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The Brain Imaging Data Structure (BIDS) established community consensus on the organization of 
data and metadata for several neuroimaging modalities. Traditionally, BIDS had a strong focus on 
functional magnetic resonance imaging (MRI) datasets and lacked guidance on how to store multimodal 
structural MRI datasets. Here, we present and describe the BIDS Extension Proposal 001 (BEP001), 
which adds a range of quantitative MRI (qMRI) applications to the BIDS. In general, the aim of qMRI 
is to characterize brain microstructure by quantifying the physical MR parameters of the tissue via 
computational, biophysical models. By proposing this new standard, we envision standardization of 
qMRI through multicenter dissemination of interoperable datasets. This way, BIDS can act as a catalyst 
of convergence between qMRI methods development and application-driven neuroimaging studies that 
can help develop quantitative biomarkers for neural tissue characterization. In conclusion, this BIDS 
extension offers a common ground for developers to exchange novel imaging data and tools, reducing 
the entrance barrier for qMRI in the field of neuroimaging.

Introduction
The brain imaging data structure (BIDS) is an open-source initiative from the neuroimaging community that 
aids in standardizing neuroimaging data sets. BIDS was originally developed with functional MRI (fMRI) appli-
cations in mind, describing experimental task blocks in relation to a hierarchical organization of reconstructed 
MR images1. This convention engaged researchers to share hundreds of open fMRI data on the openneuro plat-
form2,3 and to develop interoperable processing workflows that can seamlessly process these datasets4. Popular 
examples include the MRIQC5 and fmriprep6 pipelines, which can be executed online for any valid BIDS fMRI 
dataset. Similarly, the development of an MRI k-space data standard, ISMRM-RD7, led open-source MRI recon-
struction packages to adapt this convention and now aids potential users in performing advanced reconstruc-
tion tasks with minimal effort8,9. These success stories from open science exemplify how data standards can 
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change the landscape of community-driven software for the better, leading to a collective change in researchers’ 
behaviour to adhere with FAIR (findability, accessibility, interoperability and reusability) principles of scientific 
data10. Here we present our work extending the BIDS to include multi-contrast MRI acquisitions for quantitative 
MRI (qMRI) applications.

Quantitative MRI methods map physical properties of the (brain) tissue. These techniques consist of two 
steps: i) collecting multiple MRI images, where the contributions of effective micrometer-level MRI parameters 
is systematically manipulated by adapting very specific acquisition parameters, and ii) fitting the resultant voxel 
intensity variations across the images to a computational (biophysical) model11. The results are a single or multi-
ple quantitative maps of the estimated parameters across the imaged volume. The effective MRI parameters that 
are typically studied include longitudinal and transverse relaxation time constants (T1 and T2, respectively), 
proton density (PD), magnetization transfer (MT), and local diffusion coefficient (e.g., fractional anisotropy, 
FA, or mean diffusivity, MD). Another important technique used in qMRI is field mapping, which characterizes 
inhomogeneities in MRI radiofrequency (RF) transmit (B1+) and receive (B1−) profiles, as well as static mag-
netic field (B0) to correct qMRI parameter estimation errors for these field inhomogeneities.

The earliest qMRI applications date back to the late 70’s12 and primarily focused on relaxometry, i.e., mapping 
of quantities such as T1 and T2* relaxation time. Since then, the field has witnessed multiple waves of methods 
development, driven by technological advances and emerging trends in MRI research13,14. Recently, with the 
surge of deep learning methods, the gamut of parameter estimation methods has become much larger than ever 
before14–18. Interestingly, however, the healthy range of relaxation time values is still not known for multi-center 
studies19. This discrepancy highlights that multicenter standardization should be a critical step toward evaluat-
ing the clinical potential of decades-long improvements in the acquisition and processing of qMRI data.

