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Abstract

Species distributions are influenced by processes occurring at multiple spatial scales.

It is therefore insufficient to model species distribution at a single geographic scale,

as this does not provide the necessary understanding of determining factors. In-

stead, multiple approaches are needed, each differing in spatial extent, grain, and

research objective. Here, we present the first attempt to model continent‐wide great

ape density distribution. We used site‐level estimates of African great ape abun-

dance to (1) identify socioeconomic and environmental factors that drive densities at

the continental scale, and (2) predict range‐wide great ape density. We collated

great ape abundance estimates from 156 sites and defined 134 pseudo‐absence

sites to represent additional absence locations. The latter were based on locations of

unsuitable environmental conditions for great apes, and on existing literature. We

compiled seven socioeconomic and environmental covariate layers and fitted a

generalized linear model to investigate their influence on great ape abundance. We

used an Akaike‐weighted average of full and subset models to predict the range‐

wide density distribution of African great apes for the year 2015. Great ape densities

were lowest where there were high Human Footprint and Gross Domestic Product

values; the highest predicted densities were in Central Africa, and the lowest inWest

Africa. Only 10.7% of the total predicted population was found in the International

Union for Conservation of Nature Category I and II protected areas. For 16 out of 20

countries, our estimated abundances were largely in line with those from previous

studies. For four countries, Central African Republic, Democratic Republic of the

Congo, Liberia, and South Sudan, the estimated populations were excessively high.

We propose further improvements to the model to overcome survey and predictor
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data limitations, which would enable a temporally dynamic approach for monitoring

great apes across their range based on key indicators.

K E YWORD S

Bonobo, chimpanzee, gorilla, IUCN SSC A.P.E.S. database, range‐wide assessment

1 | INTRODUCTION

To manage and protect species effectively, knowledge of the density

distribution of wildlife populations is fundamental. Species distribution

modelers frequently use survey data to predict abundances in both

sampled and unsampled locations (Pearce & Boyce, 2006). To this end,

raw survey data (e.g., line transect data) have been used to derive pre-

dictions of density distribution or changes thereof at local (e.g., Dias

et al., 2019), landscape (e.g., Stokes et al., 2010), national (e.g., Tweh

et al., 2015), and taxon‐wide scales (e.g., Heinicke et al., 2019a; Jantz

et al., 2016; Strindberg et al., 2018). Alternatively, abundance estimates

can be used to model species distributions (e.g., Regehr et al., 2016),

where total abundance per survey site is derived from the raw survey

data, with two important implications. First, the resulting abundance

dataset may facilitate large‐scale species distribution models (SDMs), as

the approach can accommodate abundance estimates derived from a

wide variety of survey methods (e.g., camera trapping, transect surveys,

genetic analyses). Second, site level‐abundance data have a coarser re-

solution than the raw survey data (which also reflect fine scale habitat‐

use), and thus smooth the resolution of predicted density distributions

over large geographic scales. Site‐level abundance data may therefore be

suitable for large‐scale SDMs, for which, accordingly, the aim is to obtain

a global perspective of density distribution, as well as identifying key

determinants of species distribution across wide geographic scales that

can be used as highly informative indicators of species status.

Such large‐scale assessments may also help identify blocks of po-

tentially contiguous populations (e.g., Maisels et al., 2013), and the

proportion of a taxon likely to be in any area, such as land‐use man-

agement units. These studies are also of great use for assessments (e.g.,

Red List) regularly carried out by the International Union for

Conservation of Nature (IUCN). At the other end of the spectrum, local‐

scale information on threats, abundance drivers, and social contexts can

more easily translate into management strategies. Thus, rather than a

dichotomy, there are different explanatory levels and a scale‐dependent

trade‐off (Wennekes et al., 2012), which highlights the importance of a

multiscale approach to understanding species abundance drivers along a

range of spatial scales (Graf et al., 2005; Figure 1).

