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Abstract: We develop a structure-preserving formulation of the data-driven vector fitting
algorithm for modally damped mechanical systems. Using the structured pole-residue form
of the transfer function of modally damped second-order systems, we propose two potential,
structured extensions of the barycentric formula for system transfer functions. Integrating these
new forms within the classical vector fitting algorithm leads to the formulation of two new
algorithms. These allow the computation of modally damped mechanical systems from data in
a least-squares fashion, where the learned model is guaranteed to have the desired structure.
We test the proposed algorithms on two benchmark models.
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1. INTRODUCTION

Data-driven reduced-order modeling (DD-ROM) is essen-
tial in constructing high-fidelity compact models to ap-
proximate the underlying physical phenomena when an ex-
plicit model, a state-space formulation with access to inter-
nal variables, is not available, yet abundant input/output
data are. Thus, DD-ROM circumvents the need to access
an exact description of the original model and is applicable
when traditional intrusive projection-based model reduc-
tion is not. As in the latter case, it is important that the
learned model inherits the physical meaning and structures
of the system that has generated the data. This is the
setup we are interested in here. Our goal is to develop a
data-driven structure-preserving modeling framework for
mechanical systems described by second-order dynamics.

Data in our setting corresponds to transfer function (fre-
quency domain) samples of the underlying mechanical
system. Let H(s) denote this transfer function and let
ξi denote the sampling frequencies (points). Thus, we
assume access to the data (measurements) hi = H(ξi),
for i = 1, 2, . . . , ℓ. The goal of DD-ROM in this setting
is to construct a reduced transfer function (a low-order

rational function) Ĥ(s) such that Ĥ(ξi) ≈ hi = H(ξi) in
an appropriate measure. We will call this unstructured (or
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first-order fitting) in this paper since the only requirement

in this case is that Ĥ(s) is a rational function and thus
corresponds to a transfer function with a first-order state-
space form. In this setting, the barycentric rational form
of the approximant plays a crucial role; see Berrut and
Trefethen (2004). The Loewner framework from Antoulas
and Anderson (1986); Mayo and Antoulas (2007) that
enforces interpolation of the data, the Vector Fitting (VF)
algorithm from Gustavsen and Semlyen (1999) that min-
imizes a least-squares distance, and the AAA algorithm
from Nakatsukasa et al. (2018) that combines interpolation
and least squares are just three of the many techniques for
rational data fitting. We refer the reader to (Rodriguez,
2020, Sec. 2.1) for further references.

Second-order systems are an important class of structured
dynamical systems used to describe, for example, the
dynamics of mechanical systems, and in particular, their
vibrational response. Since the underlying second-order
structure corresponds to important physical properties,
retaining this structure is vital so that the learned model
is physically meaningful. Therefore, given the frequency
response samples of such systems, our goal is to construct
a structure-preserving DD-ROM, in the sense that the
learned model can be interpreted as the transfer function
of a second-order (mechanical) system. Note that not every
rational function can be written as the transfer function
of a second-order system (although the reverse is true).
There have been some recent works on constructing data-
driven second-order models in the interpolatory Loewner
framework; see Schulze et al. (2018); Benner et al. (2020).
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an appropriate measure. We will call this unstructured (or

⋆ Gosea and Werner, while he was at Max Planck Institute Magde-
burg, have been supported in parts by the German Research Foun-
dation (DFG) Research Training Group 2297 “MathCoRe”, Magde-
burg. Gugercin was supported in parts by the National Science
Foundation under Grant No. DMS-1923221.

first-order fitting) in this paper since the only requirement
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in this case is that Ĥ(s) is a rational function and thus
corresponds to a transfer function with a first-order state-
space form. In this setting, the barycentric rational form
of the approximant plays a crucial role; see Berrut and
Trefethen (2004). The Loewner framework from Antoulas
and Anderson (1986); Mayo and Antoulas (2007) that
enforces interpolation of the data, the Vector Fitting (VF)
algorithm from Gustavsen and Semlyen (1999) that min-
imizes a least-squares distance, and the AAA algorithm
from Nakatsukasa et al. (2018) that combines interpolation
and least squares are just three of the many techniques for
rational data fitting. We refer the reader to (Rodriguez,
2020, Sec. 2.1) for further references.

Second-order systems are an important class of structured
dynamical systems used to describe, for example, the
dynamics of mechanical systems, and in particular, their
vibrational response. Since the underlying second-order
structure corresponds to important physical properties,
retaining this structure is vital so that the learned model
is physically meaningful. Therefore, given the frequency
response samples of such systems, our goal is to construct
a structure-preserving DD-ROM, in the sense that the
learned model can be interpreted as the transfer function
of a second-order (mechanical) system. Note that not every
rational function can be written as the transfer function
of a second-order system (although the reverse is true).
There have been some recent works on constructing data-
driven second-order models in the interpolatory Loewner
framework; see Schulze et al. (2018); Benner et al. (2020).

