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Insights into the molecular mechanism of amyloid 
filament formation: Segmental folding of -synuclein 
on lipid membranes
Leif Antonschmidt1, Rıza Dervişoğlu1, Vrinda Sant1,2, Kumar Tekwani Movellan1, Ingo Mey3, 
Dietmar Riedel4, Claudia Steinem3,5,6, Stefan Becker1, Loren B. Andreas1*, Christian Griesinger1,6*

Recent advances in the structural biology of disease-relevant -synuclein fibrils have revealed a variety of struc-
tures, yet little is known about the process of fibril aggregate formation. Characterization of intermediate species 
that form during aggregation is crucial; however, this has proven very challenging because of their transient 
nature, heterogeneity, and low population. Here, we investigate the aggregation of -synuclein bound to nega-
tively charged phospholipid small unilamellar vesicles. Through a combination of kinetic and structural studies, 
we identify key time points in the aggregation process that enable targeted isolation of prefibrillar and early 
fibrillar intermediates. By using solid-state nuclear magnetic resonance, we show the gradual buildup of structural 
features in an -synuclein fibril filament, revealing a segmental folding process. We identify distinct membrane-
binding domains in -synuclein aggregates, and the combined data are used to present a comprehensive mecha-
nism of the folding of -synuclein on lipid membranes.

INTRODUCTION
-Synuclein (S) is a 140-residue intrinsically disordered protein 
that is abundant in the human brain and enriched in the presynaptic 
nerve termini (1). Under a variety of conditions, it readily self-associates 
and eventually forms highly ordered fibril structures. Aberrant ac-
cumulation of such misfolded S in neurons and glial cells is found 
in a family of diseases called synucleinopathies, which include 
Parkinson’s disease (PD) (2), dementia with Lewy bodies (3, 4), and 
multiple system atrophy (MSA) (5, 6).

In recent years, structures of fibrils have been successfully 
studied by means of solid-state nuclear magnetic resonance (NMR) 
spectroscopy and cryo–electron microscopy (EM), revealing a multi-
tude of architectures (7–10). At their core, these fibril structures 
consist of the so-called non–amyloid- component (NAC), a hydro-
phobic, highly aggregation-prone region encompassing residues 
61 to 100 (11). On a mechanistic level, monomeric S aggregates to 
form multiple populations of oligomeric intermediates that inter-
convert and are rich in antiparallel  sheet (12). Such oligomers can 
either be off-pathway, not converting further, or on-pathway and 
eventually restructure and elongate to form fibrils (13). Growing 
evidence suggests that these transient intermediates constitute the 
major toxic species in disease progression (14). Membrane disrup-
tion by S oligomers has been suggested as a potential mechanism 
for toxicity (15, 16). Structural information on these nonfibrillar 
intermediates is scarce.

Because of its location and its preference for the binding to phos-
pholipid membranes, S has been linked to a regulatory role in 
synaptic vesicle exocytosis, brain lipid metabolism, and neuronal 
survival (17). In its native state, S binds to anionic phospholipid 
bilayers via an amphipathic helix comprising residues 1 to 100, 
which contain nine imperfect repeats with the consensus sequence 
KTKEGV (18, 19). Lipid interaction of S has been shown to modu-
late the aggregation kinetics depending on head group charge, 
acyl-chain length, and protein-to-lipid ratio (20, 21). Despite recent 
advances in structural characterization of S fibrils and oligomers, 
structural studies on aggregates grown in the presence of phospho-
lipids are limited. Comellas et al. (22) elegantly showed the progres-
sion from monomeric to fibrillar S in a lipid environment but did 
not investigate intermediates in detail.

Here, we used solid-state NMR (ssNMR) to obtain atomic reso-
lution information on aggregation intermediates in the presence of 
phospholipid membranes. Our results reveal that S fibril forma-
tion is initiated by formation of two loop regions (residues 58 to 
61 and 71 to 80). This species then rapidly rearranges, with parts of 
the NAC adopting the final fibril conformation. The structural changes 
observed during the aggregation process are each distinguished by 
a characteristic response to thioflavin T (ThT) and can be attributed 
to specific time points in the aggregation cascade. Through the use 
of nuclear Overhauser effect (NOE)–based ssNMR measurements, 
we identified two membrane-binding domains in S fibrils, sub-
stantiating the observed mechanism.

RESULTS
S adopts polymorph 2 type fold in the presence 
of phospholipids
To understand the process of fibril formation in the presence of 
phospholipids, fibrils grown de novo from monomeric full-length S 
in the presence of small unilamellar vesicles (SUVs) composed of 
1-palmitoyl-2-oleoyl-sn-glycero-3-phosphate (POPA) and 1-palmitoyl-
2-oleoyl-sn-glycero-3-phosphocholine (POPC) were investigated 
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by ssNMR in combination with transmission electron microscopy 
(TEM). To obtain de novo assignments for 1H, 13C, and 15N back-
bone and side-chain resonances of fibrils, we recorded proton-
detected three-dimensional (3D) spectra (Materials and Methods; 
figs. S1 and S2) alongside 13C,13C 2D correlation spectra with dipolar-
assisted rotational recoupling (DARR; 20-ms mixing time) (Fig. 1A). 
For this purpose, we prepared fibrils of 13C,15N-labeled S. Further-
more, we prepared fibrils of 2H,13C,15N-labeled S leveraging the 
increased amide proton sensitivity originating from perdeuteration 
for confirmation of assignments (23). Secondary structure predic-
tion by TALOS+ (Fig. 1B) (24) revealed several stretches of  sheets, 
including residues L38-V95 as previously found in other studies 
(25). These  sheets are interrupted by turns composed of residues 
K45-E46, K58-K60, G73-T75, as well as K80 and T81. On compar-
ing chemical shifts with those for fibril polymorph 2 reported by 
Guerrero-Ferreira et al. (9) (BMRB entry 18860; Fig. 1, C and D), 
remarkable similarity is seen for two extended segments V41-A56 
and V70-K80 (9, 25). Marked differences were, however, observed 
for residues E57-A69 and T81-V95. An origin of these differences 
might be the absence of a rigid N-terminal domain, as we did not 
observe residues G14-G25 being incorporated into the fibril core, 
unlike previously reported structures (9).