Recent assessments have revealed drastic great ape population

declines (e.g., Kühl et al., 2017; Plumptre et al., 2016; Strindberg

et al., 2018), and all species and subspecies of African great apes—

bonobos (Pan paniscus), chimpanzees (Pan troglodytes, P. t. ellioti, P. t.

schweinfurthii, P. t. verus, P. t. troglodytes), western gorillas (Gorilla gorilla,

G. g. diehli, G. g. gorilla), and eastern gorillas (Gorilla beringei, G. b. beringei,

G. b. graueri)—are listed as endangered or critically endangered

(IUCN, 2021). Most African great apes require large forested areas and

share life‐history traits that make them particularly susceptible to po-

pulation declines, such as late age at first reproduction and long inter-

birth intervals, which result in overall low‐reproductive rates (Kühl

et al., 2017). African great apes also face three major threats: poaching,

habitat destruction, and infectious disease. These major threats are

driven by several underlying factors, often interconnected and present

across a range of spatial scales (Arcus Foundation, 2014). For instance,

the global demand for a natural resource may lead to infrastructure

development across a region to facilitate its extraction, causing great

ape habitat loss. Furthermore, as infrastructure development facilitates

access to previously remote forest, hunting and the risk of zoonoses

may be exacerbated at a local level.

Here, we investigate some of the drivers of great ape abundance at

the continent‐wide scale and predict great ape range‐wide density

distribution. We faced the problem that we could not include direct

F IGURE 1 Trade‐off between local accuracy and spatial extent of the assessment. Along the continuum of scales, the level of detail and
specificity decreases with increasing spatial extent. Thus, the scale should be appropriately selected according to the study aim
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measures of hunting and infectious diseases, as this information is not

available at the range‐wide scale and temporal resolution required for

our study. Instead, we used the Human Footprint composite measure

(Venter et al., 2016a), which is an accepted proxy for human impact,

including the partial impact of hunting (Di Marco et al., 2018; Sanderson

et al., 2002; Venter et al., 2016b;Wall et al., 2021). We also included the

variable “food taboos” as a proxy for hunting and consumption of great

apes (Heinicke et al., 2019b). For the impact of infectious diseases, we

could not identify equally useful proxy variables. Information on the

impact of infectious disease is only available for some regions and dis-

eases, such as Ebola virus disease. However, we needed range‐wide

information for our models and thus highlight the resulting limitations in

the discussion. With the extensive availability of remotely‐sensed data

and great ape survey data compiled in the IUCN SSC Ape Populations,

Environments and Surveys (A.P.E.S.) database, we developed a modeling

approach that uses site‐level abundance. In brief, we used site‐level

abundance data to (1) evaluate the importance of different socio-

economic and environmental factors for African great ape abundance,

which could be used for monitoring great apes across their range, in-

cluding future and scenario‐based population trajectories, and (2) model

their range‐wide density distribution.

2 | METHODS

2.1 | Overview

For this study, we used a spatial layer of great ape sites represented

by polygon areas with associated abundance estimates, and a set of

eight predictor variables. We used these data to model the influence

of the predictor variables on great ape densities, and then to predict

the range‐wide density distribution of great apes.

Our analysis consisted of two main steps (Figure S1 depicts the

workflow). In Step I we used a generalized linear model (GLM) to esti-

mate the effects of socioeconomic and environmental variables on great

ape densities using data collected between 2000 and 2015. To counter

a lack of confirmed absence sites of great apes, we created pseudo‐

absences before fitting the GLM. In Step II we used an Akaike's in-

formation criterion (AIC) weighted average of the model set (from Step

I) to predict the range‐wide density distribution of great apes for the

year 2015. This study adhered to the American Society of Primatolo-

gists principles for the ethical treatment of primates.

2.2 | Model response

We compiled great ape abundance estimates for 156 sites (Table S5.1).

