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Abstract
We study a coarse-grained model for a binary blend system composed of cis-polyisoprene and
vinyl-polybutadiene. Since the slow relaxation dynamics of polymers may require very long
simulation times, coarse-grained descriptions are regularly used in order to reduce computational
cost while keeping the essential physics. Relaxation dynamics of a coarse-grained model is
sometimes accelerated by the smooth coarse-grained potentials. However, the magnitude of the
acceleration may be different in different components in a multi-component system. In order to
simulate a time-scale consistent dynamics, the acceleration effects should be the same across the
different components. Here, we investigate a time-scale consistent coarse-grained model for a
binary polymer blend. For the coarse-grained equation of motion, we adopt the Langevin equation
and adjust the friction coefficients by focusing on the relaxation times of the first normal mode of
the polymers. A united-atom model is used as a reference system of the coarse-graining. Since it is
found that the solubility parameter of the atomistic model is much larger than the experimental
result, our simulation model is not applicable for the quantitative predictions, but we utilize it as a
example system to study a time scale mismatch of a coarse-grained model. We find that the
coarse-grained potentials and the friction coefficients derived for one blend composition captures
different compositions of the blend. Furthermore, it is found that the magnitude of the
acceleration effects of the blend rarely depends on the composition ratio. This implies that our
coarse-grained model can be used for inhomogeneous systems.

1. Introduction

Polymeric materials such as plastics, rubbers, and gels, are ubiquitous in our surroundings. They are soft and
have long relaxation time which is compatible with the time scale of our daily life. The mechanical and
rheological properties are crucially important in their practical use [1]. To understand relationships between
chemical structure and the physical properties is a central subject of material design [2].

Molecular dynamics simulations have been often utilized to study the structure-property relationship.
However, since relaxation modes of long polymers are widely distributed in time and can display a very long
relaxation time, require a very long time to study mechanical and rheological properties in atomistic
simulations. Therefore, many coarse-grained descriptions [3–14] such as bead-spring models and slip-spring
models have been proposed to perform the molecular dynamics simulations. While phenomenological
models can capture essential physics of the polymeric dynamics, significantefforts are often required for the
parametrization to yield quantitative predictions of a real material.

In a structure-based coarse-graining method [15–18], a coarse-grained model is derived based on the
chemical structure of a target material. It has been reported that several physical properties such as a stress
relaxation function of polymer melts [19–21], entanglement molecular weight [19, 22], and a chemical
potential of additives [23] can be quantitatively reproduced in the coarse-grained models.

According to the structure-based coarse-graining, coarse-grained potentials are derived based on a
mapping rule to specify coarse-grained variables. In an iterative Boltzmann inversion method [18], the local
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structure represented by radial distribution functions of coarse-grained beads is reproduced as a target
property of the coarse-grained model. The coarse-grained potentials often accelerate the relaxation dynamics
compared to the corresponding microscopic model when we simply use the potentials with the Newtonian
equation of motion. A single numerical factor is often introduced to rescale the simulation time for the
simplicity although the numerical factor may depend on the thermodynamic state point of the
coarse-graining. It has been demonstrated that the time-recaling approach can be used to obtain a long time
scale properties such as a diffusion property in homogeneous polymer melt systems [15, 17, 20, 24–29]. The
acceleration effect can be advantageous for the coarse-graining from the perspective ofreducing the
computational cost.

In industrial applications, polymeric materials are typically made from many ingredients by blending
different polymers and nano-fillers [30]. The acceleration of relaxation dynamics of different species upon
coarse-graining must be consistent in the blend systems so as to study the dynamical properties. In fact,
different acceleration effects of different components have been already reported in multi-component
systems of ionic liquids, lipids, polymer melts with small additives, and polymer nanocomposites [23, 24,
31–35]. For example, it is shown in [24] that in a system of polystyrene polymers with ethylbenzene
molecules the acceleration factor of the ethylbenzene is smaller than that of the polystyrene beads.

Since a quantitative prediction of the time rescaling factor based on a mapping rule is not trivial, the
effects on activation energies and time scale dependent scaling factors have been studied [21, 36–39].
Furthermore, applying a processing in which polymers are mixed or demixed at certain temperatures and/or
under shear flows, one needs a coarse-graining model that is transferable to different temperatures,
compositions, and rheological situations. Although there are some studies for polymer blends using the
structure-based coarse-grained method in which the morphologies and the radial distribution functions are
mainly concerned [40–45], the dynamical properties have not been well investigated. The recent progress
and challenges of coarse-graining methods with consistent dynamics properties are reviewed in [46].

A natural way to resolve the time scale mismatch is to derive appropriate equations of motion for
coarse-grained variables. One approach is to derive a generalized Langevin equation based on the
Mori-Zwanzig projection operator method [47, 48]. The Mori-Zwanzig equation derived from a microscopic
autonomous equation of motion of an isolated Hamilton system is exact and keeps the time-reversal
symmetry of the system, since the dynamics of the fast variables is also involved in the equation. To close the
equation of motion, with respect to the coarse-grained variables defined by the projection, some
approximations and idealizations are applied to the terms of the dissipation kernel and the random forces.
They may introduce a violation of the time-reversal symmetry into the coarse-grained equation of motion.
For instance, a Markovian approximation is often applied by assuming a clear time scale separation between
the coarse-grained variables and the degenerated degrees of freedom. Dissipative forces and random forces
which reflect the degenerated degrees of freedom satisfy the fluctuation dissipation relation of second kind
[49]. There are several studies on this method [50–65]. The formulation of the dissipative particle dynamics
(DPD) [66, 67] is often investigated as a coarse-grained equation of motion in which the dissipation kernel
depends on relative positions between two coarse-grained beads and can be evaluated from the
corresponding microscopic simulations.

