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Advice on comparing two 
independent samples of circular 
data in biology
Lukas Landler1*, Graeme D. Ruxton2 & E. Pascal Malkemper3

Many biological variables are recorded on a circular scale and therefore need different statistical 
treatment. A common question that is asked of such circular data involves comparison between two 
groups: Are the populations from which the two samples are drawn differently distributed around the 
circle? We compared 18 tests for such situations (by simulation) in terms of both abilities to control 
Type-I error rate near the nominal value, and statistical power. We found that only eight tests offered 
good control of Type-I error in all our simulated situations. Of these eight, we were able to identify 
the Watson’s U2 test and a MANOVA approach, based on trigonometric functions of the data, as 
offering the best power in the overwhelming majority of our test circumstances. There was often little 
to choose between these tests in terms of power, and no situation where either of the remaining six 
tests offered substantially better power than either of these. Hence, we recommend the routine use of 
either Watson’s U2 test or MANOVA approach when comparing two samples of circular data.

Many variables in biology are circular, i.e. they do not fall on a linear scale. Instead, they are recorded on a cyclical 
scale, for example time of day or compass directions. Such data cannot be analyzed using standard linear statis-
tics; therefore, circular statistical methods have been formulized to detect non-random patterns in periodically 
recorded data (for discussions on circular data see for example Jammalamadaka and Sengupta1, Mardia and 
Jupp2, Mello3 and Pewsey et al.4). One common example for the use of circular statistics is in orientation biology 
(see many examples in Batschelet5). In a classic experiment, researchers would release pigeons after translocating 
them to a new location and test if they fly towards home (e.g. they record a vanishing bearing). To test if pigeons 
orient towards home, one could employ a V-test, which is by far the most powerful test in such a case where a 
certain heading direction (i.e. towards home) is expected6. If the expected heading direction was unknown, a 
Rayleigh-test would be the most powerful alternative test of the null hypothesis of uniformity of chosen direc-
tions. A confidence interval around the mean direction can then help explore if pigeons are significantly oriented 
towards the home loft or deflected to a different direction.

However, in many scenarios experimenters are not only interested in testing whether a single group shows a 
significant direction of departure, but they want to compare animals of different origin or test the effect of experi-
mental manipulations, e.g. to understand the underlying orientation mechanisms or cognitive abilities. Such 
experiments require statistical comparisons between at least two groups, e.g. one group without manipulations 
(the control) and one with perturbations (the experimental group). Here, we explore the robustness and power 
of tests designed for the comparison of two groups, which is one of the most common situations, analogous to 
the use of a two-sample Student t-test or Mann–Whitney-U-test in linear statistics.

Arguably, the most commonly-used test for differences between two circular distributions is the Watson’s U2 
test7, a non-parametric rank-based test that might be thought of as a circular analogue to the Mann–Whitney-
U-test. It isimplemented in most software applications that contain circular statistic functions (e.g., Oriana8, 
MATLAB9 and R10). To our knowledge it has never been tested, however, whether the Watson’s U2 test is the most 
robust and powerful test across different situations. To address this, we identified 18 two-sample tests, which 
can test for similar null hypotheses (i.e. two circular distributions are the same). The mathematical methods 
underlying the different approaches vary considerably, from classical rank-sum approaches to linear statistics 
making use of trigonometrical functions. For brevity, we only considered test versions where the p-value is 
derived asymptotically rather than by randomization/bootstrapping. Our aim was to provide advice on which 
tests to use in which situations.
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We grouped the type of comparisons between two distributions according to three possible null hypotheses: 
(1) The distributions are identical, (2) they have the same mean/median, or (3) they show the same concentration. 
Type (1) tests should be sensitive to differences in mean/median as well as to differences in the concentration, 
however. Type (2) tests should be sensitive to differences in the mean/median, but not show differences when 
only the concentration varies. In contrast, type (3) tests should be sensitive to differences in concentration but 
not detect differing means/medians. None of the tests should be sensitive to differences in sample sizes.