Structured vector fitting framework for
mechanical systems ⋆

Steffen W. R. Werner ∗ Ion Victor Gosea ∗∗

Serkan Gugercin ∗∗∗

∗ Courant Institute of Mathematical Sciences, New York University,
New York, NY 10012, USA. (e-mail: steffen.werner@nyu.edu)

∗∗ Max Planck Institute for Dynamics of Complex Technical Systems,
Sandtorstr. 1, 39106 Magdeburg, Germany.
(e-mail: gosea@mpi-magdeburg.mpg.de)

∗∗∗ Department of Mathematics and Division of Computational
Modeling and Data Analytics, Academy of Data Science, Virginia
Tech, Blacksburg, VA 24061, USA. (e-mail: gugercin@vt.edu)

Abstract: We develop a structure-preserving formulation of the data-driven vector fitting
algorithm for modally damped mechanical systems. Using the structured pole-residue form
of the transfer function of modally damped second-order systems, we propose two potential,
structured extensions of the barycentric formula for system transfer functions. Integrating these
new forms within the classical vector fitting algorithm leads to the formulation of two new
algorithms. These allow the computation of modally damped mechanical systems from data in
a least-squares fashion, where the learned model is guaranteed to have the desired structure.
We test the proposed algorithms on two benchmark models.

Keywords: data-driven modeling, mechanical systems, reduced-order modeling, vector fitting,
least-squares fit, barycentric forms

1. INTRODUCTION

Data-driven reduced-order modeling (DD-ROM) is essen-
tial in constructing high-fidelity compact models to ap-
proximate the underlying physical phenomena when an ex-
plicit model, a state-space formulation with access to inter-
nal variables, is not available, yet abundant input/output
data are. Thus, DD-ROM circumvents the need to access
an exact description of the original model and is applicable
when traditional intrusive projection-based model reduc-
tion is not. As in the latter case, it is important that the
learned model inherits the physical meaning and structures
of the system that has generated the data. This is the
setup we are interested in here. Our goal is to develop a
data-driven structure-preserving modeling framework for
mechanical systems described by second-order dynamics.

Data in our setting corresponds to transfer function (fre-
quency domain) samples of the underlying mechanical
system. Let H(s) denote this transfer function and let
ξi denote the sampling frequencies (points). Thus, we
assume access to the data (measurements) hi = H(ξi),
for i = 1, 2, . . . , ℓ. The goal of DD-ROM in this setting
is to construct a reduced transfer function (a low-order
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There is however a larger variety of projection-based
structure-preserving model reduction methods for second-
order systems. We refer the reader to Saak et al. (2019);
Werner (2021) and the references therein for details on
the projection-based approaches that are not explicitly
considered here.

In this paper, we focus on structure-preserving second-
order DD-ROM using the least-squares measure. More
specifically, we enforce modal-damping structure in the
learned model. We achieve this goal by extending the
VF algorithm to the structured setting. Up to now, VF
has been developed to produce unstructured rational ap-
proximants. We revise the barycentric formula behind the
VF approximant such that upon convergence the learned
model has the desired second-order structure. This new
formulation of the barycentric form leads to a sequence of
linear least-squares problems whose structure also inherit
the underlying second-order dynamics.

The rest of the paper is organized as follows: After provid-
ing an overview of the classical VF approach and modally
damped second-order systems in Section 2, we develop the
modified barycentric forms and the resulting structure-
preserving VF approaches together with the corresponding
proposed numerical algorithms in Section 3. The proposed
methods are then tested in two benchmark examples in
Section 4, followed by the conclusions and future research
directions in Section 5.

2. BACKGROUND

In this section, we provide a brief overview of the classical
vector fitting algorithm and summarize the key structural
features of the special class of mechanical systems under
consideration.

2.1 Classical vector fitting approach

Assume that one has access to the samples of the trans-
fer function of an underlying single-input/single-output
(SISO) dynamical system to be modeled, H(s), at the
sampling points (frequencies) ξ1, ξ2, . . . , ξℓ ∈ C. Given the
data {H(ξi)}ℓi=1, the goal is to construct (learn) a degree-

r scalar rational function H(s) to solve the nonlinear
rational least-squares (LS) problem

minH
ℓ

i=1

| H(ξi)−H(ξi)|2. (1)

Let H(s) = n(s)
d(s) where n(s) and d(s) are, respectively,

degree-(r − 1) and degree-r polynomials in s. In other
words, H(s) is parametrized by its denominator and nu-

merator coefficients. Inserting this form of H(s) into (1),
one can rewrite the nonlinear LS error to minimize as

ℓ
i=1

| H(ξi)−H(ξi)|2 =

ℓ
i=1

1

|d(ξi)|2
|n(ξi)− d(ξi)H(ξi)|2.

The nonlinearity results from the dependence of the error
on d(s). To solve this nonlinear LS problem, starting with

an initial guess of H(0)(s) = d(0)(s)
n(0)(s)

, Sanathanan and

Koerner (1963) proposed an iterative scheme where in the
k-th step the error term (1) is replaced by

ℓ
i=1

| H(k)(ξi)−H(ξi)|2 =

ℓ
i=1

1

|d(k−1)(ξi)|2
|n(k)(ξi)− d(k)(ξi)H(ξi)|2.

(2)

Note that the new error term (2) is now linear in the
variables n(k)(s) and d(k)(s). Therefore, the SK iteration
in Sanathanan and Koerner (1963) converts the origi-
nal nonlinear LS problem (1) into solving a sequence of
weighted linear LS problems (2).

There are various equivalent forms to represent the ra-

tional function H(s). One can work with numerator and
denominator coefficients as unknowns, or the poles and
residues, for example. A numerically efficient formulation
is the so-called barycentric representation; see Berrut and

Trefethen (2004). Let H(k)(s) denote the iterate in the k-

th step of the SK iteration as above. Also let λ
(k)
1 , . . . , λ

(k)
r

be mutually distinct points. Then, H(k)(s) can be written
in the barycentric form as

H(k)(s) =
n(k)(s)

d(k)(s)
=

r
j=1

ϕ
(k)
j

s−λ
(k)
j

1 +
r

j=1

φ
(k)
j

s−λ
(k)
j

, (3)

where {ϕ(k)
j }rj=1 and {φ(k)

j }rj=1 are the barycentric weights.