Unambiguous 13C-13C long-range contacts (table S1; distances 
up to ~7 Å) were obtained from 13C,13C 2D correlation spectra with 
200-ms DARR mixing (fig. S3A). Several contacts observed in the 
DARR spectra conflict with the reported polymorph 2 structures 
(distance >7 Å; table S1) (9). These conflicts are consistent with the 
observed chemical shift differences for the corresponding residues. 
For example, we could not find evidence for contact between I88 
and N65, as would be expected from reported structures for poly-
morph 2 [Protein Data Bank (PDB) entries 6ssx and 6sst] (9). Never-
theless, we still observe the expected contact between I88 and G67, 
indicating a slightly different arrangement of the backbone of the 
C-terminal part of the fibril core, while the orientation of the side 
chain is mostly preserved. This confirms that the global fold of S 
within a filament is comparable to PDB 6ssx and 6sst (fig. S3B). The 
recently reported structure of the E46K mutant of S (PDB 6ufr) 
features a similar S fold (26); however, for this structure, a contact 
of I88 and G67 is not expected as the I88 side chain faces outside the 
filament. In the following, we will therefore refer to fibrils in this 
work as polymorph 2 type.

Electron micrographs display fibrils of 10 to 15 nm in width, car-
rying three distinct morphologies (Fig. 1, E to G, and fig. S4). The two 
predominant species are straight with a helical pitch of 85.5 ± 8.3 nm 
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Fig. 1. Characterization of S fibrils in the presence of phospholipids. Structural and morphological characterization of S fibrils grown in the presence of anionic 
phospholipids (POPA/POPC 1:1, L/P = 5:1). (A) 13C,13C 2D correlation spectrum with 20-ms DARR mixing of 13C,15N-labeled fibrils acquired at 850 MHz with 17-kHz magic-
angle spinning. (B) Chemical shift differences between the fibril preparation here compared to the polymorph 2 fibrils deposited in BMRB 18860 plotted onto the structure 
of polymorph 2 (PDB 6ssx). Similar chemical shifts are represented in green, large differences are in red, and partial similarity is in yellow (scale indicated below). (C) Torsion 
angles (top) and order parameter S2 (center) derived by TALOS+ from C, C, and C′ chemical shifts of S fibrils; (bottom): secondary structure propensity predicted by 
TALOS+ (arrows indicate  sheet; curved lines indicate turn or loop regions). (D) Chemical shift differences between the fibril preparation here compared to BMRB 18860 
(shaded according the color scale in B). (E to G) TEM micrographs of fibrils depicting the most abundant polymorphic structures (scale bars, 100 nm): (E) high-pitch 
fibrils (helical pitch, 90 nm), (F) medium-pitch fibrils (114 nm), and (G) low-pitch fibrils (300 nm).
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and slightly curved with a helical pitch of 123.2 ± 20.7 nm, similar 
to morphologies of other fibrils with a comparable filament fold (26). 
The less populated species shows a helical pitch of 299.7 ± 185.3 nm 
and appears either straight or curved, sometimes even wavy. Con-
sidering that the 13C,13C 2D ssNMR spectra show only a single set of 
signals, the conformations of the monomers within the fibrils ap-
pear to be very similar. Such observation of homogeneous mono-
mer structure and different mesoscopic structure of amyloid fibrils 
have been reported earlier (27).

S fibrils bind to anionic phospholipids via their  
C- and N-terminal domains
Fibrillar forms of S bind to anionic phospholipid bilayers, and it 
has been suggested that they interact via the N-terminal domain (28). 
Minor structural perturbation of the fibril core in the presence of 
lipids was also reported, yet little is known about the molecular de-
tails of this interaction (22, 29). To comprehensively characterize 
binding domains of the rigid core of S, we recorded 3D H(H)NH 
spectra with longitudinal mixing similar to previously reported 
(Fig. 2, A to C) (30). These experiments yield residue-specific infor-
mation on the exposure to the immediate water and lipid environment 
with transfer to mobile species mediated via NOE (31). We prepared 
perdeuterated 13C,15N-labeled S fibrils in the presence of lipids, 
allowing the discrimination of peaks originating from the 1H chemical 
shifts of water at 4.7 parts per million (ppm) (Fig. 2B), choline CH3 
at 3.3 ppm (Fig. 2C), and lipid acyl-CH2 at 1.3 ppm (Fig. 2D) (30).

The observed peaks were assigned to the S sequence allowing the 
description of the immediate environment of the protein backbone 

(Fig. 2E). Several extended stretches of residues are in contact with 
water. Unexpectedly, residues V63-A69 also appear to be in contact 
with water, despite being capped by the C-terminal part of the NAC 
(Fig.  2F). An extended cavity formed between residues G67-A69 
and residues V82-I88 (Fig. 2G) bears enough space for enclosed 
water molecules.

Two lipid-binding domains were identified at both the N- and 
C-terminal edges of the fibril structures (Fig. 2F). The existence of 
multiple lipid-binding domains is in agreement with TEM micro-
graphs (Figs. 1, E  to G, and 2H), where vesicles are often seen 
bound to more than one side of the fibril surface, in some cases 
creating lipid-engulfed fibrils. This is enhanced by the fibril twist 
enabling the different domains to simultaneously face the same 
lipid bilayer.

