
ar
X

iv
:2

11
0.

03
65

4v
1

 [
cs

.F
L

]
 7

 O
ct

 2
02

1

THE COMPLEXITY OF BIDIRECTED REACHABILITY

IN VALENCE SYSTEMS

MOSES GANARDI, RUPAK MAJUMDAR, AND GEORG ZETZSCHE

Abstract. We study the complexity of bidirected reachability problems arising in many areas of program
analysis. We formulate the problem abstractly in terms of bidirected valence automata over graph monoids,

an algebraic framework that generalizes many models of automata with storage, including CFL-reachability,
interleaved Dyck reachability, vector addition systems over naturals or integers, and models involving com-
plex combinations of stacks and counters. Our main result is a characterization of the decidability and
complexity of the bidirected reachability problem for different graph classes. In particular, we characterize
the complexity of bidirected reachability for every graph class for which reachability is known to be decid-
able. We show that there is a remarkable drop in complexity in going from the reachability to the bidirected
reachability problems for many natural models studied previously. Our techniques are algebraic, and exploit
the underlying group structure of the bidirected problem. As a consequence of our results, we characterize
the complexity of bidirectional reachability of a number of open problems in program analysis, such as the
complexity of different subcases of bidirectional interleaved Dyck reachability.

1. Introduction

Many problems in static program analysis can be abstractly formulated as the reachability problem in an
edge-labeled finite graph with an additional storage mechanism. For example, when the storage mechanism
is a stack, we get the pushdown reachability (or CFL reachability) problem, which pervades program analysis
[33]. When the storage mechanism consists of counters over natural numbers or integers, we get a Petri net
or a counter automaton, which underlies many analysis problems for concurrent software. In general, the
storage mechanism can be more complex, involving combinations of stacks and counters. Characterizing
the complexity of reachability of these models is at the core of algorithmic techniques in verification and
program analysis.

An interesting special case of the reachability problem is that on bidirected (or reversible) graphs, where

for each edge p
a
−→ q, there is a reverse edge q

ā
−→ p where, intuitively, the action ā “reverts” the action of a

on the storage. For example, in pushdown reachability, a push of a symbol on the forward edge is reverted
by the pop of the symbol on the backward edge, and in a vector addition system, incrementing a counter is
reverted by decrementing it by the same amount. Bidirectional reachability is a problem of both theoretical
and practical interest. Theoretically, (logically and physically) bidirected computation has the potential
to perform useful computation while dissipating less energy [18]. Practically, many problems of program
analysis are naturally structured as bidirected reachability. For example, many context- and field-sensitive
alias analyses can be formulated or practically approximated as bidirected pushdown reachability [4, 42] or
bidirected interleaved pushdown reachability [36, 37, 41, 22, 23]. Bidirectional process algebras are natural
models for biochemical networks and workflows with backtracking [9, 8].

In this paper, we systematically characterize the decidability and complexity of bidirected reachability
problem in the general algebraic framework of bidirected valence automata [26, 40]. Valence automata consist
of a finite-state machine and a (typically infinite) monoid that represents a storage mechanism. Each edge of
the automaton consist of an input word and an element of the monoid. A computation of the automaton is

1

http://arxiv.org/abs/2110.03654v1

2 MOSES GANARDI, RUPAK MAJUMDAR, AND GEORG ZETZSCHE

accepting if, upon reading the input word, it arrives at a final state and composing all the monoid elements
along the path yields the neutral element. By choosing different monoids, valence automata can model many
different storage mechanisms. In particular, valence automata over graph monoids can model known storage
mechanisms in the literature, including multiple pushdown stores, counters over naturals or integers, and
their combinations.

A specific instance of valence automata is the bidirected reachability problem for pushdown Petri nets
(PPNs). In the non-bidirected case, the decidability status for pushdown Petri nets is a long-standing open
problem. The bidirected subcase seems to also be interesting and hard, and we do not provide a solution
here. However, we provide a complexity characterization for every graph that avoids this case.

Our classification follows that of the classification of (non-bidirected) reachability problems on valence
automata [40]. There, Zetzsche characterizes a class of graphs that precisely capture PPNs with one Petri
net place. Then, he shows that for every graph monoid arising out of graphs that avoid PPN graphs as
induced subgraphs, reachability is decidable iff the graph is a transitive forest. In this paper, we prove
a dichotomy result for this class of graphs. For every PPN-free graph that forms a transitive forest (the
largest class of graphs for which reachability is known to be decidable), we prove that bidirected reachability
is either LOGSPACE-complete or P-complete. More generally, we consider the setting where the graph is
part of the input and drawn from a class of graphs. Even in this general setting, we obtain an almost
complete complexity picture: We show that under mild assumptions, bidirected reachability falls within five
possible categories: LOGSPACE-complete, ILD-complete, P-complete, in EXPTIME, or EXPSPACE-complete.
Here, the complexity class ILD captures problems logspace reducible to the feasibility problem for integer
linear Diophantine equations. On the negative side, we show that whenever a graph has an induced 4-cycle,
bidirected reachability is undecidable.

