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Quantum physics experiments produce interesting phenomena such as interference or entangle-
ment, which is a core property of numerous future quantum technologies. The complex relationship
between a quantum experiment’s structure and its entanglement properties is essential to funda-
mental research in quantum optics but is difficult to intuitively understand. We present the first
deep generative model of quantum optics experiments where a variational autoencoder (QOVAE)
is trained on a dataset of experimental setups. In a series of computational experiments, we in-
vestigate the learned representation of the QOVAE and its internal understanding of the quantum
optics world. We demonstrate that the QOVAE learns an intrepretable representation of quantum
optics experiments and the relationship between experiment structure and entanglement. We show
the QOVAE is able to generate novel experiments for highly entangled quantum states with specific
distributions that match its training data. Importantly, we are able to fully interpret how the QO-
VAE structures its latent space, finding curious patterns that we can entirely explain in terms of
quantum physics. The results demonstrate how we can successfully use and understand the internal
representations of deep generative models in a complex scientific domain. The QOVAE and the
insights from our investigations can be immediately applied to other physical systems throughout

fundamental scientific research.

I. INTRODUCTION

Quantum mechanics contains a wide range of phenom-
ena that seem counter intuitive from a classical physics
perspective. Experimental quantum physics is integral
to the investigation of the fundamental questions associ-
ated with these phenomena and the quantum mechanical
nature of the universe. Quantum entanglement [1-3] is
one of those phenomena that is most difficult to reconcile
with our picture of reality and also provides the basis for
all quantum technologies and applications. Thus, in par-
ticular, quantum optics experiments are not only used to
test the foundations of quantum physics [4-6], they are
also at the heart of manifold quantum technologies many
areas including communication [7] and computation [8—
10]. The quantum optics experiments we consider here
consist of individual optical elements or devices, such as
lasers, beam splitters, or non-linear crystals. Complex
quantum phenomena such as multi-photon interference
effects [11-14], are challenging to understand intuitively.
For that reason, in general the connection between exper-
imental structures and its entanglement properties — the
so-called structure-property relation — is complicated to
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grasp for humans, which leads to undiscovered potential
of these technologies.

In order for the continuing advancement of fundamen-
tal research and quantum technologies, it is advanta-
geous that researchers develop computational methods
that help in the designing of new quantum hardware
while providing conceptual understanding of the results
[15]. Examples include the Melvin algorithm that learns
to expand its own toolbox with useful elements [16], or a
graph-based topological optimizer that allows to extract
new human-interpretable concepts [17]. Other works
show how to optimize setups with genetic algorithms
[18-20], reinforcement learning [21] or parametrized op-
timization [22]. These efforts do not directly generate
quantum optics experiments through the use of a learned
representation trained on examples of experiments. Such
an approach would provide us with the ability to gen-
erate with prior knowledge of specific entangled exper-
iments and allow us to directly explore the relation-
ship between experiment structure and entanglement in
model’s learned representation. Therefore, in this work,
we focus on using deep unsupervised learning [23] and
build a generative model of quantum optics experiments.

Deep generative models have had a major impact in the
past few years where they have been applied successfully
to a variety of data, including images [24], text [25, 26]
and audio [27]. In particular, many advances have been
made using deep generative models in the chemical sci-
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ences [28]. Specifically, variational autoencoders (VAES)
[29] have been used for molecular design in order to gen-
erate drug like compounds [30, 31], polymers [32] and
metal-organic frameworks [33]. When trained on a large
dataset, these models are effectively able to learn struc-
tural distributions of molecules in addition to basic rules
of chemistry, entirely by learning the data distribution.
We take inspiration from the field of molecular genera-
tive design and study if it is it possible for deep generative
models to learn insights related to the complex relation-
ship between entanglement and experimental structure
by learning a distribution of quantum optics experiments.
For our model, the Quantum Optics Variational Auto
Encoder (QOVAE), we made use of the variational au-
toencoder architecture trained on quantum optics experi-
mental setups. We perform a number of investigations in
order to understand what the QOVAE can learn and how
it learns. We demonstrate that the QOVAE can learn to
generate diverse and novel experiments, almost entirely
from the space of entangled state producing experiments.
Furthermore we see that the model is able to learn spe-
cific distributions of entanglement in the experiments it
is trained on. We discover, by analyzing its latent space,
that the QOVAE learns an interpretable representation
of experiments and encodes surprising insights into the
relationship between experiment structure and entangle-
ment.

II. QUANTUM OPTICS EXPERIMENTS &
ENTANGLEMENT

Ezperiments. To represent the discrete structure of the
experiments, we use a sequence of optical devices as
shown in Figure 1. Each sequence uniquely determines
the final quantum state and entanglement properties of
the system. The quantum system in each experiment is
a four photon system with its initial state created by a
double spontaneous parametric down-conversion process
(SPDC) that experimentally generates two photon pairs.
These SPDC processes can produce multipartite entan-
glement [36, 37], high-dimensional entanglement encoded
in an the intrinsic orbital angular momentum (OAM) of
photons [38-40], and combinations thereof [41, 42]. The
experiments are generated using a set of basic elements
consisting of beam splitters, mirrors, dove prism, single
mode OAM down-converters and holograms [43]. The
holograms and the dove prisms have discrete parame-
ters corresponding to the OAM and phase added to the
beam, respectively. Every experiment can be represented
sequentially, where every element in the sequence repre-
sents a device uniquely identified by its location in the
graph, specified by the photons propagating through and
its order in the sequence. We use a toolbox of 6 devices
(Figure 1) operating on 4 photon paths with up to 2
empty paths.

