Ti)hered) 1
(7.5)

To evaluate this integration, we first perform the contrac-

: 4) (5) :
tion, I (1)1 7 (1 = 7) to rewrite them as a sum over all
their nonzero components explicitly in terms of the QK
variables. As a result, this integral is expressed as a sum

over a few integrals of the standard form

© A 11
dreilal(t=7)+pA(t=7)] || v —1, 7.6
/) v "a,) ") 79

which can be reduced to

. o . 11
ilad(0)+pA(1) dre-lel@+0] 1o [ 22} £ 22
e A Te [ n ( 22, + ol

with the fact that if £(¢) = n(¢ — 1) at the current time 7,
then at a retarded time (r — 1), £(t —7), and A(f — ) are
simply (£(t) — nz) and A(¢) — A(7), respectively, where n is
the mean motion. The above integrals can be solved using
the standard formula given by

(7.7)

0 ) 1
/ dze® 1n <i> s |:gS1gn(U)—|—l(1n(2|0'|r())+}’5) s
0 o

2ry
(7.8)

with ¢ being a combination of a, f3, y (the Euler constant)
and the function Sign(s) = +£1. In this whole computation,
we restrict ourselves in the small eccentricity limit and
provide the results accurate up to O(e,). Furthermore, since
the effects of radiation reaction on the various variables
X, e;, [, A start appearing at relative 2.5PN order, hence, they
are neglected for the computation of these integrals. All the
other integrals are similarly computed to find the complete
hereditary contributions at 2.5PN. The two nonzero com-
ponents of the hereditary contributions to the linear
momentum flux in the small eccentricity limit read as

Fhered = EE M’?z)ﬂ |:‘7:l(?(e)ge£ lsllcnr?/;j:|

cos sin é

X[. ’ (/)HA"}, (7.9)
singg —cos¢] | €y

Fowg = X PFGs son + P Flogosens  (7.10)
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coslil 1277 95951, ., 463563 . 523 n] 39 sinfi]) — ez 48657
u g g 29 S ) =€\ 6820

hered =21 i_ — -
T et o oy 8410 841 €77 6728 29
2343 0 945141 4582737 2767 126007 463589
P og L+ 2 T og 2 — 0= 100 3~ 22 pgin2 2 - log 2
55108 T Tgen 198 2 T3a36 108 3~ g 7 sini2ul + cos] u][16820 1682
388557 78125 2653, n
- 34+ 0g 5+ 2 l0g | ), 7.11
6728 T a6 80 TS ngOD (7.11)
196573 71625 66645 \| . (904 1400 N
g 87 201 1) %\,

f—ggs](ﬁi;Q.SPN = 50460

+ef<cos ”[_ 12615 37845

t 352307

38017 (32835 109740 \
) og 3364 841

841 841
8470827 24589467
log 3

218401 783692 n 1307629 664381 log 2 +
2523 7569 g 53824 53824

@

(234375 703125 | (5569 18127 \ o (n\]_ (323099 25325 \ .
1856 £ )08 16704 ' 5568 1)”

1856

39737 4714343 1.
g 3712 107648

€;

100693 17524951
1740 302760

87 261
1099125 23785335
- log 3

18 841
196331 25418317

6 87

26328125 26328125 1, o [$33 173410, (N o .
- (0] — —_— (0] — COS -
g T 9%\ o, “N725230 " 302760

33408 11136

1203125 76484375
n | log5

75584331 25176087
log 3 +

20853451 44982391 \ .
15138 7569 )% 107648 107648 1152 33408
5225 6893 n 921673 1016891
2222 22  1og () | - wsin2 , 7.12
( 58 29 ”) °g<w0>} msin| ”][11136 33408 ”}) (7.12)
F?ienre(;)j = XB/ZFSFJZ({MPN +x5/2‘7jslienr;;j;2.5PN’ (7.13)

where the contributions are

. 309
f?ﬁl?pd;l.SPN = g”

