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Abstract Animals depend on fast and reliable detection of novel stimuli in their environment.

Neurons in multiple sensory areas respond more strongly to novel in comparison to familiar stimuli.

Yet, it remains unclear which circuit, cellular, and synaptic mechanisms underlie those responses.

Here, we show that spike-timing-dependent plasticity of inhibitory-to-excitatory synapses

generates novelty responses in a recurrent spiking network model. Inhibitory plasticity increases

the inhibition onto excitatory neurons tuned to familiar stimuli, while inhibition for novel stimuli

remains low, leading to a network novelty response. The generation of novelty responses does not

depend on the periodicity but rather on the distribution of presented stimuli. By including tuning of

inhibitory neurons, the network further captures stimulus-specific adaptation. Finally, we suggest

that disinhibition can control the amplification of novelty responses. Therefore, inhibitory plasticity

provides a flexible, biologically plausible mechanism to detect the novelty of bottom-up stimuli,

enabling us to make experimentally testable predictions.

Introduction
In an ever-changing environment, animals must rapidly extract behaviorally useful information from

sensory stimuli. Appropriate behavioral adjustments to unexpected changes in stimulus statistics are

fundamental for the survival of an animal. We still do not fully understand how the brain detects

such changes reliably and quickly. Local neural circuits perform computations on incoming sensory

stimuli in an efficient manner by maximizing transmitted information or minimizing metabolic cost

(Simoncelli and Olshausen, 2001; Barlow, 2013). Repeated or predictable stimuli do not provide

new meaningful information. As a consequence, one should expect that responses to repeated stim-

uli are suppressed – a phenomenon postulated by the framework of predictive coding (Clark, 2013;

Spratling, 2017). Recent experiments have demonstrated that sensory circuits across different

modalities can encode a sequence or expectation violation and can detect novelty (Keller et al.,

2012; Natan et al., 2015; Zmarz and Keller, 2016; Hamm and Yuste, 2016; Homann et al., 2017).

The underlying neuronal and circuit mechanisms behind expectation violation and novelty detection,

however, remain elusive.

A prominent paradigm used experimentally involves two types of stimuli, the repeated (or fre-

quent) and the novel (or deviant) stimulus (Näätänen et al., 1982; Fairhall, 2014; Natan et al.,

2015; Homann et al., 2017; Weber et al., 2019). Here, the neuronal responses to repeated stimuli

decrease, a phenomenon that is often referred to as adaptation (Fairhall, 2014). Adaptation can

occur over a wide range of timescales, which range from milliseconds to seconds (Ulanovsky et al.,

2004; Lundstrom et al., 2010), and to multiple days in the case of behavioral habituation

(Haak et al., 2014; Ramaswami, 2014). We refer to the elevated neuronal response to a novel stim-

ulus, compared to the response to a repeated stimulus, as a ‘novelty response’ (Homann et al.,

2017). Responses to repeated versus novel stimuli, more generally, have also been studied on
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different spatial scales spanning the single neuron level, cortical microcircuits and whole brain

regions. At the scale of whole brain regions, a widely studied phenomenon is the mismatch negativ-

ity (MMN), which is classically detected in electroencephalography (EEG) data and often based on

an auditory or visual ‘oddball’ paradigm (Näätänen et al., 1982; Hamm and Yuste, 2016). The

occasional presentation of the so-called oddball stimulus among frequently repeated stimuli leads to

a negative deflection in the EEG signal – the MMN (Näätänen et al., 2007).

Experiments at the cellular level typically follow the oddball paradigm with two stimuli that, if pre-

sented in isolation, would drive a neuron equally strongly. However, when one stimulus is presented

frequently and the other rarely, the deviant produces a stronger response relative to the frequent

stimulus (Ulanovsky et al., 2003; Nelken, 2014; Natan et al., 2015). The observed reduction in

response to the repeated, but not the deviant, stimulus has been termed stimulus-specific adapta-

tion (SSA) and has been suggested to contribute to the MMN (Ulanovsky et al., 2003). SSA has

been observed in multiple brain areas, most commonly reported in the primary auditory cortex

(Ulanovsky et al., 2003; Yaron et al., 2012; Natan et al., 2015; Seay et al., 2020) and the primary

visual cortex (Movshon and Lennie, 1979; Hamm and Yuste, 2016; Vinken et al., 2017;

Homann et al., 2017). Along the visual pathway, SSA has also been found at different earlier stages

including the retina (Schwartz et al., 2007; Geffen et al., 2007; Schwartz and Berry, 2008) and

the visual thalamic nuclei (Dhruv and Carandini, 2014; King et al., 2016).

To unravel the link between multiple spatial and temporal scales of adaptation, a variety of mech-

anisms has been proposed. Most notably, modeling studies have explored the role of adaptive cur-

rents, which reduce the excitability of the neuron (Brette and Gerstner, 2005), and short-term

depression of excitatory feedforward synapses (Tsodyks et al., 1998). Most models of SSA in pri-

mary sensory areas of the cortex focus on short-term plasticity and the depression of thalamocortical

feedforward synapses (Mill et al., 2011a; Mill et al., 2011b; Park and Geffen, 2020). The contribu-

tion of other mechanisms has been under-explored in this context. Recent experimental studies sug-

gest that inhibition and the plasticity of inhibitory synapses shape the responses to repeated and

novel stimuli (Chen et al., 2015; Kato et al., 2015; Natan et al., 2015; Hamm and Yuste, 2016;

Natan et al., 2017; Heintz et al., 2020). Natan and colleagues observed that in the mouse auditory

cortex, both parvalbumin-positive (PV) and somatostatin-positive (SOM) interneurons contribute to

SSA (Natan et al., 2015). Furthermore, neurons that are more strongly adapted receive stronger

inhibitory input than less adapted neurons, suggesting potentiation of inhibitory synapses as an

underlying mechanism (Natan et al., 2017). In the context of habituation, inhibitory plasticity has

been previously hypothesized to be the driving mechanism behind the reduction of neural responses

to repeated stimuli (Ramaswami, 2014; Barron et al., 2017). Habituated behavior in Drosophila, for

example, results from prolonged activation of an odor-specific excitatory subnetwork, which leads to

the selective strengthening of inhibitory synapses onto the excitatory subnetwork (Das et al., 2011;

Glanzman, 2011; Ramaswami, 2014; Barron et al., 2017).

Here, we focus on the role of inhibitory spike-timing-dependent plasticity (iSTDP) in characteriz-

ing neuronal responses to repeated and novel stimuli at the circuit level. We base our study on a

recurrent spiking neural network model of the mammalian cortex with biologically inspired plasticity

mechanisms that can generate assemblies in connectivity and attractors in activity to represent the

stimulus-specific activation of specific sub-circuits (Litwin-Kumar and Doiron, 2014; Zenke et al.,

2015; Wu et al., 2020). We model excitatory and inhibitory neurons and include stimulus-specific

input not only to the excitatory but also to the inhibitory population, as found experimentally

(Ma et al., 2010; Griffen and Maffei, 2014; Znamenskiy et al., 2018). This additional assumption

readily leads to the formation of specific inhibitory-to-excitatory connections through inhibitory plas-

ticity (Vogels et al., 2011), as suggested by recent experiments (Lee et al., 2014; Xue et al., 2014;

Znamenskiy et al., 2018; Najafi et al., 2020).

We demonstrate that this model network can generate excess population activity when novel

stimuli are presented as violations of repeated stimulus sequences. Our framework identifies plastic-

ity of inhibitory synapses as a sufficient mechanism to explain population novelty responses and

adaptive phenomena on multiple timescales. In addition, stimulus-specific inhibitory connectivity

supports adaptation to specific stimuli (SSA). This finding reveals that the network configuration

encompasses computational capabilities beyond those of intrinsic adaptation. Furthermore, we sug-

gest disinhibition to be a powerful regulator of the amplification of novelty responses. Our modeling

framework enables us to formulate additional experimentally testable predictions. Most intriguing,
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we hypothesize that neurons in primary sensory cortex may not signal the violation of periodicity of

a sequence based on bottom-up input, but rather adapt to the distribution of presented stimuli.

Results

A recurrent neural network model with plastic inhibition can generate
novelty responses
Recent experimental studies have indicated an essential role of inhibitory circuits and inhibitory plas-

ticity in adaptive phenomena and novelty responses (Chen et al., 2015; Kato et al., 2015;

Natan et al., 2015; Hamm and Yuste, 2016; Natan et al., 2017; Heintz et al., 2020). To under-

stand if and how plastic inhibitory circuits could explain the emergence of novelty responses, we

built a biologically plausible spiking neuronal network model of recurrently connected 4000 excit-

atory and 1000 inhibitory neurons based on recent experimental findings on tuning, connectivity,

and inhibitory and excitatory STDP in the cortex (Materials and methods). Excitatory-to-excitatory

(E-to-E) synapses were plastic based on the triplet spike-timing-dependent plasticity (eSTDP) rule

(Sjöström et al., 2001; Pfister and Gerstner, 2006; Gjorgjieva et al., 2011; Figure 1—figure sup-

plement 1). The triplet STDP rule enabled the formation of strong bidirectional connections among

similarly selective neurons (Gjorgjieva et al., 2011; Montangie et al., 2020). Plasticity

of connections from inhibitory to excitatory neurons was based on an inhibitory STDP (iSTDP) rule

measured experimentally (D’amour and Froemke, 2015), and shown to stabilize excitatory firing

rate dynamics in recurrent networks (Vogels et al., 2011; Figure 1—figure supplement 1). In con-

trast to other frameworks which have found short-term plasticity as key for capturing adaptation

phenomena, we only included long-term plasticity and did not explicitly model additional adaptation

mechanisms.