Entanglement. The system we study is a high-
dimensional four-photon quantum state. To quantify its
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FIG. 1: a) On the (Left), a toolbox of possible devices
in any experiment. All elements are used in standard
quantum optics laboratories[34], including the technique
of entanglement by path identity [35]. For each device
included is : its name, visualization and operator
sub-scripted by the path(s) it acts on : either a single
path p or two paths p,p’. (Right) An example of a
quantum optics experiment. Every experiment involves
four photons paths beginning with a SPDC crystal to
then end with a detector represented by a grey circle
with black outline. The paths are designated by arrows
and color coded with blue, grey, red and yellow for
photons a, b, ¢, d respectively. In addition, each
experiment can have up to two empty paths e, f, color
coded with green and purple arrow heads. Empty
photon paths start without a crystal and are shown
with a red, three pointed star and end with no detector
visualized with the detector symbol with a slash. b)
The device sequence that defines the experiment in a):
first as a graph, then as each device’s visualization from
the toolbox in a) and lastly as a sequence of device
operators.

entanglement, we derive the entanglement entropy from
the discrete Schmidt Rank Vector (SRV) [44]. The SRV
is a vector composed by the Schmidt ranks of all bipar-
titions or subsystems which, in the case of four particles,
has a size of seven. For an overall measure of entan-
glement, we use the sum of all subsystem entanglement
entropies, which we denote as S where an experiment
with S > 0 is entangled and with S = 0 is unentangled.
More details on the calculation of the quantum state and
entanglement can be found in the supplementary.
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FIG. 2: A visual depiction of the QOVAE. First, an experiment represented by a sequence is encoded into a
stochastic latent representation using a convolutional neural network and is reconstructed using another deep
recurrent neural network. Over the latent space is the entanglement measure S which is being shown as a function
of the latent space z. On the function arrows are shown moving from a region of low entanglement in violet towards

region of high entanglement in yellow.

III. QUANTUM OPTICS VARIATIONAL
AUTOENCODER

For our QOVAE model, we use a variational autoen-
coder to learn distributions of quantum experiments as
sequences. The QOVAE model consists of two neural net-
works: an encoder which maps a quantum optics exper-
iment x to a continuous latent representation z and de-
coder that reconstructs the experiments x from the latent
representation z. Both the encoder and decoder are pa-
rameterized by deep neural networks. Figure 2 displays
the main model. For the data, we represent an experi-
ment sequentially as a series of one-hot column vectors
X; in a matrix where x = [Xy,...,Xy,...,x7] € RT*P,
Here, T is maximum experiment length (number of de-
vices) and D is the number of devices in the toolbox.
This is fed into the encoder of the QOVAE, which learns
a representation by using layers of 1D convolutions that
are used to generate the mean and log standard deviation
of the latent space. The decoder uses the latent repre-
sentation of the experiment to generate the experimental
sequence using a recurrent neural network. Further de-
tails about the QOVAE, how it’s trained, as well as the
encoder/decoder can be found in the methods section.

To train the QOVAE, we use the Melvin computer algo-
rithm, to generate a training dataset of quantum optics
experiments. We target experiments that produce en-
tangled states (S > 0), thus we split the dataset into
entangled setups pdata(Xs>0) and unentangled setups

Pdata(Xs=0). In total, we generated a dataset with ap-
proximately 200K (thousand) experiments, half of them
producing multipartite entangled states. From the gen-
erated experiments, we only use setups that have a max-
imum of 6 devices that are Beam splitters or Down con-
verters (two path devices). To conduct our investiga-
tions, we train two models, the first on a dataset of
approximately 80K entangled experiments (after restric-
tions) with a 6 dimensional latent space (QOVAE-High)
and the second on dataset consisted of approximately
35K entangled and unentangled experiments and has a 2
dimensional latent space (QOVAE-Low).

IV. RESULTS AND DISCUSSIONS

After training both models we conduct a number of ex-
periments to assess the QOVAE and its learned repre-
sentation. We generate quantum optics experiments us-
ing random latent vectors, conduct latent space inves-
tigations and assess the entanglement properties of the
experiments produced from the model. From the exper-
iments, we extract a series of results that we discuss in
the following paragraphs with important conclusions in
bold.

The QOVAE learns to generate new, unique ex-
periments almost entirely from the space of en-
tangled quantum optics experiments.