. 51961
464

2663
hered —
fsi?ffﬁ;lSPN - 116 - 87

2639701 \ .
7569 1) %% 53824 53824

+1645 tog 22 ) | sin + 2
—_— — u e
29 )98\ "\ 7733408 "7 33408

+|-

+e % cos u + + 0 —
’ TEOSUT\"4005 841 BT 6728 29

124698 95951 463563 407 n . 5 (23967
log 2 log3+——log|— ) |sinu | +e;| —=—7
116 @y 232

219667 193375 1983609 78125 3587
log 2 — log3+———log 5+——1log i sin2u] |,
464 58 @0

2 -
7 os| ”‘H{ 1682 1682 6728
(7.14)

2185 628025 4862903 1 [ 5025971 21195599 1643716
_ u |- _ _
"\ 7| 5568 " 16704 1|* 25230 302760 2523

13725027 = 16058907 234375 703125 7958
log 3 + - log 5 — =7

— U

1856 1856

_48065 26803253 1738843 30155207 1
33408 ' 33408 ' !

162475587 56210697
1 n ) log 3

0

107648 107648

16060223 30465373 (9123587 5419900
25230 67280 g

7569 * 7569

29 87

where

14890625 16484375 8280 29548
- ( r]) log 5 — ( + 17) log (£>} sin[2u]), (7.15)
20

33408 33408

L9210 48 405
— — X —_— _— —_—— _— .
@0 =2 PI1740 T 29 8 T T 116 BT T E
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VIII. POSTADIABATIC CORRECTIONS
AT 2.5PN ORDER

In Sec. V we have discussed the conservative quasi-
Keplerian description of the binary motion and in the
following two sections, obtain the instantaneous and the
hereditary contributions to the LMF corresponding to
the conservative dynamics where the basic assumption is
that the PN parameter x and the eccentricity parameter e,
are the two intrinsic constants of motion. Apart from these
two, there are two more extrinsic constants c, and c;
associated with the initial values of the two parameters ¢
and 4, respectively [see Eq. (5.2)]. Now in order to obtain
LMF at 2.5PN we need to incorporate the effect of the
radiation reaction on these constants which makes x and ¢,
to be a time varying function and the equations for the
angles £ and 4, i.e., Egs. (5.2e) and (5.2c), modify to

z(:):/’n(ﬂ)dﬂ+c,(z), (8.1)
M) = [ A+ k(EDn(e)dl + (D). (8:2)

To obtain these complete solutions, one uses the PN
accurate equation of motion, Eq. (3.3), with the correct
dissipative contributions (see Ref. [63] for a detailed
prescription) which were neglected in the case of obtaining
QK representation given in Eq. (5.2). Hence, every quantity
describing the binary motion has a two scale decomposi-
tion: a slow (radiation reaction time scale) secular drift (will
be represented by a bar) and a fast periodic oscillation
(orbital timescale) (will be represented by a tilde)

x(1) = x(2) + %(x), (8.3)
e,(1) = e,(t) + &,(1), (8.4)
c)(t) = &(1) + (), (8.5)
cy(t) = &,(1) + &,(1) (8.6)

We do not show the detailed computation of these quan-
tities here. We simply quote the expressions for the periodic
contributions, ¥,¢&,¢;, and ¢;, in terms of their secular
counterparts X, é,¢;, and ¢, following Ref. [63],

- 14 _
%(t) = nx7/ [80 sin(l) + %e_, sin(2/)

4538 . - 6022 -
+ e < G sin() + 15 sm(SI)H

+ O(x°2),

(8.7a)

64 - 352
e,(t) = -z [5 sin(l) + =@ sin(20)
138 . - 358
+e; ( 75 (l)—i—Tsm(3l)>]
+O(F?), (8.7b)
5 64 - 352
— /2| = -~ 2
I(t) = —nx Letcos(l) + G cos(21)
__ (1654 -, 358 -
e, <?cos(l) +Tcos(3l)>
694 - 1289
g2 =
+e <15 cos(2l) + 20 cos(4l)>]
+0(x"?), (8.7¢)
1) = =2 | B ercos(l) + 157 cos(2)|
+O(?). (8.7d)