The issue of the time scale mismatch in multi-component systems hasrecently beenstudied in polymer
solutions and in a polymer matrix with penetrant molecules [65]. Deichmann and van der Vegt showed that
the diffusion properties in the polymer solutions can be well reproduced by the Mori-Zwanzig DPD-type
coarse-grained equation of motion. It is also reported that, although the penetrant molecules in the
coarse-grained model display slightly faster diffusion dynamics than that in the atomistic simulation, the
coarse-grained model reproduces better diffusion coefficients compared to those in another coarse-grained
model which is described by the Newtonian equation of motion with a Nose-Hoover thermostat.

There are also some studies in which, by assuming stochastic equation of motion for coarse-grained
beads, the parameters of the equation of motion are determined through a Bayesian optimization with the
corresponding microscopic trajectories [68–70]. Dissipation parameters can be also evaluated as the
parameters in the assumed stochastic equation. Another example is a Markov state model based approach by
defining a probability distribution of states of interest [71–73]. The thermodynamic states evolve according
to a transition matrix which may include a violation of time-reversal symmetry of the dynamics, that is, a
dissipation effect. The transition matrix can be derived and optimized from the corresponding microscopic
trajectories.

However, deriving dissipative friction kernel usually requires extensive statistics. Several theoretical and
numerical approaches has been studied for the dissipation kernel [60, 61, 74–76]. It is also not trivial to
define proper states of a Markov state model in advance while keeping the transition matrix reasonably small.
If the dissipation kernel is properly obtained as well as the coarse-grained potential, it is expected that the
coarse-grained model recovers the original time scale as examined for velocity auto-correlation function and
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diffusion coefficients in [55, 64], and then the acceleration effect of relaxation dynamics is lost. Practically,
major molecular dynamics packages, such as LAMMPS [77], Gromacs [78], and ESPResSo++ [79], do not
support these kinds of equation of motion such as a non-Markovian DPD equation by default or require
some programming efforts.

In this study, we consider another simple approach to adjust time scales of different components. We
adopt theLangevin equation [80] and attempt to adjust the friction coefficients of the coarse-grained beads.
An application of the Langevin equation has been studied in [50] for liquid methanol with the multi-scale
coarse-graining method [81]. They showed that the time dependence of the velocity auto-correlation
function can be well reproduced if a sufficient resolution is kept in the coarse-grained model. The friction
coefficients have been evaluated from the corresponding microscopic simulation.

When a friction coefficient is sufficiently large, Lanvegin dynamics undergoes an overdamped regime
where the inertial degrees of freedom are degenerated as fast variables and the relaxation time can be
changed by the strength of the friction coefficient [82, 83]. This approach has been studied in a water system
in a context of an adaptive resolution simulation scheme to make the dynamics of the atomistic water and the
coarse-grained water consistent [84]. It is demonstrated that the diffusion behavior can be adjusted by
increasing the friction coefficient while keeping the static properties. Furthermore, Salerno et al also showed
in polyethylene melts [20] that the stress relaxation time can be adjusted by varying a friction strength of the
Langevin equation of motion. Although short time scale behaviors such as a velocity auto-correlation may be
changed by modifying the friction coefficients, it is expected that the coarse-grained model can
approximately describe slow dynamics of interests if the dynamics is well represented by the overdamped
equation. The aim of this paper is to investigate the applicability of this method to a polymer blend system.

As an example, we investigate a mixture of cis-polyisoprene and atactic vinyl-polybutadiene. This is
experimentally known as a miscible polymer blend [85]. The procedure to derive the coarse-grained model is
divided into 3 steps. In the first step, we derive two coarse-grained models of the homopolymer melts of
cis-polyisoprene and vinyl-polybutadiene, respectively. Then, we obtain two sets of coarse-grained force
fields of the cis-polyisoprene and the vinyl-polybutadiene, respectively. By keeping these force fields, we
derive interaction potentials between the beads of the different polymers in the second step. In the last step,
we adopt the Langevin equation of motion for the polymers and adjust the friction coefficients to reproduce
the ratio of the characteristic relaxation times of the two polymers. After the derivation, we also study a
composition transferability of the coarse-grained model whose coarse-grained potentials and friction
coefficients are fixed to those derived in a certain composition.

This manuscript is organized as follows. After introducing a united-atom model of cis-polyisoprene and
vinyl-polybutadiene in section 2.1. We derive two coarse-grained models to describe the homopolymer melts
of cis-polyisoprene in section 2.2.1 and of vinyl-polybutadiene in section 2.2.2, respectively. The cross
interactions between the two polymers and the friction coefficients of the Langevin equation are derived
referring a 50/50 blend system in the volume fractions in section 2.2.3 and section 2.3. In section 3, we
examine the coarse-grained model in the different compositions, and then summarize the results in section 4.

2. Modeling

2.1. Atomistic model
Atomistic molecular dynamics simulations are performed as microscopic descriptions in this study with the
united-atom models developed in [86–88] for cis-polyisoprene and in [89, 90] for atactic
vinyl-polybutadiene. These united-atom models are derivatives of one united-atom model for polybutadiene
[91]. The same force field parameters are assigned to the same carbon atom types. Therefore, we can
naturally extend the interaction parameters to the blend systems. The force field parameters used in this
study is summarized in A. The reference temperature and pressure of our simulation are chosen as 393 K
(kBT∼ 3.264 kJ/mol) and 1.0 bar as a rubbery state. All molecular dynamics simulations are performed by
Gromacs 5.1.4 [78].