After training QOVAE-High, we randomly sample 10K
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FIG. 3: (a) Training experiments from the first dataset (left), beside experiments generated by the QOVAE-High .
(b) Distribution plots for the entanglement entropy and Schmidt rank of all seven system bi-partitions calculated
using experiments generated by the QOVAE-High and training experiments

Measure  QOVAE Experiments Random experiments
Entangled 0.93 0.47
Uniqueness 0.99 —

Novelty 0.99 —

TABLE I: Entanglement, uniqueness and Novelty ratios
for experiments generated from QOVAE-High or
randomly

latent vectors and decode them to produce 10K exper-
iments. In this experiment, we study how capable the
QOVAE is in generating new data from only the space
of quantum optics experimental setups that produce en-
tangled states. We want to observe if QOVAE can ignore
the space of unentangled experiments (that produce un-
entangled states or no state at all), while generating novel
and unique entangled experimental setups.

We analyze the 10K sampled experiments using some ba-
sic metrics, the results of which are displayed in Table
I. First, we calculate the entanglement S of the exper-
iments and determine the ratio between entangled and
unentangled experiments (row 1 of Table I). Next, we cal-
culate the uniqueness of the sampled experiments which
is the ratio of the number of entangled experiments to
the number of entangled experiments after removing the
duplicate experiments. Lastly, we calculate the novelty,
which is the ratio of unique experiments not appearing
in the training data. The QOVAE is able to generate
roughly 93% entangled experiments, almost all unique
and novel (i.e. not in the training data.)

These results are roughly a double of random sampling.
Effectively, the QOVAE can generate from the space of
experimental quantum optics setups producing entangled
quantum states, that are also not found in the train-
ing data and are not all the same setup. These results
give a strong indication that the learned internal repre-
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FIG. 4: Three examples of latent space interpolations from the QOVAE. Each interpolation is between experiments
with different entanglement measure S. The chosen initial and final experiment along the interpolation path are
enclosed in a rectangle and four experiments along the path in between the two are displayed. Below each

experiment is the entanglement measure S.

sentation of the QOVAE encodes meaningful structure-
entanglement relations.

The QOVAE can learn distributions of entangled
states that it is trained on.

Figure 3 (a) displays 15 random samples of experiments
from QOVAE-High and its training data. From the fig-
ure, we can assess how well the model has learned to
generate experiments that are similar to the training ex-
periments by comparing the graph structure of the ex-
periments in both samples. We can see that both sets
of samples have similar devices: 1-5 single path and 1-4
double path devices, as well as empty paths where there
are 11 in the training experiments and 10 in the QO-
VAE’s. Hence, we conclude that the QOVAE learns a
similar distribution as the training set.

Next, we assess the distribution of entanglement learned
by the QOVAE-High. Suppose the QOVAE-High can
learn to create experiments with a distribution of entan-
gled states. In that case, the distribution of entangle-
ment of every bi-partition or subsystem should be simi-
lar between experiments from the training data and the
model. To test this, we sample 10K experiments from the
model and training data and calculate the entanglement
entropy and Schmidt ranks for all seven bi-partitions for
every experiment sampled. Now we want to compare
the distribution of values between the training data and
model. We do this visually with a distribution plot for
each subsystem. To plot the seven distributions for each

partition, we use kernel density estimators [45] to esti-
mate the entanglement entropy densities and histograms
for the Schmidt ranks. The resulting distribution plots
are displayed in figure 3 b), for both the QOVAE and
training data.

We can see from the distribution plots in Figure 3 b)
that in the first four subsystems (first four columns) the
QOVAE-High successfully learns that the training en-
tanglement distribution has two modes (or peaks). For
the last three subsystem plots (last three columns), the
QOVAE-High is able to learn that there is a single mode
of entanglement in the training distribution. Therefore
we conclude that the QOVAE has learned to match the
training distribution of entanglement for every partition
of the system.

In addition to the previous experiments, we test if the
QOVAE-Low learns to distinguish the two distributions
within its training data: the distribution of entangled
experiments pgata(Xs>0) and experiments that are not
entangled pgata(xs=0). We test if the QOVAE-Low can
produce the same ratio of entangled to unentangled
experiments present in the training data. As before, we
generate 10K experiments from the QOVAE by sampling
random vectors z ~ AN(0,I) and then decode those vec-
tors to produce 10K quantum optics experiments. We
calculate the entanglement measure for each experiment
S and see that 54% of those setups have S > 0 and,
therefore, are entangled. This means that the QOVAE
reproduces the same bi-modal distribution of entangled
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FIG. 5: (Left) Quantum optics experiments with highest entanglement S found using Random Search. (Right) The
top three experiments found by searching the latent space of the QOVAE.

vs not entangled experiments in the training data.

The QOVAE learns a quasi-continuous embed-
ding in terms of entanglement.

We analyse the smoothness of the latent space in terms of
the entanglement measure S. Specifically, we test if ex-
periments that are close in the latent space have similar
entanglement properties. This can be done by interpo-
lating in the latent space from one latent representation
z1 of an experiment to another z,, and decoding experi-
ments on the path from z; — z5. We use spherical linear
interpolation [46] for the path and decode at 5 equally
spaced steps along the path.