In the N-terminal region, residues L38-S42 and E46 are in con-
tact with the CH2 groups of the lipid acyl chains (Fig. 2, D and F). 
Moreover, residues T75 and K80 were found to be in contact with 
the choline CH3 groups of POPC (Fig. 2C), suggesting that residues 
L38-S42 are more deeply embedded in the membrane. Anchoring 
of S fibrils to lipid bilayers through the N-terminal domain had 
been described earlier (22). In the C-terminal part of the NAC, res-
idues A85-G86 and G93-V95 are found to be in contact with lipids 
(Fig. 2F), underpinning the differences in fibril structure observed 
in this region compared to published structures for polymorph 2 
(Fig. 1D) (9). Furthermore, binding of fibrils to lipids via residues 
A85-V95 rationalizes why they are not bound to residues G14-G25 
as part of the cross– sheet fibril core, as the lipid molecules dis-
place residues G14-G25 from the fibril.
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Fig. 2. Interaction of S fibrils with phospholipids. (A) 2D (H)NH spectrum and planes of a 3D H(H)NH spectrum with 25-ms NOE mixing corresponding to water (B, 4.7 ppm), 
choline (C, 3.3 ppm), and lipid-CH2 (D, 1.3 ppm) recorded on 2H,13C,15N-S with POPA and POPC. (E) Residues in contact with water (blue), choline (green), and lipid-CH2 
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of fibrils to anionic lipid vesicles (scale bars, 100 nm).
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S intermediates are enriched at the end of the lag phase
The isolation of intermediates during amyloid fibril formation is a 
challenging process that is aggravated by their transient nature and 
their time-dependent population. Using ThT fluorescence, along-
side circular dichroism (CD), solution NMR, atomic force micros-
copy (AFM), and TEM, we characterized the aggregation process 
under the present conditions in detail to determine ideal points for 
enrichment of intermediates.

Since solution conditions heavily influence kinetics and often 
render the comparison of absolute aggregation times difficult, we 
decided for a lag time calibrated time scale (Fig. 3, A and B) (32). 
This allows discussion of the observations based on characteristic 
relative time points. Figure 3B shows the ThT fluorescence curve of 
the fibril formation kinetics of several individual runs with an aver-
age lag time of 6.6 ± 2.0 hours. A plateau confirms completion of 
fibril formation after about five times tlag, corresponding to about 

36 hours on average. The structural transition of -helical membrane-
bound monomer to  sheet–rich aggregate was further confirmed 
using CD spectroscopy (Fig. 3C). CD spectra show little alteration 
before the end of the lag phase and then a sudden change in second-
ary structure at t = tlag in agreement with a sharp rise in fluorescence 
at the same time.

To obtain residue-specific information on monomeric S in 
solution, we recorded 2D 1H-15N–heteronuclear single-quantum 
coherence (HSQC) spectra of uniformly 15N-labeled S during ag-
gregation (fig. S5). Before aggregation, residues 1 to 100 show atten-
uation (Fig. 3D), characteristic for the binding of the protein to the 
slow tumbling vesicles, whereas the unbound C-terminal residues 
101 to 140 show signal intensities comparable to the free monomer 
without lipid (33). At t/tlag = 0.8, corresponding to the time right 
before the end of the lag phase on ThT fluorescence, the intensities 
of the C-terminal residues decrease, while the rest of the sequence 
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Fig. 3. Identification of intermediates during S aggregation in the presence of phospholipids. (A) Lag-time determination by linear fitting for four independent 
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shows only minor deviation (Fig. 3, D and E). At the same time, the 
lipid signal observed in a 1H-NMR spectrum decreases substantially 
(Fig. 3F). This is best explained by aggregate formation on the bilayers 
of the SUVs, resulting in a slower tumbling of the aggregate-SUV 
complex paired with an increase in SUV size as seen from micro-
graphs of early-stage aggregation (Fig. 3G) compared to later stages 
(Fig. 3, H and I). Consequently, even the C terminus becomes un-
observable by NMR. The N-terminal residues experience no change 
at this point (Fig. 3D), indicating that no further monomer is re-
cruited from solution to form the membrane-bound aggregates. 
After the lag phase has passed (t/tlag = 1.1), the attenuation profile 
indicative of membrane binding is completely lost, meaning that 
only free monomer is observed in solution 1H NMR spectra at 
this point. This implies that initial aggregates are formed only by 
membrane-bound S.

To confirm the presence of nonfibrillar aggregates, we performed 
a morphological analysis of samples at the end of the lag phase by 
AFM and TEM. TEM micrographs (Fig. 3, G and H) acquired over 
the course of the aggregation process reveal particles of similar size, 
alongside SUVs. At the end of the lag phase (Fig. 3I), a low popula-
tion of short fibril-like rods can be observed. AFM height images 
(Fig. 3J) show formation of a supported lipid bilayer and spherical 
and ellipsoidal particles of 10 to 20 nm in diameter and a mean 
height of 1.5 ± 0.3 nm, similar to membrane-embedded S aggre-
gates published earlier (34). It is apparent from the combined data 
that immediately before the end of the lag phase (t/tlag = 0.7 to 0.8), 
small aggregates with both -helical and  sheet content form on 
the surface of the negative phospholipid bilayer. These aggregates 
then quickly rearrange to form  sheet–rich aggregates and fibrils.

To understand the individual steps of S fibril formation on a 
structural level, samples were taken at characteristic time points 
before fibril maturation based on ThT fluorescence. Samples were 
then further analyzed by ssNMR (see below) to obtain structural 
information.

Figure 4 shows the ThT response of the isolated species, which 
we call Intermediate 1 (blue) and Intermediate 2 (purple). The ThT 
response served to retrospectively define for the nine samples the 
time point of isolation plotted in terms of t/tlag. The corresponding 
values for t/tlag were estimated on the basis of a curve derived from 
fitting of a secondary nucleation dominated kinetic model to four 
independent time-course experiments (Fig. 3A and Materials and 
Methods) (35). Samples of Intermediate 1 are characterized by ThT 
values corresponding to t/tlag < 1, indicating isolation within the lag 
phase, while for Intermediate 2, we generally observed ThT values 
corresponding to t/tlag ≥ 1, meaning that the lag phase had ended at 
the time of isolation. Intermediate 1 is therefore identified as a pre-
fibrillar species, while Intermediate 2 is of fibrillar nature. Interme-
diate 1 at the end of the lag phase shows negligible ThT response, 
likely due to an unfinished cross– structure or poorly accessible 
binding sites. At the end of the lag phase, upon formation of Inter-
mediate 2, aggregation has passed a certain threshold, leading to a 
pronounced change in ThT response, confirming the formation of 
extended cross– sheets and accessible dye binding sites.