As a homopolymer melt of cis-polyisoprene, we have prepared 512 chains composed of 24 monomers
each in a periodic boundary box as studied in [19]. The initial configuration of the system is prepared from a
dilute gas state and compressed by NPT simulations for around 90 ns to the target pressure. After the
compression, the system is further equilibrated by a 60 ns simulation with a Nose-Hoover thermostat [92, 93]
and a Parinello-Rahmann barostat [94] of the damping factors 0.5 ps and 2.0 ps, respectively, which is almost
four times longer simulation than the chain end-to-end vector relaxation time. The data for coarse-graining
are sampled from a 30 ns trajectory of a NVT simulation after the equilibration. The mass density and the
Kuhn length at 393 K and 1.0 bar are around ρcIPm = 0.85 g/cm3 and lcIPK = 0.84 nm, respectively, which agree
well with the evaluated value 0.86 g/cm3 from an experiment [95], and 0.83 nm for polyisoprene of
cis-content 93% [96]. The relaxation time of the end-to-end vectors of the chains is about 15.4 ns.
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As a homopolymer melt of vinyl-polybutadiene, we have also prepared 512 chains of 24 monomers in
another periodic boundary box. The system is equilibrated by the same way as done for the cis-polyisoprene
melt. The density and the Kuhn length obtained by the simulation at 393 K and 1.0 bar are around
ρvBDm =0.91 g/cm3 and lvBDK =1.4 nm. The mass density in the simulation is considerably larger than the value
0.83 g/cm3 from experiments [97, 98]. Note that in the two experiments the vinyl content and the
poly-dispersity are high and quite narrow although the molecular weight is much larger than that of the
simulation. This density mismatch is also reported in a simulation [90] and presumed due to the force field
parameters of the model. On the other hand, the Kuhn length is fairly in a good agreement with an
experimental result 1.37 nm [96] (temperature of the experiment is not exactly the same as our case). The
relaxation time of the end-to-end vectors of the chains is around 3.46 ns in our simulation. Here we use this
model as a model intended to describe vinyl-polybutadiene with keeping the discrepancy of the density in
mind. It is noted that any systematical modifications of the force field parameters have not been examined in
this study. Since the parameters for butadiene are originally derived from the quantum chemistry
calculations and experiments for the polymers whose main contents are cis and trans connection [89, 91], a
modification for vinly-butadiene remains as a matter to be studied further.

Let us define the volume fraction of cis-polyisoprene in a blend of the two polymers as

ϕcIP =
wcIP/ρcIPm

wcIP/ρcIPm +wvBD/ρvBDm

(1)

where wcIP and wvBD are the weight fraction of cis-polyisoprene and vinyl-polybutadiene in the blend,
respectively. ρcIPm and ρvBDm are the mass densities in the cases of the homopolymer melts, respectively. The
volume fraction of vinyl-polybutadiene ϕvBD is also defined by the same way and ϕvBD = 1−ϕcIP.

Besides the two homopolymer melts, we consider three blend systems of different compositions,
ϕcIP = 0.25,0.5, and 0.75. A 50/50 blend system where the volume fraction ϕcIP = 0.5 contains 200
cis-polyisoprene chains and 277 vinyl-polybutadiene chains in a simulation box. A coarse-grained model is
derived to reproduce the 50/50 blend system in this study. The system of ϕcIP = 0.25(0.75) contains 67(200)
chains of cis-polyisoprene and 277(92) chains of vinyl-polybutadiene, respectively. The degrees of
polymerization are fixed to 24 for both polymers in the all cases.

The 50/50 blend system is also prepared from a low density gas state to a condensed state by a long NPT
simulation. After this preparation, we have further performed a NPT simulation for 100 ns with the
Nose-Hoover thermostat and the Parinello-Rahmann barostat for the equilibration. For coarse-graining, a
40 ns trajectory is sampled in a NVT simulation of the 50/50 blend system after the equilibration. For the
other 25/75 (ϕcIP = 0.25) and 75/25 (ϕcIP = 0.75) blends, we have removed some chains from the 50/50
blend to change the volume fraction. Then, the systems are equilibrated by NPT simulations.

A blend of cis-polyisoprene and vinyl-polybutadiene is known as a miscible polymer blend in
experiments [85] (references are therein). They are miscible even in high molecular weights. The solubility
parameter χ evaluated by a scattering experiment [99, 100] is extremely small and negative around
−8.5× 10−4 at 393 K. In order to estimate the solubility parameter χ in our simulation model, scattering
functions are calculated in the 50/50 blend. The random phase approximation in a mean-field approach for a
polymer blend [101, 102] leads to a simple relationship among the scattering functions and the solubility
parameter as

2χ =
v0

vcIPϕcIPPcIP(q)
+

v0
vvBDϕvBDPvBD(q)

− 1

Scomp(q)
(2)

in the incompressible limit. Here, Scomp(q) is the composition scattering function as defined below, and P(q)
represents the form factor of a single polymer chain in the unperturbed state. v0 is the reference volume of
the system, and vcIP and vvBD are the average volume of the scatters of the cis-polyisoprene and
vinyl-polybutadiene, respectively.

Let us use the coarse-grained beads defined in figure 1 as the scatters of the scattering functions. The
circles shown in figure 1 represent coarse-grained beads. The position of a bead is defined as the
center-of-mass position of the inside atoms of the bead. The number of coarse-grained beads along the
chain, NCG, is 48 for both polymers in our system. We set the reference volume v0 = Ntot/V where Ntot is the
total number of the coarse-grained beads in the system and V is the total volume of the system. vcIP and vvBD
can be evaluated as the average volume of the coarse-grained beads of the polymers.
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Figure 1.Mapping rules of coarse-grained beads for (a) cis-polyisoprene and (b) vinyl-polybutadiene. Two types of
coarse-grained beads are defined in both polymers under the name of A, B, C, and S as indicated by circles in the figure. For the
bead type C, the weight of carbons connecting to a vinyl group are equally shared by two sequent C beads.