In total, we show three interpolation from the latent
space of the QOVAESs, as shown in Figure 4. In order
to see if the model has learned a notion of similarity
between experimental setups corresponding to their en-
tanglement, we perform interpolations from different en-
tanglement measures S. The first one shown in Figure 4
interpolate between experiments that do not produce en-
tangled states (S = 0) and from QOVAE-Low. The last
two interpolations from QOVAE-High between experi-
ments that produce high-dimensional entangled states
(S > 0), the second between experiments with S = 5.55
and the last between S = 2.77 and S = 5.55.

For the first interpolation, the experiments decoded along
the interpolation path preserve the entanglement of the
initial/final experiments, experiments remain unentan-
gled along the path. Similarly, in the second interpo-
lation, decoded experiments maintain entanglement at
S =~ 5.0 of the initial and final experiments’. In the
last interpolation, the entanglement S of the experimen-
tal setups decoded along the path increase linearly from
S = 2.77 towards the final experiment’s entanglement of
S = 5.55.

This experiment demonstrates that the QOVAE learns a
rather smooth representation of quantum optics experi-
ments that encodes a measure of similarity between the
experimental structures and entanglement properties.

The QOVAE can be used to efficiently search
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TABLE II: Experiments from Fig 5 in ascending order.

for new highly entangled quantum setups in the
latent space.

We use the QOVAE to search for new experiments that
produce high dimensional entangled states. We use ran-
dom search in the latent space of QOVAE-High (that
is trained only on entangled experiments). We compare
the random search in the latent space with a random
search directly on the experimental device sequence. We
want to find experiments that produce systems with the
largest possible entanglement measured with S. We are
effectively comparing the following optimizations

max S(xz) versus max S(f(z)),

where x, € X is an experiment from the space of ran-
domly sampled quantum optics experiments and Z is the
learned latent space of the QOVAE. The learned latent
is used as a proxy optimization space by randomly sam-
pling a latent vector z ~ A(0,I) and then computing
S(f(z)), where f is the QOVAE decoder.

We performed a single run of random search with the
same number of iterations (10K) for both searches and
display the top 3 experimental setups that we found by
random sampling on device sequences and the QOVAE
in figure 5. Table II displays the same experiments
in their sequential representation. The search in the
QOVAE’s latent space finds experiments with, in total,
higher entanglement S. This demonstrates the utility
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FIG. 6: An exploration of the two dimensional latent space of the QOVAE-Low colored a) by entanglement measure
S, b) by length, ¢) by last devices, and d) Functionality of Last device.

of using a learned representation of quantum optics
experiments when searching for new highly entangled
experiments.

The QOVAE learns an interpretable representa-
tion.

Since QOVAE-Low only has two latent dimensions, we
can directly plot the latent space and interpret the la-
tent space in terms of structure-property relations. These
plots help us to explain the results we have obtained in
the previous experiments.

We perform this interpretation by encoding every train-
ing example into the latent space, and observe remarkable
structures and distinct clusters of setups (see Fig.6). We
can now color-code every point in the latent space with
the entanglement measure of the corresponding train-
ing example. We find a very clear region in the latent
space that is unentangled (colored in violet), and an-
other structure being entangled (see Fig.6a). This is an
interesting and exciting result, as the model was trained

entirely without the corresponding entanglement infor-
mation, just by using the structure of the setup. This
result indicates that the model implicitly distinguishes
between entangled and unentangled experiments. To un-
derstand how the QOVAE does this we analyse the train-
ing examples that correspond to three different regions,
one unentangled region A), one that shares entangled and
unentangled states B) and one that contains only entan-
gled states C).

In region A), we find three different clusters, none of
which contain entangled states. We find that all three
clusters contain experiments with only four devices, while
in region B) and C), all setups have a device length of
nine. So we understand - to first order - that the QOVAE
encodes the training examples by the number of the op-
tical devices. We confirm this by color-coding the latent
space by the length of the setups, as shown in Fig.6b.

However, the size of the setup cannot alone be respon-
sible for the very peculiar structure of the latent space
and its distribution of entanglement. After all, region B)
and C) have the same number of elements, however B)



contains both entangled and unentangled setups, while
C) contains only entangled ones. We analyse those two
regions further and find, that the last element in every
setup of region B) is always H;z while in C) it is always
DC,.. Therefore we understand that the last element
of the setup is the second property the QOVAE uses to
separate setups, which we can confirm by color-coding all
points by their final element (see Fig.6c).

With this new insight, we can finally explain why the two
regions B) and C) have different entanglement properties:
the initial two elements in every setup (by construction)
consist of nonlinear crystal in path a,b and one in ¢, d,
which creates a correlated state in all four paths. In
order to get a second correlated state in a superposition
(thus entanglement), the setup needs to create another
combination of correlations in the four paths. The only
two other ways are by creating correlations in paths ac
and bd or in paths ad and bc, which can be understood
in a graph-theoretical way [47, 48]. In region C), the last
element is a crystal in path ac, which already creates
the necessary correlation. In this setup, the previous
eight elements only need to create another correlation in
path bd to create entanglement, while in region B), the
fully correlated state needs to be created, which is much
more unlikely to happen. We can further strengthen our
interpretation by clustering all possible last elements into
eight functional groups for instance, all holograms have
the same effect on the entanglement property, so we can
combine them to a single functional group.