Another level of complexity in choosing a method is that certain tests require defined prerequisites to show 
reliable results. The most common prerequisite is that distributions should be oriented unimodally (see for 
example the Watson–Williams test) or that the sample size should exceed a minimum size (e.g. this is true for 
the Watson’s large-sample nonparametric test)4. It is unclear how robust the tests are against violation of the 
assumptions, but our study will offer guidance on this.

In summary, in this simulation study we explore a myriad of available tests in the most common situations 
where two independent circular distributions are compared and subsequently derive recommendations for 
scientists working with circular data. Our analysis includes unconventional linear approaches, as well as pre-
dominantly used circular statistical tests.

Methods
Statistical tests used in simulation.  In total we used 18 tests implemented in several R packages 
(Directional11, CircStats12, circular13, kuiper.2samp14, lawstat15, NPCirc16 and Rfast217), code for R functions pro-
vided in Pewsey et al.4, or, in the case of the P-test, newly implemented in R for this manuscript (see Table 1, Sup-
plementary Material for details on functions and packages used). The P-test followed the calculations provided 
in Rumcheva and Presnell18.

Simulated distribution samples.  All samples were generated using the rcircmix function from the 
NPCirc package (R code in Supplementary Material, see Fig. 1 for distributions used), using “vm” and “wsn” dis-
tribution types for von Mises and wrapped skew-normal, respectively. Each simulation was performed with 9999 
randomly drawn samples from the given distribution, the proportion of significant test results is then reported 
as Type-I error or power. For all comparisons, we used the same sample size pairs per mode. For unimodal 
distributions (e.g. Fig. 1A,B) we used sample sizes of 10/10 (sample size for sample 1/ sample size for sample 2), 
20/20, 50/50, 20/30, 10/50; for bimodal (axial: 0° and − 180° (e.g. Fig. 1C), non-symmetrical: 0° and − 120° (e.g. 
Fig. 1D)) and trimodal (symmetrical: 0°, − 120° and − 240° (e.g. Fig. 1E), non-symmetrical: 0°, − 90° and − 200° 
(e.g. Fig. 1F)) distributions we doubled and tripled the sample sizes, respectively.

Table 1.   List of tests used, including the functions and packages used, as well as the respective null hypothesis 
and test abbreviation.

Test name Abbreviation Function Package/resource Test assumptions

Identical distribution

Embedding approach ANOVA EmA embed.circaov Rfast2 None given

Kuiper two sample test Kui kuiper.2samp kuiper.2samp None given

Large-sample Mardia-Watson-
Wheeler test MWW WgVal Pewsey et al. 2013 n for each sample > 10

Log-likelihood ratio ANOVA LlA lr.circaov Rfast2 None given

MANOVA approach Man manova stats None given

Non equal concentration 
parameters approach ANOVA HeA het.circaov Rfast2 None given

Watson–Wheeler test WWe watson.wheeler.test Circular Continuous data (ungrouped)

Watson’s U2 test WU2 watson.two.test Circular Combined sample size > 17

Identical mean/median

Fisher’s nonparametric test FPg PgVal Pewsey et al. (2013) None given

P-test Pt P.test.assym R-code provided in this paper None given

Rao polar test Rpo rao.homogeneity CircStats Large unimodal samples, not 
polar opposite

Watson–Williams test WWi watson.williams.test Circular von Mises, same concentration 
(k > 2)

Watson’s large-sample nonpara-
metric test Wat YgVal Pewsey et al. (2013) None given

Identical concentration

Concentration test Con conc.test Directional None given

Fisher’s method FM tang.conc Directional None given

Levene’s test Lev levene.test lawstat None given

Rao dispersion test Rdi rao.homogeneity CircStats None given

Wallraff test Wal wallraff.test Circular Continuous data (ungrouped)
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Type‑I error.  For each of the distributions we evaluated the Type-I error probability by comparing two 
identical distributions, the concentration/dispersion parameters were increased for both. We only continued 
evaluating the power of those tests that were robust, i.e. that maintained a Type-I error level of around 5% in all 
situations. (Note: The power of all tests was calculated and can be found in the Supplementary Results sheets, 
however, it was not included in the figures for clarity).