Under more controlled research settings, qMRI offers obvious advantages over conventional MRI contrasts 
(e.g., T1 weighted images) in structural feature extraction. Given that MRI is not a direct measurement of in vivo 
anatomical structures, voxel-wise morphometry analyses are subjected to various biochemical and physiological 
confounders affecting the voxel intensity20. Hence, the capacity of disentangling MRI signal components lands 
qMRI as a more reliable approach to study structural variations21. This makes qMRI a powerful tool for com-
parisons of the brain anatomy of different (clinical) groups22–24 and for more consistent, unbiased automated 
anatomical segmentation25–28. The same principle can be exploited to make qMRI sensitive to tissue microstruc-
ture, such as iron concentration or myelination. Recent meta analyses revealed that a majority of qMRI methods 
are comparably sensitive to the myelin content29,30, although certain parameters such as myelin water fraction 
(MWF, relaxometry-based) and macromolecular pool fraction (MPF, MT-based) appear to be more specific.

Given the advantages offered by parametric maps in providing structural information and the current land-
scape of myelin imaging methods, it seems likely that more myelin imaging methods leveraging the potential 
of qMRI will be developed in the future. This leads to one of our four main motivations behind covering qMRI 
methods in BIDS: to bring FAIR principles to a variety of qMRI data that are finding widespread use in neuro-
imaging research. Other motivations include i) driving open-source qMRI tools to adapt a consolidated input/
output convention, ii) creating standardized databases that can help simplify the use of qMRI in clinical and 
translational research, and iii) stimulating an open provision of qMRI data that can be collected by imaging 
equipment that is available to a small group of researchers.

Drawing upon the principles outlined in BIDS, we introduce the first consensus data and metadata organ-
ization standard for qMRI. This work is a culmination of years of effort and discussion between neuroimaging 
researchers and MRI methods developers around the globe. Our extension will not only aid in organizing qMRI 
data, but will also facilitate multi-center collaborative work, encourage neuroscientists to adapt advanced MR 
techniques and go a long way toward the standardization of qMRI methods.

Results
A new BIDS common principle: entity-linked file collections. The majority of qMRI methods 
necessitate the grouping of a set of similar images where specific acquisition parameters are carefully varied. 
Furthermore, the images that are collected for qMRI application do not usually have a clear “weighting” descrip-
tion (e.g., T1w, T2w), unlike the conventional structural images. The novel concept of file collections decouples 
the semantics of logical group identification from contrast weighting labels or acquisition sequence names that 
are not originally developed for qMRI (e.g., FLASH). Instead, suffixes for such logical units may indicate a generic 
MRI readout type (e.g., multi-echo gradient echo: MEGRE), a qMRI sequence name (e.g., magnetization pre-
pared two rapid gradient echoes, MP2RAGE) or a qMRI data collection framework (e.g., variable flip angle, 
VFA). Table 1 lists file collection suffixes for various qMRI and fieldmap data, and the quantitative parameters 
they can derive. These suffixes span a wide range of qMRI applications including relaxometry, MT imaging, 
multiparametric mapping, and RF field mapping. Application scope can be extended without necessarily adding 
more suffixes. The BIDS qMRI appendix presents a set of rules and suggestions to add new qMRI suffixes to the 
specification (https://bids-specification.readthedocs.io).

Note that the use of file collections is not exclusive to qMRI, anatomy imaging data, or even MRI. Any imag-
ing modality calling for a file grouping logic to define a quantitative or qualitative application can benefit from 
this principle by specifying a descriptive suffix and filename entity. Such changes would require additional BIDS 
extensions to create a valid file collection.

To distinguish individual files of a file collection, we introduced filename entities that are associated with 
commonly altered acquisition parameters (e.g., flip angle) or with inherent components of the same data (e.g., 
phase information), hence the name “entity-linked file collection” (Table 2).

It is important to highlight that these entities cannot store acquisition parameter values in the filename but 
can only index or categorize them. Respective parameter values are stored in so-called “sidecar JSON”-files. 

https://doi.org/10.1038/s41597-022-01571-4
https://bids-specification.readthedocs.io


3Scientific Data |           (2022) 9:517  | https://doi.org/10.1038/s41597-022-01571-4

www.nature.com/scientificdatawww.nature.com/scientificdata/

Requirement level of these entities in relation to file collections are presented in the BIDS entity table appendix 
(https://bids-specification.readthedocs.io/en/stable/99-appendices/04-entity-table.html).