As it is evident from the above relations, the periodic
contributions %, é,¢;, and ¢, start at 2.5PN, are fully
oscillatory in nature, and thus correctly describe the
postadiabatic corrections to the dynamical variables. We
adopt these relations to obtain the 2.5PN postadiabatic
corrections to the components of LMF. We use the
instantaneous contributions to LMF at Newtonian order
[in Egs. (6.1)], substitute

xX—=>X+3x, (8.8a)
e, > ¢ + e, (8.8b)
I —1+1, (8.8¢)
A=A+, (8.8d)

and replace X,é,C;, and ¢, by their slowly evolving
counterparts to obtain the postadiabatic corrections. We
find the postadiabatic corrections at 2.5PN to have the
following closed-form expressions:

464 ¢*
PA — - FeA L F
105G 1 |: cos ¢ 51n¢:|
. 8,
" {@sqﬁ sin ¢ ][A ] (8.9)
singg —cos¢ || €
16
Fono = 435( —54 — 507€, cos u
+¢,2[2225 + 20232 cos|2u]]), (8.10a)
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PA __
cos¢p

2, sin u(315948 + 6200032, cos u). (8.10b)

1305

To be noted here are that this postadiabatic correction
applies only to the Newtonian terms, and in the rest of the
contributions we can safely replace all the variables simply
by their secular counterparts.

IX. TOTAL LMF AND LOG ABSORPTION

In the previous sections, we have presented closed form
expressions for the various contributions to the LMF
components in terms of X,e;,u, and cfﬁ For simplicity,
we first reexpress the total LMF components in terms of
x. e, 1, J instead of X, e,,u, and gZ For this purpose we use
Egs. (25a) and (25b) of Ref. [63].

Now, as the readers would agree that the hereditary
components have some dependence on the arbitrary con-
stant 7;, we find that this arbitrary constant can be
reabsorbed by a redefinition of the mean anomaly by

(9.1)

with M to be the ADM mass and x{ = (2422)%/3. This

serves simply as a constant shift to the time coordinate, and
hence ¢ and [ follow the same evolution equation,
|

Tot
‘7:c

— VT P
929 5977

Tot

389 337585

dé/dt = di/dt = . Similarly, the phase 1 evaluated at
the shifted time has the following form:
- - 3GM X
Je=1- 3(1+kynn<x>. (9.2)
c X

With this shift in the coordinate time, one can also redefine
the phase variable as . The relation between these
variables are given by

2::§+3(XW2—XW2<3+Z>>ln<2>, (9.32)
b=y + <x3/2(3 + 62 cos(?))
+?ﬂ(—%+ﬁa@—ﬂN%@0>m<%)
- 9x3 ¢, sin(£)In? (i) : (9.3b)
X0

As aresult of this redefinition, Eq. (7.9) together with the
instantaneous parts in Egs. (6.1) and the postadiabatic
corrections in Eq. (8.9) give rise to the total LMF from the
system, given in Eq. (9.4) below,

I

Tot cos|Ae]

sinlde) | | sin [Ae]

918679

cos(A]

o

125 . .

=3 ¢ sin[é] —e,x (% + mn) sin[¢] —
11277 95951 463563
8410 841 6728

1276 45936

1og3]coqa)-+xﬂz<

" 137808

106187 117774
50460 4205

) sin[&] + e,x3/? (1271' sin[¢]

r]} log?2

109740
841

32835
841

[77625 66645

3364 841 12615

464114 937549
n|log3+e, ~ 553 n

L [1307620 664381 1
2523 7569 | 0%

[8470827 24589467

53824 53824 1856

452

199
=1 +Ee, cos[¢] _X<W+

95951

]:'Tot

sin /15

1139 2653
5020 1% 116
463563

+ log

log 3 234375 703125
1856

522
71345 36761

200123 334669
n{log 5 Jeosle] = { Jezr 5563

309
32222 207
77} cos[é]) +x (587z+e, 116

o)wsinig] ). 03

-+ 124698
reos 4205

1623695

12785 [5361

i 6728]0g3]mnﬁ@)-+x2<—

2793017 2663 2185
} cos[f]) + x3/? <—— —

841

22968

37 n +
1446706 664381

147101 ,  [3010489
2088 168904 T T | 34452

628025 4682903
e, |— n | wcos|[é]

11484

T 68904 116 *~
L (3097214 4905709
12615 12615 2523

234275 703125 .
< 1856 1856 ”>1°g5)8"ﬂﬂ}>‘

7569

5568 16704
r/) log 3

log 2.1 (11241027 | 24589467
8 53824 53824
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To be noted here, although we have computed the total
LMF in terms of the secular counterpart of all the variables,
we have removed the bar while quoting the final expression
of the same in Eq. (9.4). From now onward we will quote
all the quantities in terms of the secular variables but
represent them without the bar.