Power calculations—difference in concentration.  In order to evaluate the power of the tests to detect 
differences in concentrations, we varied the concentration parameters of one of the distributions and kept the 
second one constant. For the von Mises distribution we used the concentration parameter κ = 0 (i.e., a uniform 
distribution) for one and values from 0 to 8 for the other distribution. For the wrapped skew-normal, one dis-
tribution was kept at the dispersion parameter ρ = 1 and for the second it ranged from 1 to 4 (in all cases a skew 
parameter of 30 was used).

Power calculations—difference in mean/median.  To evaluate the power to detect differences in direc-
tionality of unimodal distributions, we kept one of the two distributions fixed at a mean of 0° and used mean 
directions from 0° to 180° for the second one. For bimodal distributions, we used directions from 0° to 90° and 
for trimodal distributions, we used 0° to 60° in order to encompass the range where we expected most differences 
between distributions.

Power calculations—difference in distribution type.  To test the power of the tests to differentiate 
between different types of distributions, we compared two distributions with similarly increasing concentration 
parameters across simulations (dispersion parameter in the case of the wrapped skew-normal distribution), 
while keeping the directionality of the distributions the same between the distributions. For all the analyses, 
we kept the sample sizes the same as before for the respective distributions. First, we compared a unimodal von 
Mises distribution with a symmetrical bimodal (= axial) von Mises distribution, both aligned on the same axis. 
Again, the concentration parameter increased for both in the same manner. In a second simulation, we com-
pared unimodal von Mises with unimodal wrapped skew-normal distributions, using the same parameters as for 
the Type-I error calculations, for both (only the dispersion parameter range was flipped to range from 4 to 1 for 
the wrapped skew-normal distribution, to follow the concentration parameter better).

Real data examples.  To test the performance of the tests in real life situations, we applied the identified 
robust tests to three published examples from biological studies. The first data set (pigeon) is included in the R 
circular package and describes a translocation experiment with homing pigeons19, where the performance of 
control animals was compared to pigeons with a sectioned olfactory nerve (note: a third group present in the 
original paper was not included in our analysis). It was expected that the control group is oriented (highly clus-
tered) and the experimental group is disoriented (not clustered), causing a difference of concentration between 
the groups.

The second data set is from work by Wehner and Müller20 that investigated the ability of desert ants (Cat-
aglyphis fortis) to transfer directional visual information received in one eye, to the other eye without further 
training (data included in the R circular package: fisherB10c). For the purpose of this analysis, we compared a 
control group (trained and tested with the same eye open) with a treatment group (trained with one eye and 

Figure 1.   Densities for distribution types used in this paper: unimodal von Mises (A), unimodal wrapped 
skew-normal (B), axial von Mises (C), asymmetrical bimodal von Mises (D), symmetrical trimodal von Mises 
(E), asymmetrical trimodal von Mises (F).
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tested with the other eye). The hypothesis here was that information transfer between the two visual views is 
possible. The expectation, therefore, is a lack of difference between groups, both in direction and concentration.

The third data set is taken from a recent paper on bat navigation by Lindecke et al.21. They investigated if 
migratory bats (Pipistrellus pygmaeus) use the sun’s position at dusk to calibrate their navigational compass. For 
our example, we only analyzed the data from adult animals. Here the expectation was that the recorded headings 
should not differ in concentration, but show opposite directional preferences, according to whether the bats saw 
natural or mirrored views of the sun.

