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Supplementary Figure 1. Electronic structures of twisted bilayers ZrS2 calculated without spin-orbit coupling.
(a-c) DFT band structures of twisted bilayer ZrS2 at twist angles 3,15, 2.64, and 2.28 degrees, respectively. (d-e)Charge density
distributions of the top valence band states at the Gamma (d) and the K points (e) of twisted bilayer ZrS2 at 2.64 degrees.

Supplementary Figure 2. Electronic structures of twisted bilayer ZrS2 calculated with spin-orbit coupling. (a-c)
DFT band structures of twisted bilayer ZrS2 at twist angles 3,15, 2.64, and 2.45 degrees, respectively. (d)Charge density
distributions of the top valence band states at the Gamma point of twisted bilayer ZrS2 at 3.15 degrees.
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SUPPLEMENTARY NOTE 1: ADDITIONAL
ANALYSIS OF THE DFT BAND STRUCTURES

As shown in Supplementary Figure 1 for the calcula-
tions without spin-orbit coupling, the top valence bands
of twisted bilayer ZrS2 can be well fitted by the simple ef-
fective kagome tight-binding model discussed in the main
text. For large twist angles, the lower half of the effective
kagome bands are mixed and entangling with higher en-
ergy bands. The features matching well with the kagome
lattice model become more obvious at smaller twist an-
gles when the total band width decrease. At the small-
est twist angle 2.28 degree that we can calculated with
DFT (Supplementary Fig. 1(c)) , even the lower half of
the effective kagome bands can be well recognized, albeit
there are still some anti-crossing with the higher energy
bands. To further confirm the characters of these bands,
we extract the charge density distribution of the states
at those bands as shown in Supplementary Fig. 1(e)
and (f) for the case at 2.64 degrees. The charge density
distribution of states at bands 1,2 and 6 at the Gamma
point and bands 1,2,3 at the K point show a kagome
lattice pattern, which is consistent with our expectation
and further validate our tight-binding fitting. As shown
in Supplementary Fig. Fig. 1(d), the total bandwidth
W of the kagome bands decreases with twist angles while
the energy separations between the top kagome band and
the other bands at higher energy saturates as twist an-
gle is smaller than 3 degrees. Therefore, when the twist
angle further decreases (which is beyond our DFT calcu-
lations), the three kagome bands are expected to detach
from the other bands as discussed in the main text.

When spin-orbit coupling is included, as shown in Sup-
plementary Fig. 2 (and Fig. 1(f) in the main text), the
top valence bands of twisted bilayer ZrS2 are also well
fitted to a effective kagome lattice tight-binding model
discussed in the main text. By analyzing the band char-
acters for the system at 3.15 degree as a typical example

in Supplementary Fig. 2(e), we further confirm that the
charge density distribution of the states at bands 1 and
3 at the Gamma point shows a kagome lattice pattern.
As shown in Supplementary Fig. 2(d), similar to the re-
sults without spin-orbit coupling, when the twist angle
decreases, the separations between the kagome bands and
the other non-kagome bands saturates at around 50 meV
while the total band width of the three kagome bands de-
creases. It is thus expected the three kagome bands can
be eventually detached from the other bands at small
twist angles.

SUPPLEMENTARY NOTE 2: EXPLICIT FORM
OF THE EFFECTIVE LONG-RANGED KAGOMÉ

TIGHT-BINDING MODEL

The main text details the construction of an effec-
tive tight-binding description from the strongly spin-
orbit coupled continuum model. To accurately capture
the top-most bands of Kagomé character, we employ a
model with up to eigth-neighbor hoppings. For small
twist angles, longer-ranged hoppings remain negligible.
As discussed in the main text, the three Kagomé bands
cease to remain spectrally isolated from deeper moiré va-
lence bands for angles in excess of ∼ 1.65◦. As the gap
to deeper bands closes, the fit proceeds with only the
top two isolated Kagomé bands. Correspondingly, the
range of (exponentially localized) hoppings increases to
retain a minimal Kagomé tight-binding description. For
completeness, the effective tight-binding model reads ex-
plicitly:
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Here, t, t′, . . . and λ, λ′, . . . denote n-th neighbor hopping
and spin-orbit coupling amplitudes, respectively.