We define a site as a survey area of known spatial extent that is re-

presented as a polygon in our data. A variety of great ape survey

methods exist (e.g., nest count line transect distance sampling, nest count

reconnaissance surveys, camera trap distance sampling, dung‐based

genetic capture–recapture), of which nest count line transect distance

sampling is the standard method (Kühl et al., 2008). The majority of

abundance estimates were provided in studies and biomonitoring re-

ports; details on the survey methods and the sources are included in

Table S5.1. All data are available on request from the IUCN SSC A.P.E.S.

database (http://apesportal.eva.mpg.de/database/policy; also see Sup-

porting Informations 3 and 4, comprising our final datasets). The surveys

were conducted in 18 African countries between the years 2000 and

2015. Most surveys were conducted in areas where great apes were

known to occur (only 24 surveys reported absence). To counter this low

sampling intensity in areas of low and zero abundance that would likely

produce biased estimates (Pearce & Boyce, 2006), we created pseudo‐

absence survey sites with abundance estimates of zero. The selection of

pseudo‐absence sites was based on suitable environmental conditions

for African great apes (Junker et al., 2012), as well as available literature

on areas known not to hold great apes (Brncic et al., 2010; Caldecott &

Miles, 2005). To this end, we considered the average suitable environ-

mental conditions value per each 490 km2 cell in a grid layer extending

over the entire great ape range and a 100 km buffer around it. We

selected cells with the lowest suitable environmental conditions (the

average suitable environmental condition was 0.012), indicating very low

habitat suitability for great apes (Junker et al., 2012), as well as cells

coinciding with documented absence locations (Brncic et al., 2010;

Caldecott & Miles, 2005). The resulting 134 pseudo‐absence polygons

ranged between 490 and 1960 km2 in size and were spread across 21

countries (Burkina Faso, Mali, and South Sudan contained only pseudo‐

absence sites).

Since the pseudo‐absence sites did not have a survey year, we

assigned them randomly chosen years from 2005 to 2015. We chose

the year 2005 instead of 2000 (which was the earliest year for the

real survey sites) to increase the likelihood that great apes were

absent in the pseudo‐absence sites, assuming that there is a time lag

between the decrease in habitat suitability and the impact it had on

great apes (Junker et al., 2012). We repeated this random assignment

100 times and conducted all the subsequent analyses for each of the

100 replicate datasets (see Supporting Information and Section 3 for

results across the 100 datasets). For brevity and clarity, here we only

report the results derived from the dataset that led to the most

reasonable great ape abundance estimates based on a comparison

with recent nationwide estimates (see Section 2.4).

2.3 | Predictor variables

We modeled great ape density as a function of different environmental

and socioeconomic variables (Table 1). Predictor variables were selected

based on two main criteria: (i) previously confirmed or assumed relevance

for explaining great ape density distribution, and (ii) availability across the

African great ape range. As some of the selected variables were strongly

correlated (Table S1.1), namely climate and topographic variables, we

chose minimum precipitation to represent limiting climatic conditions on

great ape density. Also, as we were interested in the effect of elevation as

a topographic variable, that is, assuming a refuge effect, we chose this

variable over correlated climate variables. This limited the final number of

predictors to eight, including the year in which a survey was conducted.
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More specifically, we were interested in assessing the influ-