In many situations, the complexity of the bidirected reachability problem reduces dramatically from that
of reachability: bidirected pushdown reachability can be solved in almost linear time [4] whereas a truly
subcubic algorithm for pushdown reachability is a long-standing open problem [5]; bidirected reachability in
Petri nets is EXPSPACE-complete [29, 20] whereas reachability is Ackermann-complete [7].

Our results show that there is a remarkable drop in complexity in many other cases. For example, the
reachability problems for integer vector addition systems and for pushdown machines and integer counters are
both known to be NP-complete [13, 15]. We show that the bidirected version is in P (even if we have integer
counters together with a fixed number of ordinary VASS counters). Our results also apply to machines where
one has stacks where each entry contains several counter values. Moreover, in addition to such stacks, one can
have integer counters, then build stacks of such configurations, etc. Our characterization implies that when
the number of alternations between building stacks and adding integer counters is not fixed, then bidirected
reachability can still be solved in EXPTIME; however, the reachability problem is NEXPTIME-complete [14].

Our techniques are quite different from usual techniques used in program analysis. Bidirectedness im-
poses a group structure on the problem, and therefore, our results make heavy use of techniques from
computational problems on graph groups. We observe that bidirected reachability for valence automata is
logspace-equivalent to subgroup membership for graph groups when the underlying graph has self loops.
This allows us to “translate” problems about reachability to problems about groups and vice versa. For
example, from undecidability results on subgroup membership for F2 × F2, where F2 is the free group of
rank 2 [31], we deduce undecidability of corresponding bidirected reachability problems, answering an open
question from [23]. Despite the insights from groups, our upper bound proofs are technically complicated,
and introduces new ideas to reduce reachability to the emptiness problem for bidirected grammars, and
eventually to feasibility of integer linear equation systems. A central ingredient in our translation to integer
linear equation systems is an “equational analogue” of a well-known result of Verma, Seidl, and Schwentick
[34]: They show that given a context-free grammar, one can construct in polynomial time an existential
Presburger formula for its Parikh image. While existential Presburger arithmetic is equivalent to systems

THE COMPLEXITY OF BIDIRECTED REACHABILITY IN VALENCE SYSTEMS 3

of integer linear inequalities (where feasibility is NP-complete), we show that for bidirected grammars, the
Parikh image can, in some appropriate sense, be described using only equations. This leads to a polynomial
time algorithm, since feasibility systems of integer linear equations is decidable in P [6]. In the analogue of
the result of Verma, Seidl, and Schwentick [34], a key concept we introduce is that of a Kirchhoff graph, which
collects a set of derivations in a bidirected grammar. These derivations satisfy a condition corresponding
to Kirchhoff’s equation on voltage drops in electrical networks. Roughly speaking, the existence of these
graphs allows us to drop a connectedness condition that is responsible for the inequalities in the approach
of Verma et al.

Bidirectional Dyck reachability and interleaved Dyck reachability problems have recently received a lot
of attention as natural formulations or approximations of pointer analysis problems [4, 42, 23]. However,
many complexity questions remained open. Our main result provides an almost full classification of the
complexity landscape of these problems. For example, while Chatterjee, Choudhary, and Pavlogiannis [4]
show an almost linear time algorithm for bidirected Dyck reachability, it was open if the problem was P-
complete. By reducing from subgroup membership for the free group with two generators, we show it is,
and therefore one cannot hope to efficiently parallelize pointer analysis. Li, Zhang, and Reps [23] performed
a systematic study of bidirected interleaved Dyck reachability problems.1 They showed that bidirected
D2⊙D2-reachability NP-hard, and state that the decidability of the problem is an important open question.
We show that the problem is undecidable. They showed the n-fold D1 ⊙ . . . ⊙ D1 reachability problem is
NP-hard, leaving its decidability open. We show the problem is EXPSPACE-complete. They also show a
polynomial time algorithm for bidirected D1 ⊙D1-reachability. We show that this problem is LOGSPACE-
complete. The only remaining case, bidirected D2 ⊙D1-reachability remains open: this is equivalent to the
reachability problem for bidirected pushdown Petri nets.

Our techniques also imply a new result in computational group theory: For graph groups defined by
transitive forests, subgroup membership is decidable in polynomial time.