The composition fluctuation can be defined as δm(q) = (δϕcIP(q)− δϕvBD(q))/2
where

δϕcIP(q) =
1√
V

∑
j∈cIP

vcIPe
iqRj ,

δϕvBD(q) =
1√
V

∑
j∈vBD

vvBDe
iqRj (4)

for |q|> 0 and δϕcIP = δϕvBD = 0 at q= 0. Thus, the composition scattering function Scomp(q) in the
isotropic system is described as

Scomp(q) =
1

v0
⟨δm(q)δm(−q)⟩

=
1

Ntot

∑
j,k

fjfk⟨eiq(Rj−Rk)⟩ (5)

for q> 0 where j and k stand for all scatters. fj = vcIP/v0 for a scatter of cis-polyisoprene, and fj =−vvBD/v0
for a scatter of vinyl-polybutadiene. The ensemble average ⟨·⟩ is evaluated by the time-average of the
simulation trajectory.

In equation (2), PcIP and PvBD are approximately evaluated by the intra-chain scattering functions of the
respective polymers in the blend. They are normalized as P(q→ 0) = NCG. Since the chains obey Gaussian
statistics in a large scale that satisfies qlK > 1, the form factor P(q) can be described by the Debye function
[101, 102].

In figure 2, the contribution from the first and second terms of the right hand side of equation (2) is
plotted in red, and the third term is plotted in blue. The gyration radii in the simulation are around 1.4 nm
for cis-polyisoprene and 1.1 nm for vinyl-polybutadiene. In the inset of figure 2, the whole contribution of
the right hand side of equation (2) is drawn. Although it does not seem to be a constant, by averaging data of
the two smallest q we obtain a rough estimate χ≈ 0.035 in the scale of v0. Thus, χNCG, which is expected as a
scale invariant parameter, is roughly evaluated as about 1.7 in the simulation.

As described previously, the experimentally expected χ is negative and the absolute value is extremely
smaller than our simulation result. The larger bulk density of vinyl-polybutadiene in the simulation could
cause the discrepancy of the miscibility of the blend. Although more larger systems are needed to evaluate
more precisely the deviation of the miscibility, it is implied that the simulation model cannot quantitatively
reproduce the blend properties. This indicates that our simulation model in this study should be understood
as a toy model to investigate a relaxation time consistent coarse-grained model of the blend.

2.2. Coarse-grained model
2.2.1. Cis-polyisoprene melt
A coarse-grained model of the cis-polyisoprene homopolymer melt is derived in the same way as studied in
[19]. We have here chosen the cut-off length of the non-bonded interactions as rcut = 1.5 nm to reduce
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Figure 2. In the 50/50 blend system, (a) the first and second terms of the right hand side of equation (2) and (b) the third term are
plotted, respectively. The coarse-grained beads represented in figure 1 are used as the scatters to compute the scattering functions.
Inset, χ evaluated from equation (2) as a function of q2 is plotted.

further the computational cost although it is 2.0 nm in [19]. Two types of coarse-grained beads A and B are
defined in the monomers as illustrated in figure 1(a). The bead A contains two carbons and the bead B
contains three carbons. For the bonded interactions, we define two bond potentials, two angle potentials,
and two dihedral potentials. Note that since the positions of the coarse-grained beads are defined at the
center-of-mass positions of the carbons inside the beads, the equilibrium bond lengths of AB and BA are
different. The bonded potentials are derived through the Boltzmann inversion of the probability distribution
functions of those variables obtained in the single chain simulation in vacuum [103]. We derive
pressure-corrected non-bonded potentials in order to minimize the pressure difference of the blend
polymers. The pressure-correction is preformed iteratively as [104]

V(i+1)
X,Y = V(i)

X,Y −A

(
1− r

rcut

)
kBT, (6)

A = 0.1sgn(∆Pi)min(1, f∆Pi) (7)

with the iterative Boltzmann inversion (IBI) method [18]

V(i+1)
X,Y (r) = V(i)

X,Y(r)+α1kBT ln
g(i)X,Y(r)

g(tgt)X,Y (r)
, (8)

where V(i)
X,Y and V

(i+1)
X,Y , respectively represent the ith and (i+ 1)-th candidates of the coarse-grained potential

between X and Y beads,∆Pi = Pi − Ptarget is the deviation from the target pressure, and g(i)X,Y is the radial

distribution function under the potential of V(i)
X,Y. The symbols X and Y represent the coarse-grained beads A

or B. The pressure correction and IBI are performed alternately after the convergence of IBI steps. We have
used the VOTCA package [104] for the iteration. The parameters f and α1 are the coefficients that we can
adjust to optimize the convergence of the iteration. Here, we have set empirically f = 0.003 so that f∆Pi≈ 1 at

the first step, and α1 = 1.0. g(tgt)X,Y is the target radial distribution function obtained in the atomistic simulation
of the polymer melt. In figure 3, all potentials of the bonded and non-bonded interactions are shown. The
distributions of the bonded variables are well reproduced as shown in figure 4(a)–(c). The agreement of the
radial distribution functions with those of the atomistic simulation are also verified as shown in figure 4(d).

As studied in [19], the coarse-grained model with this mapping rule can well reproduce the Kuhn length
and the linear viscoelaticity. The mean squared internal distance, ⟨R(s)2⟩/s, is plotted with respect to s in
figure 5(a) where R(s) is the end-to-end distance of a sub-chain composed of s+ 1 beads. It is verified that
not only for the end-to-end distance of the chains but bead-bead correlation in the small s region agree with
those obtained from the corresponding atomistic simulation.

2.2.2. Vinyl-polybutadiene melt
A coarse-grained model of the vinyl-polybutadiene homopolymer melt is derived with the mapping rule
represented in figure 1(b). The size of the coarse-grained beads are chosen to be almost the same as the beads
for cis-polyisoprene. The bead C is defined from three carbons but the carbons connecting the vinyl group
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Figure 3. Coarse-grained bonded and non-bonded potentials of a cis-polyisoprene melt. Figures (a), (b), and (c) display the bond
length, angle, and dihedral potentials for the coarse-grained A and B beads. The non-bonded potentials for the beads are
represented in (d).