ence of socioeconomic factors on great ape density, as we ex-

pected them to have a substantial influence on their range‐wide

distribution. Thus, we included Human Footprint, Gross Domestic

Product (GDP), corruption, food taboos, and Intact Forest Land-

scapes as test predictors. We included the Human Footprint index

in our model, representing human impact and transformation of

the landscape (Venter et al., 2016b). The Human Footprint in-

cludes proximity to roads, which has been linked to hunting ac-

tivity and decreased wildlife densities for several taxa (Laurance

et al., 2006; Wall et al., 2021), including great apes (Andrasi

et al., in review; Stokes et al., 2010; Strindberg et al., 2018). We

anticipated a negative correlation between Human Footprint and

great ape density, as high Human Footprint values indicate in-

creased habitat disturbance, and hunting pressure (Strindberg

et al., 2018). We included Intact Forest Landscape as a predictor,

as it describes forested areas minimally influenced by humans. To a

certain extent, we expected higher great ape densities in areas

with a higher proportion of Intact Forest Landscape, although we

are aware that some well‐managed logging concessions in Central

Africa fall outside Intact Forest Landscape areas and hold large

great ape populations (Brncic et al., 2018; Stokes et al., 2010). We

further included corruption (as evaluated by Transparency Inter-

national's Corruption Perceptions Index, 2018), because we as-

sumed corruption to be a proxy variable for unmanaged extraction

of natural resources (Smith & Walpole, 2005; Tacconi &

Williams, 2020). Food taboos against eating great apes exist in

certain regions, such as among Muslims in West Africa (Bachmann

et al., 2019; Heinicke et al., 2019b). The adherence to taboos

against consuming great apes has been shown to influence great

ape densities in West Africa (Heinicke et al., 2019) and in Western

Equatorial Africa (Strindberg et al., 2018). Thus, we included the

proportion of Muslims in a population as a predictor variable, ex-

pecting increased great ape density in areas with a higher pre-

valence of food taboos. To explore the relationship between the

size of each country's economy and great ape abundance, we in-

cluded GDP, the annual monetary value of all finished products

and services. We expected a negative relationship, in the scenario

that a large GDP (resulting from increased economic activities,

such as trade) led to adverse impacts on great apes and their ha-

bitat. To account for potential nonlinear effects, we included GDP

squared.

Before our analysis, we extracted the values of all predictor

variables for (i) each survey site, and (ii) across the African great ape

geographic range using a 5 arc‐min resolution grid (average cell size:

85.4 km2; hereafter “prediction grid”). Whenever predictor variables

were available for multiple years, we extracted the ones temporally

closest to the survey years of the sites. For the prediction grid we

extracted them for 2015, or the year closest to 2015 (see Figure S1.1

for the time lags between the survey years and closest year for which

predictor data were available). Further details on the predictor vari-

able extraction are included in the Supporting Information and

Section 1.

2.4 | Statistical analysis

2.4.1 | Model implementation

We fitted a GLM with negative binomial error distribution and log link

function (Hilbe, 2011; McCullagh & Nelder, 1989). The response in

the model was the estimated great ape abundance per site, with a

sample size of 285 sites. We included GDP, corruption, food taboos,

Human Footprint, and Intact Forest Landscape as test predictors,

representing human pressure on great ape abundance and habitat. To

control for environmental factors influencing ape abundance, we

included minimum precipitation and elevation. The survey year was

also included as a control predictor. Finally, we checked for spatial

autocorrelation by fitting the model and extracting the residuals.

Then, for each data point, we averaged the residuals of all other data

points, and weighted their contribution by their distance to the data

point. The weights followed a normal distribution with a mean of zero

(i.e., maximum weight at a distance of zero) and a standard deviation

chosen such that the log‐likelihood of the model with the derived

autocorrelation term included was maximized (Fürtbauer et al., 2011).

The model revealed that the autocorrelation term was positive and

significant (p < 0.001), therefore it was included in the full model. To

control for variation in the size of survey sites, we included their area

(in square kilometers and log‐transformed) as an offset term

(McCullagh & Nelder, 1989), noting that by means of the offset term

we effectively modeled great ape density. Thus, the full model was:

Great ape abundance∼ Intact Forest Landscape + human influ-

ence + corruption + GDP +GDP2 + food taboos +minimum precipita-

tion + elevation + survey year + autocorrelation + offset term.

Before model fitting, we inspected the distribution of all pre-

dictors, log‐transformed (base e) several of them (Table 1) to achieve

more symmetrical distributions and avoid influential cases. We then

z‐transformed all predictors to a mean of zero and a standard de-

viation of one to obtain comparable model coefficient estimates. To

test the influence of the test predictors on great ape abundance, and

to avoid “cryptic multiple testing” we compared the full model with a

null model (Forstmeier & Schielzeth, 2011) that did not include those

predictor variables. We used a likelihood ratio test (Dobson, 2002)

for the full‐null model comparison, and tests of the individual pre-

dictors were based on Wald's z‐approximation (Quinn &

Keough, 2010). Over‐dispersion was not an issue (dispersion para-

meter: 0.627). Collinearity, assessed from a standard linear model

lacking the squared term, was also no issue (largest variance inflation

factor: 1.726; Field, 2005), and model stability was acceptable (for

details see Table S2.1). We obtained confidence intervals (CIs) for

model coefficients by means of a nonparametric bootstrap in com-

bination with the percentile method (Manly, 2007). All models were

fitted in R (R CoreTeam, 2019) using a self‐written function based on

the R function “optim.”