Data organization for qMRI file collections and quantitative parametric maps. By combining 
entities in the filename that represent different acquisition parameters (Table 2) with entity-linked file collection 
suffixes (Table 1), BEP001 provides an intuitive way to organize filenames of most existing qMRI data. For exam-
ple, raw data from MP2RAGE acquisitions comprises both magnitude and phase reconstructed images, acquired 
at two successive inversion times (Fig. 1a). The respective file collection for MP2RAGE (Fig. 1b) clearly defines 
these components via part and inv entities, which are required for the MP2RAGE file collection. Note how the 
BIDS inheritance rules do allow for using a single JSON-file to describe both phase and magnitude images, since 
these have identical acquisition parameters. In addition, the same collection suffix can be extended to specify its 
multi-echo variant31 using the echo entity, which is made optional to MP2RAGE. For clarity, these specific use 
cases are defined in the BIDS qMRI appendix.

The same logic applies to the raw images of double-angle B1 + mapping, identified by the TB1DAM suffix 
(Fig. 1a,b). In this case, the maximum value of the flip entity indicates that the data is collected over two flip 
angles. We recognize that an alternative approach to organize such data is stacking images at each flip angle into 
the 4th dimension of a NIfTI file and storing the corresponding metadata in vector form using a single JSON file. 
This approach offers a less crowded file list for this example. However, indexing acquisition parameter depend-
ent variations across additional dimensions is less favourable for comprehensive qMRI methods. For example, 
MPM32 collects raw data at different echo times, flip angles, and MT preparations with the option of phase 
reconstruction. After extended debates that took more than a year, the qMRI-BIDS extension group ultimately 
concluded that this approach is less favourable for human-readability of qMRI datasets, especially for multipar-
ametric acquisition methods where the number of images per protocol can go into the dozens.

Metadata requirements for file collections and quantitative parametric maps. For the file collec-
tions, linking entities (Table 2) indicate a requirement for the respective acquisition parameters that are subject 
to change from image-to-image. Therefore, the entity table appendix lists such parameters as required in relation 
to the corresponding file collection suffix based on the descriptions made in the BIDS schema. Note that not all 
the parameters that change across file collection images are captured by a linking entity but may still be required 

qMRI application Suffix Derived maps BIDS folder Reference

Magnetization prepared two rapid gradient echoes 
(MP2RAGE) MP2RAGE T1 anat Marques et al. 201058

Multiparametric mapping (MPM) MPM T1, T2*, PD, MT anat Weiskopf et al. 201332

Variable flip angle (VFA) VFA T1, T2 anat Gupta et al. 199712

Inversion recovery for T1 mapping (IRT1) IRT1 T1 anat Barral et al. 201065

Multi-echo spin-echo (MESE) MESE T2, MWF anat Carr and Purcell 195466, 
Mackay et al. 199467

Multi-echo gradient-echo (MEGRE) MEGRE T2* anat Ma and Wehrli 199668

Magnetization transfer ratio (MTR) MTR MT% anat Wolff et al. 198969

Magnetization transfer saturation index (MTS) MTS MTsat anat Helms et al. 200870

Double angle B1 + mapping TB1DAM B1+ fmap Insko and Bolinger 199371

B1 + mapping with 3D echo-planar imaging (EPI) TB1EPI B1+ fmap Jiru and Klose 200672

Actual flip angle imaging (AFI) TB1AFI B1+ fmap Yarnykh 200773

Rapid B1 + mapping with TurboFLASH readout TB1TFL B1+ fmap Chung et al. 201074

Saturation-prepared with 2 rapid gradient echoes 
(SA2RAGE) TB1SRGE B1+ fmap Eggenschwiler et al. 201275

Inter-scan motion correction using receive field 
modulation RB1COR B1- fmap Papp et al. 201676

Table 1. File collections of anatomy imaging data to derive parametric maps of longitudinal, transverse and 
observed-transverse relaxation times (T1, T2 and T2*, respectively), proton density (PD), magnetization 
transfer ratio and saturation index (MTR and MTsat) and myelin water fraction (MWF). Relaxation rates (e.g., 
T1−1 and T2−1) and residual terms (e.g., M0) are excluded from the table for brevity.