Acknowledgment. The authors are grateful to Markus Lohrey for discussions about the algorithm for sub-
group membership for graph groups over chordal graphs from [26].

2. Bidirected Valence Systems

2.1. Algebraic Preliminaries. We assume familiarity with basic notions of monoids, groups, etc. (see,
e.g., [19]). A monoid is a set equipped with an associative binary operation · and an identity element (i.e.,
an element 1 such that for all elements a in the set, a ·1 = 1 ·a = a). A group is a monoid where each element
additionally has an inverse, i.e., for each a there is an element ā such that a · ā = 1. A group is commutative
if x · y = y · x for all x, y. A subgroup of a group G is a subset of the elements of G that themselves form a
group; i.e., it is a subset of elements closed under the binary operation as well as inverses. A subgroup H of
a group G can be used to decompose the underlying set of G into disjoint equal-size subsets called cosets.
The left cosets (resp. right cosets) of H in G are the sets obtained by multiplying each element of H by a
fixed element g of G: gH = {g · h | h ∈ H} (resp. Hg = {h · g | h ∈ H}). For a subset S, we write 〈S〉 for
the smallest subgroup containing S; this is the set of all elements of G that can be written as finite products
of elements from S and their inverses. If 〈S〉 = G, we say S generates G and call the elements of S the
generators of G.

A presentation (Σ | R) of a monoid is a description of a monoid in terms of a set Σ of generators and a
set of binary relations R ⊆ Σ∗×Σ∗ on the free monoid Σ∗ generated by Σ. For a set R ⊆ Σ∗×Σ∗ define the
step relation →R by sut →R svt for all (u, v) ∈ R and s, t ∈ Σ∗. Define ≡Γ to be the smallest equivalence

1Interleaved Dyck reachability is the generalization of CFL reachability where there are multiple stacks over disjoint sets of
parentheses. Using the notation of [23], the Dm ⊙Dn bidirected reachability problem is the problem with two interleaved Dyck
languages Dm and Dn, with m and n pairs of parentheses.

4 MOSES GANARDI, RUPAK MAJUMDAR, AND GEORG ZETZSCHE

relation ↔∗
Γ containing →Γ. The monoid is then presented as the quotient of Σ∗ by the congruence ≡R.

For a word w ∈ Σ∗, we write [w]≡R
for the equivalence class of w under ≡R. It is known that w ≡Γ ε is

witnessed by a derivation w = w0 →R w1 →R · · · →R wn = ε [38, Equation (8.2)].
A commutative semigroup presentation is a presentation (Σ | R) where (xy, yx) ∈ R for all x 6= y ∈ Σ.

The word problem for commutative semigroups asks, given a commutative semigroup presentation (Σ | R)
and two words u, v ∈ Σ∗, does u ≡R v hold? This problem is known to be EXPSPACE-complete [29].
Graph Monoids. A graph is a tuple Γ = (V, I), where V is a finite set of vertices and I ⊆ {e ⊆ V | 1 ≤ |e| ≤ 2}
is a finite set of undirected edges, which can be self-loops. Thus, if {v} ∈ I, we say that v is looped ; otherwise,
v is unlooped. The edge relation is also called an independence relation. We also write uIv for {u, v} ∈ I.
A subset U ⊆ V is a clique if uIv for any two distinct u, v ∈ U . If in addition, all v ∈ U are looped,
then U is a looped clique. If U is a clique and all v ∈ U are unlooped, then U is an unlooped clique. We
say that U ⊆ V is an anti-clique if we do not have uIv for any distinct u, v ∈ U . Given a graph Γ, we
define a monoid as follows. We define the alphabet XΓ = V ∪ V̄ where V̄ = {v̄ | v ∈ V }. We define
RΓ = {(vv̄, ε) | v ∈ V } ∪ {(xy, yx) | x ∈ {u, ū}, y ∈ {v, v̄}, uIv}. We write →Γ instead of →RΓ and ≡Γ for
the smallest equivalence relation ↔∗

Γ containing →Γ. In particular, if v has a self-loop, then v̄v ≡Γ ε. We
define the monoid MΓ := X∗

Γ/ ≡Γ. We write [w] for the equivalence class of w under ≡Γ and 1 for [ε]. For
each word w ∈ X∗

Γ, we define its inverse w̄ as follows. If w = v for some v ∈ V , then w̄ is just the letter v̄.
If w = v̄ for v ∈ V , then w̄ = v. Finally, if w = w1 · · ·wn with w1, . . . , wn ∈ X∗

Γ, then w̄ = w̄n · · · w̄1.