Figure 4. Distributions of the bonded variables and radial distribution functions of the coarse-grained beads of cis-polyisoprene.
The results from the atomistic simulation are represented with symbols, and those from the coarse-grained model are drawn by
lines. (a), (b) and (c) represent the distributions of the bond length, angles, and dihedral angles, respectively. (d) is the radial
distribution functions of the beads.

are shared by the two sequent C beads in equal half weight. The beads C and S are connected alternately
along the chain as studied for polystyrene in [105]. 1-5 bonded interactions between C-C and S-S along the
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Figure 5.Mean square internal distance curves of the coarse-grained chains in the single component (a) cis-polyisoprene melt
and (b) vinyl-polybutadiene melt, respectively. The results from the atomistic models are represented by symbols with error bars
and those from the coarse-grained models are represented by lines.

Figure 6. Coarse-grained bonded and non-bonded potentials of a vinyl-polybutadiene melt. Figures (a), (b), and (c) display the
bond length, angle, and dihedral potentials for the coarse-grained C and S beads, respectively. Bond-CC and bond-SS indicate the
bond length potentials between C-C and S-S of 1-5 pairs along the chain, respectively. The non-bonded potentials of the beads are
represented in (d).

chain are also explicitly defined as done in [105] in order to hold the correct distance distribution between
the pairs. The non-bonded interactions along the chain act from the 1-6 bonded pairs.

The bonded and non-bonded interactions are derived by the same way as for the cis-polyisoprene melt.
The bonded interactions are derived by the Boltzmann inversion of the probability distribution functions
obtained in the single chain simulation. The non-bonded interactions are also derived from IBI and the
pressure correction as discussed for cis-polyisoprene. The resultant potentials are shown in figure 6. The
distributions of the bonded variables are well reproduced as shown in figure 7(a), (b), and (c). The
agreement of the radial distribution functions with those of the atomistic simulation are also verified as
shown in figure 7(d).

The mean square internal distance of the coarse-grained model also agrees well with the result of the
atomistic model as shown in figure 5(b). The Kuhn length of the coarse-grained model is about lCGvBDK = 1.37
nm which agrees with lvBDK = 1.4 nm of the atomistic model. We conclude that the two coarse-grained models
for cis-polyisoprene and vinyl-polybutadiene have similar qualitiesas the representability of the polymers.

2.2.3. The 50/50 Blend
To derive the coarse-grained potentials between two polymers, let us assume that 1) the bonded interactions
obtained in the single chain simulations can be used in the blend systems as well as in the homopolymer
melts, and 2) we can also keep the non-bonded interactions derived in the homopolymer melts. Namely, the
bonded interactions and the six non-bonded potentials between A-A, A-B, B-B, C-C, C-S, and S-S beads are
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Figure 7. Distributions of the bonded variables and radial distribution functions of the coarse-grained beads of
vinyl-polybutadiene. The results from the atomistic simulation are represented with symbols, and those from the coarse-grained
model are represented with lines. (a), (b) and (c) represent the distributions of the bond length, angles, and dihedral angles,
respectively. (d) is the radial distribution functions of the beads.

assumed to be composition transferable. Thus, we here derive the cross interactions between A-C, A-S, B-C
and B-S beads in the 50/50 blend system.

To derive the cross interaction potentials, we have used IBI described in equation (8) and the
coordination iterative Boltzmann inversion (C-IBI) which is described as [106]

V(i+1)
X,Y (r) = V(i)

X,Y(r)+α2kBT ln
C(i)
X,Y(r)

C(tgt)
X,Y (r)

, (9)

where C(i)
X,Y(r) = 4π

´ r
0 dr

′r ′2g(i)X,Y(r
′) is the coordination number of X and Y beads. Since C(i)

X,Y is evaluated by

the integration of g(i)X,Y, deviation of g
(i)
X,Y at ro is accumulated in C(i)

X,Y(r> ro), and simultaneously deviation of

g(i)X,Y(ro)moderately appears in C(i)
X,Y(r≈ ro). Therefore, it is expected that IBI and C-IBI can correct the

coarse-grained potentials in a different way.

We start from IBI with initial guesses of V(0)
X,Y(r) = [uX,X(r)+ uY,Y(r)]/2 where uX,X(r) represents the

interaction potential between X-X beads. The initial guesses are chosen because the potentials obtained by
Boltzmann inversion from the target radial distribution functions cause a phase separation in the first step of
IBI. Since the solubility and the radial distribution functions of the different polymer’s beads are sensitive to
a small difference of the interaction potentials, we have set α1 = α2 = 0.01 empirically. In the iteration, we
have performed bathes of IBI and C-IBI alternately. In each step, 4.5 ns simulation is performed which is
longer than the first normal mode relaxation time of the coarse-grained chains. During the iteration, the
Nose-Hoover thermostat with a coupling factor 1.0 ps is applied to each type of the polymers. In the next
subsection, we consider Langevin thermostats instead of the Nose-Hoover thermostats to study the
relaxation dynamics of the polymers.

After the iteration, we obtain the coarse-grained potentials as represented in figure 8. The radial
distribution functions obtained in the coarse-grained system show good agreement with those in the
atomistic simulation as shown in figure 9. It is verified that the interaction potentials obtained from the
homopolymer melts work well for the blend.

The mean square internal distance curves of the respective polymers are represented in figure 10. The
good agreement at small s implies that the bonded potentials give accurate local configurations along the
chains. For large s, the end-to-end distances of both polymers are about 7% shrink by blending in the
atomistic simulation. Although the coarse-grained cis-polyisoprene reproduces the shrinkage effect, the
coarse-grained vinyl-polybutadiene remains in almost the same end-to-end distance as that in the
homopolymer melt. This implies that the coarse-grained model is slightly more compatible compared with
the atomistic model. The composition transferability of the coarse-grained potentials is verified in section 3.

9
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Figure 8. Coarse-grained non-bonded potentials between two beads in the different types of the polymers.