From this result, we have been able to fully interpret the
structure-property relation that has been learned by the
QOVAE in a quantum physical sense. With this new
understanding, we can also explain properties that we
have observed in previous experiments. For example, the
encoding is smooth in terms of entanglement because the
number of optical elements significantly determines the
possible correlations build from inside the setup.

V. CONCLUSION

We presented the QOVAE which is the first deep gener-
ative model for the design of quantum optics hardware.
Deep generative models are widely used but there has
never been any investigation or understanding developed
of their internal representation in a complex scientific
domain. In a series of complex computational experi-

ments, we investigated the QOVAE’s internal picture of
the quantum world. The QOVAE was able to generate
novel entangled experiments, learn distributions of en-
tanglement and was shown to interpolate smoothly in its
latent space— which can also be used to search effectively
for new highly entangled experiments. When plotting the
QOVAE’s latent space we find complex internal struc-
ture, that surprisingly the QOVAE implicitly discovered
properties of entangling quantum experiments in an un-
supervised way. Our results go beyond designing new
quantum optics— they tackle the question of interpretabil-
ity and explainability of black-box models [49, 50] in a
scientific domain. This is particularly promising since
understanding what these model learn could lead to new
computer-inspired scientific insights and discoveries.
The QOVAE could, in principal, be directly be applied
to other physical science domains, such as in the design
of new quantum circuits for quantum computing. Cur-
rently, Noisy Intermediate-Scale Quantum (NISQ) com-
puting algorithms [51-53] are promising candidates to
surpasses the classical computational capabilities for nu-
merous applications. Most of these approaches require
good priors to explore efficiently and represent the space
of parameters and solutions. The exponentially large
Hilbert space formed by all possible quantum circuits
makes this task computationally intractable when the
structure-properties relation of these circuits is still not
fully-understood. QOVAE’s ability to learn meaningful
representations as understood by domain experts could
provide insights about how the Hilbert space is organized
within these parameterized quantum circuits. QOVAE
learns an intrepretable representation of entanglement in
quantum optics experiments. Our work with the QO-
VAE is an example in the physical sciences of opening the
black-box of deep generative models to develop promising
scientific insights.
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SUPPLEMENTARY MATERIALS
1. Methods
a. Latent variable models

Consider some dataset X = {x;}}¥, of i.i.d. samples of
discrete or continuous data. We assume the data is gen-
erated via some unobserved continuous random variable
z such that the joint distribution can be written as

po(x,2) = po(x|z)pe(2).
The true posterior can be found by the Bayes rule as

Pe(2|x)

but is intractable because of the marginal likelihood
pe(x), which can be computed as

= po(x|2)pe(z)/pe(x),

po(x) = / po(x|2)pe (z)dz,

and is also intractable because the likelihood is a compli-
cated nonlinear function of the latent variables.

The marginal likelihood of the data is composed of a sum
over the marginal likelihoods of individual datapoints:

N
logpe(X) =logpe(x1,...,xn) = > _logpa(x;).
=1

b. Variational Bayes

By defining an approximation to true posterior gg(z|x),
we can rewrite a single marginal likelihood as

log pe(x) = Dxw[qe(2]x)|pe(z|x)] + L(q¢,pe, %),

where the first term on the right is a KL divergence of
the approximate posterior to the true posterior. Since
the KL is positive,

log pe(x) > L(q¢,Pe,X),

hence £(g4, po, x) is a lower bound on the marginal like-
lihood, known as the ELBO, and can be written as

L(qe, o, x) = Eq, (21x) [10% <(X|;)) }

= Eyy(zx) [log po(x, )] Hlgg)
= E,, [logpe(x|z)] — Dkw[g4lpe(2)]-

We want to optimize the variational lower bound of
L(g4,pe,x) with respect to the variational and gener-
ative parameters ¢, 0
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c. stochastic gradient variational Bayes (SGVB)

SGVB introduces a simple practical estimator of the
ELBO and its derivatives. Under specific chosen approx-
imate posteriors gg(z|x), we can re-parameterize the ran-
dom variable z using a differentiable transformation from
some auxiliray noise € [29] as

z = ty(€,x) where € ~ p(e).

We can now differentiate through sampling and form
Monte Carlo estimates of the elbo as follows:

= Egy (alx) [0(2)] = Ep(e) (Lt (€, %))]

and take gradients simply by

L(q¢,po,X)

9 ar ot o

d. Mean field assumption

In mean-field variational inference [? ], we specify an
approximate posterior that factorizes, for example, the
diagonal multivariate Gaussian:

d
= qus(Zi\X) = N(p, ).