Entity format Entity values Associated acquisition parameter Associated qMRI file collections

echo-<index> 01,02,03,…,n EchoTime MEGRE, MESE, MPM

flip-<index> 01,02,03,…,n FlipAngle VFA, MTS, MPM

inv-<index> 01,02,03,…,n InversionTime IRT1, MP2RAGE

mt-<label> on/off MTState MTR, MTS, MPM

part-<label> mag/phase N/A MP2RAGE

Table 2. Filename entities representing an MRI acquisition parameter or designating an inherent part of the 
reconstructed image (e.g., magnitude or phase).
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Fig. 1 (a) Schematic representation of BIDS formatted raw (left) and derived (right) quantitative MRI (qMRI) 
data. MP2RAGE (anat) and TB1DAM (fmap) file collections highlight entity-linked metadata fields for the 
InversionTime (yellow and green), the FlipAngle (purple and pink), and for the reconstructed image type 
(cyan). Derivatives from these file collections are generated by using pymp2rage and qMRLab, yielding T1 
and B1+ maps. (b) File organization of raw qMRI data for MP2RAGE and TB1DAM file collections, where 
respective linking entities are highlighted for the inv entity (yellow and green, InversionTime), the flip entity 
(purple and pink, FlipAngle) and the part entity (cyan, magnitude/phase). (c) File organization of qMRI 
derivatives indicating how sidecar JSON files of quantitative maps generated by open-source software keeps 
a log of the input files (the BasedOn field) and associated acquisition parameters (FlipAngle in TB1map and 
InversionTime in B1map).

https://doi.org/10.1038/s41597-022-01571-4


5Scientific Data |           (2022) 9:517  | https://doi.org/10.1038/s41597-022-01571-4

www.nature.com/scientificdatawww.nature.com/scientificdata/

for data fitting. For example, the value of the FlipAngle parameter might (but does not necessarily) covary with 
that of InversionTime between MP2RAGE file pairs; however, the filenames are distinguished solely by the inv 
entity (since that is the crucial parameter that is swept over, whereas the flip angle could in principle remain the 
same). In addition, certain parameters that are constant across file collection images may be required as well. 
For example, RepetitionTimeExcitation and RepetitionTimePreparation are required metadata for an MP2RAGE 
acquisition. Such parameters are required when they are strictly necessary to calculate the qMRI-maps that a 
specific acquisition scheme was designed to obtain, e.g., a T1-map in case of MP2RAGE. BEP001 added an array 
of new metadata fields that may be required for certain file collections (e.g., MTState, specifying whether an 
MT preparation is enabled in an MPM acquisition, associated with the mt linking entity) or provide supporting 
information (e.g., SpoilingRFPhaseIncrement, specifying the amount of incrementation applied to the phase of an 
excitation pulse). The complete list of metadata fields and their requirement levels for all the qMRI file-collections 
are included in the BIDS release v1.5.0 and later. Currently, metadata conversions for some of these required fields 
have been implemented in dcm2niix33, a commonly used DICOM to NIfTI converter to create BIDS-compatible 
datasets.

Certain quantitative parameters cannot be interpreted in absence of fundamental scanner specifications. 
For example, to interpret relaxometry maps (e.g., T1map), the magnetic field strength must be known. The 
BEP001 ensures that such requirements are met (please see the qMRI Appendix in BIDS release v1.5.0 and later). 
Moreover, sidecar JSON files of quantitative maps contain all the metadata values involved in the fitting by repre-
senting varying parameters in vector form and inheriting the constant ones from the raw images. To supplement 
the provenance recording of parameter estimation process with software-relevant details, the derived dataset 
and pipeline rules are respected as outlined in the modality agnostic files section of the main specification.

Finally, the units and range of the fitted parameters have been standardized by BEP001 to define interchange-
able qMRI maps. For relaxometry-based parameters (e.g., T1map or T2map), the time is described in seconds 
and the rate in reciprocal seconds or Hz. Wherever applicable, unitless ratio maps are described in percentage 
(e.g., MTRmap or MWFmap). For quantitative susceptibility maps (i.e., Chimap) the local magnetic susceptibil-
ity is represented in parts per million. The RF transmit maps (i.e., TB1map) are specified in relative percentage 
units, where 100% denotes the ideal case (i.e., measured flip angle equals the nominal value). Any deviations 
from 100% convey proportional deviations from the intended field strength. Please note that certain quantita-
tive parameters are described in arbitrary units, where the acceptable range of values vary based on the target 
anatomy (e.g., MTsat).