Figure 9. Radial distribution functions in the atomistic simulation are represented by symbols and those in the coarse-grained
simulations are represented by lines. In (a), the radial distribution functions of beads of cis-polyisoprene are shown. In (b), those
between the different polymers are shown. In (c), those of vinyl-polybutadiene are shown.
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Figure 10.Mean square internal distance curves of the coarse-grained chains in the 50/50 blend are shown. The results from the
atomistic models are represented by symbols with error bars and those from the coarse-grained models are represented by lines.

2.3. Relaxation times of the two polymers
As a characteristic relaxation time of the chains, we focus on the auto-correlation function of the first normal
mode defined as [3]

C(t) = ⟨X(t)X(0)⟩/⟨X(0)2⟩, (10)

X(t) =

NCG∑
j=1

√
2

NCG
cos

(
( j− 1/2)π

NCG

)
Rj(t) (11)

with the number of coarse-grained beads NCG along the chain, and the coordinates of coarse-grained beads
Rj. The relaxation time τR is evaluated by fitting C(t) to a single exponential function e−t/τR . A time rescaling
factor p is introduced so as to fit C(pt) of the coarse-grained model to C(t) of the corresponding atomistic
model.

In the coarse-grained 50/50 blend with the Nose-Hoover thermostats, the two polymers show similar
relaxation times of the first normal modes. The ratio of the relaxation time of cis-polyisoprene to that of
vinyl-polybutadiene, ζ = τ cIPR /τ vBDR , is obtained as approximately 1.3 although the ratio in the atomistic
simulation is ~ 2.8. The relaxation times of the coarse-grained polymers weakly depend on the damping
factors of the thermostats. This discrepancy results from the different magnitude of the time scale
acceleration effect of the two polymers.

Therefore, the ratio of the relaxation times of the two polymers needs to be corrected keeping as large an
acceleration of the coarse-grained model as much as possible. Since cis-polyisoprene displays too fast
relaxation compared to vinyl-polybutadiene, we attempt to make cis-polyisoprene slower while keeping the
relaxation dynamics of vinyl-polybutadiene as fast as possible. To perform this, we consider a simple
Langevin equation described as

m
d2

dt2
Rj =−mγ

d

dt
Rj −

∂U

∂Rj
+ ξj(t). (12)

for the coarse-grained beads Rj with the massm, a friction coefficient γ, and Gaussian white noise ξj(t)
which satisfies the fluctuation dissipation relation

⟨ξj(t)ξk(t′)⟩= 2 mγkBTδjkδ(t− t′). (13)

U represents the total interaction energy of the coarse-grained model. If the friction coefficient is sufficiently
large, the relaxation time is inversely proportional to γ. The values ofm, γ, and then ξ may depend on the
types of the coarse-grained beads. As the friction coefficients, we use the same value of γCGcIP for the two bead
types of the cis-polyisoprene and the same value of γCGvBD for the two bead types of the vinyl-polybutadiene.

Since the friction coefficient does not change the equilibrium distribution because of the fluctuation
dissipation relation, it can be used to vary the relaxation time while keeping the static properties unchanged.
We first fix the friction coefficient of the beads of vinyl-polybutadiene, γCGvBD, to be sufficiently small. Then,
we increase γCGcIP which is the friction coefficient of the beads of cis-polyisoprene until the ratio becomes

11



J. Phys. Mater. 3 (2020) 034007 T Ohkuma and K Kremer

Figure 11. Dependency of the friction coefficients on the relaxation times. In (a), the first normal mode relaxation time of
vinyl-polybutadiene is represented with respect to the friction coefficient for C and S beads. The ratio of the relaxation times, ζ, is
plotted against the friction coefficient for A and B beads where γCGvBD is fixed to 0.5 ps−1. The dash lines is an eye guide.

Figure 12. Relaxation behavior of the normalized auto-correlation function C(pt). The results obtained in the atomistic
simulation are represented by symbols, and those in the coarse-grained model are represented by lines. p= 1.7 is used as the time
rescaling factor of the coarse-grained model.

the target value ζ = τCGcIPR /τCGvBDR ≈ 2.8 where τCGcIPR and τCGvBDR mean the relaxation time of the first
normal modes of the coarse-grained cis-polyisoprene and vinyl-polybutadiene, respectively.

In the Langevin simulations, we find that γCGvBD = 0.5 ps−1 is small enough as shown in figure 11(a) and
smaller than the intrinsic segmental friction of the chains as confirmed below. While keeping the value of
γCGvBD, we vary γCGcIP. The ratio of the relaxation times is represented in figure 11(b) with respect to γCGcIP.
With approaching the overdamped regime, the relaxation time of cis-polyisoprene is increased and the target
ratio is reproduced around γCGcIP = 6.67 ps−1. As shown in figure 12, the auto-correlation functions of the
first normal modes in the coarse-grained model with γCGvBD = 0.5 ps−1 and γCGcIP = 6.67 ps−1 agree well
with those of the atomistic simulation where we have used a single time rescaling factor p= 1.7 for both
polymers.

It should be noted that the damping time of inertia with the Langevin thermostat is typically estimated as
the order of γ−1. Therefore, changing the value of γ may change the relaxation dynamics in this short time
scale. According to the renormalization group method [107], by expanding the underdamped equation
described as equation (12) in the limit of γ−1→ 0, the overdamped equation described as

mγ
d

dt
Rj =− ∂U

∂Rj
+ ξj(t) (14)

can be derived theoretically. Therefore, when dynamics of interests changes in a much longer time scale than
γ−1, the overdamped picture becomes a good approximation although we cannot expect that the
overdamped coarse-grained model well reproduce the short time behaviors around γ−1. In the overdamped
Langevin equation, the friction coefficient controls the time scale as equation (14) is invariant under the
transformation of t→ t′ = pt and γ → γ′ = pγ where p is a constant and independent of j. We adjust the
balance of γCGcIP and γCGvBD in the overdamped picture.
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Table 1. Several characteristic parameters of the polymers in the 50/50 blend.NK , lK , andmK represent the number of segment along the
chain, the Kuhn length, and the segmental mass. τR and τ s represent the longest Rouse relaxation time of the chains and its segmental
relaxation time evaluated from equation (15). The segmental friction divided by the segmental mass is represented as ς/mK .