2.2. (Bidirected) Valence Systems and Reachability. Valence systems are an abstract model for study-
ing finite-state transition systems with “storage.” It consists of a state transition system on a finite set of
states, as well as a monoid that represents an auxiliary storage and determines which paths in the automata
form valid computations in the presence of the auxiliary storage. For example, if the underlying storage is a
stack, the monoid can encode push and pops on to the stack and determine computations that produce an
empty stack. In the following, we shall consider graph monoids as the underlying monoids; as we shall see,
they are expressive enough for common storage mechanisms such as counters and stacks.

Given a graph Γ, a valence system A over Γ consists of a finite set of states Q, and a transition relation
→⊆ Q × X∗

Γ × Q where a transition (p, u, q) is written as p u→ q. A run is a sequence of transitions
(q0, u1, q1)(q1, u2, q2) . . . (qn−1, un, qn), which is also abbreviated as q0

u1...un→ qn.
The reachability problem (REACH) for valence systems is the following:

Given: A valence system A and states s, t in A.
Question: Is there a run s w→ t for some w ∈ X∗

Γ with [w] = 1?

If the reachability problem is restricted to valence systems over a particular graph Γ, then we denote the
problem by REACH(Γ). If we restrict the input systems to a class G of graphs, then we write REACH(G).
For example, if V is the class of all unlooped cliques, then REACH(V) is the reachability problem for vector
addition systems with states (VASS).

A valence system A is called bidirected if for any transition p w→ q, we also have q w̄→ p. The bidirected
reachability problem (BIREACH) is the reachability problem where the input system A is restricted to bidi-
rected valence systems. As above, we will consider the case where the system is over a particular graph Γ,
denoted BIREACH(Γ), or the graph is drawn from a class G, denoted BIREACH(G).

2.3. Examples. We provide some concrete examples of valence automata and graph monoids; for more
general examples, see [38].

Consider the simplest case in which the graph is a single node v without a loop. Then the presentation
RΓ has one rule (vv̄, ε). We call the resulting monoid B (the notation coming from the bicyclic monoid).
One can view B as an N-counter, i.e., a counter that takes values in the natural numbers and has to be 0 at
the end of the computation, by considering a multiplication by v as an increment, and a multiplication by

THE COMPLEXITY OF BIDIRECTED REACHABILITY IN VALENCE SYSTEMS 5

v̄ as a decrement. The identity element is the value 0. Alternately, B can be seen as a pushdown stack with
only one symbol. A multiplication by v adds the symbol to the top of stack, and a multiplication by v̄ pops
the stack (if nonempty). A computation is accepted on empty stack. If the sole vertex v is looped, then MΓ
is isomorphic to Z and represents a Z-counter : a counter that can go below zero and is zero-tested at the
end of the computation.

Now assume Γ consists of n vertices but no edges or self loops. By a similar reasoning, the monoid MΓ
represents a pushdown stack with n symbols. We interpret each vertex v as a push of the corresponding
symbol and v̄ as the pop of the symbol, and we notice that w ≡Γ ε iff w transforms the empty stack to the
empty stack (i.e., all pushes are matched by a corresponding pop).

For a fixed language L over an alphabet Σ, the L-reachability problem takes as input a directed graph G
whose edges are labeled with Σ and two nodes s and t of G, and asks, is there a path from s to t such that the
word formed by concatenating the labels along the edges in the path belongs to L? Let Dk denote the Dyck
language with k kinds of parentheses. The Dk-reachability problem, for k ≥ 1, is a fundamental problem in
interprocedural dataflow analysis [30, 33].2 From the above discussion, Dk-reachability is a special case of
reachability in valence automata, where the graph Γ consists of k vertices and no edges.

The graph with two vertices u and v, with a single edge {u, v} (but without self loops) represents a storage
mechanism with two independent partially blind counters and, in general, an unlooped clique with n vertices
represents n partially blind counters. Thus, vector addition systems with states of dimension n (or Petri
nets) are a special case of valence automata, where the graph consists of an unlooped clique of n nodes. If
the graph is looped, then we get multicounter automata, where the counters can become negative along the
computation but are zero tested as the end.

By mixing and matching graph monoids, we can in fact get more complex combinations of storage mech-
anisms, such as stacks of counters, see [38]. A particular instance of the problem is in fact reachability in
pushdown Petri nets, which is a well-known open problem even in the bidirectional case.