We can reparameterize z = u+ o @€, € ~ N(0,I) and
evaluate the KL divergence and entropy,

d
1
Dkw[ggllpe(z) 52 (1+2logo; — pf —0F)
j=1
Hlge] = log (2me) Z logoj,

with prior p(z) = N(0,1), where d is dimension of the
latent variables. In a variational autoencoder (VAE), we
parameterize both the encoder and decoder using neural
networks as described in the next sections.

e. FEncoder

Our encoder is a diagonal Gaussian whose parameters are
a mapping from the data manifold to the latent space.
Our data, the quantum optics experiments x € R4XT | are
represented as a sequence with T' elements, each from a
toolbox of d possible devices,

qp(2|x) =N

(z | po(x),05(x)),



where p,logo = ge(x). First, g consists of a convolu-
tional neural network with 3 layers,

h = Convlds(Convldy(Convld; (x))).
A single layer takes on the form

x" = Convld(x) = ReLU(w ® x + b),

where w € R X4 i5 the convolution filter tensor which
consists of ny filters each with length ¢ and d features.
Also the layer output is x’ € R *xT—¢+1,

For the input layer, this is just d = D the number of
devices in the toolbox used to create any experiment.
ReLU(+) is the element-wise rectified linear unit function
and @ is the convolution operator which outputs a tensor
with the has following elements

¢
(WOX)p = ZW{ CX4io1,
=1

where w)] € R? is the f" convolutional filter /" weight
vector operating on the t'!' element (device) in the se-
quence (experiment).

The second component of the encoder g is a MLP with
three layers that maps the flattened output h from the
Convolutional neural net. to the parameters of latent
distribution

p, logo = MLP,(Flatten(h)).

f- Decoder

For the observation model, every data point is a sequence
of devices from the d element toolbox of possible device
elements, thus we can model the data as independent
categoricals whose mean vector is mapped from a latent
samples using a neural network,

T

po(xlz) = [ ] Categorical(py, ).
t=1

where py, € [0,1]% is the probability vector of each device
in the toolbox. Our encoder outputs these probabilities
as

px17 e 7pr,7 ce 7pr = fg(Z).

First, f consists of a three layer Recurrent neural network
each with with Gated recurrent units (GRUs),

h = GRU3(GRU2(GRU;(MLP/(z)))),
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where MLP is single layer MLP with a ReLU(.) activa-
tion. A single layer h = GRU(x) takes on the form

z, = o(W;x; + Ujh;_1 +by),

ry =o(W,x; + U,h,_1 +b,;),

h} = Tanh(Wp,x; + Uy (r; © hy_1) + by),
h; =(1-2z;)®h;_1 +z, ®hj,

where W, U, b are parameters of the GRU layer. The
z; and r; are update and reset gate vectors, respec-
tively, and o is the sigmoid function. The input to
the first GRU layer is the T length sequence of vec-
tors [MLPf(z),...,MLP;(z)]. The output of the RNN is
mapped to the device probabilities using a softmax layer

DPx, = Softmax(Wh, +b) ¢t=1,...T.

g. Training and data details

We manually performed an initial hyperparameter search
for both QOVAEs. We found an initial set of training
hyperparameters using Grid search. We found training
on around 1600 epochs to produce better validation ac-
curacy and ELBO values. We trained the QOVAE us-
ing SGD and the Adam optimizer [29] with a low learn-
ing rate ~ 10~%. Training was done using the KERAS
machine learning package from tensorflow. All models
were trained on a V100 node on the Beluga supercom-
puter. The minibatch size grid was {32, 64,128,256}
with an optimal batch size of 64. The model architec-
ture is the same for all experiments with both models.
We use grid search to search over the encoder and de-
coder architecture. For the convolutional layers we search
over 6,12,18,36 filter numbers with lengths 3,4,5 For
the MLPs in both the decoder and encoder, we consider
32,64,128,256 hidden units in each layer. For the GRU
layer, we consider hidden states of size 128, and a 64 unit
layer that maps to the GRU layers. To generate the data
using random search/ Melvin, in order to randomly sam-
ple an experiment X, = (Zx,,...,%r,), we first sample
an experiment length ¢ ~ uniform{1,...,T}, and then
sample ¢ devices z,, from the toolbox with replacement
m; ~ uniform{1,...,D}. Next, we calculate the total
entanglement measure S of the experiment and classify
those with xg~0 or xg—g-



Device Token Visual Operation Operator
Down Conversion | DownConv (¥, p, p') Ei [U) + 3, 10)p| — €)p | DCpyr
Beam Splitter BS(V,p,p) x [6), — W BSpp
Mirror Ref (¥, p) X [6)p — i —€)p R,
Dove Prism DP(¥,p) X |6), — e’ |~ ¢), | DP,
Hologram 0AMHolo(W, p,n) ‘x [6)p — |0+ n), Hp
Hologram 0AMHolo(V,p, —n) X [0)p — |€—n), H,"

TABLE III: The main table of devices divided into
columns displaying 1) the standard device name 2) The
token used in the sequence representation of the
experimental setups and used to convert any setup to a
sequence of one hot vectors 3) The visual of the device
used in the graph representation of the experimental
setups 4) the operator that the device represents that
acts on the systems state 5) the action the operator
performs on any specific ket in the state

2. The quantum state
a. The quantum system

We are investigating multipartite entanglement in a four
photon system with two pairs of OAM-entangled pho-
tons. The state is represented by the OAM of the photon
which is its orbital angular momentum. Each maximally
entangled quantum optics experimental setup will pro-
duces some state which lives in the hilbert space defined
by the tensor product of the individual subsystems de-
fined by photons a, b, ¢, d given by H = HoQHp QH . QHq