united-atom coarse-grained

parameter cIP vBD cIP vBD

NK 14 3.7 14 3.6
lK (nm) 0.77 1.3 0.76 1.4
mK (g/mol) 117 374 115 391
τR (ns) 12.0 4.34 7.15 2.51
τ s (ps) 62 320 35 200
ς/mK (ps−1) 85 44 52 25

To confirm the segmental relaxation time τ s as a basic time scale of the chain dynamics and the effective
segmental friction coefficient ς/mK wheremK is the mass of a segment. We apply the Rouse model [108],
which is a bead-spring model of a single ideal chain in a medium, in the blend system as an approximation.
The Rouse relaxation time of the first normal mode is described with the segmental friction ς , the Kuhn
length lK , and the number of Kuhn segments NK along the chain as

τR = τsN
2
K =

ςN2
Kl

2
K

3π2kBT
. (15)

As summarized in table 1, for both types of the polymers that the segmental relaxation time is much larger
than the effective damping timemK /ς of the segment. This implies that the polymeric relaxation dynamics
can be well described in the overdamped picture in which the potential interactions play an important role
compared with the inertial relaxation.

3. Composition transferability

As a verification of composition transferability of the coarse-grained model, we consider the blends of
ϕcIP = 0,0.25,0.75, and 1.0. ϕcIP = 0 and 1.0 corresponds to the single homopolymer melts of
vinyl-polybutadiene and cis-polyisoprene, respectively. The coarse-grained potentials and the friction
coefficients derived in the 50/50 blend system are used for the simulations of the different compositions.

As the static properties, the radial distribution functions and the mean square internal distance curves are
represented in figure 13 and figure 14. The systems ϕcIP = 0 and 1.0 are omitted because they are the same as
shown in figures. 4, 5, and 7. Although the beads of the minor component are slightly more structured in the
atomistic model compared with the coarse-grained model, the coarse-grained model captures quite well the
changes of the radial distribution functions. Moreover, the tendency of the weak shrinkage in the end-to-end
distance caused of the minor component is also well reproduced as seen in figure 14.

For the relaxation dynamics, we verify the ratio of the relaxation times as well as the time rescaling factor.
The auto-correlation functions of the first normal modes excellently agree with the results of the atomistic
simulation as shown in figure 15. The time rescaling factor p is evaluated in each composition by comparing
results from the atomistic model and the coarse-grained model. Although p in the pure vinyl-polybutadiene
system is around 20 % larger than the others, it is found that p does not much depend on composition.

In figure 16, the relaxation times of the two polymers with respect to the blend composition are
represented where p= 1.7 is used in the all cases of the coarse-grained simulations. The agreement in figure
16 implies that the change of the relaxation times are mainly caused by the interaction potentials and the
effect of the friction coefficients are minor compared with the composition difference in the present model.

4. Summary

We have derived a coarse-grained model of the oligomeric polymer blend of cis-polyisoprene and
vinyl-polybutadiene based on a united-atom model. Since the atomistic model of the blends studied shows
considerably less miscibility compared with the experimental results, it is considered as a model system to
study a time-scale consistent coarse-grained model. The discrepancy presumably comes from the force field
parameters for vinyl-polybutadiene because the homopolymer melt displays a higher mass density in the
simulation compared to the experimental result.

The non-bonded interaction potentials between the coarse-grained beads of the different polymers are
derived in the 50/50 blend system while keeping the bonded and the non-bonded interactions of the beads
within the identical polymers which are derived in their homopolymer melt systems. As characteristic
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Figure 13. Radial distribution functions of the atomistic simulation are represented by symbols and those in the coarse-grained
simulations are represented by lines. Figures (a), (b), and (c) show the results of the blend of cIP/vBD= 25/75 in volume fraction,
and figures (d), (e), and (f) show the results of the cIP/vBD= 75/25 blend in volume fraction, respectively. In (a) and (d), the
radial distribution functions of cis-polyisoprene are shown. In (b) and (e), those between the beads of the different polymers are
shown. In (c) and (f), those of vinyl-polybutadiene are shown.

Figure 14.Mean square internal distance curves of the coarse-grained chains in the (a) 25/75 and (b) 75/25 blends results from the
atomistic models are represented by symbols with error bars and those from the coarse-grained models are represented by lines.

relaxation dynamics, the first normal modes of the polymers are concerned. The ratio of the relaxation times
of the two polymers are corrected by adjusting the friction coefficients of the Langevin equation for the
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Figure 15. Relaxation behavior of the normalized auto-correlation function C(pt) for (a) the pure cis-polyisoprene melt, (b) the
pure vinyl-polybutadiene melt, (c) the cIP/vBD= 25/75 blend, and (d) the cIP/vBD= 75/25 blend, respectively. The results
obtained in the atomistic simulation are represented by symbols and those in the coarse-grained model are represented by lines.
The time rescaling factor p is set as 1.7, 1.6, 1.7, and 2.0 for cIP/vBD= 100/0, 75/25, 25/75, and 0/100, respectively.

Figure 16. Relaxation times of the first normal modes of cis-polyisoprene and vinyl-polybutadiene in the blends, respectively. The
x-axis shows the blend composition in the volume fraction. The relaxation times obtained by the coarse-grained model are
rescaled by a single factor p= 1.7 in the all cases.

coarse-grained beads. It is found that the present coarse-grained model reproduces very well the radial
distribution functions of the systems for different blend compositions. In addition to the static property, the
ratios of the relaxation times of the two polymers are also well reproduced by the coarse-grained model
derived in the 50/50 blend. Moreover, it is also found that the time rescaling factors of the different blend
compositions are almost the same although they deviate maximally around 20 %.