Note that the λ
(k)
j ’s are not the poles of H(s). We refer

the reader to, e.g., Drmač et al. (2015b) to switch between
the pole-residue form and the barycentric form.

Now inserting n(k)(s) and d(k)(s) from (3) into (2), in
the k-th step of the SK iteration, one needs to solve the
weighted linear LS problem

min
x(k)

∥∆(k)(A(k)x(k) − h)∥22, (4)

where

∆(k) = diag


1

|d(k)(ξ1)|
, . . . ,

1

|d(k)(ξℓ)|


, h =



H(ξ1)

...
H(ξℓ)


 , (5)

A(k) =




1

ξ1 − λ
(k)
1

· · ·
1

ξ1 − λ
(k)
r

−H(ξ1)

ξ1 − λ
(k)
1

· · ·
−H(ξ1)

ξ1 − λ
(k)
r
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...

...
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1

ξℓ − λ
(k)
1

· · ·
1

ξℓ − λ
(k)
r

−H(ξℓ)

ξℓ − λ
(k)
1

· · ·
−H(ξℓ)

ξℓ − λ
(k)
r




,

(6)

for the solution vector

x(k) =

ϕ
(k)
1 · · · ϕ(k)

r φ
(k)
1 · · · φ(k)

r

T
,

which forms H(k)(s) at the k-th step. In addition to in-
corporating the barycentric form into the SK iteration,
Gustavsen and Semlyen (1999) have also observed that the

only restrictions on {λ(k)
j }rj=1 are to be distinct and they

can be updated at every step. This is precisely what Gus-
tavsen and Semlyen (1999) have proposed, leading to the

Vector Fitting (VF) algorithm. VF updates {λ(k)
j }rj=1 as

the roots of denominator d(k)(s). Making again use of the
barycentric representation (3), these roots are actually the

eigenvalues of A(k) − G(k) C(k), where
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There is however a larger variety of projection-based
structure-preserving model reduction methods for second-
order systems. We refer the reader to Saak et al. (2019);
Werner (2021) and the references therein for details on
the projection-based approaches that are not explicitly
considered here.

In this paper, we focus on structure-preserving second-
order DD-ROM using the least-squares measure. More
specifically, we enforce modal-damping structure in the
learned model. We achieve this goal by extending the
VF algorithm to the structured setting. Up to now, VF
has been developed to produce unstructured rational ap-
proximants. We revise the barycentric formula behind the
VF approximant such that upon convergence the learned
model has the desired second-order structure. This new
formulation of the barycentric form leads to a sequence of
linear least-squares problems whose structure also inherit
the underlying second-order dynamics.

The rest of the paper is organized as follows: After provid-
ing an overview of the classical VF approach and modally
damped second-order systems in Section 2, we develop the
modified barycentric forms and the resulting structure-
preserving VF approaches together with the corresponding
proposed numerical algorithms in Section 3. The proposed
methods are then tested in two benchmark examples in
Section 4, followed by the conclusions and future research
directions in Section 5.

2. BACKGROUND

In this section, we provide a brief overview of the classical
vector fitting algorithm and summarize the key structural
features of the special class of mechanical systems under
consideration.

2.1 Classical vector fitting approach

Assume that one has access to the samples of the trans-
fer function of an underlying single-input/single-output
(SISO) dynamical system to be modeled, H(s), at the
sampling points (frequencies) ξ1, ξ2, . . . , ξℓ ∈ C. Given the
data {H(ξi)}ℓi=1, the goal is to construct (learn) a degree-

r scalar rational function H(s) to solve the nonlinear
rational least-squares (LS) problem

minH
ℓ

i=1

| H(ξi)−H(ξi)|2. (1)

Let H(s) = n(s)
d(s) where n(s) and d(s) are, respectively,

degree-(r − 1) and degree-r polynomials in s. In other
words, H(s) is parametrized by its denominator and nu-

merator coefficients. Inserting this form of H(s) into (1),
one can rewrite the nonlinear LS error to minimize as

ℓ
i=1

| H(ξi)−H(ξi)|2 =

ℓ
i=1

1

|d(ξi)|2
|n(ξi)− d(ξi)H(ξi)|2.

The nonlinearity results from the dependence of the error
on d(s). To solve this nonlinear LS problem, starting with

an initial guess of H(0)(s) = d(0)(s)
n(0)(s)

, Sanathanan and

Koerner (1963) proposed an iterative scheme where in the
k-th step the error term (1) is replaced by
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|n(k)(ξi)− d(k)(ξi)H(ξi)|2.
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Note that the new error term (2) is now linear in the
variables n(k)(s) and d(k)(s). Therefore, the SK iteration
in Sanathanan and Koerner (1963) converts the origi-
nal nonlinear LS problem (1) into solving a sequence of
weighted linear LS problems (2).

There are various equivalent forms to represent the ra-

tional function H(s). One can work with numerator and
denominator coefficients as unknowns, or the poles and
residues, for example. A numerically efficient formulation
is the so-called barycentric representation; see Berrut and

Trefethen (2004). Let H(k)(s) denote the iterate in the k-

th step of the SK iteration as above. Also let λ
(k)
1 , . . . , λ

(k)
r

be mutually distinct points. Then, H(k)(s) can be written
in the barycentric form as

H(k)(s) =
n(k)(s)

d(k)(s)
=

r
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ϕ
(k)
j

s−λ
(k)
j

1 +
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j=1

φ
(k)
j

s−λ
(k)
j

, (3)

where {ϕ(k)
j }rj=1 and {φ(k)

j }rj=1 are the barycentric weights.