Let us show a particular case, that of interleaved Dyck reachability [23]. Given two Dyck languages Dm

and Dn (over disjoint alphabets), the interleaved Dyck language Dm ⊙Dn is defined as the language of all
words w such that the projection of w on to the alphabet of Dm belongs to Dm and the projection on to the
alphabet of Dn belongs to Dn. That is, a word belongs to Dm⊙Dn if it is obtained by shuffling a word from
Dm with a word from Dn. Li, Zhang, and Reps [23] study interleaved Dyck reachability and its restriction
to bidirected graphs, and show its connection to a large number of problems arising from program analysis.
Interleaved Dyck reachability is a special case of reachability in valence automata; we show some instances
in Table 1.

2.4. Decidability Landscape for Reachability.
PPN-graphs. A graph Γ is a PPN-graph if it is isomorphic to one of the following three graphs:

We say that the graph Γ is PPN-free if it has no PPN-graph as an induced subgraph. Observe that a graph
Γ is PPN-free if and only if in the neighborhood of each unlooped vertex, any two vertices are adjacent. The
abbreviation ‘PPN’ refers to ‘pushdown Petri nets’. This is because if Γ is a PPN-graph then REACH(Γ) is
inter-reducible with reachability for pushdown Petri nets [40]. Whether the (general) reachability problem
is decidable for these is a long-standing open problem [21].

2The program analysis literature formulates the problem as “context-free reachability” and allows L to be an arbitrary context
free language, and not necessary a Dyck language. By the Chomsky-Schützenberger theorem, every context-free reachability
problem is reducible to D2-reachability.

6 MOSES GANARDI, RUPAK MAJUMDAR, AND GEORG ZETZSCHE

Table 1. Reachability problems, their valence automata encoding, and complexity results
for bidirectional reachability. Other than PPN, the complexity results improve the state-of-
the-art.

L-Reachability problem Corresponding graph Complexity of BIREACH(Γ)
D1 LOGSPACE-complete

D1 ⊙D1 LOGSPACE-complete
D2 P-complete

N -fold D1 unlooped N -clique EXPSPACE-complete
D1 ⊙D2 open: PPN

D2 ⊙D2 (C4) undecidable

Transitive forests. A graph Γ is a transitive forest if it can be constructed in the following way. We define
the class of transitive forests inductively. First, every isolated vertex is a transitive forest. Moreover, if Γ1

and Γ2 are transitive forests, then (i) the disjoint union of Γ1 and Γ2 is a transitive forest and (ii) if Γ is the
graph obtained by adding one vertex v to Γ1 so that v is adjacent to every vertex in Γ1, then Γ is also a
transitive forest.

We also need a measure of transitive forests that essentially captures the height of the trees in a transitive
forest. Formally, every non-empty transitive forest is either (i) a disjoint union of connected transitive
forests, or (ii) has a universal vertex, i.e. a vertex that is adjacent to all other vertices (take the root of
the underlying tree). This induces a successive decomposition of the transitive forest into smaller ones: For
a disjoint union, take the disjoint connected transitive forests. If there is a universal vertex, remove that
vertex to obtain a smaller transitive forest.

The decomposition is unique up to isomorphism: This is obvious in the case of a disjoint union. In the
case of several universal vertices, note that all possible removals result in isomorphic graphs. This allows us
to define the height h(Γ) of a transitive forest Γ = (V, I): If V = ∅, then h(Γ) = 0. If Γ is a disjoint union of
connected transitive forests Γ1, . . . ,Γn, then h(Γ) = max{h(Γi) | i ∈ [1, n]}+ 1. If Γ has a universal vertex
u and removing u leaves Γ′, then h(Γ) = h(Γ′).

For the class of PPN-free graphs, it is well-understood whether reachability is decidable. For a graph Γ,
let Γ− be obtained from Γ by removing all self loops.

Theorem 2.1. [40] Let Γ be a PPN-free graph. Then REACH(Γ) is decidable if and only if Γ− is a transitive
forest.

By SC
±, we denote the class of PPN-free graphs Γ where Γ− is a transitive forest. This is because valence

systems over SC
± are equivalent to stacked counter machines, as explained in Section 3. Hence, we know

that for every graph in SC
±, the reachability problem is decidable. Moreover, for every graph Γ outside of

SC
±, either Γ contains a PPN-graph (meaning decidability of REACH(Γ) is subject to a long-standing open

problem) or REACH(Γ) is undecidable. Therefore, SC± is the largest class of graphs Γ for which REACH(Γ)
is currently known to be decidable.

3. Main Results

Our first result is an undecidability result, which provides a negative answer to the open problem from
[23] of whether BIREACH(C4) is decidable.

Theorem 3.1. If Γ− contains C4 as an induced subgraph, then BIREACH(Γ) is undecidable.