S filament formation progresses through 
segmental folding
With the aim of getting atomic resolution information on the isolated 
S intermediates described above, we recorded 13C,13C 2D correla-
tion spectra with DARR mixing (Fig. 5) and compared the spectra 

to those of monomers and fibrils. To characterize monomeric S in 
the presence of phospholipids, 13C,13C-DARR spectra on 13C,15N-
labeled S were acquired at increasing mixing times (5, 20, 50, and 
200 ms; fig. S6, Materials and Methods). Assignments of S 13C reso-
nances are often ambiguous, due to the highly repetitive sequence, 
which includes the KTKEGV repeats. Nevertheless, 2D 15N,13C cor-
relation spectra reveal that the resonances observed in the DARR 
spectra belong to multiple rather than one set of repeats, as several 
15N resonances are observed for most 13C resonances (fig. S7). The 
attenuation profile observed in solution shows that residues 1 to 
100 are interacting with lipids (Fig.  3D). In the ssNMR spectra, 
mostly residue-type assignments are possible; however, the obser-
vation of an isoleucine resonance confirms involvement of the NAC 
region. As I112 is located in the disordered C terminus (residues 
101 to 140), this resonance can be assigned to I88. Along with 
the absence of any methionine resonances (e.g., M1 and M5) in the 
DARR spectra, this suggests that the resonances observed in the 
13C,13C correlation spectra belong to residues 6 to 100. Secondary 
chemical shifts predominantly indicate helical conformation (Fig. 5C), 
with the exception of one threonine and one glycine residue, each 
showing a chemical shift indicative of a coil conformation (T′ and G′ 
in fig. S6) (36).

This finding is in contrast to earlier studies on the monomeric 
state in the presence of lipids that described uniformly helical sec-
ondary chemical shifts (37). The existence of residues in a coil con-
formation can be explained by a “broken helix,” i.e., two helical 
segments connected by a nonhelical linker as described in previous 
studies (38). Alternatively, the nonhelical residues could be located 
at either edge of a single extended helix (39). Without further inves-
tigation, we cannot exclude either of these possibilities. For simplicity, 
we therefore depict S in an extended, unbroken helix conforma-
tion (Fig. 6), acknowledging that further studies are needed to con-
firm the detailed structure of membrane-bound monomeric S.
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Fig. 4. Kinetic parameters of S intermediates. ThT fluorescence of Intermedi-
ates 1 (blue) and 2 (purple) served to retrospectively determine the progress of 
aggregation at the time of isolation expressed as t/tlag. The red curve was obtained 
from fitting a kinetic model to ThT data recorded under the same conditions (see 
Fig. 3B). The arrow indicates the time point of isolation for fibrils. Structural catego-
rization was obtained from ssNMR.
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The helical N-terminal conformation found in monomeric S 
can be detected throughout the aggregation process, as resonances 
similar to those of the lipid-bound monomer are observed in all 
aggregate samples (gray arrows in Fig. 5, A and B, and fig. S8). This 
observation highlights that S does not leave the membrane sur-
face during aggregation and shows that membrane binding in the 
N-terminal domain is not limited to residues L38-S42 (Fig. 2E). 
Resonances assigned to Y39 and I88 for helical monomeric lipid- 
bound S are not detected after formation of Intermediate 1, indi-
cating that the N-terminal helix is restricted to less than the first 
38 residues (Fig. 5, A and B). Accordingly, remaining alanine and 
valine resonances were assigned to residues within the sequence 
A11-A30. Other resonances within this sequence are likely too 
low in abundance to be detected. The involvement of residues 
A11-A30 in a helical membrane-binding domain throughout the 
aggregation process further explains the absence of the N terminus 
in the cross– sheet fibril core. With increasing aggregation time, 
the cross peaks of the helical domain decrease in intensity relative to 
the peaks of the remainder of the protein. In fibrils, the membrane- 
bound fraction therefore becomes small compared to the total 
aggregate size, leading to the conclusion that fibrils only interact 
partially with lipids while large parts are not in contact with vesicles 
(Figs. 1, E to G, and 2H).

Comparison of the spectra obtained for Intermediate 1 (Fig. 5, 
blue) to those of S-fibrils (Fig. 5, red) reveals two stretches of residues, 
including the sequences 57EKTKEQ62, as well as 72TGVTAVAQK80, with 
chemical shifts similar to fibrils, indicating a comparable local con-
formation of the associated residues. Intriguingly, these residues 
make up two prominent loops in the filament folds of polymorph 2. 
Besides these extended stretches, residues Y39, S42, and K45 in 
the N-terminal part of the rigid filament core could be assigned. 
Since these residues are in contact with lipids in both monomers 
(Fig. 3D) and fibrils (Fig. 2E), they are likely permanently bound 
to the membrane during the whole aggregation process. The strong 
similarity in C and C chemical shifts of Intermediate 1 compared 
to fibrils suggests that the corresponding residues carry a similar 
backbone arrangement. At the same time, the carbonyl chemical 
shifts differ in many cases between Intermediate 1 and the fibrils 
(fig. S8E), indicating that in Intermediate 1, the hydrogen bonding 
environment is not fully formed and, although cross– structure 
may be present, is not yet complete. Differences in water accessibil-
ity could be one explanation (40). While there are partial similari-
ties between Intermediate 1 and the fibril, a significant number 
of residues either exhibit different chemical shifts (dashed boxes in 
Fig. 5, A and B) or are not observed. These residues are expected to 
feature an arrangement of side chains, inter-monomer hydrogen 
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bonding, or a non– sheet structure different to that in fibrils. The 
fact that most of the protein is not in the final fibril conforma-
tion is in line with the low ThT signal of Intermediate 1 samples 
(Fig. 4) and suggests that the sites necessary for binding of the dye 
have not fully developed.