Results
Type‑I error.  In the case of two identical unimodal von Mises distributions, seven tests did not maintain 
Type-I error near the nominal 5% level, at least when sample sizes were small. These tests were the Kuiper two-
sample test, the non equal concentration parameters approach ANOVA, the P-test, the Watson’s large-sample 
nonparametric test, the Watson–Williams test and the Rao dispersion test (Fig. 2). The Type-I error results were 
similar for the unimodal wrapped skew-normal distribution, except that the Wallraff test and Fisher’s method 
also showed Type-I error inflation (Fig. S1). No other methods showed evidence of failure to control Type-I 
error rate across different testing situations (Figs. S2–S5), except for the Log-likelihood ratio ANOVA in the case 
of two identical asymmetrical bimodal distributions (Fig. S3). In summary, only eight out of 18 tests reliably 
controlled the Type-I error rate near the nominal 5% level across all the situations investigated. These included 
five tests for identical distribution, the Watson’s U2 test, the Large-sample Mardia–Watson–Wheeler test, the 
Watson-Wheeler test, the embedding approach ANOVA,  the MANOVA approach, the Rao polar test for differ-
ences in mean direction, and two tests for differences in concentration, the Levene’s test and the concentration 
test. We focus only on these tests in our explorations of statistical power.

Power to detect differences in concentration.  The most powerful test to detect concentration differ-
ences between two von Mises distributions was the MANOVA approach, which offered superior power especially 
at lower sample sizes (Fig. 3). The Watson’s U2 test was also very powerful, followed by the Watson–Wheeler and 
the Large-sample Mardia–Watson–Wheeler tests with only marginally lower power. The embedding approach 
ANOVA had lower power, but, notably, was still more powerful than the Concentration test and Levene’s test, 
both specifically designed to detect differences in concentration. As expected, the Rao polar test was not sensi-
tive to differences in concentration. The general results for two unimodal wrapped skew-normal distributions 
were comparable to the results for unimodal von Mises distributions, with the only exception of superior perfor-
mance of Levene’s test in situations with highly asymmetric samples sizes (Fig. S6).

When comparing axial von Mises distributions, only the Watson’s U2 test offered acceptable power (Fig. S7). 
For the symmetrical trimodal distributions, overall power was very low, and again, only the Watson’s U2 providing 
some power (Fig. S8). The asymmetrical bimodal (Fig. S9) situation showed acceptable power of the MANOVA 
approach and Watson’s U2, however, for the asymmetrical trimodal distribution power was low with the Watson’s 
U2 providing the best results (Fig. S10).

Power to detect differences in the mean/median.  The power to detect angular differences between 
two von Mises distributions was highest for the MANOVA approach at small sample sizes (n = 10), followed by 
the Watson’s U2, Watson-Wheeler test and the Large-sample Mardia-Watson-Wheeler test (Fig. 4). Notably, the 
Levene’s test also showed acceptable power levels, clearly failing to detect specifically concentration differences 
(to which it was less sensitive, see Fig. 4). The concentration test was not sensitive to the differences in mean 
direction. Special cases were the embedding approach ANOVA and the Rao polar test. The ANOVA approach 
showed, with the exception of very unequal sample sizes (n = 10/50), a unimodal response, with increasing 
power levels from 0° to 90° difference, but then rapidly decreasing power towards 180° difference. The Rao polar 
test showed an even stranger pattern, with, at higher sample sizes, very good power when the difference was 
either around 45° or 135°, but with power levels dropping to 0.05 in between these two peaks (at 90°). The results 
were similar for the wrapped skew-normal distribution, with the exceptions that the Rao polar test showed 
strongly reduced power and switched from a bimodal to a unimodal power curve with a peak around 60°, and 
the Levene’s test completely lost its power (Fig. S11).

For axial distributions, only the Watson’s U2 test offered acceptable power levels, although large sample sizes 
(~ n = 100) were required for the power to reach over 50% (Fig. S12). All other tests failed to detect the difference 
in mean direction between two axial distributions. For symmetric trimodal distributions none of the tests used 
was sensitive to differences in mean direction (Fig. S13).

When comparing asymmetrical bimodal distributions, the general trends were similar to the unimodal case. 
However, over all sample sizes the MANOVA approach offered the best power. The Watson–Wheeler test was 
considerably less powerful in this situation, as were the Watson’s U2 test and the Large-sample Mardia–Wat-
son–Wheeler test (Fig. S14). The Levene’s test showed a unimodal-shaped power curve. The asymmetrical tri-
modal situation was, again, similar to the asymmetrical bimodal situation (Fig. S15), with the exception of the 
Levene’s test, which showed steady power increase with angular difference (instead of the hump-shaped curve).