One may wish to reexpress the above equation in terms
of the new phase variable y and £ using Eq. (9.7) below. As
a consistency check, in the limit e, — 0, the above
expression reduces to the estimate of LMF from a binary
moving in a quasicircular orbit [see Eq. (1) of Ref. [21]]
once /; is replaced by v,

de =y — |2 sin(€) + % e?sin(2¢) + x <(10 —n)e,sin(&) + <341 - n) e? sin(2§)) + x2 <112 (624 — 2351 + 1?)e, sin(&)

128

1 1
+52 (969 — 3261 + 2n*)e? sin(2§)) — x>/ (— +—e, cos(&) + 25 €2(10728 + 8935 cos(2§)))] :

5

X. ACCUMULATED LMF

Having discussed the flux of linear momentum, we now
compute the total linear momentum loss in the binary
evolution. Total loss of linear momentum through the
binary evolution over the inspiralling quasielliptic orbits
can be obtained by integrating the LMF,

ar,
L=, (10.1)

t
P; = / Far. (10.2)

To perform the integration in Eq. (10.1) we follow
the prescription for the computation of the memory
terms provided in Ref. [64] and extend it to the accuracy
needed here. As one would immediately identify by
replacing Eq. (9.4) in Eq. (10.1) that every term is of
the form

t .
/ dt’ xPele!$%+r8) (10.3)

464
P =105

1- 4’7’72 cmx? |:,Pcos[/1§] ’Psin[ﬂé] :| |:

9.7)

I

where p, ¢, r, s are different integers depending on the
particular term. From the definition of A:, we remind the
readers that A; = (1 4 k)& and £ = nt. We quote the final
result for integration in Eq. (10.3) below,

(1o
n(r+s(l1+k)) 8(r+s(1+k))

ix(Tx) P19\ L s
- AVR P71 i(s2:418) (104
(r—i—s(l-i—k))[ VT A (104)

We also give the detailed computation in Appendix.
Furthermore, we observe that there are two types of terms.
In the first case, when r # —s, we identify as the fast
oscillatory terms, preserving the usual PN notion in their
expansion. On the other hand, when r = —s, the terms
oscillate on the periastron precession timescale hence
slowly oscillating. As a result they are enhanced by
IPN. We quote our final accumulated LMF expressions
in Eq. (10.5). As evident from Eq. (10.5), we observe a
relative —1PN and a 0.5PN term appearing in the expres-
sion due to the argument presented above. This effect is
also seen in computation of slow oscillatory memory for
the multipole moment [64]. These terms are not present in
the case of quasicircular orbits,

cos[ze] sinli] } {

— cos|A;]

sin[Ae] v } ' (105)
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91 1195 301 3 2737 364 1 .
PC‘)SW_me’m[ﬂﬂ_e’(szz +232) []+\/}e,(232 SEH{%JFE”] Sm[ﬂ)
452 1139 | [506521 396779 2420
* | cos[¢]

87 18729 25056 1 " o28 "