Community software for qMRI-BIDS data acquisition, conversion, and processing. As of release 
v1.5.0, the BIDS validator can perform on BEP001-compatible qMRI data at the directory and filename level 
rules, based on the entity requirement levels specified per file collection suffix. However, metadata-level valida-
tion rules have not been implemented yet. This is mainly because multi-vendor extraction of qMRI related meta-
data fields (e.g., MTState or RepetitionTimePreparation) is not supported by commonly used converters. Recently, 
we started working with dcm2niix33 and BIDSme (https://github.com/CyclotronResearchCentre/bidsme) devel-
opers to identify and map vendor-specific header information to BEP001 compatible metadata.

Discussion
Even though vendor-native DICOM headers satisfy most of the requirements for conventional imaging, they 
lack some metadata entities that are of profound importance to the accuracy of quantitative maps. For example, 
the BIDS fields of RFSpoilingPhaseIncrement and SpoilingGradientMoment are two major determinants of T1 
and B1+ estimation accuracy using spoiled gradient echo based applications34. Although this information is 
not provided by vendors, open-source pulse sequence development frameworks such as Pulseq35, PyPulseq36, 
Gammastar37, TOPPE38, SequenceTree39, ODIN40 and RTHawk41 can make a qMRI-tailored metadata anno-
tation possible. An example implementation is the vendor-neutral sequences (VENUS) study, showing that 
open-source pulse sequences that export data in the qMRI-BIDS format can improve multi-center reproducibil-
ity of qMRI42. Therefore, we highly encourage open-source MRI pulse sequence developers to use and contribute 
to the qMRI metadata annotations. This simple consensus can remove proprietary roadblocks from disseminat-
ing qMRI datasets that incorporate key information on the reproducibility of data acquisition.

Most qMRI methods can benefit from a plethora of BIDS applications4 to prepare data for parameter esti-
mation and downstream statistical analyses. There are several open-source tools emerging to perform qMRI fit-
ting at multiple levels, like the hMRI-toolbox43, qMRLab44, QUIT45, PyQMRI46, QMRTools47, mrQ48, Madym49, 
MITK-ModelFit50, ROCKETSHIP51, DCEMRI.jl52 and DCE@urLAB53. Giving these tools the ability to operate 
on BIDS formatted data is an important step towards establishing interoperable qMRI processing pipelines.

The role of BIDS in wider adoption, accessibility and standardization of quantitative 
MRI. Quantitative MRI offers a rapidly developing set of techniques that can inform us about brain (micro)
structure beyond what conventional MRI techniques have to offer54. We believe that, in coming years, qMRI will 
become increasingly important to both clinical and fundamental brain science. Therefore, a concrete standard 
for organizing and thereby also disseminating open qMRI data sets is much warranted. BEP001 extends the 
framework of the existing and widely used BIDS standard, to develop a standard for qMRI in the form of a “BIDS 
extension proposal”. To aid actual user adoption of this standard, it includes very precise descriptions of how to 
use it in many real-life qMRI use-cases, as well as many example data sets.

Currently, obtaining qMRI data is still expensive and needs considerable expertise, which is not readily avail-
able at many MRI facilities. Therefore, we also hope that BEP001 will aid researchers that do not have easy access 
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to such facilities to get familiar with qMRI data and potentially can even use open qMRI data sets for their 
research questions.

The popularity of BIDS is likely in large part also due to some software packages that are designed around 
this standard and therefore extremely easy-to-use, when one’s data adheres to the BIDS standard55. We hope that 
the success of BIDS in the domain of functional MRI will also inspire and encourage MRI software developers 
to work on similar “BIDS apps” to make it easier to work with qMRI data, as well as make processing pipelines 
more open and transparent.

Quantitative MRI is in a dire need of standardization from scanner to the publication56 of integrated research 
objects57 to reach its full potential. The data standard developed by the present work provides an important step-
ping stone towards achieving this wider objective.