= >

ijkleloam

Qijki|Vijrt) (1)

where we can define a general state in the system as a
superposition of the basis kets as defined

[Vijrt) = 1) @ |56 @ |k)e @ |1)g (2)

=
= |Z>a|]>b|k>c|l>d = |Z7J7k7l> (3)
where i,j,k,l are the OAM quantum number of the
photon, OAM states provide a suitable physical realisa-
tion of multilevel qudit systems which have been shown
to improve the robustness of quantum key distribution
schemes. In general, photon OAM states take on discrete
integer values m € Z with OAM mh. A proof-of-principle
experiment with 7 OAM modes from —3 — 3 has been
demonstrated [54] .

loam = {—m,g, -m_¢+1,...,—1,0,1,...,my — 1,mz}
where my, is the maximal OAM number that can be

reached by the setup, and —m_y is the smallest that can
be reached. This means each OAM quantum number can
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0)210) + 0).10)
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FIG. 7: Two SPDC crystals create the initial state

take on a possible m_;+my + 1 discrete values and since
the system consists of four photons (i € {a,b,c,d})the
dimension of the Hilbert space is [],(m_gs, + me, + 1)
and each basis ket lives in CILi(m—¢;+me;+1)

b. Initial State and SPDC

Here, the initial state is created by a double spontaneous
parametric down-conversion (SPDC) process. SPDC is
a widespread source for the experimental generation of
photon pairs. Multiple SPDC processes can be used to
produce multipartite entanglement, as it is well known for
the case of two-dimensional polarization entanglement
[36, 37]. However, instead of polarization, we are us-
ing the OAM of photons [38-40, 55], which is a discrete
high-dimensional degree of freedom based on the spatial
structure of the photonic wave function

The input state of example 1 is a double-emission from
SPDC, which leads to the initial state is of the form of
a product state |0),|0)p ® |0).|0)4 with general form and
arbitrary order

=N 3 0al = O+ 10— s (&)

l=—d.

with d. being the highest order of SPDC considered, with
photon pairs a,b and c¢,d. N is a normalization constant.
During creation of the dataset we only consider d. = 0
with initial state

(W) = 10)a]0)5 + [0)c[0)a (5)

This is the unnormalized state produced from the two
initial SPDC devices, when we visualize the experiments
we depict this as two grey rectangles to depict the crystal
as in Figure 7.



Algorithm 1: State Calculation

Input x ~ pdata(x)

Initialize |[¥o) = |0)4|0)s + |0)c]|0)4
01, ey Op+—x

|\I/> «— Oyp--- O1|\I’0>

) —[T) @ |¥)

" —

p «— PartialTrace(|¥))

s +— —Tr(plogp)

S=2 2k sk =225 5(pag) + 225 5(pi)

return S

—
=

3. State and entanglement calculations

To calculate the state of some experimental setup x
that has an initial state from the SPDC process |¥g) =
[0)a]0)p+10).|0)q we define the set of operations the state
will undergo by extracting the operators defined from the
sequence of optical devices that define the experiment.
For each x; € x we have a corresponding operator O
that changes the state by acting on it according to Table
2. Each device changes the state in the order defined by
the sequence of the experiment and leads to a state |¥)
which we then square collect four dimensionally entan-
gled terms then normalize : |¥)®|W)/(¥|P). If there are
no four particle or the state consists of one of the basis
kets then the experiment is unentangled.

Now we must quantify and calculate the entanglement in
our system using the systems final state calculated in the
previous paragraph and in Algorithm 1. Since our state
lives in the hilbert space H = Hs @ Hp @ Ho ® Hp as

0) = aijulidalolk)elDa (6)

ijkl
the density matrix of the system is given by

p=100T| =" > aimaiwrliikl) @K (7)

igkl i/ 5 KL

We need to keep track of the four reduced density ma-
trices for each subsystem or photon pg, pp, pc, pi- For
example in the case of a we can calculate p, = Trpeq(p)
by tracing out the other subsystems. Explicitly :

pa= (Ualkle(ilo - [€)CL] - [)slk)cl)a (8)

ki

The other three can be calculated in similar fashion.
We also need to keep track of the three reduced den-
sity matrices for each photon pair pup, pac, Pad- Simi-
larly in in the case of the photon pair ab we can cal-
culate pupy = Treq(p) by tracing out the other subsys-
tems. Explicitly :The Melvin algorithm for generating
our Dataset— 1. generate a random quantum optics setup
2. calculate its state and entanglement measure 3. add
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to corresponding dataset depending on entanglement

par =Y (Kle® (lla- [¥)(¥|- k)@ a  (9)
kl

The other two can be calculated in similar fashion. we
are interested in two main vectors quantifying the en-
tanglement of the system ; 1) the von neumann entropy
vector s € R” and 2) the Schmidt rank vector r € Z7
where

[ Pa | [S(pa) ] rank(pq) |
Pb S(pv) rank(pp )
Pe S(pe) rank(pc)
p=|pi| s=|50a| r=|rak(| o)
Pab S(pas) rank(pap)
Pac S(pac) rank(pqc)
per)  LS(oun)] vk (o)

To explain the SRV, consider the simpler case of 3 parti-
cles and the state |¥) which has a SRV of (4,2,2)

o) = %(|ooo> F100) 4 [210) + 311)) (1)

Here, the first particle is four-dimensionally entangled
with the other two parties, whereas particle two and three
are both only two dimensionally entangled with the rest.
Also, S(+) is the von neumann entropy given by

S(pa) = =Tr(palogpa) = = > pslogps  (12)

where ps are the eigenvalues of the quantum system p,.