While in Intermediate 1, a significant number of residues display 
distinct chemical shifts from fibril resonances, spectra of Intermedi-
ate 2 much more closely resemble those of fully formed fibrils (Fig. 5C). 
Peaks for residues 38 to 80 in Intermediate 2 were unambiguously 
assigned from direct comparison to chemical shift data obtained for 
fibrils (BMRB Entry 50585). A remarkable difference to fibrils is the 
absence of resonances for residues T81-V95 for both intermediates, 
implying that the C-terminal conformation found in fibrils is not 
yet formed. The delayed incorporation of residues T81-V95 into the 
cross– fibril core can be attributed to the membrane interaction of 
hydrophobic residues in the sequence A85-V95 as evidenced by 
contacts to lipid-CH2 (Fig. 2E). These residues are not part of an 
ordered structure and become visible upon incorporation into the 
ordered cross– fibril core. The mechanism derived from these 
results is summarized in Fig. 6. For simplicity, the interaction of the 
C-terminal part of the NAC with membranes is not shown.

The time points for the isolation of Intermediates 1 and 2 are less 
than or equal to 1 hour apart under aggregation-inducing condi-
tions. Since peaks characteristic to Intermediate 1 (dashed boxes in 
Fig. 5) do not appear in spectra of Intermediate 2 (Fig. 5, purple), 
the transition appears in bulk. The early fibrillar Intermediate 2 ap-
pears to be competent to rapidly recruit monomeric protein (Fig. 3D). 
Both isolated intermediate species are stable over several days at 
room temperature packed in a solid-state rotor, as confirmed in a 
series of back-to-back acquisitions (fig. S9). Nevertheless, conver-
sion into fibrils occurs within less than 2 months, despite storage at 
277 K, suggesting the on-pathway nature of these intermediate 
aggregates. Freezing of intermediate samples at −80°C, however, 
ensures their stability past 2 months. Besides the remarkable stability 
of the intermediates presented here, we want to highlight the good 
reproducibility of the sample preparation (fig. S10).

DISCUSSION
The successful characterization of a multitude of fibril polymorphs 
in recent years has significantly improved our knowledge on the 
intricacies of fibril architectures. Nevertheless, the molecular mech-
anism underlying S folding that ultimately leads to amyloid fibrils 
is poorly understood. Our results give a comprehensive view of 
filament formation and allow insight into the hierarchy of formation 

of structural elements during fibrillogenesis in the presence of 
phospholipids.

Using solution NMR spectroscopy, we show that initial aggre-
gates are formed by the membrane-bound fraction of the protein, 
while free monomer in solution is recruited only at later stages 
(Fig. 3, D and E). Such an enhancement of primary nucleation by 
lipids had been proposed previously by Galvagnion et al. and is likely 
a combination of crowding on the membrane surface and an altered 
conformation of the membrane-bound state (20).

Furthermore, we show that membrane binding through an 
N-terminal helical domain is not only relevant for primary nucle-
ation but also retained in all species relevant to the aggregation pro-
cess including fibrils. Such a helical domain in aggregates had 
previously been described for oligomers grown in the absence of 
lipids, when they were subjected to membranes (15). The presence 
of a defined membrane-binding domain has been proposed as a 
cause for the permeabilization of membranes by fibrils and might 
account for a certain amount of their toxicity (14, 28, 41). The 
essential role of the N-terminal domain in pathological processes 
has been indicated in yeast models, where deletion of the first 5 to 
11 residues showed almost completely abolished membrane affinity 
and thereby toxicity (42). Recently, Newberry et al. (43) corroborated 
these results by the use of deep mutational scanning and argued that 
any distortion in the lipid-bound state reduces adverse effects by S. 
S oligomers, potential causative agents for such toxicity, display 
significantly reduced membrane binding and impairment when 
lacking N termini (15).

Furthermore, we show that not only the N-terminal but also the 
C-terminal part of the NAC is involved in lipid binding. Both Y39 
and F94 have been identified to be important for membrane inter-
action of S (44). Moreover, residues N65-K97 have been suggested 
to be involved in a double-anchor binding mode, in which one S 
monomer interacts with two vesicles simultaneously, ultimately 
leading to their fusion (45). Our results show that the important 
role in membrane binding of these residues carries on from mono-
mer toward fibrils, highlighting their importance for both function 
and misfolding.

The finding that all S species carry a membrane-binding capa-
bility in combination with the rapid decrease of the mobile lipid 
signal (Fig. 3, E and F) is in line with the model of continued lipid 
extraction throughout the whole aggregation process proposed by 
Reynolds et al. (46). The mobilization of lipids via such pathways 
ultimately will result in the rich abundance of lipid membrane frag-
ments found in Lewy bodies and Lewy neurites in patients with PD 
(47). The decrease in lipid signal intensity is also in line with a 
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Fig. 6. Mechanism of S aggregation in the presence of anionic phospholipids derived from the results in this work. (A) Both solution and ssNMR support the 
model of monomeric S binding to phospholipid bilayers via residues 1 to 100 adopting a helical conformation. A broken helix with nonhelical residues in a putative 
linker was not considered, due to lack of sequence-specific assignment. (B) Subsequently, residues 73 to 80 in the core as well as residues 57 to 61 at the edge of the NAC 
region form  sheet loops, while the N-terminal domain remains bound to the membrane and assists folding. (C) Starting from these initial structural elements, the S 
aggregates quickly rearrange to adopt a fibril-like conformation for residues 38 to 80 while the C terminus remains unstructured. (D) Eventually, mature fibrils form. Note 
that, for simplicity, protein is drawn only contacting the lipid surface, while the evidence points to a placement of both helical and sheet regions deeper in the membrane.
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rigidification of lipid molecules caused by an insertion of S into 
the lipid bilayer, as well as an increase in vesicle diameter, possibly 
through fusion mediated by S (45).

The fibrils presented here adopt a filament structure characteristic 
to the polymorph 2 type published recently (9). Residues L38-V95 
were identified by ssNMR to adopt a similar monomer fold, albeit 
with stark differences in both the C- and the N-terminal regions of 
the protein (Fig. 1D). These differences can be rationalized by the 
interaction of these regions with membranes (Fig. 2) and the seg-
mental buildup of S fibrils (Fig. 6).