In addition to inference based on null hypothesis significance

testing, we applied multimodel inference (MMI; Burnham &

Anderson, 2010). To this end, we constructed all possible subsets of

the set of terms in the full model (total of 384 models). All models
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included the offset and the autocorrelation term as derived for the

full model. For each model, we then determined AIC (corrected for

small sample size), as well as AIC weight. We further evaluated the

number of models in the 95% best model confidence set and de-

termined whether the null model was in the 95% best model con-

fidence set (Mundry, 2011). Since not all models converged, the

actual number of models evaluated was 321.

2.4.2 | Predicting range‐wide great ape density
distribution

For the second part of our analysis, we obtained a range‐wide pre-

diction of great ape density distribution using a multimodel‐based

approach. We obtained model predictions for all 321 models in linear

predictor space, then averaged these (Cade, 2015) by weighting the

contribution of each model by its Akaike weight, and finally ex-

ponentiated the result to obtain the predicted great ape density.

We compared average great ape abundance estimates summed per

country from recent estimates (see Table S1) to the summed estimates

per country obtained from our own predictions (derived from the

multimodel‐based predictions for our 100 datasets). We then identified

the dataset (i.e., random assignment of years) that produced the smallest

differences for each pairwise country comparison, based on their re-

lative deviations, and used this dataset to bootstrap CIs for the range‐

wide prediction. We used a nonparametric bootstrap (N = 1000) to

obtain these CIs (Manly, 2007). Using data from theWorld Database on

Protected Areas (WDPA), we further evaluated the proportion of the

total predicted great ape population found within protected areas with

IUCN Categories I and II, as well as the predicted proportion of the

population that is found within all protected areas documented in the

WDPA (UNEP‐WCMC & IUCN, 2019). Finally, we assessed the

influence of the number of our pseudo‐absence sites on our predicted

density distribution by implementing a sensitivity analysis (see Sup-

porting Information and Section 4 for details and results).

3 | RESULTS

3.1 | Model results

Regarding the full‐null model comparison, which tests the overall influ-

ence of the socioeconomic variables on great ape abundance, we found a

significant difference (likelihood ratio test: χ2 = 29.023, df=6, p<0.001).

The Human Footprint and GDP were important predictors of great ape

density (Table 2). Great ape density was inversely related to Human

Footprint values (Figure 2a). The relationship between great ape density

and GDP was negative quadratic, with decreasing great ape densities

above a GDP of $5 billion annually (Figure 2b). Great ape density tended

to be negatively correlated with corruption (Figure S2.1). The auto-

correlation term was highly significant (Table 2), indicating that the

abundances of sites that were geographically closer to one another were

more similar to each other than to more distant ones. Hence, this hints at

predictors missed in the model that contribute to spatial variation in great

ape densities or to demographic processes largely independent of ex-

ternal predictors. Regarding the MMI there were 152 (47%) models in the

95% best model confidence set, which did not include the null model.

3.2 | Range‐wide prediction of great ape density
distribution

Our prediction was based on the dataset that predicted nationwide

estimates closest to those from other studies and reports (Figure 3).

TABLE 2 Estimated model
coefficients for the full model

Terma Estimate SE z p Lower CL Upper CL

Intercept −1.428 0.207 b b −1.610 0.589

Human footprint −0.671 0.180 −3.737 <0.001 −2.739 −0.744

GDP −0.347 0.185 b b −1.805 0.195

GDP2 −0.204 0.103 −1.989 0.047 −0.819 0.253

Intact Forest Landscape 0.271 0.216 1.258 0.208 −0.163 1.682

Corruption −0.357 0.213 −1.673 0.094 −1.958 0.510

Food taboos −0.069 0.213 −0.322 0.747 −0.900 1.084

Min. precipitation 0.182 0.205 0.888 0.375 −1.229 0.626

Elevation 0.277 0.174 1.593 0.111 −0.079 1.453

Survey year −0.063 0.212 −0.300 0.764 −0.419 1.271

Autocorrelation 1.888 0.459 4.114 <0.001 −0.073 3.264

Note: Predictor variables with significant effects or trends are indicated in bold.