Power to detect differences in distribution type.  When comparing a unimodal and an axial bimodal 
distribution, which increased similarly in concentration, we found that the MANOVA approach again offered 
the best power in particular at low samples sizes, followed by the Watson’s U2 test, the Large-sample Mardia–
Watson–Wheeler test and Watson–Wheeler test (Fig. 5). While the embedding approach ANOVA and the Lev-
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Figure 2.   Type-I error of all tests using von Mises distributions for different sample sizes: 10 and 10 (A), 
20 and 20 (B), 50 and 50 (C), 20 and 30 (D) and 10 and 50 (E). Concentration (κ, kappa) increases for both 
distributions from 0 to 8. Tests are grouped according to their null hypotheses.
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ene’s test had varying but usable power levels, the concentration test was only sensitive to such differences at low 
concentration values. The Rao polar test was not sensitive to such differences.

The picture was only marginally different when comparing a von Mises with a wrapped skew-normal dis-
tribution (Fig. S16). For low sample sizes (n = 10) the MANOVA approach offered great power, followed by the 
embedding approach ANOVA. The latter offered good power throughout the range of sample sizes tested, fol-
lowed by the Watson’s U2 test, the Large-sample Mardia–Watson–Wheeler test and Levene’s test. Also, the Rao 
polar test showed lower, but acceptable sensitivity to distribution type. The concentration test only showed very 
low power, that (as expected) increased with increasing concentrations of the respective distributions.

We summarize the results obtained in the power analysis in Table 2. In all situations, either the Watson’s U2 
test or the MANOVA approach offered the best power.

Real data examples.  Testing the performance of the robust tests on real data sets revealed, predominantly, 
the expected test behavior. In the example of homing pigeons where a difference in concentration was expected, 
all tests, with the exception of the Rao polar test and, notably, the concentration test, showed a significant dif-
ference between the distributions (Fig.  6A). Therefore, we can conclude, in accordance with the respective 
publication19, that sectioning of the olfactory nerve disrupted the homing behavior of pigeons.

In the ant example, where no difference between the groups was expected, there was no significant difference 
between the distributions detected by most of the tests (Fig. 6B). Only the concentration test showed a signifi-
cant difference. Based on the other tests we would conclude that there was no biological meaningful difference 
between the two distributions. Therefore, ants appear to be able to transfer visual information from one eye to 
the other.

In the bat example, where a difference in mean direction was expected, the Watson’s U2, the Mardia–Wat-
son–Wheeler, Watson-Wheeler test and the MANOVA approach showed a significant difference (Fig. 6C). 
Notably, the Rao polar, Levene’s, and concentration tests and the embedding approach ANOVA failed to show 
a significant difference. At least for the Rao polar test, one would have expected a significant difference, as the 
two distributions are clearly 180° apart. This outcome concurs with our simulation results where the Rao polar 
test failed to distinguish distributions on the same and orthogonal axes (Fig. 4). As the results of the tests where 
quite mixed this example highlights the need for choosing a test with appropriate power to detect the expected 
differences. Based on the results of the most powerful tests, we conclude that the bats showed a mirrored orienta-
tion, as expected in the experimental design.

Figure 3.   Power of all included tests when comparing von Mises distributions of differing concentrations using 
different sample sizes: 10 and 10 (A), 20 and 20 (B), 50 and 50 (C), 20 and 30 (D) and 10 and 50 (E). The first 
distribution is fixed at κ = 0, the second increases from 0 towards 8.
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Discussion
Our extensive power analyses of tests for analyzing if two circular distributions are the same show that many 
of the tests suffer from elevated Type-I error rates, at least in specific situations. To minimize the risk of getting 
false positive results we recommend not using any of these tests. Of the eight remaining tests, only one test, 
the Watson’s U2 test, offers good power in all of the tested situations. An interesting alternative revealed by our 
analysis, however, is the MANOVA approach, which is also very powerful, and furthermore allows the addition 
of covariates.