THE COMPLEXITY OF BIDIRECTED REACHABILITY IN VALENCE SYSTEMS 7

Figure 1. The graphs C4, C4◦, and Γ3

We assume familiarity with the basic complexity classes LOGSPACE (deterministic logspace), P (deter-
ministic polynomial time), NP (non-deterministic polynomial time), EXPTIME (deterministic exponential
time), NEXPTIME (non-deterministic exponential time), and EXPSPACE (exponential space). By ILD, we
denote the class of problems that are logspace-interreducible to the problem of solvability of integer linear
Diophantine equations (ILD):

Given: A matrix A ∈ Z
m×n and a vector b ∈ Z

m.
Question: Is there a vector x ∈ Z

n with Ax = b?

It is well known that ILD is solvable in polynomial time.

Theorem 3.2 ([6]). ILD is solvable in polynomial time.

In particular, the class ILD lies in between LOGSPACE and P. However, the exact complexity of ILD
seems to be open [1]. Thus, it is conceivable that ILD coincides with LOGSPACE or P or that it lies strictly
in between. Hence, we have the inclusions LOGSPACE ⊆ ILD ⊆ P ⊆ NP ⊆ EXPTIME ⊆ NEXPTIME ⊆
EXPSPACE.

In order to formulate our main result about the complexity of BIREACH, we need some terminology. We
say that G is UC-bounded if there is a k such that for every Γ in G, every unlooped clique in Γ has size at most
k. Otherwise, it is called UC-unbounded. Similarly, LC-bounded (LC-unbounded, respectively) if the same
condition holds for looped cliques. We say that G is height-bounded if there is a k with h(Γ) ≤ k for every
Γ in G. Otherwise, G is height-unbounded. We now present an almost complete complexity classification
of BIREACH(G), where G is a subclass of SC±. Here, we assume that G is closed under taking induced
subgraphs. This is a mild assumption that only rules out some pathological exceptions.

Theorem 3.3 (Classification Theorem for BIREACH). Let G ⊆ SC
± be closed under induced subgraphs.

Then BIREACH(G) is

(1) LOGSPACE-complete if G consists of cliques of bounded size,
(2) ILD-complete if G consists of cliques, is UC-bounded, and LC-unbounded,
(3) P-complete if G contains a graph that is not a clique, and G is UC-bounded and height-bounded,
(4) in EXPTIME if G is UC-bounded and height-unbounded, and
(5) EXPSPACE-complete otherwise.

From Theorem 3.3, we can deduce our dichotomy for individual graphs Γ: Take as G the set of graphs
containing Γ and its induced subgraphs. Then G is UC-bounded, LC-bounded, and height-bounded and thus
falls into case (1) or into case (3) above.

Corollary 3.4 (Dichotomy for BIREACH). Let Γ ∈ SC
± be a graph. Then BIREACH(Γ) is LOGSPACE-

complete if Γ is a clique and P-complete otherwise.

Intuition on graph classes. We now provide some intuition on the graph classes mentioned in Theorem 3.3.
In (1), we have graphs that are cliques of bounded size. Hence, for some number d, G consists of all cliques
of size ≤ d, which may contain looped and unlooped nodes. As explained above, valence systems over G are

8 MOSES GANARDI, RUPAK MAJUMDAR, AND GEORG ZETZSCHE

counter machines with a bounded number of counters, some of them N-counters (unlooped nodes) and some
Z-counters (looped nodes).

Similarly, in (2), for some d, valence systems over G correspond to counter machines with at most d many
N-counters and an arbitrary number of Z-counters. In (3), we go beyond just counters. A graph in SC

±

always has a tree structure: It is either an unlooped clique or it can be recursively decomposed, because it
is always obtained from smaller transitive forests by taking their disjoint union and then adding a looped
vertex adjacent to all other vertices. In terms of machine models, taking a disjoint union is the same as
building stacks : One obtains a machine model with a stack, where each entry of the stack is a configuration
of the previous machine model. Moreover, adding a universal vertex corresponds to adding a Z-counter [39,
38]: In addition to the configuration of the previous model, we also have a new Z-counter. Therefore, valence
systems over SC± are called stacked counter machines3. Here, the height h(Γ) is the number of alternations
between these two types of steps (building stacks and adding Z-counters).

For example, if Γk has two non-adjacent nodes v1, v2 and looped nodes u1, . . . , uk such that each ui is
adjacent to all other vertices (see Fig. 1 for Γ3), then valence systems over Γk are machines with access to
a pushdown stack and, in addition, k many Z-counters. Then, we have h(Γk) ≤ 1 and thus we show that
bidirected reachability is in P, even if k is part of the input. In fact, case (3) shows this for every fixed
number of alternations between building stacks and adding Z-counters.