The adjusted friction coefficients in the Langevin equation are smaller than the effective segmental
friction coefficients evaluated based on the Rouse model, respectively. Although the short time scale
behaviors such as the inertial relaxation may be changed by the modification of the friction coefficients, it is
confirmed that the segmental relaxation time is much longer than the damping time of the segmental friction
in the Rouse picture. Therefore, in the coarse-grained model, it is expected that Rouse-like dynamics is well
described by the overdamped equation of motion where the potential interactions play an essential role.
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Table A1. Bonded parameters of the united-atom force field are shown. The units of the lengths and energies are set to nm and kJ/mol.
The angles are written in degree.

bond length rb

CH2, CH2b 0.153
CH2b, C= 0.150
C= , CH= 0.134
CH= , CH2 0.150
C= , CH3 0.150
CH2, CH 0.153
CH, CH= 0.150
CH= , CH2= 0.134

angle kθ θ0

CH2b, C= , CH= 374.00 125.90
CH3, C= , CH= 374.00 125.90
C= , CH= , CH2 374.00 125.90
CH= , CH2, CH2b 481.160 111.65
CH2, CH2b, C= 481.160 111.65
CH2, CH, CH2 481.167 111.65
CH, CH2, CH 519.570 114.0
CH2, CH, CH= 481.167 116.65
CH, CH= , CH2= 374.00 125.90

proper dihedral c0 c1 c2 c3 c4 c5

CH2b, C= , CH= , CH2 -14.036 20.662 1.410 -23.314 1.188 -8.400
C= , CH= , CH2, CH2b 4.603 -1.509 2.835 -6.174 -2.666 12.70
CH2, CH2b, C= , CH= 4.603 -1.509 2.835 -6.174 -2.666 12.70
CH2, CH, CH2, CH -15.437 8 7.545 -0.30 714 -13.936 5 4.705 1 -4.05 469
CH2, CH, CH= , CH2= 1.44 385 -6.73 845 -5.52 731 1.68 541 2.51 631 3.67 011

improper dihedral kϕ ϕ0

CH2b, C= , CH= , CH2 160.00 0.000
CH, C= , CH= , CH2 160.00 180.0

The composition transferability implies that the coarse-grained model can be applicable in
inhomogeneous states such as a mixing process at least near equilibrium conditions when hydrodynamic
interactions are not important. To what extent the coarse-grained model works far from equilibrium states
still has to be tested because all coarse-grained parameters are derived and verified in the equilibrium state. It
should be also noted that the coarse-grained potentials and the friction coefficients depend on the
thermodynamics state point in which they are derived. Further studies are necessary to obtain
thermodynamics transferability such as temperature transferability.

The examinations in the systems of different molecular weights and different solubility situations are also
left for the future studies. In general, a polymer blend undergoes phase separation when χ is positive and
molecular weights of the polymers are sufficiently large. If the coarse-grained potentials are transferable not
only for composition but for molecular weight, it is expected that the coarse-grained model can capture
morphological differences by the blend composition. To verify static and dynamical properties of the
coarse-grained model, interfacial energy and composition fluctuation dynamics near phase boundaries also
need to be investigated. Since the method to derive the time scale consistent model studied here is not
specific for the polymers, it can be examined for other blend systems.

Appendix A. Parameters of the united-atommodel

The force filed parameters for cis-polyisoprene and vinyl-butadiene are taken from the literatures [86–90].
The parameter used in our simulations is summarized in table A1 for the bonded parameters and in table A2
for the non-bonded parameters. The corresponding symbols of the united carbons atoms are shown in figure
A1. The bond lengths are fixed by LINCS algorithm. Harmonic functions described as (1/2)kθ(θ− θ0)

2 are
used for the angluar potentials. For the proper and improper dihedral angles, Ryckaert-Bellemans function
described as

∑5
n=0(−1)ncn cosnϕ and a harmonic function as (1/2)kϕ(ϕ−ϕ0)

2 are used, respectively.
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Table A2. Non-bonded parameters of the united-atom force field used in our simulations are shown. The units of the lengths and
energies are set to nm and kJ/mol.

non-bonded σ ε

C= , C= 0.33 854 0.418 400
C= , CH= 0.33 854 0.418 400
C= , CH2= 0.33 854 0.418 400
C= , CH 0.33 854 0.418 400
C= , CH2 0.37 926 0.424 676
C= , CH2b 0.37 926 0.424 676
C= , CH3 0.37 926 0.629 692
CH= , CH= 0.33 854 0.418 400
CH= , CH2= 0.33 854 0.418 400
CH= , CH 0.33 854 0.418 400
CH= , CH2 0.37 926 0.424 676
CH= , CH2b 0.37 926 0.424 676
CH= , CH3 0.37 926 0.629 692
CH2= , CH2= 0.33 854 0.418 400
CH2= , CH 0.33 854 0.418 400
CH2= , CH2 0.37 926 0.424 676
CH2= , CH2b 0.37 926 0.424 676
CH2= , CH3 0.37 926 0.629 692
CH, CH 0.33 854 0.418 400
CH, CH2 0.37 926 0.424 676
CH, CH2b 0.37 926 0.424 676
CH, CH3 0.37 926 0.629 692
CH2, CH2 0.40 090 0.391 622
CH2, CH2b 0.40 090 0.391 622
CH2, CH3 0.40 090 0.609 190
CH2b, CH2b 0.40 090 0.391 622
CH2b, CH3 0.40 090 0.030 4 595
CH3, CH3 0.40 090 0.947 2 576

Figure A1. The repeated units of cis-polyisoprene and vinyl-polybutadiene are represented in (a) and (b), respectively. The atom
names are labeled to the corresponding carbons.

Lennard-Jones potentials described as 4ϵ[(σ/r)12 − (σ/r)6] with a cut-off length 1.1 nm are assumed for the
non-bond interactions in the simulation.
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