Note that the λ
(k)
j ’s are not the poles of H(s). We refer

the reader to, e.g., Drmač et al. (2015b) to switch between
the pole-residue form and the barycentric form.

Now inserting n(k)(s) and d(k)(s) from (3) into (2), in
the k-th step of the SK iteration, one needs to solve the
weighted linear LS problem

min
x(k)

∥∆(k)(A(k)x(k) − h)∥22, (4)

where

∆(k) = diag


1

|d(k)(ξ1)|
, . . . ,

1

|d(k)(ξℓ)|


, h =



H(ξ1)

...
H(ξℓ)


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


1
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(k)
1
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1

ξ1 − λ
(k)
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−H(ξ1)

ξ1 − λ
(k)
1

· · ·
−H(ξ1)
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(k)
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1
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(k)
1

· · ·
1

ξℓ − λ
(k)
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−H(ξℓ)
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(k)
1

· · ·
−H(ξℓ)
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(k)
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for the solution vector

x(k) =

ϕ
(k)
1 · · · ϕ(k)

r φ
(k)
1 · · · φ(k)

r

T
,

which forms H(k)(s) at the k-th step. In addition to in-
corporating the barycentric form into the SK iteration,
Gustavsen and Semlyen (1999) have also observed that the

only restrictions on {λ(k)
j }rj=1 are to be distinct and they

can be updated at every step. This is precisely what Gus-
tavsen and Semlyen (1999) have proposed, leading to the

Vector Fitting (VF) algorithm. VF updates {λ(k)
j }rj=1 as

the roots of denominator d(k)(s). Making again use of the
barycentric representation (3), these roots are actually the

eigenvalues of A(k) − G(k) C(k), where

Algorithm 1 (Unstructured) Vector Fitting (VF)

Input: Vector h of data samples (5), initial guess for {λ(1)
j }rj=1.

Output: Learned ROM Ĥ(s) = Ĉ(sIr − Â)−1B̂.

1: Initialize ∆(1) = Iℓ and k = 1.
2: while not converged do
3: Construct the coefficient matrix A(k) in (6).
4: Solve the weighted linear least-squares problem (4).

5: Update the expansion points {λ(k+1)
j }rj=1 to be the eigenvalues

of Â(k) − Ĝ(k)Ĉ(k) using (7) and (8).
6: Update the weighting matrix ∆(k+1) by (5).
7: Increment k ← k + 1.
8: end while
9: Set the final ROM matrices to be Â = diag(λ

(k)
1 , . . . , λ

(k)
r ),

B̂ =
[
ϕ
(k)
1 . . . ϕ

(k)
r

]T
and Ĉ =

[
1 . . . 1

]T
.

Â(k) = diag(λ
(k)
1 , . . . , λ(k)

r ), (7)

Ĝ(k) =
[
φ
(k)
1 . . . φ(k)

r

]T
and Ĉ(k) = [1 . . . 1]

T
. (8)

If the algorithm converges, due to the {λ(k)
j }rj=1 updating

strategy, d(k)(s) → 1 and thus the final approximation is
obtained in the pole-residue form with the denominator
in (3) being 1. The resulting method is summarized in
Algorithm 1, and we refer the reader to Gustavsen and
Semlyen (1999), (Grivet-Talocia and Gustavsen, 2015,
Chap. 7) and Drmač et al. (2015a) for further details.

2.2 Modally damped second-order systems

Next, we take a look at the pole-residue formulation of
the structured system class considered here, namely the
modally damped second-order systems. As in the previous
section, for simplicity we restrict the analysis to the SISO
case. Assume we have a second-order system of the form

Mq̈(t) + Eq̇(t) +Kq(t) = Buu(t),

y(t) = Cpq(t),

with M,E,K ∈ Rn×n, Bu ∈ Rn, CT
p ∈ Rn, and modal

damping EM−1K = KM−1E as in Beattie and Benner
(2014). Note here that for the mechanical system case
one additionally has M = MT > 0, E = ET ≥ 0,
and K = KT > 0. This assumption is not necessary
in general and instead we only assume that the pencil
λM − K is diagonalizable, since with modal damping all
three system matrices are simultaneously diagonalizable.
First, we consider the generalized eigenvalue problems

KX = MXΩ2, KTY = MTY Ω2,

where the eigenvector matrices X and Y are scaled such
that

Y TMX = Ω−1, Y TKX = Ω,

with Ω = diag(ω1, . . . , ωn). Due to modal damping, the
damping matrix can also be diagonalized such that

Y TEX = 2Ψ,

where Ψ = diag(ψ1, . . . , ψn) are the damping ratios of the
system. Then, the transfer function H(s) satisfies

H(s) = Cp(s
2M + sE +K)−1Bu

= CpX(s2Ω−1 + 2sΨ+Ω)−1Y TBu

=

n∑
j=1

ωjϕ
±
j

s2 + 2ψjωjs+ ω2
j

=

n∑
j=1

ωjϕ
±
j

(s− λ+
j )(s− λ−

j )
, (9)

where the pairwise poles of the system are given by

λ±
j = −ωjψj ± ωj

√
ψ2
j − 1. (10)

Since every second-order system can also be written in its
first-order form, we can write H(s) in the generic pole-
residue formulation as

H(s) =

2n∑
j=1

ϕj

s− λj
=

n∑
j=1

ϕ+
j

s− λ+
j

+

n∑
j=1

ϕ−
j

s− λ−
j

. (11)

Note that modal damping and the second-order structure
enforce additional properties in the generic pole-residue
form, which means that only for the underlying second-
order systems those two formulations, i.e., (9) and (11),
are equivalent. An important advantage of (9) is the
enforcement of the underlying system structure.