We targeted different subsets of excitatory and inhibitory neurons with different external stimuli,

to model that these neurons are stimulus-specific (‘tuned’) to a given stimulus (Figure 1A, left, see

Materials and methods). One neuron could be driven by multiple stimuli. Starting from an initially

randomly connected network, presenting tuned input led to the emergence of excitatory assemblies,

which are strongly connected, functionally related subsets of excitatory neurons (Figure 1—figure

supplement 2C, left). Furthermore, tuned input also led to the stimulus-specific potentiation of

inhibitory-to-excitatory connections (Figure 1—figure supplement 2E, left). We refer to this part of

structure formation as the ‘pretraining phase’ of our simulations (Materials and methods). This pre-

training phase imprinted structure in the network prior to the actual stimulation paradigm as a

model of the activity-dependent refinement of structured connectivity during early postnatal devel-

opment (Thompson et al., 2017).

To test the influence of inhibitory plasticity on the emergence of a novelty response, we followed

an experimental paradigm used to study novelty responses in layer 2/3 (L2/3) of mouse primary

visual cortex (V1) (Homann et al., 2017). In Homann et al., 2017, a single stimulus consisted of 100

randomly oriented Garbor patches. Three different stimuli (A, B, and C) were presented in a

sequence (ABC) (Figure 1A, right). The same sequence (ABC) was then repeated several times in a

sequence block. In the second-to-last sequence, the last stimulus was replaced by a novel stimulus

(N). In the consecutive sequence block, a new sequence with different stimuli was presented (we

refer to this as a unique sequence stimulation paradigm). The novel stimuli were also different for

each sequence block. In this paradigm, we observed elevated population activity in the excitatory

model population at the beginning of each sequence block (‘onset response’) and a steady reduc-

tion to a baseline activity level for the repeated sequence presentation (Figure 1B). Upon presenting

a novel stimulus, the excitatory population showed excess activity, clearly discernible from baseline,

called the ‘novelty response’. This novelty response was comparable in strength to the onset

response. Sorting spike rasters according to sequence stimuli revealed that stimulation leads to high

firing rates in the neurons that are selective to the presented stimulus (A, B, or C) (Figure 1C).

When we used a different set of stimuli in the stimulation versus the pretraining phase to better

match the randomly oriented Gabor patches presented in Homann et al., 2017 (Figure 1—figure

supplement 3A, see Materials and methods), we found the same type of responses to repeated and

novel stimuli (Figure 1—figure supplement 3B). When examining a random subset of neurons, we

found general response sparseness and periodicity during sequence repetitions (Figure 1D), very
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similar to experimental findings (Homann et al., 2017). More concretely, sparse population activity

for repeated stimuli in our model network was the result of each stimulus presentation activating a

subset of excitatory neurons in the network, which were balanced by strong inhibitory feedback.

Therefore, only neurons that directly received this feedforward drive were highly active, while most

other neurons in the network were instead rather silent. Periodicity in the activity of single neurons

resulted from the repetition of a sequence.

In the model, the fraction of active excitatory neurons was qualitatively similar for novel, adapted

and onset stimuli (Figure 1—figure supplement 4). The relatively sparse novelty response in our

model was the result of increased inhibition onto all excitatory neurons in the network, with activity

remaining mainly in the neurons tuned to the novel stimulus. In contrast, Homann et al., 2017 found

that a large fraction of neurons respond to a novel stimulus, suggesting a dense novelty response.
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Figure 1. Generation of novelty responses in a recurrent plastic neural network model. (A) Left: A recurrently

connected network of excitatory (E) neurons (blue triangles) and inhibitory (I) neurons (red circles) receiving tuned

input. Excitatory neurons tuned to a sample stimulus A are highlighted in dark blue, the inhibitory counterparts in

dark red. E-to-E synapses and I-to-E synapses were plastic, and all other synapses were fixed. Right: Schematic of

the stimulation protocol. Multiple stimuli (A, B, and C) were presented in a sequence (ABC). Each sequence was

repeated n times in a sequence block. In the second-to-last sequence, the last stimulus was replaced by a novel

stimulus (N). Multiple sequence blocks followed each other without interruption, with each block containing

sequences of different stimuli. (B) Population average firing rate of all excitatory neurons as a function of time after

the onset of a sequence block. Activity was averaged (solid line) across multiple non-repeated sequence blocks

(transparent lines: individual blocks). A novel stimulus (dark gray) was presented as the last stimulus of the second-

to-last sequence. (C) Spiking activity in response to a sequence (ABC) in a subset of 1000 excitatory neurons where

the neurons were sorted according to the stimulus from which they receive tuned input. A neuron can receive

input from multiple stimuli and can appear more than once in this raster plot. (D) A random unsorted subset of 50

excitatory neurons from panel C. Time was locked to the sequence block onset.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Excitatory and inhibitory synaptic plasticity functions for different pairing frequencies.

Figure supplement 2. Strong connections form between excitatory and excitatory, as well as inhibitory and
excitatory neuron groups that are tuned to the same stimulus.

Figure supplement 3. Different stimuli in the pretraining and stimulation phases generate similar synaptic weight
and firing rate dynamics.

Figure supplement 4. Quantifying response density in the unique sequence stimulation paradigm.

Figure supplement 5. Normalization time step Dt does not affect the occurrence of a novelty response.

Schulz, Miehl, et al. eLife 2021;10:e65309. DOI: https://doi.org/10.7554/eLife.65309 4 of 28

Research article Neuroscience

https://doi.org/10.7554/eLife.65309


Since the increase in inhibition seems to be responsible for the absence of a dense novelty response

in our model, in a later section we suggest disinhibition as a mechanism to achieve the experimen-

tally observed dense novelty responses in our model.

Our results suggest that presenting repeated stimuli (and repeated sequences of stimuli) to a

plastic recurrent network with tuned excitatory and inhibitory neurons readily leads to a reduction of

the excitatory averaged population response, consistent with the observed adaptation in multiple

experimental studies in various animal models and brain regions (Ulanovsky et al., 2003;

Hamm and Yuste, 2016; Homann et al., 2017). Importantly, the model network generates a novelty

response when presenting a novel stimulus by increasing the excitatory population firing rate at the

time of stimulus presentation (Näätänen et al., 2007).

The dynamics of novelty and onset responses depend on sequence
properties
To explore the dynamics of novelty responses, we probed the model network with a modified stimu-

lation paradigm. Rather than fixing the number of sequence repetitions in one sequence block

(Figure 1A, right), here we presented a random number of sequence repetitions (nine values

between 4 and 45 repetitions) for each sequence block. This allowed us to measure the novelty and

onset responses as a function of the number of sequence repetitions. Novelty and onset responses

were observed after as few as four sequence repetitions (Figure 2A). After more than 15 sequence

repetitions, the averaged excitatory population activity reached a clear baseline activity level

(Figure 2A). The novelty response amplitude, measured by the population rate of the novelty peak

minus the baseline population rate, increased with the number of sequence repetitions before satu-

rating for a high number of sequence repeats (Figure 2B, black dots). The onset response amplitude

after the respective sequence block followed the same trend (Figure 2B, gray dots). Next, we varied

the number of stimuli in a sequence, resulting in different sequence lengths across blocks (3 to 15

stimuli per sequence). By averaging excitatory population responses across sequence blocks with

equal length, we found that the decay of the onset response depends on the number of stimuli in a

sequence (Figure 2C). Upon fitting an exponentially decaying function to the activity of the onset

response, we derived a linear relationship between the number of stimuli in a sequence and the

decay constant (Figure 2D).

In summary, we found that novelty responses arise for different sequence variations. Our model

network suggests that certain features of the novelty response depend on the properties of the pre-

sented sequences. Changing the number of sequence repetitions modifies the onset and novelty

response amplitude (Figure 2A,B), while a longer sequence length leads to a longer adaptation

time constant (Figure 2C,D). Interestingly, both findings are in good qualitative agreement with

experimental data that presented similar sequence variations (Homann et al., 2017). An exponential

fit of the experimental data found a time constant of t ¼ 3:2� 0:7 repetitions when the number of

sequence repetitions was varied (Homann et al., 2017). The time constant in our model network

was somewhat longer (t ¼ 9� 1 repetitions), but on a similar order of magnitude (Figure 2B). Simi-

larly, our model network produced a linear relationship between the adaptation time constant and

sequence length with a slope of m ¼ 1:6� 0:04 (Figure 2D), very close to the slope extracted from

the data (m ¼ 2:1� 0:3) (Homann et al., 2017). Therefore, grounded on biologically-plausible plas-

ticity mechanisms, and capable of capturing the emergence and dynamics of novelty responses, our

model network provides a suitable framework for a mechanistic dissection of the circuit contributions

in the generation of a novelty response.

Stimulus periodicity in the sequence is not required for the generation
of a novelty response
Experimental studies have often reported novelty or deviant responses by averaging across several

trials due to poor signal-to-noise ratios of the measured physiological activity (Homann et al., 2017;

Vinken et al., 2017). Therefore, we investigated the network response to paradigms with repeated

individual sequence blocks (Figure 3A), which we refer to as the repeated sequence stimulation par-

adigm. We randomized the order of the sequence block presentation to avoid additional temporal

structure beyond the stimulus composition of the sequences. Repeating sequence blocks dampened

the onset response at sequence onset compared to the unique sequence stimulation paradigm
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(compare Figure 1B and Figure 2A,B with

Figure 3A). Next, we wondered whether the

excitatory and inhibitory population responses to

repeated and novel stimuli are related. We found

that both excitatory and inhibitory populations

adapt to the repeated stimuli and show a promi-

nent novelty peak that is larger than the respec-

tive averaged onset response (Figure 3B,C).

Based on these findings, we make the following

predictions for future experiments: (1) A novelty

response is detectable in both the excitatory and

inhibitory populations. (2) The sequence onset

response is dampened for multiple presentations

of the same sequence block compared to the

presentation of unique sequence blocks.