Entanglement entropy is a measure of the degree of quan-
tum entanglement between two subsystems constituting
a two-part composite quantum system. Given a pure
bipartite quantum state of the composite system, the re-
duced density matrix describes the state of a subsystem.
The entropy of entanglement is the Von Neumann en-
tropy of the reduced density matrix for any of the sub-
systems. If it is non-zero, the subsystem is in a mixed
state and the two subsystems are entangled.

We define our entanglement measure S as the sum of
all the entanglement entropies of all bipartitions of the
system

S =3 S(pug) + Y 50 (13)

J#a (

A bipartition of the system is a partition which divide the
system into two parts a and b, containing n; and ns parti-
cles respectively with nj4+no = n supposing the quantum
system consist of n particles. Bipartite entanglement en-
tropy is defined with respect to this bipartition.
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FIG. 8: the graph of QO experimental setup whose state is calculated in the following section

4. Example state calculation

The state calculation is automated using symbolic alge-
bra from the sympy python package cite. For demonstra-
tion purposes let’s consider an example state calculation
of a simple quantum optics experiment defined in Fig 8
the sequence of devices in the experiment operate on the
state through the sequence of operators

BS,. — H; — DC.y — R, — H} (14)
starting with the initial state |¥g) = |0)4]0)p + |0)c]|0)q
We apply each operator in order to find the final state
given by

|¥) = H. - R.-DCy - H} - BSp. - |¥g)

The first device in the setup is a beamsplitter on photon
path b and ¢ with operator BS,. acting on the initial
state replacing b and c¢ kets with their superposition as

o — (DAY g, (A0

next the device H} will add 1 OAM to all b kets, so that
the two zero OAM for photon b become [0), — [1)
Then applying device DC, 4

(W) = (W) +10)e[0)a + | = De[l)a) + [1)e| = 1)a
Then applying device R, and device H} we flip ¢ and add

a i prefactor as well as increase the OAM of kets a. Then
we square of the state and normalize:

v)

|T) = |U) @ |P) and |¥) — WD)

we are left with the following terms that contribute to 4
dimensional entanglement :

|¥) =1,1,—-1,—-1) +|1,1,0,0) + |1,1,1,1)

5. Further experiments
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FIG. 9: Learning structural distributions We check explicitly if the QOVAE-High has learned global properties
of the training distribution. We look at the distribution of devices in generated experiments to tell us what the
model has learned about the explicit structure of training experiments. By plotting histograms capturing the
distribution of the number of basis element devices per experiment found from random samples of experiments from
the training data and the QOVAE we can see how well the QOVAE captured the structural distribution of the
training data. To do so we sample 10k experiments from the QOVAE-High and its training data then plot
histrograms of experiment device number. We focus on the main devices including number of holograms, dove
prisms and reflection devices as well as the number of double path devices like Down Converters and Beam-splitters.
We can see that the model exactly learns how many DPs and R’s exist in the experiments on average. Similar for
the double path devices, the histograms are similar and the QOVAE leans them both reasonably well but
underestimates slightly. For the hologram we also get a decent but not exact match. Overall, it is safe to say the
QOVAE has learned the global structure in the training experiments.

Training === QOVAE

S
19
S

Frequency/Density

0.00
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FIG. 10: Distribution of States To assess if the QOVAE-high learns a distribution of quantum states in the
training data, we directly compare the frequency of basis kets |i), ® |7)p ® |k)e ® |I)4 arising in the states calculated
from the 10K sampled experimental setups from the QOVAE and from the training data. To do this, here we plot
histograms of basis kets with photon OAM mode either zero or one from both samples. It is clear that the basis kets
with 0 or 1 OAM occur with the same frequency in quantum states produced by the QOVAE or states from the
training experiments.
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FIG. 11: Interpolations between different quantum states To demonstrate the QOVAE learns a latent
representation that encodes a measure of similarity of any experiment’s quantum state we provide three
interpolations between different states. The first using QOVAE-Low interpolates between two single basis ket’s
state. The next two from QOVAE-High : interpolate between a two ket state and three ket state as well as between
a two ket state and eight ket state. For the first, we see that along the interpolation path the model decodes single
ket states as well. For the second, we see that the interpolated kets have two then three kets. For the third, we see
that the states gradually increase their ket number from two to eight.
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FIG. 12: More Samples. We random sample 40 experiments from the training data and from the QOVAE by
sampling from the prior z(*) ~ A/(0,T) and passing that through the decoder {f(z(*))}. We display their graph
representations. It is clear that both samples display a similar placement of devices and connectivity structures
across the four possible photon paths.
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