Comparison to general reachability. It is worth comparing our results on bidirected reachability with the
complexity results on general reachability. Of course, there is the extreme difference exhibited in the case
of unlooped cliques: For general reachability, the case of unbounded unlooped cliques is the reachability
problem for vector addition systems, which was recently shown to be Ackermann-complete [7]. Moreover,
even for bounded cliques, the problem is known to be non-elementary [7]. In the bidirected case, reachability
is LOGSPACE-complete for a bounded clique size and EXPSPACE-complete for an unbounded clique size.
However, in the special case of unlooped cliques, this was all known before.

What our results show is that there is a striking drop in complexity in the other cases as well. The first
example is the case (2). If G is the class of looped cliques, then REACH(G) is the reachability problem for
integer vector addition systems, which is NP-complete [13]. We show that bidirected reachability is solvable
in polynomial time, even in the presence of a fixed number of ordinary VASS counters (i.e. unlooped nodes).

Secondly, in (3), we observe a drop from NP to P. The machines with pushdown and Z-counters (corre-
sponding to Γk) mentioned above have an NP-complete general reachability problem [15], and NP-hardness
holds already for a pushdown with a single Z-counter. Our result implies that bidirected reachability is in
P. Moreover, this still holds (i) with a fixed number of further alternations of building stacks and adding
Z-counters and (ii) if initially (before building stacks), we even allow a fixed number of N-counters.

Third, in (4), we show that if the number of alternations (between building stacks and adding Z-counters)
is not fixed (but part of the input), bidirected reachability is still solvable in EXPTIME. This is again in
contrast to general reachability: Even if there are no N-counters, it was recently shown by Haase and Zetzsche
[14] that general reachability is NEXPTIME-complete.

4. Bidirected reachability and subgroup membership

Subgroup membership. If Γ is looped, then MΓ is a group. The groups of the form MΓ are called graph
groups or right-angled Artin groups and have been studied intensively over the last decades [27, 10, 25, 28], in
part due to their rich subgroup structure (see, e.g. [35]). The subgroup membership problem is the following.

Given: A graph Γ where every vertex is looped, words w1, . . . , wk, w ∈ X∗
Γ.

3Here, the ± indicates that we begin with N-counters (which stay non-negative) and after building stacks for the first time,
we add Z-counters (which can become negative).

THE COMPLEXITY OF BIDIRECTED REACHABILITY IN VALENCE SYSTEMS 9

Question: Does [w] ∈ 〈[w1], . . . , [wk]〉?

We denote this problem as SUBMEM. If the input graph Γ is fixed, we write SUBMEM(Γ). If Γ is drawn from
a class G, then we write SUBMEM(G). Surprisingly, describing the class of graphs Γ for which SUBMEM(Γ)
is decidable is a longstanding open problem [24].

4.1. BIREACH and subgroup membership. Our first observation is that if Γ is looped, then the complexity
of BIREACH(Γ) matches that of subgroup membership over MΓ. The connection between subgroups and
bidirected valence automata (albeit under different names) is a prominent theme in group theory. It is implicit
in the well-known concept of Stallings graphs and was used by Lohrey and Steinberg [26] in decidability
results. We show that the conversion can be done in logspace, in both directions.

Theorem 4.1. If Γ is looped, then BIREACH(Γ) and SUBMEM(Γ) are logspace inter-reducible.

Let Γ be a looped graph. Reducing SUBMEM(Γ) to BIREACH(Γ) is easy: To test whether [w] is contained
in 〈[w1], . . . , [wk]〉 we construct a bidirected valence system A with two states s, t and the transitions s w̄→ t
and t wi→ t for all 1 ≤ i ≤ k, and the reverse transitions. Then [w] ∈ 〈[w1], . . . , [wk]〉 holds if and only
if there exists u ∈ X∗

Γ with s u→ t and [u] = 1. Conversely, by the following lemma we can compute in
logspace a coset representation {[w] ∈ MΓ | s w→ t} = [w0]〈[w1], . . . , [wn]〉. Then it remains to test whether
[w̄0] ∈ 〈[w1], . . . , [wn]〉.

Theorem 4.2. Given a looped graph Γ, a bidirected valence system A over Γ and two states s, t from A,
one can compute words w0, w1, . . . , wn ∈ X∗

Γ in logspace such that {[w] ∈ MΓ | s w→ t} = [w0]〈[w1], . . . , [wn]〉

To show Lemma 4.2, we compute in logspace a spanning tree of the automaton (which is possible by using
[32]). Then w0 is obtained from the unique path from s to t in the tree. The words w1, . . . , wn are obtained
as fundamental cycles : These are cycles consisting of one edge outside the tree and a path inside the tree.