Next, we investigated whether the generation

of novelty responses observed in the model net-

work depends on the sequence structure. If the

novelty responses were to truly signal the viola-

tion of the sequence structure or the stimulus

predictability in a sequence, we would expect a

novelty response to occur if two stimuli in a

sequence were swapped, that is, ACB instead of

ABC. We found that swapping the last and sec-

ond-to-last stimulus, instead of presenting a

novel stimulus, does not elicit a novelty response

(Figure 3D). Additionally, we asked whether the

periodicity of the stimuli within a sequence influ-

ences the novelty response. Shuffling the stimuli

within a sequence block still generates a novelty

response and adaptation to the repeated stimuli,

similar to the strictly periodic case (Figure 3E,

compare to Figure 3A). Finally, we investigated if

the novelty peak depends on the input firing rate

of the novel stimulus. We found that a reduction

of the input drive decreases the novelty peak,

revealing a monotonic dependence of the novelty

response on stimulus strength (Figure 3F). Based

on these results, we make two additional predic-

tions: (3) The periodicity of stimuli in the

sequence is not required for the generation of a novelty response. Hence, the novelty response enc-

odes the distribution of presented stimuli, rather than the structure of a sequence. (4) A novelty

response depends on the strength of the novel stimulus.

Increased inhibition onto highly active neurons leads to adaptation
To gain an intuitive understanding for the sensitivity of novelty responses to stimulus identity but

lack of sensitivity to stimulus periodicity in the sequence, we more closely examined the role of inhib-

itory plasticity as the leading mechanism behind the novelty responses in our model. We found that

novelty responses arise because inhibitory plasticity fails to sufficiently increase inhibitory input and

to counteract the excess excitatory input into excitatory neurons upon the presentation of a novel

stimulus. In short, novelty responses can be understood as the absence of adaptation in an otherwise

adapted response. Adaptation in the network arises through increased inhibition onto highly active

neurons through selective strengthening of I-to-E weights (Figure 4A).

To determine how inhibitory plasticity drives the generation of novelty responses or, equivalently,

adaptation in our model, we studied the evolution of inhibitory weights. The inhibitory weights onto

stimulus-specific assemblies tuned to the stimuli in a given sequence increased upon presentation of
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the corresponding sequence block, and decreased otherwise (Figure 4B). The population firing rate

during repeated presentation of a sequence decreased (adapted) on the same timescale as the

increase of the inhibitory weights related to this sequence (Figure 4C). When a stimulus was pre-

sented to the network for the first time, the total excitatory input to the corresponding excitatory

neurons was initially not balanced by inhibition. Hence, the neurons within the assembly tuned to

that stimulus exhibited elevated activity at sequence onset, leading to what we called the ‘onset

response’ (Figure 1B). The same was true for the novelty responses as reflected in low inhibitory

weights onto novelty assemblies relative to repeated assemblies (Figure 1—figure supplement 2D,

E). Consequently, the generation of a novelty response did not depend on the specific periodicity of

the stimuli within a sequence (Figure 3). Swapping two stimuli did not generate a novelty response

since the corresponding assemblies of each stimulus were already in an adapted state. Therefore,
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Figure 3. Stimulus periodicity in the sequence is not required for the generation of a novelty response. (A–F)

Population average firing rate of all excitatory neurons (and all inhibitory neurons in B,C) during the presentation

of five different repeated sequence blocks. The population firing rate was averaged across ten repetitions of each

sequence block. Time is locked to sequence block onset. (A) A novel stimulus was presented as the last stimulus

of the second-to-last sequence. (B) Same as panel A but for both excitatory and inhibitory populations

(transparent lines: individual sequence averages). (C) Comparison of baseline, novelty, and onset response for

inhibitory and excitatory populations. Error bars correspond to the standard deviation across the five sequence

block averages shown in B. (D) In the second-to-last sequence, the last and second-to-last stimulus were swapped

instead of presenting a novel stimulus. (E) Within a sequence, stimuli were shuffled in a pseudo-random manner

where a stimulus could not be presented twice in a row. A novel stimulus was presented as the last stimulus of the

second-to-last sequence. (F) A novel stimulus was presented as the last stimulus of the second-to-last sequence.

Each sequence had a different feedforward input drive for the novel stimulus, indicated by the percentage of the

typical input drive for the novel stimulus used before.
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our results suggest that the exact sequence structure of stimulus presentations is not relevant for

the novelty response, as long as the overall distribution of stimuli is maintained.

Interestingly, we found that adaptation occurs on multiple timescales in our model. The fastest is

the timescale of milliseconds on which inhibitory plasticity operates, the next slowest is the timescale

of seconds corresponding to the presentation of a sequence block, and finally the slowest is the

timescale of minutes corresponding to the presentation of the same sequence block multiple times

(Figure 4D, top; also compare Figure 1B and Figure 3A). The slowest decrease in the population

firing rate was the result of long-lasting changes in the average inhibitory weights onto the excitatory

neurons tuned to the stimuli within a given sequence. Hence, the average inhibitory weight for a

given sequence increased with the number of previous sequence block presentations of that

sequence (Figure 4D, bottom).

Using a different set of stimuli in the stimulation versus the pretraining phase to match the ran-

domly oriented Gabor patches presented in Homann et al., 2017, led to qualitatively similar firing

rate and synaptic weight dynamics (Figure 1—figure supplement 3C,D, see also Materials and

methods). Differences in the mean inhibitory weights onto different stimulus-specific assemblies in a

given sequence were due to random initial differences in assembly size and connection strength

(Figure 4B,C, see Materials and methods). Differences in early, intermediate, and late inhibitory

weight changes, however, were consistent across different experiments and model instantiations

(Figure 4D, Figure 1—figure supplement 3D, right).

Furthermore, we observed that the dynamics of inhibitory plasticity and the generation of a nov-

elty response did not depend on the exact parameters of the pretraining phase (Figure 4—figure
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Figure 4. Inhibition onto neurons tuned to repeated stimuli increases during sequence repetitions. (A) Schematic

of increased inhibitory weights onto two stimulus-specific assemblies upon the repeated presentation of stimuli A

and B (indicated in dark blue and turquoise) relative to neurons from other assemblies (light blue). (B) Evolution of

the average inhibitory weights onto stimulus-specific assemblies. Colored traces mark three stimulus-specific

assemblies in sequence 1: A, B, and C. Arrows indicate time points of early, intermediate, and late sequence block

presentation shown in C and D. (C) Top: Population average firing rate of all excitatory neurons during the

repeated presentation of sequence 1 at an early time point (see panel B). Time is locked to sequence onset.

Bottom: Close-up of panel B (rectangle). Time is locked to sequence onset. (D) Top: Same as panel C (top) but at

intermediate and late time points (see panel B). Bottom: Corresponding dynamics of the average inhibitory

weights onto all three stimulus-specific assemblies from sequence 1 at early, intermediate and late time points

(see panel B). The dark purple trace (early) corresponds to the average of the three colored traces in C (bottom).

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Pretraining parameters do not qualitatively influence the novelty response.

Figure supplement 2. Fast inhibitory plasticity is key for the generation of a novelty response.
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supplement 1). Specifically, increasing the number of repetitions in the pretraining phase increased

the height of the novelty peak, but eventually reached a plateau at 10 repetitions (Figure 4—figure

supplement 1A). Increasing the number of stimuli decreased the height of the novelty peak (Fig-

ure 4—figure supplement 1C). However, these pretraining parameters only affected some aspects

of the novelty response, but preserved the generation of the novelty response. Even without a pre-

training phase (zero number of repetitions), a novelty response could be generated.

Based on our result that inhibitory plasticity is the underlying mechanism of adapted and novelty

responses in our model, we wondered how fast it needs to be. Hence, we tested the influence of the

inhibitory learning rate (h) in the unique sequence stimulation paradigm. We found that inhibitory

plasticity needs to be fast for both results, the generation of a novelty response (Figure 4—figure

supplement 2A,B) and adaptation to repeated stimuli (Figure 4—figure supplement 2C). Whether

such fast inhibitory plasticity operates in the sensory cortex to underlie the adapted and novelty

responses is still unknown.

In summary, we identified the plasticity of connections from inhibitory to excitatory neurons

belonging to a stimulus-specific assembly as the key mechanism in our framework for the generation

of novelty responses and for the resulting adaptation of the network response to repeated stimuli.

This adaptation occurs on multiple timescales, covering the range from the timescale of inhibitory

plasticity (milliseconds) to sequence block adaptation (seconds) to the presentation of multiple

sequence blocks (minutes).

The adapted response depends on the interval between stimulus
presentations
Responses to repeated stimuli do not stay adapted but can recover if the repeated stimulus is no

longer presented (Ulanovsky et al., 2004; Cohen-Kashi Malina et al., 2013). We investigated the
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Figure 5. Longer inter-repetition intervals decrease the level of adaptation due to the recovery of inhibitory

synaptic weights. (A) Population average firing rate of all excitatory neurons in the unique sequence stimulation

paradigm for varying inter-repetition intervals (varying sequence length). Time is locked to the sequence block

onset. (B) Evolution of the average inhibitory weights onto stimulus-specific assembly A (identical in all runs) for

varying inter-repetition intervals. Time is locked to the sequence block onset. (C) Population average firing rate of

stimulated excitatory neurons for a 300 ms inter-repetition interval. Time is locked to the sequence block onset.

One step in the schematic corresponds to one stimulus in a presented sequence. (D) Difference of the onset

population rate (measured at the onset of the stimulation, averaged across runs) and the baseline rate (measured

before novelty response) as a function of the inter-repetition interval. (E) Absolute change of inhibitory weights

onto stimulus-specific assembly A from the start until the end of a sequence block presentation as a function of

inter-repetition interval.
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recovery of adapted responses in the unique sequence stimulation paradigm (Figure 5A). Similar to

Figure 2C, we changed the number of stimuli in the sequence, which leads to different inter-repeti-

tion intervals of a repeated sequence stimulus (the interval until the same stimulus is presented

again). For example, if two repeated stimuli (A, B) are presented, the inter-repetition interval for

each stimulus is 300 ms because each stimulus is presented for 300 ms (Figure 5C). If four repeated

stimuli are presented (A, B, C, D), the inter-repetition interval for each stimulus is 900 ms. We

defined the adaptation level as the difference of the onset population rate, measured at the onset of

the stimulation, and the baseline rate, measured shortly before the presentation of a novel stimulus.