Methods
Community-driven development of BEP001. The development history of BEP001 spanned nearly 5 
years. This extension was initiated by a mailing list discussion about standardizing MP2RAGE58 datasets and 
supporting multi-echo MRI acquisitions in the main specification (https://bit.ly/bids_mailing). These discus-
sions revealed that BIDS was lacking a generic convention to specify structural acquisitions yielding multiple 
contrasts. In the summer of 2018, two meetings were held to hear concerns and questions from interested par-
ticipants, and to set an action plan for the development during: i) the annual INCF NeuroInformatics conference 
in Montréal/Canada (http://www.neuroinformatics2018.org/) and ii) the OHBM meeting in Singapore (https://
www.humanbrainmapping.org/i4a/pages/index.cfm?pageID=3821). As the first action, a joint-community meet-
ing was organized between MRI and neuroimaging scientists on 4 October 2018 (https://www.ismrm.org/virtu-
al-meetings/virtual-meetings-archive/), where a consensus decision was made on extending the specification for 
a variety of qMRI methods. After this meeting, BEP001 was migrated to GitHub to centralize and organize the 
development tasks under version control. This enabled establishing a standard operational procedure to advance 
the proposal by focusing on both transparency and accessibility to other researchers (Fig. 2).

Following a year of development via online meetings (see Fig. 2 for an illustration of its procedure), BIDS 
incorporated and released BEP001 as part of their version 1.5.0. The main problems identified and resolved 
during the development are outlined in the following section, laying out the methodology of how qMRI can be 
incorporated into BIDS.

Extending an existing standard for new use cases. BIDS traditionally focused on conventional 
anatomical images that are collected in functional MRI experiments and whose contrast characteristics are 
well-defined (i.e., mostly T1-weighted images). This posed a challenge for the naming scheme of collections of 
multimodal images used in qMRI. Unlike conventional structural imaging data, qMRI inputs are usually formed 
by collections of images where specific acquisition parameters are systematically manipulated. As a result, the 
standard weighting labels (e.g., T1, T2w etc.) cannot clearly define the differences between the contrast character-
istics of these images. A concrete example: in a multi-echo GRE acquisition with a long TRs, early echoes will be 
mostly PD- and B1+/B1− signal-weighted, whereas later echoes will be increasingly T2*-weighted. Most echoes 
will show a contrast that is the result of a mixture of underlying physical properties. This ambiguity renders MRI 
weightings (e.g., T1w or T2starw) unsuitable as suffix labels to specify interchangeable qMRI datasets. In addition, 
the use of proprietary acquisition sequence names like “FLASH” (fast low angle shot) or “GRE” (gradient-recalled 
echo) as a suffix is not suitable either. This is because different MRI vendors use different naming conventions 

Fig. 2 Summary of the standard operational procedure for improving BEP001. Outcomes from the monthly 
meetings (a) are transferred to a central GitHub repository, opened for more elaborate public discussions 
via issues and merged into the proposal through peer-reviewed pull requests (b). BEP001 is inclusive to 
all communities who would like to contribute to the proposal or keep themselves up to date with the latest 
developments.
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and one type of sequence can often be used for numerous qMRI applications. To address this problem, BEP001 
introduced a new common principle: file collections.

A second challenge that BEP001 addressed pertains to standardizing the data organization of quantitative 
parametric maps. One central challenge of such maps is that the calculations on which they are based can be 
made both by proprietary vendor software run on the scanner system, or offline using open-source workflows. 
The resultant map can be described as derivative data in either case, yet the former lacks provenance of the whole 
calculation process and may not export the raw inputs to the calculation.

Data availability
The example dataset we created by converting publicly available qMRI data into the developed BIDS format 
can be found at the OSF repository59. Other third-party datasets are included in the spine generic project60, the 
neuromod project61, the vendor-neutral sequences (VENUS) study62 and the hMRI-toolbox software63.

Code availability
Source code to generate quantitative maps in the example dataset are provided by qMRLab44, hMRI-Toolbox43 
and pymp2rage64. Each software provides extensive user documentation, which were followed to create derivative 
datasets.
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