We show here that intermediates of S at the end of the lag phase 
show a distinct response to ThT, which can be correlated to their 
respective structures. The sensitivity of ThT toward the cross– 
structure of such aggregates stems from its alignment parallel to the 
fibril axis, where it is surrounded on two sides by a regular repeti-
tion of side chains, leading to its rigidification and thus fluorescence 
(48). Intermediate 1 shows minor reactivity toward ThT, having an 
unfinished cross– structure or because of poorly accessible bind-
ing sites (Fig. 4). Inaccessibility of any binding pocket could addi-
tionally arise from binding of intermediates to the phospholipids. 
The low ThT response could also hint to an insufficient size of the 
intermediates, as studies have shown that binding sites of ThT are 
constituted of about 8 S monomers (49). In the isolation of defined 
intermediates based on this minimal response to ThT, we present 
another useful tool for the isolation of prefibrillar intermediates.

The structure of Intermediate 1 contains two loops including 
residues E57-E61 and residues V73-K80, respectively (Fig. 6). The 
observation that the NAC core is part of an early structural element 
is in good agreement with its well-established crucial role in fibril 
formation, since its deletion (71-82) strongly diminishes the ag-
gregation propensity of S (11). Other toxic early aggregates of S 
have been shown to incorporate residues V70-I88 as part of their 
early  sheet structure (15). In contrast to the previous observation 
of antiparallel  sheet formation in early aggregates, both Interme-
diates 1 and 2 suggest parallel associations, based on similarity to 
chemical shifts of fibril (12, 50). It is possible that earlier aggregates 
carry such structural features; however, further studies are needed 
to investigate this.

Intermediate 1 further involves residues Y39 and S42, which are 
adjacent to the NAC region in fibrils of the polymorph 2 type and 
bind to lipids (Fig. 2E). These residues are located within the region 
from V37-S42 that was recently identified to have a supporting role 
for both membrane binding and fibril formation (51). A weak tran-
sient contact of these residues with the highly aggregation prone 
NAC region was identified in S monomers by the use of paramag-
netic relaxation NMR experiments (51, 52). This contact appears to 
be a segue into fibril formation, hinting toward why these regions 
are forming a building block of the early fibril structure.

Our finding that the initial structural elements of fibril filaments 
are formed by several residues in the NAC domain was similarly 
reported by Comellas et al. (22) for residues T59, V74, A76, A78, 
A90, and A91. This finding is particularly interesting, since the fi-
bril structure reported in their studies is of polymorph 1 type (turns 
at K57-K60, G67, K80, and A85-A89, BMRB 17910) as opposed to 
the polymorph 2 type reported here (turns at K45-E46, K57-E61, 
G73-V74, and K80-T81, BMRB 50585), indicating that the observed 
aggregation tendency of these residues is indifferent to the resulting 
filament structure. This behavior might be explained by the high 
level of backbone dynamics in the NAC region, which facilitate the 

conformational rearrangements necessary for the stark structural 
transition from monomer to aggregate (53). The conformation 
adopted by these residues upon formation of aggregation interme-
diates appears to predefine the fibril structure. Therefore, finding 
the determining factors will be essential in future studies toward 
understanding the aggregation mechanism of S.

It has to be emphasized that the intermediates we identified here 
by no means depict the whole spectrum of species occurring during 
fibril formation as earlier aggregates carrying lower structural con-
tent have been reported (15, 22). The segmental buildup of S fibrils 
also suggests that further changes in filament structure past those 
reported here can be expected, since fibrils are known to mature 
over long time intervals (54).

In conclusion, we have shown here that S aggregates on mem-
branes in a segmental manner, interacting with the lipid molecules 
via distinct binding domains. Our results allow atomic resolution 
insight into how S fibrils form and show that an intricate interplay 
between several key regions forming early in the protein gives rise 
to the formation of specific folds.

The recently published structures from patients with MSA 
represent the first ex vivo structures of S fibrils (55). Despite struc-
tural differences to recombinant S fibrils, the individual filaments 
bear partially comparable topologies carrying the characteristic three-
layered L-shaped or “Greek-key” motif frequently observed in vitro 
(7, 8). The observation that amyloid filaments adopt conserved 
folds supports the idea that such folds are an inherent property and 
can be explained by the segmental buildup shown in this study. 
However, the driving factors behind the formation of specific struc-
tural elements in the cross-sectional fold remain elusive and sub-
stantial work is needed to get a true understanding of the mechanism 
of amyloid formation. This is particularly significant for modulating 
these pathogenic processes with the goal of drug development for 
disease treatment or prevention.

MATERIALS AND METHODS
Protein expression and purification
Protein expression and purification were performed as previously 
described (56). For production of uniformly 15N- and 13C,15N-
labeled samples, Toronto minimal medium was used supplemented 
with 15NH4Cl and 13C6-d-glucose (Cambridge Isotope Laborato-
ries and Sigma-Aldrich). 2H,13C,15N-labeled S was expressed in 
Escherichia coli adapted to 100% 2H2O Toronto minimal medium 
supplemented with 2H7,13C6-d-glucose and 15N-NH4Cl. The obtained 
protein was dialyzed against buffer [50 mM Hepes and 100 mM 
NaCl (pH 7.4)] to obtain a 0.3 mM solution, and the resulting solu-
tion was stored at −80°C until use.