We found that an increase in the inter-repetition interval reduced the adaptation level of the excit-

atory population (Figure 5A,D) due to a decrease of inhibitory synaptic strength onto stimulus-spe-

cific assemblies (Figure 5B,E). More specifically, the population average of all excitatory neurons

tuned to stimulus A was high when stimulus A was presented and low when stimulus B was pre-

sented (Figure 5C). Hence, inhibitory weights onto stimulus-specific assembly A increased while A

was presented and decreased otherwise (Figure 5B).

In summary, longer inter-repetition intervals provide more time for the inhibitory weights onto

stimulus-specific assemblies to decrease, hence, weakening the adaptation.

Inhibitory plasticity and tuned inhibitory neurons support stimulus-
specific adaptation
Next, we investigated whether inhibitory plasticity of tuned inhibitory neurons support additional

computational capabilities beyond the generation of novelty responses and adaptation of responses

to repeated stimuli on multiple timescales. Therefore, we implemented a different stimulation para-

digm to investigate the phenomenon of stimulus-specific adaptation (SSA). At the single-cell level,

SSA typically involves a so-called oddball paradigm where two stimuli elicit an equally strong

response when presented in isolation, but when one is presented more frequently, the elicited

response is weaker than for a rarely presented stimulus (Natan et al., 2015).

We implemented a similar paradigm at the network level where the excitatory neurons corre-

sponding to two stimuli A and B were completely overlapping and the inhibitory neurons were par-

tially overlapping (Figure 6A). Upon presenting stimulus A several times, the neuronal response

gradually adapted to the baseline level of activity, while presenting the oddball stimulus B resulted

in an increased population response (Figure 6B). Therefore, this network was able to generate SSA.

Even though stimuli A and B targeted the same excitatory cells, the network response adapted only

to stimulus A, while generating a novelty response for stimulus B. Even after presenting stimulus B,

activating stimulus A again preserved the adapted response (Figure 6B). This form of SSA exhibited

by our model network is in agreement with many experimental findings in the primary auditory cor-

tex, primary visual cortex, and multiple other brain areas and animal models (Nelken, 2014). In our

model network, SSA could neither be generated with adaptive neurons and static synapses

(Figure 6C, top; Materials and methods), nor with inhibitory plasticity without inhibitory tuning

(Figure 6C, bottom). In fact, including an adaptive current in the model neurons (Brette and Gerst-

ner, 2005) did not even lead to adaptation of the response to a frequent stimulus since firing rates

rapidly adapted during stimulus presentation and completely recovered in the inter-stimulus pause

(Figure 6C, top).

We investigated the dynamics of inhibitory weights to understand the mechanism behind SSA in

our model network. During the presentation of stimulus A, stimulus-specific inhibitory weights corre-

sponding to stimulus A (average weights from inhibitory neurons tuned to stimulus A onto excitatory

neurons tuned to stimulus A, see Figure 1—figure supplement 2A, right) increased their strength,

while stimulus-specific inhibitory weights corresponding to stimulus B remained low (Figure 6D).

Hence, upon presenting the oddball stimulus B, the stimulus-specific inhibitory weights correspond-

ing to stimulus B remained sufficiently weak to keep the firing rate of excitatory neurons high, thus

resulting in a novelty response.

We next asked about the recovery of the adapted response in this SSA paradigm (Figure 6—fig-

ure supplement 1). After a 9 s pause, the response remained adapted (Figure 6—figure supple-

ment 1A). Only after more than 200 s the response fully recovered (Figure 6—figure supplement

1B). In contrast to the results in Figure 5, here, the adaptation level remained high due to the

absence of network activity between stimulus presentations. Adaptation slowly recovered as the

time between stimulus presentations increased.
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In summary, our results suggest that the combination of inhibitory plasticity and inhibitory tuning

can give rise to SSA. Previous work has argued that inhibition or inhibitory plasticity does not allow

for SSA (Nelken, 2014). However, this is only true if inhibition is interpreted as a ‘blanket’ without

any tuning in the inhibitory population. Including recent experimental evidence for tuned inhibition

into the model, (Lee et al., 2014; Xue et al., 2014; Znamenskiy et al., 2018), can indeed capture

the emergence of SSA.

Disinhibition leads to novelty response amplification and a dense
population response
Beyond the bottom-up computations captured by the network response to the different stimuli, we

next explored the effect of additional modulations or top-down feedback into our network model.

Top-down feedback has been frequently postulated to signal the detection of an error or irregularity

in the framework of predictive coding (Clark, 2013; Spratling, 2017). Therefore, we specifically

tested the effect of disinhibitory signals on sequence violations by inhibiting the population of inhibi-

tory neurons during the presentation of a novel stimulus (Figure 7A). Recent evidence has identified

a differential disinhibitory effect in sensory cortex in the context of adapted and novelty responses
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Figure 6. Stimulus-specific adaptation follows from inhibitory plasticity and tuning of both excitatory and inhibitory

neurons. (A) Stimuli A and B provided input to the same excitatory neurons (dark blue and turquoise). Some

neurons in the inhibitory population were driven by both A and B (dark red and rose) and some by only one of the

two stimuli (dark red or rose). (B,C) Population average firing rate of excitatory neurons over time while stimulus A

was presented 20 times. Stimulus B was presented instead of A as the second-to-last stimulus. Time is locked to

stimulation onset. (B) Top: Population average of all excitatory neurons in the network with inhibitory plasticity

(iSTDP) and inhibitory tuning. Bottom: Population average of stimulated excitatory neurons only (stimulus-specific

to A and B). (C) Top: Same as panel B (top) for neurons with an adaptive current in a non-plastic recurrent network.

Bottom: Same as panel B (top) for the network with inhibitory plasticity (iSTDP) and no inhibitory tuning. (D)

Weight evolution of stimulus-specific inhibitory weights corresponding to stimuli A and B and average inhibitory

weights.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Recovery of adapted responses in the SSA paradigm.
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(Natan et al., 2015). However, due to the scarcity of detailed knowledge about higher order feed-

back signals or within-layer modulations in this context, we did not directly model the source of

disinhibition.

When repeating the SSA experiment (Figure 6) and applying such a disinhibitory signal (inhibition

of the inhibitory population) at the time of the novel stimulus B, our model network amplified the

novelty response (Figure 7B, shaded green, also compare to Figure 6B, top). Disinhibition also

increased the density of the network response which corresponds to the number of active excitatory

neurons (Figure 7C, left). Indeed, disinhibition increased the fraction of active excitatory neurons,

which we defined as the fraction of neurons that spike at least once in a 100 ms window during the

presentation of a stimulus (Figure 7C, right). Dense novelty responses have been recently reported

experimentally, where novel stimuli elicited excess activity in a large fraction of the neuronal popula-

tion in mouse V1 (Homann et al., 2017). Without a disinhibitory signal, the fraction of active neurons

for a novel stimulus in our model was qualitatively similar as for repeated stimuli and therefore there

was no dense novelty response (Figure 1—figure supplement 4A). Given that the inclusion of a dis-

inhibitory signal readily increases the density of the novelty response, we suggest that disinhibition

might underlie these experimental findings.
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Figure 7. Disinhibition leads to a novelty response amplification and a dense population response. (A) Stimuli A

and B provided input to the same excitatory neurons (dark blue and turquoise). Some neurons in the inhibitory

population were driven by both A and B (dark red and rose) and some by only one of the two stimuli (dark red or

rose). Inhibition (light green) of the entire inhibitory population led to disinhibition of the excitatory population. (B)

Population average firing rate of all excitatory neurons over time while stimulus A is presented 20 times. Stimulus

B was presented instead of A as the second-to-last stimulus. During the presentation of B, the inhibitory

population was inhibited. Time is locked to stimulation onset. (C) Left: Raster plot of 250 excitatory neurons

corresponding to the population average shown in panel B. The 50 neurons in the bottom part of the raster plot

were tuned to stimuli A and B. Time is locked to stimulation onset. Right: Fraction of active excitatory neurons (at

least one spike in a 100 ms window) measured directly after the onset of a stimulus. The raster plot and the

fraction of active excitatory neurons are shown for the presentation of stimulus B (with disinhibition) and the

preceding presentation of stimulus A (standard). (D) Population average peak height during disinhibition and the

presentation of stimulus B, as a function of the disinhibition strength. Arrow indicates the population average peak

height of the trace shown in panel B. Results are shown for five simulations. (E) Fraction of active excitatory

neurons during disinhibition as a function of the disinhibition strength. Arrow indicates the data point

corresponding to panel C. Results are shown for five simulations.
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In sum, we found that by controlling the total disinhibitory strength (Materials and methods), dis-

inhibition can flexibly amplify the novelty peak (Figure 7D) and increase the density of novelty

responses (Figure 7E). Therefore, we propose that disinhibition can be a powerful mechanism to

modulate novelty responses in a network of excitatory and inhibitory neurons.

Discussion
We developed a recurrent network model with plastic synapses to unravel the mechanistic underpin-

ning of adaptive phenomena and novelty responses. Using the paradigm of repeated stimulus

sequences (Figure 1A, right), our model network captured the adapted, sparse and periodic

responses to repeated stimuli (Figure 1B–D) as observed experimentally (Fairhall, 2014;

Homann et al., 2017). The model network also exhibited a transient elevated population response

to novel stimuli (Figure 1B), which could be modulated by the number of sequence repetitions and

the sequence length in the stimulation paradigm (Figure 2), in good qualitative agreement with

experimental data (Homann et al., 2017). We proposed inhibitory synaptic plasticity as a key mech-

anism behind the generation of these novelty responses. In our model, repeated stimulus presenta-

tion triggered inhibitory plasticity onto excitatory neurons selective to the repeated stimulus,

reducing the response of excitatory neurons and resulting in their adaptation (Figure 4). In contrast,

for a novel stimulus inhibitory input onto excitatory neurons tuned to that stimulus remained low,

generating the elevated novelty response. Furthermore, we showed that longer inter-repetition

intervals led to the recovery of adapted responses (Figure 5).