3. SECOND-ORDER VECTOR FITTING
ALGORITHMS

The classical VF algorithm as outlined in Section 2.1
produces an unstructured rational LS fit. In this section,
we will develop a structured version of VF to model
second-order modally damped system. We will achieve this
goal by employing the special pole-residue formulation (9)
in VF and by modifying the corresponding barycentric
form appearing in VF. We will propose two formulations
for the revised barycentric form and analyze both forms.
At the end of the newly developed structured VF iteration,
the learned model will be guaranteed to have the modally
damped form.

3.1 Partially structured barycentric form

In our first approach, we develop a second-order VF
formulation for modally damped systems using a partially
structured barycentric formulation. The method computes

a second-order system by enforcing Ĥ(k), the reduced-
order model at iteration step k, to have the transfer
function

Ĥ(k)(s) =

r∑
j=1

ω
(k)
j

ϕ
±,(k)
j

(s−λ
+,(k)
j

)(s−λ
−,(k)
j

)

1 +
r∑

j=1

φ
+,(k)
j

s−λ
+,(k)
j

+
r∑

j=1

φ
−,(k)
j

s−λ
−,(k)
j

, (12)

In other words, the form (12) replaces (3) in VF. The
motivation for the revised form (12) stems from the desired
modally damped structure. Recall that as classical VF con-
verges, the denominator converges to 1 and the numerator
yields the transfer function of the final reduced model.
In the structured form (12), we keep the denominator as
before in the classical pole-residue form (11). However,
the numerator is replaced by the structured pole-residue
form (9). Therefore, upon convergence, the final reduced
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A
(k)
so1 =




ω
(k)
1

(ξ1 − λ
+,(k)
1 )(ξ1 − λ

−,(k)
1 )

· · ·
ω
(k)
r

(ξ1 − λ
+,(k)
r )(ξ1 − λ

−,(k)
r )

−H(ξ1)

(ξ1 − λ
+,(k)
1 )

−H(ξ1)

(ξ1 − λ
−,(k)
1 )

· · ·
−H(ξ1)

(ξ1 − λ
+,(k)
1 )

−H(ξ1)

(ξ1 − λ
−,(k)
r )

...
...

...
...

...
...

ω
(k)
1

(ξℓ − λ
+,(k)
1 )(ξℓ − λ

−,(k)
1 )

· · ·
ω
(k)
r

(ξℓ − λ
+,(k)
r )(ξℓ − λ

−,(k)
r )

−H(ξℓ)

(ξℓ − λ
+,(k)
1 )

−H(ξℓ)

(ξℓ − λ
−,(k)
1 )

· · ·
−H(ξℓ)

(ξℓ − λ
+,(k)
r )

−H(ξℓ)

(ξℓ − λ
−,(k)
r )




(13)

model, given by the numerator in (12), is guaranteed to
have the desired form.

We now discuss the structure of the resulting second-
order VF algorithm. As in Section 2.1, using the relaxation
step (2) we solve a sequence of weighted linear LS problems
of the form

min
x̃(k)

∥∆(k)(A
(k)
so1x̃

(k) − h)∥22 (14)

for the solution vector

x̃(k) =

ϕ
±,(k)
1 · · · ϕ

±,(k)
r φ

+,(k)
1 φ

−,(k)
1 · · · φ

+,(k)
r φ

−,(k)
r

T
,

which determines H(k)(s), where h and ∆(k) are as in (5),

and the new coefficient matrix A
(k)
so1 as in (13). The new

coefficient matrix A
(k)
so1 encodes the underlying second-

order structure. Consequently, we replace Steps 3 and 4
in Algorithm 1 with (13) and (14) in the proposed second-
order VF iteration. Using (10), the stiffness and damping
coefficients of the pole pairs are given by

ω
(k)
j =


λ
+,(k)
j λ

−,(k)
j ,

ψ
(k)
j = − 1

2ω
(k)
j

(λ
+,(k)
j + λ

−,(k)
j ),

for j = 1, . . . , r. This formulation is needed in constructing

A
(k)
so1 in (13), as well as to set up the final data-driven

second-order model H(s) = Cp(s
2M+s E+ K)−1 Bu where

M = diag


1

ω
(k)
1

, . . . ,
1

ω
(k)
r


,

E = diag(2ψ
(k)
1 , . . . , 2ψ(k)

r ),

K = diag(ω
(k)
1 , . . . , ω(k)

r ),

Bu =

ϕ
±,(k)
1 . . . ϕ±,(k)

r

T
and Cp = [1 . . . 1]

T
.

(15)

A brief sketch of the resulting second-order VF algorithm
is given in Algorithm 2.

Remark 1. (Splitting of expansion points).
Another major difference to the classical VF is the split-

ting of the expansion points into two groups {λ+,(k)
j }rj=1

and {λ−,(k)
j }rj=1, related to each other by (10). For me-

chanical systems with real realizations, the splitting of
complex points in conjugate pairs with positive imaginary

parts (λ
+,(k)
j ) and negative imaginary parts (λ

−,(k)
j ) comes

naturally. In the case of real expansion points, a physics-
inspired splitting is with respect to bifurcation, i.e., with
respect to a centered point on the real axis at which the
real points would collide and split into complex conjugate
pairs. For simplicity, we assume the real expansion points
lie in the left open half-plane. Then, we sort the points

such that those with largest magnitude (λ
−,(k)
j ) are paired

with those with smallest magnitude (λ
+,(k)
j ).