Preparation of SUVs
POPC and POPA (sodium salt) were obtained from Avanti Polar 
Lipids and used without further treatment. POPA and POPC were 
each dissolved in chloroform and mixed to obtain a molar ratio of 
1:1 for the lipids. The solvent was evaporated under a N2 stream, 
and the sample was lyophilized overnight to remove residual sol-
vent. The resulting lipid film was hydrated with buffer [50 mM 
Hepes and 100 mM NaCl (pH 7.4)], resulting in a concentration of 
1.5 mM for both lipids. The solution was sonicated at 37 kHz (four 
times for 10 min with 15-min breaks or until the sample was trans-
lucent) in a glass tube. The resulting solution was filtered through 
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0.22-m sterile filters to obtain SUVs. Vesicle size was measured in 
a DynaPro dynamic light scattering (DLS) instrument (Wyatt Tech-
nology) and analyzed using DYNAMICS 6.12.03 displaying an av-
erage hydrodynamic diameter of 41 ± 2 nm. For DLS measurements, 
lipid solutions were diluted to 0.7 mM for the total lipid concentra-
tion. For testing of integrity and stability of lipids to oxidation (fig. 
S11), chloroform/methanol (2:1, v:v) was thoroughly mixed with 
equal volumes of lipid solution in buffer. After centrifugation for 
30 s at 13.2 rpm in an F-45-24-11 Rotor in a 5415 D tabletop centrifuge 
(both Eppendorf), the supernatant was moved to a clean tube and 
the procedure was repeated. After centrifugation, the supernatant 
was again removed, the chloroform phases were combined, and the 
solvent was evaporated under a N2 stream. The resulting pellet was 
dissolved in Chloroform-d1 (99.8%, Deutero) and 1H spectra were 
recorded at a Bruker 400-MHz spectrometer (Avance III HD with 
PA-TBO BB-HFD probe with a z-gradient) at a field of 9.4 T.

Aggregation assays
Monomeric S in buffer [50 mM Hepes and 100 mM NaCl (pH 7.4)] 
was centrifuged for 1 hour at 55,000 rpm using a TLA-100.3 rotor in 
an Optima MAX-XP tabletop ultracentrifuge (both Beckman Coulter) 
at 4°C and the supernatant was added to a solution of phospholipid 
SUVs and NaN3 (0.02 weight %) to obtain a final protein concentra-
tion of 70 M and a molar L/P ratio of 10 if not stated otherwise. 
Samples were subjected to repeated cycles of 30-s sonication (20 kHz) 
at 37°C followed by an incubation period of 30 min using a 
Q700-110 sonication device, with a Microplate Horn Assembly 
(431MPX) and a Compact Recirculating Chiller (4900-110, all QSonica). 
All samples were kept in the dark to avoid light-induced damage.

ThT fluorescence
A solution of 1 mM ThT in 50 mM glycine buffer at pH 8.5 was 
prepared and stored at 4°C under light exclusion until use. ThT 
concentration was determined using an extinction coefficient 412 
of 36,000 M−1 cm−1. On the day of use, 0.1 ml of the 1 mM ThT 
solution was mixed with 1.9 ml of buffer to obtain 2-ml aliquots of 
working solution. Five microliters of the aggregating solution was 
added to the working solution, and fluorescence emission spectra of 
the resulting solution were measured using a Varian Cary Eclipse 
fluorescence spectrometer. Fluorescence was excited at 446 nm and emis-
sion was recorded from 460 to 600 nm at room temperature (RT).

The obtained fluorescence intensities were corrected for baseline 
originating from ThT autofluorescence and plotted against time. 
The lag times were obtained as the intercept of a linear function 
fitted to the steepest part of the curve and the abscissa. The average 
lag time was 6.6 ± 2.0 hours, and the average maximum elongation 
rate was 18.8 ± 10.7 arbitrary units/h. Aggregation times were di-
vided by the lag time and the rescaled curves were fitted using the 
online tool Amylofit (www.amylofit.ch.cam.ac.uk/) (35). Best fit was 
obtained for secondary nucleation dominated aggregation [param-
eters obtained from fit: nc = 2.0, k+kn = 2.36 × 1011 M−nc s−2, n2 = 8.0, 
k+k2 = 5.15 × 1059 M(−n2–1) s−2].

Solution NMR spectroscopy
Aliquots of 120 l were taken directly from the aggregating solution 
containing 15N-labeled S and mixed with 20 l of buffer [50 mM 
Hepes and 100 mM NaCl (pH 7.4)] to obtain samples with 10% 
D2O and 100 M 2,2-dimethyl-2-silapentane-5-sulfonate sodium 
salt (IUPAC: 3-(trimethylsilyl)propane-1-sulfonate, sodium salt). 

Experiments were recorded on a Bruker 700-MHz spectrometer 
(Avance III HD with CP-TCI HCND probe with z-gradient) at a 
field of 16.4 T. Temperature during measurements was kept at 
288 K. 1H spectra were acquired using presaturation for water sup-
pression and 64 scans with a relaxation delay of 2.2 s. 1H-15N-HSQC 
spectra were acquired using 3-9-19 watergate for water suppression 
using 256 increments in the indirect dimension and a relaxation 
delay of 1.2 s. 2D datasets were processed in NMRPipe and ana-
lyzed in CcpNmr Analysis (57, 58). Peak lists were exported and 
analyzed using a custom-written python script. Assignment of the 
1H- and 15N-backbone resonances was done by comparison to 
BMRB entries 16300, 16904, and 18857.

CD spectroscopy
Aliquots of 20 l were taken directly from the aggregating solution 
and mixed with 160 l of buffer [10 mM phosphate (pH 7.4)]. Spec-
tra were acquired on a J-815-150S (JASCO), with a single-position 
Peltier cell holder (PTC-514) for temperature control. Samples were 
measured in 110-QX cuvettes (Hellma) with a path length of 1 mm 
in the range of 180 to 260 nm at 298 K and a scanning speed of 
20 nm/min with five accumulations.

Atomic force microscopy
Preparation of samples for AFM imaging was performed as previ-
ously described (34). Aliquots of 70 l were taken directly from the 
aggregating solution and subsequently incubated on freshly cleaved 
slabs of mica, fixed on stainless steel metal discs (d = 15 mm) by 
2 Ton Epoxy (Devcon). After incubation for 20 min at RT, samples 
were thoroughly rinsed with buffer [10 mM Hepes, 150 mM NaCl, 
and 1 mM MgCl2 (pH 7.4)].