Based on experimental evidence (Ohki and Reid, 2007; Griffen and Maffei, 2014), we included

specific input onto both the excitatory and the inhibitory populations (Figure 1A, left). Such tuned

inhibition (as opposed to untuned, ‘blanket’ inhibition commonly used in previous models) enabled

the model network to generate SSA (Figure 6). Additionally, in the presence of tuned inhibition, a

top-down disinhibitory signal achieved a flexible control of the amplitude and density of novelty

responses (Figure 7). Therefore, besides providing a mechanistic explanation for the generation of

adapted and novelty responses to repeated and novel sensory stimuli, respectively, our network

model enabled us to formulate multiple experimentally testable predictions, as we describe below.

Inhibitory plasticity as an adaptive mechanism
We proposed inhibitory plasticity as the key mechanism that allows for adaptation to repeated stim-

ulus presentation and the generation of novelty responses in our model. Many experimental studies

have characterized spike-timing-dependent plasticity (STDP) of synapses from inhibitory onto excit-

atory neurons (Holmgren and Zilberter, 2001; Woodin et al., 2003; Haas et al., 2006;

Maffei et al., 2006; Wang and Maffei, 2014; D’amour and Froemke, 2015; Field et al., 2020). In

theoretical studies, network models usually include inhibitory plasticity to dynamically stabilize recur-

rent network dynamics (Vogels et al., 2011; Litwin-Kumar and Doiron, 2014; Zenke et al., 2015).

In line with recent efforts to uncover additional functional roles of inhibitory plasticity beyond the

stabilization of firing rates (Hennequin et al., 2017), here, we investigated potential functional con-

sequences of inhibitory plasticity in adaptive phenomena. We were inspired by recent experimental

work in the mammalian cortex (Chen et al., 2015; Kato et al., 2015; Natan et al., 2015;

Hamm and Yuste, 2016; Natan et al., 2017; Heintz et al., 2020), and simpler systems, such as

Aplysia (Fischer et al., 1997; Ramaswami, 2014) and in Drosophila (Das et al., 2011; Glanz-

man, 2011) along with theoretical reflections (Ramaswami, 2014; Barron et al., 2017), which all

point towards a prominent role of inhibition and inhibitory plasticity in the generation of the MMN,

SSA, and habituation. For example, Natan and colleagues observed that in the mouse auditory cor-

tex, both PV and SOM interneurons contribute to SSA (Natan et al., 2015), possibly due to inhibi-

tory potentiation (Natan et al., 2017). In the context of habituation, daily passive sound exposure

has been found to lead to an upregulation of the activity of inhibitory neurons (Kato et al., 2015).

Furthermore, increased activity to a deviant stimulus in the MMN is diminished when inhibitory neu-

rons are suppressed (Hamm and Yuste, 2016).

Most experimental studies on inhibition in adaptive phenomena have not directly implicated

inhibitory plasticity as the relevant mechanism. Instead, some studies have suggested that the firing

rate of the inhibitory neurons changes, resulting in more inhibitory input onto excitatory cells, effec-

tively leading to adaptation (Kato et al., 2015). In principle, there can be many other reasons why
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the inhibitory input increases: disinhibitory circuits, modulatory signals driving specific inhibition, or

increased synaptic strength of excitatory-to-inhibitory connnections, to name a few. However, follow-

ing experimental evidence (Natan et al., 2017) and supported by our results, the plasticity of inhibi-

tory-to-excitatory connections emerges as a top candidate underlying adaptive phenomena. In our

model, adaptation to repeated stimuli and the generation of novelty responses via inhibitory plastic-

ity do not depend on the exact shape of the inhibitory STDP learning rule. It is only important that

inhibitory plasticity generates a ‘negative feedback’ whereby high excitatory firing rates lead to net

potentiation of inhibitory synapses while low excitatory firing rates lead to net depression of inhibi-

tory synapses. Other inhibitory STDP learning rules can also implement this type of negative feed-

back (Luz and Shamir, 2012; Kleberg et al., 2014), and we suspect that they would also generate

the adapted and novelty responses as in our model.

One line of evidence to speak against inhibitory plasticity argues that SSA might be independent

of NMDA activation (Farley et al., 2010). Inhibitory plasticity, on the contrary, seems to be NMDA

receptor-dependent (D’amour and Froemke, 2015; Field et al., 2020). However, there exists some

discrepancy in how exactly NMDA receptors are involved in SSA (Ross and Hamm, 2020), since

blocking NMDA receptors can disrupt the MMN (Tikhonravov et al., 2008; Chen et al., 2015).

These results indicate that a further careful disentanglement of the underlying cellular mechanisms

of adaptive phenomena is needed.

In our model, the direction of inhibitory weight change (iLTD or iLTP) depends on the firing rate

of the postsynaptic excitatory cells (see Vogels et al., 2011). Postsynaptic firing rates above a ‘tar-

get firing rate’ will on average lead to iLTP, while postsynaptic firing rates below the target rate will

lead to iLTD. In turn, the average magnitude of inhibitory weight change depends on the firing rate

of the presynaptic inhibitory neurons (see Vogels et al., 2011). Therefore, if the background activity

between stimulus presentations in our model is very low, recovery from adaptation will only happen

on a very slow timescale (as in Figure 6—figure supplement 1). However, if the activity between

stimulus presentations is higher (either because of a higher background firing rate or because of

evoked activity from other sources, for example other stimuli), the adapted stimulus can recover

faster (as in Figure 5). Therefore, we conclude that our model can capture the reduced adaptation

for longer inter-stimulus intervals as found in experiments (Ulanovsky et al., 2004; Cohen-

Kashi Malina et al., 2013) when background activity in the inter-stimulus interval is elevated.

Alternative mechanisms can account for adapted and novelty responses
Undoubtedly, mechanisms other than inhibitory plasticity might underlie the difference in network

response to repeated and novel stimuli. These mechanisms can be roughly summarized in two

groups: mechanisms which are unspecific, and mechanisms which are specific to the stimulus. Two

examples of unspecific mechanisms are intrinsic plasticity and an adaptive current. Intrinsic plasticity

is a form of activity-dependent plasticity, adjusting the neurons’ intrinsic excitability (Debanne et al.,

2019) and has been suggested to explain certain adaptive phenomena (Levakova et al., 2019).

Other models at the single neuron level incorporate an additional current variable, the adaptive cur-

rent, which increases for each postsynaptic spike and decreases otherwise. This adaptive current

leads to a reduction of the neuron’s membrane potential after a spike (Brette and Gerstner, 2005).

However, any unspecific mechanism can only account for firing-rate adaptation but not for SSA

(Nelken, 2014; Figure 6C). Examples of stimulus-specific mechanisms are short-term plasticity and

long-term plasticity of excitatory synapses. Excitatory short-term depression, usually of thalamocorti-

cal synapses, is the most widely hypothesized mechanism to underlie adaptive phenomena in cortex

(Nelken, 2014).

Short-term plasticity (Abbott, 1997; Tsodyks et al., 1998) has been implicated in a number of

adaptation phenomena in different sensory cortices and contexts. One example is an already estab-

lished model to explain SSA, namely the ‘Adaptation of Narrowly Tuned Modules’ (ANTM) model

(Nelken, 2014; Khouri and Nelken, 2015). This model has been extensively studied in the context

of adaptation to tone frequencies (Mill et al., 2011a; Taaseh et al., 2011; Mill et al., 2012;

Hershenhoren et al., 2014). Models based on short-term plasticity have also been extended to

recurrent networks (Yarden and Nelken, 2017) and multiple inhibitory sub-populations (Park and

Geffen, 2020). Experimental work has shown that short-term plasticity can be different at the synap-

ses from PV and SOM interneurons onto pyramidal neurons, and can generate diverse temporal

responses (facilitated, depressed and stable responses) in pyramidal neurons in the auditory cortex
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(Seay et al., 2020). Short-term plasticity can also capture the differences in responses to periodic

versus random presentation of repeated stimuli in a sequence (Yaron et al., 2012; Chait, 2020).

Finally, short-term plasticity has been suggested to explain a prominent phenomenon in the auditory

cortex, named ‘forward masking’ (Brosch and Schreiner, 1997), in which a preceding masker stimu-

lus influences the response to a following stimulus (Phillips et al., 2017). This highlights short-term

plasticity as a key player in adaptive processes in the different sensory cortices, although it likely

works in tandem with long-term plasticity.

Timescales of plasticity mechanisms
The crucial parameter for the generation of adaptation based on short-term plasticity is the time-

scale of the short-term plasticity mechanism. Experimental studies find adaptation timescales from

hundreds of milliseconds to tens of seconds (Ulanovsky et al., 2004; Lundstrom et al., 2010;

Homann et al., 2017; Latimer et al., 2019), and in the case of habituation even multiple days

(Haak et al., 2014; Ramaswami, 2014). At the same time, the timescales of short-term plasticity can

range from milliseconds to minutes (Zucker and Regehr, 2002). Hence, explaining the different

timescales of adaptive phenomena would likely require a short-term plasticity timescale that can be

dynamically adjusted. Our work shows that inhibitory plasticity can readily lead to adaptation on

multiple timescales without the need for any additional assumptions (Figure 4). However, it is

unclear whether inhibitory plasticity can act sufficiently fast to explain adaptation phenomena on the

timescale of seconds, as in our model (Figure 4C,D). Most computational models of recurrent net-

works with plastic connections rely on fast inhibitory plasticity to stabilize excitatory rate dynamics

(Sprekeler, 2017; Zenke et al., 2017). Decreasing the learning rate of inhibitory plasticity five-fold

eliminates the adaptation to repeated stimuli and the novelty response in our model (Figure 4—fig-

ure supplement 2). Experimentally, during the induction of inhibitory plasticity, spikes are paired for

several minutes and it takes several tens of minutes to reach a new stable baseline of inhibitory syn-

aptic strength (D’amour and Froemke, 2015; Field et al., 2020). Nonetheless, inhibitory postsynap-

tic currents increase significantly immediately after the induction of plasticity (see e.g. D’amour and

Froemke, 2015; Field et al., 2020). This suggests that changes of inhibitory synaptic strength

already occur while the plasticity induction protocol is still ongoing. Hence, we propose that inhibi-

tory long-term plasticity is a suitable, though not the only, candidate to explain the generation of

novelty responses and adaptive phenomena over multiple timescales.