Algorithm 2 Structured Vector Fitting – Version 1

Input: Vector h of data samples (5), initial guess for {λ+,(1)
j }rj=1

and {λ−,(1)
j }rj=1.

Output: Learned ROM H(s) = Cp(s2 M + sE + K)−1 Bu.

1: Initialize ∆(1) = Iℓ and k = 1.
2: while not converged do

3: Construct the coefficient matrix A
(k)
so1 in (13).

4: Solve the weighted linear least-squares problem (14).

5: Update the expansion points {λ±,(k+1)
j }rj=1 to be the

eigenvalues of A(k) − G(k) C(k) using (7) and (8).
6: Update the weighting matrix ∆(k+1) by (5).
7: Increment k ← k + 1.
8: end while
9: Set the final ROM matrices using (15).

3.2 Fully structured barycentric form

A second revised barycentric form for H(k) is obtained by
replacing both the numerator and denominator by second-

order-type pole-residue forms (9), i.e., we write H(k) as

H(k)(s) =

r
j=1

ω
(k)
j

ϕ
±,(k)
j

(s−λ
+,(k)
j

)(s−λ
−,(k)
j

)

1 +
r

j=1

ω
(k)
j

φ
±,(k)
j

(s−λ
+,(k)
j

)(s−λ
−,(k)
j

)

. (16)

As in Section 3.1, this new barycentric form changes the
form of the weighted linear LS problem in the resulting
structured VF algorithm. Using (16), we obtain

min
x̃(k)

∥∆(k)(A
(k)
so2x̃

(k) − h)∥22, (17)

where the least-squares matrix A
(k)
so2 is given in (20), and

the weighting matrix and data samples are as in (5). Then
the solution vector

x̃(k) =

ϕ
±,(k)
1 · · · ϕ±,(k)

r φ
±,(k)
1 · · · φ±,(k)

r

T

yields the resulting second-order system as in (15). The
splitting of the expansion points also works as in Remark 1.
However, the updating step of the expansion points (Algo-
rithm 2 Step 5) changes. The denominator of (16) corre-
sponds to a second-order system rather then a first-order
system. While it would be possible to also rewrite this
second-order system in first-order form, the zeros of the
denominator are actually given by the eigenvalues of the
quadratic matrix pencil

λ2M (k) + λ E(k) +
 K(k) + G(k)

u
C(k)
p


, (18)

where M (k), E(k), K(k) and C(k)
p are constructed as their

final learned counterparts in (15), and

G(k) =

φ
±,(k)
1 . . . φ±,(k)

r

T
. (19)

A brief sketch of the resulting method is given in Algo-
rithm 3.
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(13)

model, given by the numerator in (12), is guaranteed to
have the desired form.

We now discuss the structure of the resulting second-
order VF algorithm. As in Section 2.1, using the relaxation
step (2) we solve a sequence of weighted linear LS problems
of the form

min
x̃(k)

∥∆(k)(A
(k)
so1x̃

(k) − h)∥22 (14)

for the solution vector

x̃(k) =

ϕ
±,(k)
1 · · · ϕ

±,(k)
r φ

+,(k)
1 φ

−,(k)
1 · · · φ

+,(k)
r φ

−,(k)
r

T
,

which determines H(k)(s), where h and ∆(k) are as in (5),

and the new coefficient matrix A
(k)
so1 as in (13). The new

coefficient matrix A
(k)
so1 encodes the underlying second-

order structure. Consequently, we replace Steps 3 and 4
in Algorithm 1 with (13) and (14) in the proposed second-
order VF iteration. Using (10), the stiffness and damping
coefficients of the pole pairs are given by

ω
(k)
j =


λ
+,(k)
j λ

−,(k)
j ,

ψ
(k)
j = − 1

2ω
(k)
j

(λ
+,(k)
j + λ

−,(k)
j ),

for j = 1, . . . , r. This formulation is needed in constructing

A
(k)
so1 in (13), as well as to set up the final data-driven

second-order model H(s) = Cp(s
2M+s E+ K)−1 Bu where

M = diag


1

ω
(k)
1

, . . . ,
1

ω
(k)
r


,

E = diag(2ψ
(k)
1 , . . . , 2ψ(k)

r ),

K = diag(ω
(k)
1 , . . . , ω(k)

r ),

Bu =

ϕ
±,(k)
1 . . . ϕ±,(k)

r

T
and Cp = [1 . . . 1]

T
.

(15)

A brief sketch of the resulting second-order VF algorithm
is given in Algorithm 2.

Remark 1. (Splitting of expansion points).
Another major difference to the classical VF is the split-

ting of the expansion points into two groups {λ+,(k)
j }rj=1

and {λ−,(k)
j }rj=1, related to each other by (10). For me-

chanical systems with real realizations, the splitting of
complex points in conjugate pairs with positive imaginary

parts (λ
+,(k)
j ) and negative imaginary parts (λ

−,(k)
j ) comes

naturally. In the case of real expansion points, a physics-
inspired splitting is with respect to bifurcation, i.e., with
respect to a centered point on the real axis at which the
real points would collide and split into complex conjugate
pairs. For simplicity, we assume the real expansion points
lie in the left open half-plane. Then, we sort the points

such that those with largest magnitude (λ
−,(k)
j ) are paired

with those with smallest magnitude (λ
+,(k)
j ).