Height images were acquired in liquid using intermittent mode 
(AC mode) on a Nanowizard 4 with a Vortis SPMControl station 
(both JPK BioAFM). The instrument was mounted on a halcyonics_i4 
vibration isolation unit (Accurion) and encased in a custom-made 
acoustic enclosure hood. Measurements were carried out using 
BioLever Mini cantilevers (Olympus, BL-AC40TS-C2) with a spring 
constant of 0.09 N/m and a resonance frequency of 100 kHz, mounted 
on a super-cut glass cantilever holder (JPK BioAFM). Images were 
analyzed and processed using JPKSPM Data Processing software 
(version 6.0.69-1, JPK BioAFM).

The protein height analysis was performed following a modified 
procedure described by Shabardina et al. (59). From the analysis of 
six AFM images, a mean protein height of 1.5  ±  0.3  nm (mean 
height ± SE) was determined.

Transmission electron microscopy
Samples were adsorbed onto 400-mesh carbon-coated copper grids, 
and the buffer was removed using a filter paper. Subsequently, sam-
ples were stained by the addition of 1% uranyl acetate aq solution, 
which was subsequently dried with a filter paper. If image quality 
was low or micrographs were too crowded, samples were washed with 
water and diluted by a factor of 1:50 in buffer before measurement. 
Images were taken at RT via a Talos L120C transmission microscope 
(Thermo Fisher Scientific/FEI) using a Ceta 4k × 4k complementary 
metal-oxide semiconductor camera in unbinning mode.

Micrographs were processed and analyzed using the Fiji distribu-
tion of ImageJ using the Plot profile function (60). For highly curved 
fibrils, a segmented line was used to generate profiles. The obtained 
profile plots were aligned, averaged, and plotted in Origin(Pro) 
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8.5 (OriginLab Corporation, Northampton, MA, USA) and fitted to 
a sinusoidal function to quantify the fibril pitch.

ssNMR spectroscopy
For isolation of intermediates, aggregation was monitored regularly 
by ThT fluorescence as described above. As soon as an increase in 
fluorescence intensity was detected, incubation was halted by cool-
ing samples on ice and immediately centrifuging at 55,000  rpm 
(TLA-100.3 rotor in an Optima MAX-TL) for 1 hour at 4°C. For 
preparation of fibrils, aggregation was continued for 96 hours, fol-
lowed by similar treatment. After removal of the supernatant, sam-
ples were washed with fresh buffer [5 mM Hepes (pH 7.4)] and 
subsequently centrifuged (10 min, 65,000 rpm, 18°C). Excess mois-
ture was carefully removed, and samples were packed into ssNMR 
rotors by cutting off the bottom of the tube and centrifuging the 
pellet directly into the rotor of choice through a custom-made fill-
ing device made from a truncated pipette tip. Last, the sample was 
centrifuged into the rotor in an ultracentrifuge packing device for 
30 min at 24,000 rpm in an SW 32 Ti rotor in an Optima L-80 XP 
Ultracentrifuge (both Beckman Coulter) (61). The molar L/P ratio 
for S fibril samples was lowered from 10:1 to 5:1 to increase the 
amount of protein in solid-state rotors for enhanced signal after 
confirming that fibril structure is conserved at lower ratios (fig. S9). 
In case of monomeric S, protein was dialyzed against salt-free buffer 
[5 mM Hepes (pH 7.4)], mixed with SUVs at a molar L/P ratio of 
50:1 and subsequently lyophilized. The high L/P ratio for monomer 
samples was used to ensure that most S monomers are bound to 
lipid. The resulting powder was rehydrated with salt-free buffer and 
used similar to pellets of aggregated samples.

3D (H)CANH, (HCO)CA(CO)NH, (H)CONH, (H)CO(CA)NH, 
(HCA)CB(CA)NH, and (HCA)CB(CACO)NH experiments (62) for 
protein sequence assignment and 3D H(H)NH (using 25 ms of 
NOE mixing) experiments for identification of lipid interactions 
were acquired on 2H,13C,15N-labeled S on an 800-MHz Bruker 
Avance III HD spectrometer at a magnetic field of 18.8 T equipped 
with a 1.3-mm magic-angle spinning (MAS) HCN probe and MAS 
at 55 kHz. The temperature of the cooling gas was set to 250 K, 
resulting in an estimated sample temperature of 20°C. The delays 
for scalar carbon-carbon transfers were optimized on the basis of 
the T2′ values of 33 ms for C and 53 ms for C′.

For protein sequence assignment on protonated fibrils 3D (H)
CANH, (HCO)CA(CO)NH spectra were acquired using 13C,15N-
labeled S on a 950-MHz Bruker Avance III HD spectrometer at a 
magnetic field of 22.3 T equipped with a 0.7-mm HCDN probe and 
MAS at 100 kHz. The temperature of the cooling gas was set to 250 K, 
resulting in an estimated sample temperature of 20°C. Chemical 
shift data for 13CO, 13C, and 13C obtained from sequence assign-
ment spectra were used in TALOS+ to obtain predictions on sec-
ondary structure as well as dihedral backbone angles (24).

All 2D 13C13C-DARR spectra as well as the 2D (H)NCA spec-
trum for monomeric S were acquired on an 850-MHz Avance III 
spectrometer with a 3.2-mm MAS HCN probe at a magnetic field of 
20.0 T and MAS at 17 kHz. DARR spectra for all samples were 
acquired with mixing times of 20 ms. Furthermore, we acquired 
spectra with mixing times of 200 ms for fibrils and monomers as 
well as 5 and 50 ms for monomers.

Spectra were acquired in short blocks, which were each corrected 
for linear drift of the static magnetic field using an in-house program 
executed from the command line in Bruker Topspin (63). The 

drift-corrected blocks were then averaged and processed as one 
spectrum. Spectra were analyzed using CcpNmr Analysis and 
NMRFAM-Sparky (64). Detailed parameters for all NMR experi-
ments as well as the accumulated time of the averaged spectra are 
listed in table S2. CP transfer conditions are listed in table S3. 
Assigned chemical shift data (HN, C, C, C′) for S fibrils were 
deposited in the BMRB under the accession number 50585.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/20/eabg2174/DC1

View/request a protocol for this paper from Bio-protocol.
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