Robustness of the model
We probed our findings against key parameters and assumptions in our model. First, we tested if

the specific choice of pretraining parameters and complexity of presented stimuli affects the genera-

tion of adapted and novelty responses. Varying the pretraining duration and the number of pretrain-

ing stimuli did not qualitatively change the novelty response and its properties (Figure 4—figure

supplement 1). In addition, presenting different stimuli in the stimulation phase compared to the

pretraining phase (Materials and methods) to mimic the scenario of randomly oriented Gabor

patches in Homann et al., 2017, preserved the adaptation to repeated stimuli and the generation

of a novelty response (Figure 1—figure supplement 3).

Second, we explored how the timescale of inhibitory plasticity and of the normalization mecha-

nism affects the generation of adapted and novelty responses. In many computational models, nor-

malization mechanisms are often justified by experimentally observed synaptic scaling. In our model,

like in most computational work, the timescale of this normalization was much faster than synaptic

scaling (Zenke et al., 2017). However, slowing normalization down did not affect the generation of

adapted and novelty responses (Figure 1—figure supplement 5). Since the change in inhibitory syn-

aptic weights through iSTDP is the key mechanism behind the generation of adapted and novelty

responses, the speed of normalization was not crucial as it only affected the excitatory and not the

inhibitory weights. In contrast, we found that the learning rate of inhibitory plasticity needs to be

‘sufficiently fast’ . Slow inhibitory plasticity failed to homeostatically stabilize firing rates in the

network. Hence, the network no longer showed an adapted response to repeated stimuli and nov-

elty responses became indiscernible from noise (Figure 4—figure supplement 2).
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Disinhibition as a mechanism for novelty response amplification
Upon including a top-down disinhibitory signal in our model network, we observed: (1) an active

amplification of the novelty response (Figure 7B); (2) a dense novelty response (Figure 7C), similar

to experimental findings (Homann et al., 2017) (without a disinhibitory signal, the novelty response

was not dense, see Figure 1—figure supplement 4); and (3) a flexible manipulation of neuronal

responses through a change in the disinhibitory strength (Figure 7D,E).

In our model, we were agnostic to the mechanism that generates disinhibition. However, at least

two possibilities exist in which the inhibitory population can be regulated by higher-order feedback

to allow for disinhibition. First, inhibitory neurons in primary sensory areas can be shaped by diverse

neuromodulatory signals, which allow for subtype-specific targeting of inhibitory neurons

(Froemke, 2015). Second, higher order feedback onto layer 1 inhibitory cells could mediate the

behavioral relevance of the adapted stimuli through a disinhibitory pathway (Letzkus et al., 2011;

Wang and Yang, 2018). Hence, experiments that induce disinhibition either via local mechanisms

within the same cortical layer or through higher cortical feedback can provide a test for our postu-

lated role for disinhibition.

In our model, the disinhibitory signal was activated instantaneously. If such additional feedback

signals do indeed exist in the brain that signal the detection of higher-order sequence violations, we

expect them to arise with a certain delay. Carefully exploring if the dense responses arise with a tem-

poral delay accounting for higher-order processing and projection back to primary sensory areas

might shed light on distributed computations upon novel stimuli. These experiments would probably

require recording methods on a finer temporal scale than calcium imaging.

Experimental data which points towards a flexible modulation of novelty and adapted responses

already exists. The active amplification of novelty responses generated by our model is consistent

with some experimental data (Taaseh et al., 2011; Hershenhoren et al., 2014; Hamm and Yuste,

2016; Harms et al., 2016), but see also Vinken et al., 2017. Giving a behavioral meaning to a

sound through fear conditioning has been shown to modify SSA (Yaron et al., 2020). Similarly, con-

trast adaptation has been shown to reverse when visual stimuli become behaviorally relevant

(Keller et al., 2017). Other studies have also shown that as soon as a stimulus becomes behaviorally

relevant, inhibitory neurons decrease their response and therefore disinhibit adapted excitatory neu-

rons (Kato et al., 2015; Makino and Komiyama, 2015; Hattori et al., 2017). Attention might lead

to activation of the disinhibitory pathway, allowing for a change in the novelty response compared

to the unattended case, as suggested in MMN studies (Sussman et al., 2014). Especially in habitua-

tion, the idea that a change in context can assign significance to a stimulus and therefore block

habituation, leading to ‘dehabituation’, is widely accepted (Ramaswami, 2014; Barron et al., 2017).

Hence, we suggest that disinhibition is a flexible mechanism to control several aspects of novelty

responses, including the density of the response, which might be computationally important in sig-

naling change detection to downstream areas (Homann et al., 2017). Altogether, our results sug-

gest that disinhibition is capable of accounting for various aspects of novelty responses that cannot

be accounted for by bottom-up computations. The functional purpose of a dense response to novel

stimuli are yet to be explored.

Functional implications of adapted and novelty responses
In theoretical terms, our model is an attractor network. It differs from classic attractor models where

inhibition is considered unspecific (like a ‘blanket’) (Amit and Brunel, 1997). Computational work is

starting to uncover the functional role of specific inhibition in static networks (Rost et al., 2018;

Najafi et al., 2020; Rostami et al., 2020) as well as the plasticity mechanisms that allow for specific

connectivity to emerge (Mackwood et al., 2021). These studies have argued that inhibitory assem-

blies can improve the robustness of attractor dynamics (Rost et al., 2018) and keep a local balance

of excitation and inhibition (Rostami et al., 2020). We showed that specific inhibitory connections

readily follow from a tuned inhibitory population (Figure 1A, Figure 1—figure supplement 2). Our

results suggest that adaptation is linked to a stimulus-specific excitatory/inhibitory (E/I) balance. Pre-

senting a novel stimulus leads to a short-term disruption of the E/I balance, triggering inhibitory

plasticity, which aims to restore the E/I balance (Figure 4; Vogels et al., 2011; D’amour and

Froemke, 2015; Field et al., 2020). Disinhibition, which effectively disrupts the E/I balance, allows

for flexible control of adapted and novelty responses (Figure 7). This links to the notion of
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disinhibition as a gating mechanism for learning and plasticity (Froemke et al., 2007; Letzkus et al.,

2011; Kuhlman et al., 2013).

A multitude of functional implications have been suggested for the role of adaptation

(Weber et al., 2019; Snow et al., 2017). We showed that one of these roles, the detection of unex-

pected (or novel) events, follows from the lack of selective adaptation to those events. A second,

highly considered functional implication is predictive coding. In the predictive coding framework,

the brain is viewed as an inference or a prediction machine. It is thought to generate internal models

of the world which are compared to the incoming sensory inputs (Bastos et al., 2012; Clark, 2013;

Friston, 2018). According to predictive coding, the overall goal of our brain is to minimize the pre-

diction error, that is the difference between the internal prediction and the sensory input (Rao and

Ballard, 1999; Clark, 2013; Friston, 2018). Most predictive coding schemes hypothesize the exis-

tence of two populations of neurons. First, prediction error units that signal a mismatch between the

internal model prediction and the incoming sensory stimuli. And second, a prediction population

unit that reflects what the respective layer ‘knows about the world’ (Rao and Ballard, 1999;

Clark, 2013; Spratling, 2017). Our model suggests that primary sensory areas allow for bottom-up

detection of stimulus changes without the need for an explicit population of error neurons or an

internal model of the world. However, one could also interpret the state of all inhibitory synaptic

weights as an implicit internal model of the recent frequency of various events in the environment.

Predictions and outlook
Our approach to mechanistically understand the generation of adapted and novelty responses leads

to several testable predictions. First, the most general implication from our study is that inhibitory

plasticity might serve as an essential mechanism underlying many adaptive phenomena. Our work

suggests that inhibitory plasticity allows for adaptation on multiple timescales, ranging from the

adaptation to sequence blocks on the timescale of seconds to slower adaptation on the timescale of

minutes, corresponding to repeating multiple sequence blocks (Figure 4C,D). A second prediction

follows from the finding that both excitatory and inhibitory neuron populations show adaptive

behavior and novelty responses (Figure 3B,C). Adaptation of inhibitory neurons on the single-cell

level has already been verified experimentally (Chen et al., 2015; Natan et al., 2015). Third, we fur-

ther predict that a violation of the sequence order does not lead to a novelty response. Therefore,

the novelty response should not be interpreted as signaling a violation of the exact sequence struc-

ture (Figure 3D,E). However, previous work has found a reduction in the response to repeated stim-

uli if the stimuli are presented periodically, rather than randomly, in a sequence (Yaron et al., 2012)

(but see Mehra et al., 2021). Fourth, the height of the novelty peak in the population average

depends on the input drive, where decreasing the input strength decreases the novelty response

(Figure 3F). This could be tested, for example, in the visual system, by presenting visual stimuli with

different contrasts.

In our modeling approach, we did not distinguish between different subtypes of inhibitory neu-

rons. This assumption is certainly an oversimplification. The main types of inhibitory neurons, parval-

bumin-positive (PV), somatostatin-positive (SOM), and vasoactive intestinal peptide (VIP) expressing

neurons, differ in their connectivity and their hypothesized functional roles (Tremblay et al., 2016).

This is certainly also true for adaptation, and computational studies have already started to tackle

this problem (Park and Geffen, 2020; Seay et al., 2020). Studies of the influence of inhibitory neu-

rons on adaptation have shown that different interneuron types have unique contributions to adapta-

tion (Kato et al., 2015; Natan et al., 2015; Hamm and Yuste, 2016; Natan et al., 2017;

Garrett et al., 2020; Heintz et al., 2020). It would be interesting to explore the combination of

microcircuit connectivity of excitatory neurons, PVs, SOMs, and VIPs with subtype-specific short-

term (Seay et al., 2020; Phillips et al., 2017) and long-term inhibitory plasticity mechanisms

(Agnes et al., 2020) on the generation and properties of novelty responses.