Algorithm 2 Structured Vector Fitting – Version 1

Input: Vector h of data samples (5), initial guess for {λ+,(1)
j }rj=1

and {λ−,(1)
j }rj=1.

Output: Learned ROM H(s) = Cp(s2 M + sE + K)−1 Bu.

1: Initialize ∆(1) = Iℓ and k = 1.
2: while not converged do

3: Construct the coefficient matrix A
(k)
so1 in (13).

4: Solve the weighted linear least-squares problem (14).

5: Update the expansion points {λ±,(k+1)
j }rj=1 to be the

eigenvalues of A(k) − G(k) C(k) using (7) and (8).
6: Update the weighting matrix ∆(k+1) by (5).
7: Increment k ← k + 1.
8: end while
9: Set the final ROM matrices using (15).

3.2 Fully structured barycentric form

A second revised barycentric form for H(k) is obtained by
replacing both the numerator and denominator by second-

order-type pole-residue forms (9), i.e., we write H(k) as

H(k)(s) =

r
j=1

ω
(k)
j

ϕ
±,(k)
j

(s−λ
+,(k)
j

)(s−λ
−,(k)
j

)

1 +
r

j=1

ω
(k)
j

φ
±,(k)
j

(s−λ
+,(k)
j

)(s−λ
−,(k)
j

)

. (16)

As in Section 3.1, this new barycentric form changes the
form of the weighted linear LS problem in the resulting
structured VF algorithm. Using (16), we obtain

min
x̃(k)

∥∆(k)(A
(k)
so2x̃

(k) − h)∥22, (17)

where the least-squares matrix A
(k)
so2 is given in (20), and

the weighting matrix and data samples are as in (5). Then
the solution vector

x̃(k) =

ϕ
±,(k)
1 · · · ϕ±,(k)

r φ
±,(k)
1 · · · φ±,(k)

r

T

yields the resulting second-order system as in (15). The
splitting of the expansion points also works as in Remark 1.
However, the updating step of the expansion points (Algo-
rithm 2 Step 5) changes. The denominator of (16) corre-
sponds to a second-order system rather then a first-order
system. While it would be possible to also rewrite this
second-order system in first-order form, the zeros of the
denominator are actually given by the eigenvalues of the
quadratic matrix pencil

λ2M (k) + λ E(k) +
 K(k) + G(k)

u
C(k)
p


, (18)

where M (k), E(k), K(k) and C(k)
p are constructed as their

final learned counterparts in (15), and

G(k) =

φ
±,(k)
1 . . . φ±,(k)

r

T
. (19)

A brief sketch of the resulting method is given in Algo-
rithm 3.

A
(k)
so2 =




ω
(k)
1

(ξ1 − λ
+,(k)
1 )(ξ1 − λ

−,(k)
1 )

· · ·
ω
(k)
r

(ξ1 − λ
+,(k)
r )(ξ1 − λ

−,(k)
r )

−ω
(k)
1 H(ξ1)

(ξ1 − λ
+,(k)
1 )(ξ1 − λ

−,(k)
1 )

· · ·
−ω

(k)
r H(ξ1)

(ξ1 − λ
+,(k)
r )(ξ1 − λ

−,(k)
r )

...
...

...
...

ω
(k)
1

(ξℓ − λ
+,(k)
1 )(ξℓ − λ

−,(k)
1 )

· · ·
ω
(k)
r

(ξℓ − λ
+,(k)
r )(ξℓ − λ

−,(k)
r )

−ω
(k)
1 H(ξℓ)

(ξℓ − λ
+,(k)
1 )(ξℓ − λ

−,(k)
1 )

· · ·
−ω

(k)
r H(ξ1)

(ξℓ − λ
+,(k)
r )(ξℓ − λ

−,(k)
r )




(20)

Algorithm 3 Structured Vector Fitting – Version 2

Input: Vector h of data samples (5), initial guess for {λ+,(1)
j }rj=1

and {λ−,(1)
j }rj=1.

Output: Learned ROM H(s) = Cp(s2 M + sE + K)−1 Bu.

1: Initialize ∆(1) = Iℓ and k = 1.
2: while not converged do

3: Construct the coefficient matrix A
(k)
sol2

in (20).
4: Solve the weighted linear least-squares problem (17).

5: Update the expansion points {λ±,(k+1)
j }rj=1 to be the

eigenvalues of (18) using (15) and (19).
6: Update the weighting matrix ∆(k+1) by (5).
7: Increment k ← k + 1.
8: end while
9: Set the final ROM matrices using (15).

We note that realness of the resulting state-space realiza-
tion can be preserved similar to the classical VF; see Gus-
tavsen and Semlyen (1999). Indeed, this task becomes
simpler in case of Algorithm 3 due to the natural pairing
of complex conjugate expansion points; cf. Remark 1.

4. NUMERICAL EXAMPLES

We test the two proposed approaches on two benchmark
problems:

(i) the butterfly gyroscope example from the Oberwol-
fach Benchmark Collection (2004), and

(ii) the artificial fishtail model from Siebelts et al. (2019).