§7 521"
309 67663 19729 1721569 40249
+x3/? (—ﬂ+e,[(————n>ﬂcos[§]+ <— + log2

58 6264 783 50460 841
_17406910g3_786671n_6146l72> sin[g]D+ 2<_71345+36761”+147101” {@mm[ﬂ
6728 9396 1 783 22968 ' 2088 ' 68904 145
(_10384631+5356178951”+15582709 17003, )cos[g]D
30624 | 62013600 | 413424 T T 2784 "
5o (26637 2185z 101024207 80835007x 1381037
* < 116 87 ’K 33408 300672 T 2349 > S8
(5811883+9725212199’7_2842859 603757 (1751699_169934}7) -
25230 12261780 | 15660 ' ' 23490 T ~\ 10092 7569
. (2908071 +26744067n) g3+ (234375—703125n> log 5) - g]} >
107648 107648 3712 3712
Pz = gzl =33+ 3331 ) el = Ve g0+ 55 1| cosll— 5 asinle
77426 18215 2429 )\ .. ([625897 786671 6146 , 55702 144747
(2349 25056 " 928" >+x ¢ <[12615 5306 1T 783t g4 82" 336 1°g3] cosl¢]
B [124997+@4mn[§]) x%(ﬂﬂn ” [81690155_1564168363’7_11651279
3132 783 145 275616 31006800 826848
17003 ]m[g}) _x5/2<106187+97522n_ {32835_1097404 log 2 [@_@W] log 3
2784 1 50460 ' 4205 841 84l 3364 84l
Kss 46787 5917848347 2842850 , 603757 , [2029853 494447 ;7] oa [5678271
100920 ' 12261780 " 15660 T ' 23490 T | 710092 7569 107648

22434867 234375 703125 3575993 28032817 138103 .
—_— 3— n|log5 | cos[¢] - 2 ) 7 sin[¢]

107648 3712 3712 11136 300672 | 2349

As an algebraic test, in the limit e, -0, we To compare with previously reported results for binaries in
recover the correct circular orbit result presented in  quasielliptical orbits, we identify the leading order contri-
Ref. [22] by replacing A: with w where w is the  butions to the components of center of energy velocity by
orbital phase in case of compact binaries in quasicircular v, = —P,/m and v, = —P,/m [the leading order terms
orbits. from Eq. (10.5)] at Newtonian order up to O(e;,),

|

464 91 9487 301v 523
U=~ 103 1 — dnnPext (cos[/lg] T cos[As — &] — et<[m + 232} cos[A; —¢&] — 232005[25 + §]>> (10.6)

464 af . 91 . 9487 301v| 523
% = ~108 1 —dnp cx (sm[ﬁé] 16 ¢ sin[4: — ¢] —e,([m—k 232} sin[A; — &] — 232s1n[/15+§]>> (10.7)

We replace 4:, &, and u in Egs. (10.6) and (10.7) in terms of ¢ at the leading order using A: = (1 + k)¢,
&= (u—e;sinfu]), and u = ¢ — e, sin[¢p] which results in
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464 ) 291
U =~ 108 1 —dnn’cx {cos[(]ﬂ —|—metcos (@]
5009 301 91
B ef<1044+ﬁ”_ 116x>}’ (108)
464 273 291
% ="108 1 —4nn? cx {116 ¢+sm[¢]+ﬁsm[2¢]

(10.9)

We find that v, matches with Eq. (3.6) of [18] up to O(e,).
However, we find an O(e,) contribution to the x component
of the center of energy velocity, v,, in addition to the result
quoted in Eq. (3.6) of [18]. We quote the additional
contribution explicitly below,

,Uilcddmonal 464 1= 4,,[’72 cx4et<

1044 232" T 1162 )"
(10.10)

5009 301 91
105

As this additional contribution depends only on ¢, and x, it
does not contribute to the average velocity, and we recover
the results reported in Eq. (3.9) of Ref. [18] and Eq. (103)
of Ref. [54]. This additional contribution arises because of
the doubly periodic nature of the binaries in quasielliptical
orbits when higher order PN corrections are adopted.
There are two fundamentally different types of contribu-
tions that appear while integrating the LMF over time. The
usual fast oscillatory terms give rise to the contributions
quoted in Egs. (10.6), (10.7), and (10.10) through v, and
(v, — p2dditional) Tag previously reported in Eq. (3.6) of
[18]]. The slowly increasing contribution, which oscillates
in the periastron timescale, causes a difference in the LMF
between the early and the very late times in the binary
dynamics. Hence after integrating over time, the slow
oscillatory contributions are enhanced by 1PN and give
rise to the additional aperiodic terms given in Eq. (10.10),
at —1PN and the Newtonian order. For example, when
s = —r, Eq. (10.4) has an overall factor of —2.5PN which
together with 1.5PN terms in the LMF contributes to the
—1PN term. Similarly, other different combinations give
rise to the additional terms at Newtonian order. This is a
very similar effect as seen in computation of slow oscil-
latory memory integrals for the multipole moments [64].