In sum, we have proposed a mechanistic model for the emergence of adapted and novelty

responses based on inhibitory plasticity, and the regulation of this novelty response by top-down

signals. Our findings offer insight into the flexible and adaptive responses of animals in constantly

changing environments, and could be further relevant for disorders like schizophrenia where

adapted responses are perturbed (Hamm et al., 2017).
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Materials and methods
We built a biologically plausible spiking neuronal network model of the mammalian cortex based on

recent experimental findings on tuning, connectivity, and synaptic plasticity. The model consists of

4000 excitatory exponential integrate-and-fire (EIF) neurons and 1000 inhibitory leaky integrate-and-

fire (LIF) neurons (Table 1). Excitatory (E) and inhibitory (I) neurons were randomly recurrently con-

nected (Table 2). Excitatory-to-excitatory and inhibitory-to-excitatory connections were plastic (see

below). In addition, excitatory-to-excitatory weight dynamics were stabilized by a homeostatic mech-

anism (Fiete et al., 2010), which preserved the total sum of all incoming synaptic weights into an

excitatory neuron. All other synapses in the network were fixed. Both excitatory and inhibitory neu-

rons received an excitatory baseline feedforward input in the form of Poisson spikes. Furthermore,

different subsets of excitatory and inhibitory neurons received excess input with elevated Poisson

rate to model the presentation of stimuli (see below, Figure 1A, left; Table 4).

Dynamics of synaptic conductances and the membrane potential
The membrane dynamics of each excitatory neuron was modeled as an exponential integrate-and-

fire (EIF) neuron model (Fourcaud-Trocmé et al., 2003):

C
d

dt
VðtÞ ¼�gLðVðtÞ�VE

restÞþ gLDTexp
VðtÞ�VT

DT

� �

� gEEðtÞðVðtÞ�VE
revÞ� gEIðtÞðVðtÞ�V I

revÞ; (1)

where VðtÞ is the membrane potential of the modeled neuron, C the membrane capacitance, gL the

membrane conductance, and DT is the slope factor of the exponential rise. The membrane potential

was reset to Vreset once the diverging potential reached the threshold peak voltage Vpeak. Inhibitory

neurons were modeled via a leaky-integrate-and-fire neuron model

C
d

dt
VðtÞ ¼�gLðVðtÞ�V I

restÞ� gIEðtÞðVðtÞ�VE
revÞ� gIIðtÞðVðtÞ�V I

revÞ: (2)

Once the membrane potential reached the threshold voltage Vthr, the membrane potential was

reset to Vreset. The absolute refractory period was modeled by clamping the membrane voltage of a

neuron that just spiked to the reset voltage Vreset for the duration t abs. In this study, we did not

model additional forms of adaptation, such as adaptive currents or spiking threshold VT adaptation.

To avoid extensive parameter tuning, we used previously published parameter values (Litwin-

Kumar and Doiron, 2014; Table 1).

Table 1. Parameters for the excitatory (EIF) and inhibitory (LIF) membrane dynamics (Litwin-

Kumar and Doiron, 2014).

Symbol Description Value

NE Number of E neurons 4000

NI Number of I neurons 1000

t

E ,t I E, I neuron resting membrane time constant 20 ms

VE
rest

E neuron resting potential - 70 mV

V I
rest

I neuron resting potential - 62 mV

DT Slope factor of exponential 2 mV

C Membrane capacitance 300 pF

gL Membrane conductance C/t E

VE
rev

E reversal potential 0 mV

V I
rev

I reversal potential - 75 mV

Vthr Threshold potential - 52 mV

Vpeak Peak threshold potential 20 mV

Vreset E, I neuron reset potential - 60 mV

t abs E, I absolute refractory period 1 ms
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We compared this model to one where we froze plasticity and included adaptive currents

wadapt (Figure 6C, top). We modeled this by subtracting wadaptðtÞ on the right hand side of Equation 1

(Brette and Gerstner, 2005). Upon a spike, wadaptðtÞ increased by bw and the sub-threshold dynamics

of the adaptive current were described by t w
d
dt
wadaptðtÞ ¼ �wadaptðtÞ þ awðVðtÞ � VE

restÞ, where aw = 4

nS denotes the subthreshold and bw = 80.5 pA the spike-triggered adaptation. The adaptation time

scale was set to t w = 150 ms.

The conductance of neuron i which is part of population X and is targeted by another neuron in

population Y was denoted with gXYi . Both X and Y could refer either to the excitatory or inhibitory

population, that is X; Y 2 E; I½ �. The shape of the synaptic kernels FðtÞ was a difference of exponen-

tials and differed for excitatory and inhibitory input depending on the rise and decay times t

Y
decay

and t

Y
rise:

FYðtÞ ¼
e

�t

t

Y
decay � e

�t

t

Y
rise

t

Y
decay � t

Y
rise

: (3)

This kernel was convolved with the total inputs to neuron i weighted with the respective synaptic

strength to yield the total conductance

gXYi ðtÞ ¼ FYðtÞ � JXYext s
XY
i;extðtÞþ

X

j

JXYij sYj ðtÞ

 !

; (4)

where sYj ðtÞ is the spike train of neuron j in the network and sXYi;ext denotes the spike train of the exter-

nal input to neuron i. The external spike trains were generated in an independent homogeneous

Poisson process. The synaptic strength from the input neurons to the network neurons, JXYext , was

assumed to be constant.

Excitatory and inhibitory plasticity
We implemented the plasticity from an excitatory to an excitatory neuron JEE based on the triplet

spike-time-dependent plasticity rule (triplet STDP), which uses triplets of pre- and postsynaptic

Table 2. Parameters for feedforward and recurrent connections (Litwin-Kumar and Doiron, 2014).

Symbol Description Value

p Connection probability 0.2

t

E
rise

Rise time for E synapses 1 ms

t

E
decay

Decay time for E synapses 6 ms

t

I
rise

Rise time for I synapses 0.5 ms

t

I
decay

Decay time for I synapses 2 ms

�rEEext Avg. rate of external input to E neurons 4.5 kHz

�rIEext Avg. rate of external input to I neurons 2.25 kHz

JEEmin
Minimum E to E synaptic weight 1.78 pF

JEEmax
Maximum E to E synaptic weight 21.4 pF

JEE0 Initial E to E synaptic weight 2.76 pF

JEImin
Minimum I to E synaptic weight 48.7 pF

JEImax
Maximum I to E synaptic weight 243 pF

JEI0 Initial I to E synaptic weight 48.7 pF

JIE Synaptic weight from E to I 1.27 pF

JII Synaptic weight from I to I 16.2 pF

JEEx Synaptic weight from external input population to E 1.78 pF

JIEx Synaptic weight from external input population to I 1.27 pF
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spikes to evoke synaptic change (Sjöström et al., 2001; Pfister and Gerstner, 2006). The addition

of a third spike for the induction of synaptic plasticity modifies the amount of potentiation and

depression induced by the classical pair-based STDP, where pairs of pre- and postsynaptic spikes

induce plasticity based on their timing and order (Bi and Poo, 1998). The triplet eSTDP rule has

been shown to capture the dependency of plasticity on firing rates found experimentally, whereby a

high frequency of pre- and postsynaptic spike pairs leads to potentiation rather than no synaptic

change as predicted by pair-based STDP (Sjöström et al., 2001; Pfister and Gerstner, 2006;

Gjorgjieva et al., 2011; Table 3). In the triplet rule, four spike accumulators, r1; r2; o1; and

o2, increase by one, once a spike of the corresponding neuron occurs and otherwise decrease expo-

nentially depending on their respective time constant t þ; t x; t �; and t y:

dr1ðtÞ

dt
¼�

r1ðtÞ

t þ
if t¼ tpre then r1 ! r1 þ 1;

dr2ðtÞ

dt
¼�

r2ðtÞ

t x

if t¼ tpre then r2 ! r2 þ 1;

do1ðtÞ

dt
¼�

o1ðtÞ

t �
if t¼ tpost then o1 ! o1 þ 1;

do2ðtÞ

dt
¼�

o2ðtÞ

t y

if t¼ tpost then o2 ! o2 þ 1:

(5)

The E-to-E weights were updated as

DJEEðtÞ ¼�o1ðtÞ½A
�
2
þA�

3
r2ðt� �Þ� if t¼ tpre;

DJEEðtÞ ¼ r1ðtÞ½A
þ
2
þAþ

3
o2ðt� �Þ� if t¼ tpost;

(6)

where the Aþ;A� corresponds to the excitatory LTP or LTD amplitude, and the subscript refers to

the triplet (3) or pairwise term (2). The parameter �>0 ensures that the weights are updated prior to

increasing the respective spike accumulators by 1. Spike detection was modeled in an all-to-all

approach.

The plasticity of inhibitory-to-excitatory connections, JEI , was modeled based on a symmetric

inhibitory pairwise STDP (iSTDP) rule, initially suggested on theoretical grounds for its ability to

homeostatically stabilize firing rates in recurrent networks (Vogels et al., 2011). According to this

rule, the timing but not the order of pre- and postsynaptic spikes matters for the induction of synap-

tic plasticity. Other inhibitory rules have also been measured experimentally, including classical Heb-

bian and anti-Hebbian (e.g. Holmgren and Zilberter, 2001; Woodin et al., 2003; Haas et al.,

2006; for a review see Hennequin et al., 2017), and some may even depend on the type of the

interneuron (Udakis et al., 2020). We chose the iSTDP rule because it can stabilize excitatory firing

rate dynamics in recurrent networks (Vogels et al., 2011; Litwin-Kumar and Doiron, 2014) and was

Table 3. Parameters for the implementation of Hebbian and homeostatic plasticity (Pfister and

Gerstner, 2006; Litwin-Kumar and Doiron, 2014).