Abbreviations: CL, confidence limit; GDP, Gross Domestic Product.
aAll predictors were z‐transformed to a mean of zero and a standard deviation of 1.
bNot shown because of having a very limited interpretation.
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This dataset revealed the lowest great ape densities in parts of West

Africa and the highest in Central Africa (Figure 4). Densities ranged

from 0 to 5.8 individuals per km2. Nationwide abundance estimates

for the Central African Republic (CAR), Democratic Republic of the

Congo (DRC), Liberia, and South Sudan were unreasonably high and

are therefore not shown (this was established by comparison with

information from other sources and expert knowledge; see

Table S2.4). Due to a lack of Human Footprint data for Angola's

Cabinda province, we could not make a prediction for this area. With

the exclusion of DRC, the largest predicted populations were found

in the Republic of Congo (274,437 individuals; 2.5% confidence limit

(CL) was 142,329; the 97.5% CL was not meaningful due to ex-

ceedingly high densities), Gabon (123,617 individuals; 97.5% CI:

41,232–380,911) and Cameroon (62,833 individuals; 97.5% CI:

25,432–123,586). All other estimated abundances per country are

included in Table S2.2. Of the total predicted abundance of great

apes, although 23.2% were found in protected areas listed in the

WDPA (UNEP‐WCMC & IUCN, 2019), only 10.7% were found in

IUCN Categories I and II protected areas.

4 | DISCUSSION

This study is the first to attempt a continent‐wide prediction of

African great ape density distribution and an evaluation of factors

driving their abundance at this large spatial scale. It thus comple-

ments modeling efforts at the local, landscape, and regional scale

(Figure 1). In analogy to large‐scale remote sensing approaches of

land‐use changes that complement local‐scale field studies, our large‐

scale modeling effort complements local‐ to regional‐scale great ape

monitoring, for example, for the establishment of a range‐wide,

indicator‐based surveillance system. Great ape densities were in-

versely related to Human Footprint and GDP and tended to correlate

negatively with the level of corruption. A high degree of spatial au-

tocorrelation indicated that additional variables and demographic

processes contributed to the density distribution of great apes not

accounted for in the analysis. Model predictions of ape abundance

were similar to previous estimates for 16 out of 20 countries but

were likely too high for Liberia, CAR, South Sudan, and DRC.

4.1 | Key indicators of African great ape density

The severity and expansion of the Human Footprint is strongly re-

lated to the suitability of land for agriculture (Venter et al., 2016b). In

West Africa, large‐scale industrial agriculture (following, or in com-

bination, with small‐scale agriculture) has contributed greatly to

chimpanzee population declines and to the reduction of their geo-

graphic range (Kühl et al., 2017). Deforestation rates have been

comparatively lower in Central Africa, but hotspots can be found

bordering the Congo Basin, as rapidly growing human populations

(a) (b)

F IGURE 2 Great ape density as a function of (a) Human Footprint, and (b) GDP. The area of the dots depicts the number of survey sites per
binned Human Footprint (N = 1–55) and GDP (N = 1–69). GDP, Gross Domestic Product

F IGURE 3 Estimated nationwide great ape abundances obtained
in this study compared to recent estimates from other studies (see
Table S3.4). The dashed line depicts perfect concordance
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increase the demand for agricultural land (Tyukavina et al., 2018),

including around mines and around agro‐industry (Molinario

et al., 2020). In addition, several planned development corridors (e.g.,

roads, railroads, and pipelines), some of which are underway, are

likely to not only further degrade great ape habitats but also facilitate

resource extraction, thereby enormously increasing the pressure on

wildlife (Laurance et al., 2018). The international demand for crops

such as coffee, cacao, rubber, and palm oil, as well as the extraction

of minerals and timber, are contributing to rapid infrastructure de-

velopment (Estrada et al., 2019; Laurance et al., 2018).