XI. CONCLUSION

In this paper we compute the rate of loss of linear
momentum in the far zone of a nonspinning inspiralling
compact binary system in quasielliptical orbits. We use QK
representation of the orbital variable at 2.5PN. We quote the
linear momentum flux accurate up to O(e,) at 2.5PN. We
also provide a closed form expression for the accumulated
linear momentum over the binary evolution. Unlike the
linear momentum flux, we observe an additional —1PN and

a 0.5PN term appearing in the expression for the total linear
momentum [see Eq. (10.5)]. This is a very similar effect as
seen in the computation of the slow oscillatory memory
presented in Ref. [64].

In most of the previous literature [21,22], Eq. (10.1) is
used to compute the recoil of the center of mass of the
binary where the recoil velocity, V; = —P;/m, although,
recently in Ref. [65], the authors have argued that the
momentum balance equation for the compact binary system
will have an additional contribution from the flux asso-
ciated with the center of mass position. Hence identification
of —P;/m to the recoil velocity may lead to underestima-
tion of the same. We postpone the calculation of the center
of mass flux and the recoil for future work.
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APPENDIX: INTEGRALS USED TO COMPUTE
THE ACCUMULATED LMF

We extensively use the method developed for the
oscillatory memory integrals in Ref. [64] to compute the
accumulated linear momentum over the binary evolution.
However, to achieve the desired accuracy for our calcu-
lation, we extend the procedure to one higher order. We
provide the complete prescription here. For convenience we
set G = ¢ =1 in this Appendix. We define the standard
integral form [Eq. (10.3)] that has to be computed as

T .
Soe = / “drxP (1) ed (1) ellhet o), (A1)

The eccentric orbit is assumed to evolve only with the
secular radiation-reaction equations [5,6] given by

dx X 64 584 & 74

R/ N 2 ), (A2

dr Gm(1—62)7/2<5 NIRRT ) (A2a)
de, n ext 304 121 ,

Sl S A s Al A2b
& Gm(-p\15 15 ¢ (AZ0)

with ¢, = 1 in the remote past when x = 0. We ignore all
the astrophysical process such as mass loss during the
binary evolution.
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We rewrite the evolution Eq. (A2) accurately up to the
leading order in x and keep terms at O(e?),

157
1 +——e(t
1],

and integrate it over a time interval up to some coalescence
time T, where the orbital frequency and therefore x tends

to infinity:
T o0
/ c dr — / dx(t) ‘
i x(1) (dx/dt)

Thereby, we find an explicit relation between the orbital
frequency (related to x) and time t:

dx(r)  64nx°(1)
dt  Sm

(A3)

(A4)

Sm 1 157
Te—t=——|1-——=¢%(1)]. AS
¢ 256n x*(1) { 43 er( )] (A5)
Considering only the leading order, we find
(T )\ 19/12
e =ema ()" e
1 5 1/4 157 Te—t )\ 19/
x(t) =7 () 15 (TR (75 .
4 TY(TC—I) 172 TC_TR
(A7)
For our convenience we introduce a new integration
variable y = T];l:_TtR and the different time-dependent quan-

tities in terms of y and their values at the current time 7.
For x we find

) =H{T) (1+3) 14 1 AT (1+3)7 )|
(a9
|

8(Tc — Tg)xY?(Tk)
Sm

&(1) = &(Tw) -

(143711 -

where x(Ty) and e,(Ty) denote their respective current
values of x and e,.

Now we introduce a dimensionless “adiabatic param-
eter” y(Tg), related to the inspiral rate at the current
retarded time T; which is defined as the ratio between
the current period and the time difference between the
current time and the coalescence,

AT8) = (A14)

TR)(Tc—Tg)

11696 </

and for the eccentricity we find

e:(y) = e,(Tg)(1 + y)'9/4. (A9)

Note that in the remote past as y — oo, the eccentricity
evolves until it reaches the maximum value of 1.
Furthermore, the redefined mean anomaly &£(7) in terms
of y and its value at the current time is the following:

&) = &(T¢) - / " () = ETe) - / ")

Te mJr.