Symbol Description Value

t � Time constant of pairwise pre-synaptic detector (+) 33.7 ms

t þ Time constant of pairwise post-synaptic detector (-) 16.8 ms

t x Time constant of triplet pre-synaptic detector (-) 101 ms

t y Time constant of triplet post-synaptic detector (+) 125 ms

Aþ
2

Pairwise potentiation amplitude 7:5� 10
�10 pF

Aþ
3

Triplet potentiation amplitude 9:3� 10
�3 pF

A�
2

Pairwise depression amplitude 7� 10
�3 pF

A�
3

Triplet depression amplitude 2:3� 10
�4 pF

t

inhib
y

Time constant of low-pass filtered spike train 20 ms

h Inhibitory plasticity learning rate 1 pF

r0 Target firing rate 3 Hz
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recently verified to operate in the auditory cortex of mice (D’amour and Froemke, 2015). The plas-

ticity parameters are shown in Table 3. The two spike accumulators yE=I , for the inhibitory pre- and

the excitatory post-synaptic neuron, have the same time constant t

inhib
y . Their dynamics were

described by

dyIðtÞ

dt
¼�

yIðtÞ

t

inhib
y

if t¼ tpre=I then yI ! yI þ 1 and

dyEðtÞ

dt
¼�

yEðtÞ

t

inhib
y

if t¼ tpost=E then yE ! yE þ 1:

(7)

The I-to-E weights were updated as

DJEIij ðtÞ ¼ hðyEi ðtÞ� 2r0t
inhib
y Þ if t¼ tpre=I

DJEIij ðtÞ ¼ hyIj ðtÞ if t¼ tpost=E;
(8)

where h is the learning rate, and r0 corresponds to the target firing rate of the excitatory neuron. In

Figure 4—figure supplement 2 we investigated the inhibitory learning rate h. Figure 1—figure

supplement 1 shows the excitatory and inhibitory STDP rules for different pairing frequencies.

Additional homeostatic mechanisms
Inhibitory plasticity alone is considered insufficient to prevent runaway activity in this network imple-

mentation. Hence, additional mechanisms were implemented that also have a homeostatic effect. To

avoid unlimited weight increase, the synaptic weights were bound from below and from above, see

Table 2. Subtractive normalization ensured that the total synaptic input to an excitatory neuron

remains constant throughout the simulation. This was implemented by scaling all incoming weights

to each neuron every Dt ¼ 20 ms according to

DJEEij ðtÞ ¼�

P

jJ
EE
ij ðtÞ�

P

jJ
EE
ij ð0Þ

NE
i

; (9)

where i is the index of the post-synaptic and j of the pre-synaptic neurons. NE
i is the number of excit-

atory connections onto neuron i (Fiete et al., 2010). In Figure 1—figure supplement 5 we investi-

gated the effect of the normalization timestep Dt on the novelty response.

Stimulation protocol
All neurons received external excitatory baseline input. The baseline input to excitatory neurons rEext

was higher than the input to inhibitory neurons rIext (Table 4). An external input of rEext ¼ 4:5 kHz can

be interpreted as 1000 external presynaptic neurons with average firing rates of 4.5 Hz (compare Lit-

win-Kumar and Doiron, 2014).

The stimulation paradigm was inspired by a recent study in the visual system (Homann et al.,

2017). In Homann et al., 2017, the stimulation consisted of images with 100 randomly chosen,

superimposed Gabor patches. Rather than explicitly modeling oriented and spatially localized Gabor

patches, in our model, stimuli that correspond to Gabor patches of a given orientation were

Table 4. Parameters for the stimulation paradigm and stimulus tuning.

Symbol Description Value

rEext External baseline input to E 4.5 kHz

rIext External baseline input to I 2.25 kHz

rEstim Additional input to E during stimulus presentation 12 kHz

rIstim Additional input to I during stimulus presentation 1.2 kHz

rIdisinh Additional input to I during disinhibition �1.5 kHz

pEmember
Probability for an E neuron to be driven by a stimulus 5%

pImember
Probability for an I neuron to be driven by a stimulus 15%
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implemented by simultaneously co-activating subsets of cells by strongly driving them. Hence, the

model analog of the presentation of a sensory stimulus, in our experiments, is increased input to a

subset of neurons. Every time a particular stimulus is presented again, the same set of neurons

receives strong external stimulation, rEstim and rIstim. Therefore, while a stimulus in our stimulation par-

adigm is functionally similar to presenting Gabor patches with similar orientations, it does not repre-

sent the Gabor patches themselves.

We first implemented a pretraining phase. In this phase, we sequentially stimulated subsets of

neurons that are driven by all stimuli (repeated and novel stimuli) eventually used in the stimulation

phase. The stimuli were presented in random order, leading to a change in network connectivity that

is only stimulus but not sequence-dependent (Figure 4B, first 100 s shown here for five repetitions

of each stimulus). Hence, the pretraining phase is a phenomenological model of the development

process to generate a structure in the network connections prior to the actual stimulation paradigm.

This can be interpreted as imprinting a ‘backbone’ of orientation selective neurons, where cells

which are selective to similar features (e.g. similar orientations) become strongly connected due to

synaptic plasticity (as seen in experiments, see for e.g. Ko et al., 2011; Ko et al., 2013).

Next, we implemented a stimulation phase where we presented the same stimuli used during the

pretraining phase according to the repeated sequence stimulation paradigm. To match the ran-

domly oriented Gabor patches presented in Homann et al., 2017, we also performed additional

simulations where in the stimulation phase we activated different, randomly chosen, subsets of neu-

rons (Figure 1—figure supplement 3) (note that there is some overlap with the imprinted orienta-

tion selective subsets).

In the standard repeated sequence stimulation paradigm (Figure 3 and Figure 4), a total of 65

stimuli were presented (5 x 3 repeated + 5 x 10 novel stimuli) during pretraining. In Figure 4—figure

supplement 1, we tested if changes in the pretraining phase, such as a change in the number of rep-

etitions of each stimulus or the total number of stimuli, affect our results.

The timescales of the experimental paradigm in Homann et al., 2017 and the model paradigm

were matched, that is the neurons tuned to a stimulus received additional input for 300 ms simula-

tion time. Stimuli were presented without pauses in between, corresponding to continuous stimulus

presentation without blank images (visual) or silence (auditory) between sequence blocks. Table 4

lists the stimulus parameters.

In contrast to several previous plastic recurrent networks, we did not only consider the excitatory

neurons to have stimulus tuning properties but included inhibitory tuning as well. The probability of

an excitatory neuron to be driven by one particular stimulus was 5%, leading to roughly 200 neurons

that responded specifically to this stimulus. We modeled inhibitory tuning to be both weaker and

broader. The probability of an inhibitory neuron to be driven by one particular stimulus was 15%,

leading to roughly 150 neurons that responded specifically to this stimulus. There was overlap in

stimulus tuning, that is, one neuron could be driven by multiple stimuli. Given this broader tuning of

inhibitory neurons compared to excitatory neurons, a single inhibitory neuron could strongly inhibit

multiple excitatory neurons which were selective to different stimuli, effectively implementing lateral

inhibition.

Stimulus tuning in both populations led to the formation of stimulus-specific excitatory assemblies

due to synaptic plasticity, where the subsets of excitatory neurons receiving the same input devel-

oped strong connections among each other as noted above (Figure 1—figure supplement 2C) and

found experimentally (Ko et al., 2011; Miller et al., 2014; Lee et al., 2016). The strong, bidirec-

tional connectivity among similarly selective neurons in our model was a direct consequence of the

triplet STDP rule (Gjorgjieva et al., 2011; Montangie et al., 2020). Additionally, the connections

from similarly tuned inhibitory to excitatory neurons also became stronger, as seen in experiments

(Lee et al., 2014; Xue et al., 2014; Znamenskiy et al., 2018; Najafi et al., 2020). The number of

stimulus-specific assemblies varied depending on the stimulation paradigm and corresponded to the

number of unique stimuli presented in a given paradigm. We did not impose topographic organiza-

tion of these assemblies (for e.g. tonotopy in the auditory cortex) since it would not influence the

generation of adapted and novelty responses, but increase model complexity. Such spatial organiza-

tion could, however, be introduced by allowing the assemblies for neighboring stimuli to overlap.

Disinhibition in the model was implemented via additional inhibiting input to the inhibitory popu-

lation rIinhib. This was modeled in a purely phenomenological way, and we are agnostic as to what

causes the additional inhibition.
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Simulation details
The simulations were performed using the Julia programming language. Further evaluation and plot-

ting was done in Python. Euler integration was implemented using a time step of 0.1 ms. Code

implementing our model and generating the stimulation protocols can be found here: https://

github.com/comp-neural-circuits/novelty-via-inhibitory-plasticity (Schulz, 2021; copy archived at

swh:1:rev:d368b14a2368925b290923c2c11411d7b7a40bd1).
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Keller GB, Bonhoeffer T, Hübener M. 2012. Sensorimotor mismatch signals in primary visual cortex of the
behaving mouse. Neuron 74:809–815. DOI: https://doi.org/10.1016/j.neuron.2012.03.040, PMID: 22681686

Keller AJ, Houlton R, Kampa BM, Lesica NA, Mrsic-Flogel TD, Keller GB, Helmchen F. 2017. Stimulus relevance
modulates contrast adaptation in visual cortex. eLife 6:e21589. DOI: https://doi.org/10.7554/eLife.21589,
PMID: 28130922

Khouri L, Nelken I. 2015. Detecting the unexpected. Current Opinion in Neurobiology 35:142–147. DOI: https://
doi.org/10.1016/j.conb.2015.08.003, PMID: 26318534

King JL, Lowe MP, Stover KR, Wong AA, Crowder NA. 2016. Adaptive processes in thalamus and cortex
revealed by silencing of primary visual cortex during contrast adaptation. Current Biology 26:1295–1300.
DOI: https://doi.org/10.1016/j.cub.2016.03.018, PMID: 27112300

Kleberg FI, Fukai T, Gilson M. 2014. Excitatory and inhibitory STDP jointly tune feedforward neural circuits to
selectively propagate correlated spiking activity. Frontiers in Computational Neuroscience 8:53. DOI: https://
doi.org/10.3389/fncom.2014.00053, PMID: 24847242
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