We approximated the influence of economic development on

great ape populations and their habitat by including GDP in our

model. Throughout our study period, the relationship between great

ape density and GDP was negative quadratic. Notably, great ape

densities were higher in the lower range of GDP values. The negative

correlation between great ape density and higher GDP values is likely

due to the indirect effects of economic development on great ape

habitat, caused by infrastructure development, resource use, and

land‐use change. To undergo such development with minimal ad-

verse impacts on great apes and their habitat, land‐use planners and

natural resource managers must take wildlife conservation into ac-

count (Heinicke et al., 2019a, Strindberg et al., 2018), as has been

exemplified by the recent rerouting of the Cross River Highway

(Mahmoud et al., 2017).

The level of corruption was identified as a trend in our analysis.

Lower great ape abundance was associated with increased levels of

corruption. This is in line with findings from other studies that have

identified corruption as a global issue for wildlife conservation (Smith

& Walpole, 2005; Tacconi & Williams, 2020). None of the other

predictors were as important for explaining remaining variation in

great ape abundance, although they were found to be relevant in

other local‐ to regional‐scale studies. This pattern may be explained

on three levels. First, some predictors may indeed have only ex-

planatory power in specific regions due to specific characteristics of

social–ecological systems. This may be the case for food taboos, for

example, as observed in West Africa among the Muslim population

(Heinicke et al., 2019b). Additionally, potential nonlinearity of pre-

dictor effects may cause the relationship with ape abundance to

collapse, when the proportion of the population adhering to food

taboos drops below a certain level. Second, the absence of additional

important predictors, such as actual hunting intensity may have di-

luted the effect of some predictors, such as Intact Forest Landscapes.

With widespread poaching of great apes, the predictive power of

Intact Forest Landscapes on great ape abundance likely vanishes.

Third, a large proportion of variation may already be captured by the

composite Human Footprint index and GDP, which may be con-

sidered as key indicators of great ape density distribution at the large

scale.

4.2 | Predicted great ape density distribution

Of the 20 countries for which we predicted density distribution, the

nationwide estimates for 16 were in line with previous estimates

(Figure 3). For four countries they notably diverged; these were Li-

beria, CAR, South Sudan, and DRC. The high estimate for Liberia was

likely due to the combination of relatively low Human Footprint va-

lues (compared to other West African countries; see Figure S3.2),

high forest cover, and high poaching rates in the country (Tweh

et al., 2015) that was not captured by any of the predictor variables.

Similarly, the high estimate for CAR may be explained by the re-

markably low Human Footprint values in the country—in fact, the

lowest across the entire great ape range (Figure S3.2). Since low

Human Footprint values were strongly correlated with high great ape

densities, this likely contributed to high densities in the CAR. In South

Sudan, a lack of great ape surveys in the country likely played a role in

the high predicted population estimate, as predictions were mainly

informed by the relationship between great ape abundance and

predictors in other regions. Likewise, only a fraction of DRC has been

surveyed; for instance, the eastern chimpanzee population has

F IGURE 4 Predicted density distribution (number of individuals per km2) of African great apes for the year 2015. Throughout most of their
geographic range (outlined in red), predicted densities ranged between zero and one
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scarcely been surveyed in the western part of their geographic range,

north of the Congo River (Plumptre et al., 2010). Furthermore, the

lack of a direct hunting intensity variable in the model has likely

contributed to high predicted densities in DRC. While model pre-

dictions for several of the remaining 16 countries are very similar to

previous estimates, some show deviations, such as Senegal, Burundi,

or Nigeria. Here, it is important to note that no survey‐based na-

tionwide estimates are available, and deviations in Figure 2 may

simply reflect this. Similarly, for some countries (e.g., Cameroon) our

predicted nationwide estimates were compared to the summed es-

timates of multiple surveys that were conducted within each country.

Alarmingly, only 10.7% of the predicted great ape population was

found in IUCN Category I and II protected areas, and an additional

12.5% of the population was found in areas with a lower level of

protection—the same kind of results noted by Strindberg et al. (2018)

for Western Equatorial Africa's great apes. We commend existing

efforts to increase protected area networks and their connectivity,

and strongly support moves towards improved management of ex-

isting protected areas and of selectively logged timber concessions.