To our knowledge, the MANOVA approach, as used in this analysis, has only been used once in similar fash-
ion in order to test the effect of environmental factors on toad orientation22. Nobody seems to have used it for 
distribution comparisons. This is surprising, as the underlying ideas (transforming an angle in two linear com-
ponents using trigonometric functions) and the MANOVA calculation itself are not at all new to statistics. Given 
the potential advantages of such an approach in terms of adding covariates and its robust and powerful behavior 
we would recommend the broader uptake of this test in circular statistics when it comes to group comparisons.

Some of the tests that we did not evaluate further might be very powerful for a certain set of situations, 
where they maintain expected Type-I error rates. However, such utilization of statistical tests can easily lead to 
false positive results and in general might be quite delicate to handle for the experimenter. They would have to 

Figure 4.   Power of all included tests when comparing von Mises distributions (kappa for both = 2) of differing 
directions using different sample sizes: 10 and 10 (A), 20 and 20 (B), 50 and 50 (C), 20 and 30 (D) and 10 and 50 
(E). The first distribution is fixed at 0°, the second increases from 0° towards 180.

Table 2.   Ranking of tests based on the power comparisons for the main scenarios encountered in potential 
data sets (using different distributions: unimodal, axial, asymmetrical bimodal, symmetrical trimodal, 
asymmetrical trimodal), in cases were only one test performed acceptable the others ranks were left blank (see 
Table 1 for abbreviations).

Scenario Unimodal Axial Asym. bim Sym. trim Asym. trim Different dist. types

Rank 1 Man WU2 Man WU2 WU2 Man

Rank 2 WU2 WU2 Man WU2

Rank 3 MWW MWW MWW MWW

Rank 4 WWe WWe WWe WWe
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inspect their distributions closely before testing. Such test selection on the basis of visual inspection of the data 
by itself could lead to increased Type-I error rates. In contrast to linear statistics where certain distributions can 
be expected by study design (e.g. random sampling of continuous variable would suggest a Gaussian distribu-
tion, or count data a Poisson distribution), this is not the case for circular statistics. In addition, it is important 
to note that permutation-based tests were not evaluated in this paper, but these could control Type-I error and 
may even outperform traditional tests (see Noguchi et al.23 for permutation-test performance for linear data).

It should also be added that a Bayesian circular GLM approach, which can also include random effects, was 
introduced by Cremers and Klugkist24. Comparison of the MANOVA approach with such a Bayesian alternative 
would certainly be a fruitful avenue of future research, to expand the circular statistics toolbox further.

The behavior of the concentration test is puzzling; in general, it has low power to detect differences, but 
appears to be highly sensitive to very specific differences. From inspection of the results of the ant example (see 
Fig. 6B) it is clear that the two distributions are not identical in terms of clustering, although the confidence 
intervals and mean vector lengths are similar. In the control group most animals are exactly at the same direction, 
while there is a more even spread in the experimental distribution. Therefore, the detected difference might be 
real, but it is unclear what feature of the data exactly this test detects.

In case of expected axial orientation for both distribution we recommend doubling the angles and reducing 
to modulo 360° for both distributions prior to applying any of the tests, in order to overcome the extreme loss 
of statistical power in such situations (e.g. Fig. S7). If this is not possible or attractive to the researcher, the best 
option is using the Watson’s U2 test.

In the current study, we only tested two distributions against each other, although six out of the eight tests 
included in the power analysis would also allow testing of multiple distributions. We surmise that the general 
power comparisons between those tests would show similar patterns also when considering more groups. Explor-
ing the performance of tests using multiple treatment groups would be another fruitful avenue of research, as 
would evaluation of paired data.

Figure 5.   Power of all included tests when comparing von Mises distributions of differing number of modes 
(unimodal and axially bimodal) using different sample sizes: 10 and 20 (A), 20 and 40 (B), 50 and 100 (C), 20 
and 60 (D) and 10 and 100 (E). The concentration (κ) of both increases from 0 to 8.
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Data availability
Data and code are available in the Supplementary Material.
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