For simplicity, we consider here only single-input/single-
output versions of these examples. While the outputs of
the first model are summed together, only the second out-
put entry of the second model is used. In both examples,
we consider data sets with 1000 linearly equidistant sam-
pling points on the positive imaginary axis. For the but-
terfly gyroscope example, the points lie in [102, 106] rad/s,
while for the artificial fishtail model, the points are in
[0, 1 000] rad/s. Since the matrices of the original mechani-
cal systems are real-valued, the data samples are closed un-
der conjugation. This is done by additionally including the
complex conjugate counterparts of both the evaluations
and the sampling points into the data sets. Both proposed
structured VF algorithms from Section 3 are applied to
these two models. Thereby, we denote the approach from
Algorithm 2 using the partially structured barycentric
form by SOVF1 and the method in Algorithm 3 based on
the fully structured barycentric form by SOVF2.

The experiments reported here have been executed on a
machine equipped with an AMD Ryzen 5 5500U processor
running at 2.10GHz and with 16GB total main mem-
ory. The computer runs on Windows 10 Home version
20H2 (build 19042.1237) and for the experiments we use
MATLAB 9.9.0.1592791 (R2020b).
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Fig. 1. Results for the butterfly gyroscope data.

Code and data availability
The source code, authored by Steffen W. R. Werner, of the
implementations used to compute the presented results, the
used data and the computed results are available at

doi:10.5281/zenodo.5539944

under the BSD-2-Clause license.

4.1 Butterfly gyroscope example

First, we present the results for the butterfly gyroscope
model as shown in Figure 1. For the given data, we
have used the two proposed approaches to learn structure-
preserving models of order r = 8. While SOVF2 converges
up to numerical accuracy, this is not the case for SOVF1.
However, the denominator in SOVF1 converges reasonably
close to the value one. Consequently, we have simply
considered the mechanical system associated with the
rational function in the numerator of (12) and ignored
the denominator entry altogether.

As it can be easily observed in Figure 1a, SOVF1 accurately
approximates the given data over the full frequency range.
A minor exception is given by the right limit of the
frequency interval, where the transfer function of SOVF1
slightly deviates from the data. On the other hand, SOVF2
lacks this good approximation behavior as it is illustrated
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Fig. 2. Results for the artificial fishtail data.

in Figure 1b. The accuracy of this approach is at least
two orders of magnitude worse than that of SOVF1. Still,
SOVF2 yields a reasonable approximation for the low
frequency range. We have observed that SOVF2 typically
introduces poles close to the imaginary axis, and has better
approximation quality in the large magnitude range.

4.2 Artificial fishtail example

We now present results for the artificial fishtail example,
as shown in Figure 2. We have used both approaches and
constructed structure-preserving learned models of order
r = 10. As in the first example presented in Section 4.1,
SOVF1 provides a high-fidelity approximation over the full
frequency interval and outperforms SOVF2. As shown in
Figure 2b, the SOVF2 approximation has a large mismatch
around 580 rad/s, where the relative approximation error
is the highest. As in the previous example, SOVF2 provides
an accurate approximation of the main dominant peak,
i.e., the one located around 100 rad/s. Further details
on the numerical results and convergence of the applied
methods can be found in the accompanying code package.

5. CONCLUSIONS

We have proposed two new approaches for data-driven
modeling of modally damped mechanical systems by devel-
oping structure-preserving vector fitting formulations. We
have revised the barycentric formula to represent struc-
tured transfer functions, and have shown that the struc-
ture of the original model is automatically preserved in the
reduced one. The two approaches have been applied to two
benchmark models and the preliminary results are promis-
ing. The method corresponding to the partially structured
transfer function formulation has been proven especially

accurate and reliable in both test cases. A more thorough
investigation is needed to explain the discrepancies in ac-
curacy encountered in the SOVF2 formulation. Extending
the analysis and numerical algorithms to MIMO problems
and employing the proposed structured barycentric forms
to develop a AAA-like framework are natural next steps.
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Nakatsukasa, Y., Sète, O., and Trefethen, L.N. (2018). The AAA
algorithm for rational approximation. SIAM J. Sci. Comput.,
40(3), A1494–A1522. doi:10.1137/16M1106122.

Oberwolfach Benchmark Collection (2004). Butterfly gyroscope.
hosted at MORwiki – Model Order Reduction Wiki. URL
http://modelreduction.org/index.php/Butterfly Gyroscope.

Rodriguez, A.C. (2020). Approximation of Parametric Dy-
namical Systems. Ph.D. thesis, Virginia Polytechnic Insti-
tute and State University, Blacksburg, Virginia, USA. URL
http://hdl.handle.net/10919/99895.

Saak, J., Siebelts, D., and Werner, S.W.R. (2019). A comparison
of second-order model order reduction methods for an artifi-
cial fishtail. at-Automatisierungstechnik, 67(8), 648–667. doi:
10.1515/auto-2019-0027.

Sanathanan, C. and Koerner, J. (1963). Transfer function synthesis
as a ratio of two complex polynomials. IEEE Trans. Autom.
Control, 8(1), 56–58. doi:10.1109/TAC.1963.1105517.

Schulze, P., Unger, B., Beattie, C., and Gugercin, S. (2018). Data-
driven structured realization. Linear Algebra Appl., 537, 250–286.
doi:10.1016/j.laa.2017.09.030.

Siebelts, D., Kater, A., Meurer, T., and Andrej, J. (2019). Matrices
for an artificial fishtail. hosted at MORwiki – Model Order
Reduction Wiki. doi:10.5281/zenodo.2558728.

Werner, S.W.R. (2021). Structure-Preserving Model Reduc-
tion for Mechanical Systems. Dissertation, Otto-von-Guericke-
Universität, Magdeburg, Germany. doi:10.25673/38617.