4.3 | Model evaluation and limitations

Our prediction covered the entire geographic range of African great

apes, including areas that have not yet been surveyed. Although see-

mingly isolated, large forest blocks in Central Africa are accessible to

hunters through networks of paths (Abernethy et al., 2013; Plumptre

et al., 2021), and hunting pressure in some of these areas has been

predicted to be very high (Ziegler et al., 2016). Using actual data on

hunting intensity instead of a crude proxy (e.g., proximity to roads)

would likely improve the over‐estimated densities in some areas. Efforts

to map faunal and ecologically functional intactness, as well as hunting

impact, are quickly developing (Gallego‐Zamorano et al., 2020; Plumptre

et al., 2021). Although these are also proxy, composite variables (i.e., not

direct hunting measures), they may be able to more extensively account

for the impacts of hunting in future models.

We could also not account for the impact of disease in our

model, which likely contributed to an overestimation of densities in

some areas. Most notably, the Ebola virus disease has eliminated

large numbers of great apes in the Republic of Congo and Gabon

(Strindberg et al., 2018). Specifically, abundance in the areas of

northeast Gabon and across the border in the Republic of Congo

(Strindberg et al., 2018) was overestimated by our model. Thus, we

believe that the absence of predictors estimating actual hunting

pressure and spread of infectious diseases contributed to an over-

estimation of our predicted abundances, especially in areas that ap-

pear to otherwise have high habitat suitability. However, the

inclusion of the autocorrelation term captured at least part of the

unexplained variability in the density distribution of great apes, which

could, for instance, be due to local or regional variation in hunting

pressure not accounted for in the model.

Based on the comparison of our nationwide estimates to those

from previous studies (Figure 3), our predictive model performed

better in areas covered by a larger proportion of survey sites. Model

accuracy would therefore improve not only with increased confirmed

absences but also increased occurrence data in regions that have

been sparsely surveyed, such as DRC and South Sudan. Other lim-

itations relate to the unavailability of predictor variables, as well as to

the quality and resolution of available variables. These limitations are

magnified with the large scale of our study, which attempts to model

the density distribution of different taxa in varying socioeconomic

contexts. However, as the availability and quality of environmental,

socioeconomic, and great ape survey data continue to improve, fu-

ture range‐wide assessments are likely to increase in accuracy.

4.4 | Conclusion and outlook

We consider our study a starting point for continent‐wide assess-

ments of African great ape status, acknowledging at the same time

important limitations that led to overestimates in great ape abun-

dance in four countries. For future studies building on our work, we

suggest in particular the following five points: (1) since the absence of

great apes is still uncertain in many areas, the number of confirmed

absence or near absence locations need to increase; (2) for areas that

are currently underrepresented, a larger number of sampled sites will

improve accuracy of predictive models and will allow for cross‐scale

assessments (i.e., from local to continental scales); (3) the approach

we have taken here can incorporate abundance estimates derived

from different types of surveys and can be further expanded to in-

clude additional data types. The recent emergence of integrated

population models provides a powerful tool to make use of all types

of data (Santika et al., 2017; e.g., line transect nest counts, camera

trap observations, passive acoustic monitoring, genetic surveys) and

make the most of existing and new survey datasets in the A.P.E.S.

database. (4) We have identified the Human Footprint and GDP as

important predictors of range‐wide great ape density. Thus, we re-

commend using these variables as important indicators to assess

great ape status at this scale and constructing future population

trajectories; (5) the sourcing and development of additional pre-

dictors that measure hunting and spread of infectious diseases, will

be key to improve model performance. Additional variables related to

the export of natural and mineral resources, agricultural products or

international trade in general may be important predictors to be

considered. Finally, we emphasize that merely 10.7% of the total

great ape population was found in areas with higher levels of legal

protection. This highlights the urgent need to develop conservation

activities outside protected areas that integrate sustainable devel-

opment, human well‐being, and health with the continued persis-

tence of African great apes.
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