= e(ro) - T [Ny o)

m 1

(A10)
Now inserting x(y) given in Eq. (A8) we find
8(Tc—Tg)x"*(Tg)

Sm

e?(TR)(15(1+y)19/24—34)}, (A11)

§(1)=¢&(T¢) - (14y)*®

471
X ——
11696

where £(T'¢) is the value of £ at the coalescence. Hence, the
mean anomaly at the current time T is given by

8(TC—TR)X3/2(TR)
Sm

&(Tr)=&(Tc) -

4
{1+899 ,

Now using Egs. (A11) and (A12) we find &(¢) in terms of
&(Tg) and y,

471 19 —34(1 + y)/3 + 15(1 + y)17/12

2(TR) (1+y)5/8_1

. (A13)

where n(Tg) = x*?(Tg)/m at leading order. We rewrite
the adiabatic parameter y(7) in terms of x(Ty)
and e(Ty),

2561 157

u(r) =B er 1+ o] ()

We express £(7) in Eq. (A13) in terms of y(T),
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471 2y >19—34(1+y)5/8+15(1+y)17/12
— €
11696 % (14y)3/8 -1

(1) = &(Tg) - (A16)

8
IR [1 -

Now using Egs. (A8), (A9), and (A16), we rewrite Eq. (A1) as an integral over y:

Jmem — (TC - TR) /oo dy xp(y)e;l(y) ei<‘Y/15(y)+r§(y))
0
i i 8i(r +s(1+k
= (T = Tg)elrHHh:(TR) / dy x?(y) el (y) exp{_w
0 5x(Tg)

471 21,) 19 =34(1 +y)3/8 + 15(1 + y)17/12
11696 1 ¥ I+ P =1 :

[(1+y)8 —1]

(A17)

Schematically the above integral can be written as,

o i
Jmem NA dyf(y) exp |:)((TR)

We use the technique, integrate by parts, and use the result from the following type of integral:

g(y)] : (A18)

[ v =g - e + 0 0, (A19)

This formula is valid as long as ¢ (y) is sufficiently large. Integrating Eq. (A18) by parts we get

(AT ] tr [ 0]

+O0((Tr)?) (A20)

) G e AT IR o o e R R N

+O(x(Tg)?) (A21)
B [(ix(Tr)  x(Tr)*d"(y) o i . W) ix(TR)eX i

f W(ﬂy) TTWOR ) pL<TR>g(”Hy=O”(TR) 70 [g«y) pL(TR>9(y)Hyo

L O(TR)) (A22)

[T T o dO) )
o) [ J0) P L(n)g(y’] (1 1Tw) g+ "(T’*)ﬂy)g/(y)ﬂyo' (A23)

Q

~—

Now in our case the different functions are the following: As y approaches infinity in the remote past, the quantities
f(y) = xP(y)e?(y) and f'(y) both approach zero. Since at

POy = {px"_l eq% 1 gxPet! %] early times x — 0 (as the frequency reaches zero), the
= dy dy|,—g maximum achievable value for the eccentricity can be 1 in

) 19 our model. While evaluating the terms at y = 0, we recover

= —pr el + @qxp ef, (A24)  x and e, at the current time and g(0) = 0. The derivative

¢ (v) in the denominator evaluated at y = 0 is effectively 1

J0)|yeo = =(r + s(1 + k), (A25) multiplied by some constants. We keep terms at order

O(x(Tg)?) and the higher-order contributions can be
safely ignored. We find the final result for the integral in

J' Olyo =5 (r +s(1 +k)). (A26)  Egq. (Al) as

ool W
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3ix(Tx)

Sosc = _(Tc - TR)xpeqei(S/15+r§)

i)((TR)
(r+s(l+k)) (1

C8(r+s(1+k) (r+s(1+k)
i)((TR)

ix(Tg) [_Z fgq] >

B i <1 _ 3ix(Tg)
n(r+s(l+k)) 8(r+s(1+k))

(r+s(l+k

)) |:_ 14 + ﬁ] )x” el ei(s/lfrraf)'

4748 (A27)

This allows us to compute the oscillatory hereditary integrals in Eq. (10.3).
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