The connection between BIREACH and SUBMEM can be used to show the existence of a graph for which
REACH(Γ) is undecidable but BIREACH(Γ) is decidable: Let Γ be the graph

By [27], REACH(Γ) is undecidable, but as Γ is looped and chordal, SUBMEM(Γ) is decidable [16] (with a
simpler proof by Lohrey and Steinberg [26]).

4.2. Undecidability. We now prove our first main result: Theorem 3.1. We shall use the following result
shown by Mikhailova [31]. The graphs C4 and C4

◦ are shown in Figure 1.

Theorem 4.3 (Mikhailova). SUBMEM(C4◦) is undecidable.

Via Theorem 4.3 and Theorem 4.1, this implies that BIREACH(C4◦) is undecidable. We will extend this
to prove Theorem 3.1.

The observation behind our proof is that using two non-adjacent vertices we can simulate a free group
of rank two, i.e. MΓ2 where Γ2 consists of two non-adjacent looped vertices a and b. The P-hardness in
Theorem 3.3 also follows from this observation. Suppose that u, v are non-adjacent vertices in Γ. If both u
and v are looped, then they already generate a free group of rank two. Now suppose that u is unlooped. We
first simulate a pushdown over four letters using the words W = {uvi | i ∈ [1, 4]}, i.e. for all x ∈ (W ∪ W̄)∗

we have x ≡Γ ε if and only if x ↔∗
R ε where R = {(wiw̄i, ε) | i ∈ [1, k]}, see Lemma A.1. Then we can

transform a bidirected valence system A over Γ2 into a bidirected valence system B over Γ as follows, which
guesses whether an element a (or b) is canceled by a previous or a later occurrence of ā (or b̄) in the run:
Every edge p a→ q is translated into two edges p w1→ q and p w̄3→ q, whereas every edge p ā→ q is translated into
two edges p w̄1→ q and p w3→ q. Similarly b-edges and b̄-edges are translated using w2 and w4.

10 MOSES GANARDI, RUPAK MAJUMDAR, AND GEORG ZETZSCHE

If Γ− contains C4
◦ as an induced subgraph then we have two pairs u1, v1 and u2, v2 of non-adjacent

vertices where vertices from different pairs commute. Applying the above reduction to every pair, we can
reduce BIREACH(C4◦) to BIREACH(Γ), and obtain undecidability of BIREACH(Γ).

5. Lower Bounds

In this section, we prove the lower bounds in Theorem 3.3.

LOGSPACE-hardness. For any graph Γ we can reduce from the reachability on undirected graphs to BIREACH(Γ)
by replacing each undirected edge {p, q} by transitions p ε→ q and q ε→ p. Since the former problem is

LOGSPACE-complete under AC0 many-one reductions [2, 32], so is BIREACH(Γ).

ILD-hardness. Next, we show that, if G is LC-unbounded then BIREACH(G) is ILD-hard under logspace many-
one reductions. Given a system of linear Diophantine equations Ax = b where A ∈ Z

m×n has columns
a1, . . . , an ∈ Z

m. Since G is LC-unbounded it contains a looped clique Γm with m nodes v1, . . . , vm. Let
ϕ : Zm → X∗

Γm
be the function ϕ(k1, . . . , km) = vk1

1 . . . vkm
m . Then we construct the valence system A over

Γm with two states p and q and the transitions p
ϕ(ai)
−−−→ p for all 1 ≤ i ≤ n and p

ϕ(b)
−−−→ q, and their reverse

transitions. Then Ax = b has a solution x ∈ Z
n if and only if there exists w ∈ Γ∗

m with [w] = 1 and p w→ q.

P-hardness. Now assume that Γ contains two non-adjacent vertices u and v; let us assume that they are the
only two vertices. Then we can show that BIREACH(Γ) is P-hard: Subgroup membership in the free group
over two generators is P-hard by [3], and hence also BIREACH(Γ◦) by Theorem 4.1. In Section 4.2 we have
observed that BIREACH(Γ◦) is log-space reducible to BIREACH(Γ), and hence BIREACH(Γ) is P-hard.

EXPSPACE-hardness. We reduce from the word problem over commutative semigroups, known to be EXPSPACE-
hard [29]. Since G is UC-unbounded and closed under induced subgraphs, it contains an unlooped clique Γ
of size |Σ|. We can assume that Σ is its node set. Let A be the bidirected valence system over Γ with three
states q0, q1, q2, the transitions q0

ū→ q1, q1
v→ q2, and the transitions q x̄y→ q for all (x, y) ∈ R, and their

reverse transitions. Then u ≡R v holds if and only if q0
w→ q2 for some w ∈ X∗

Γ with [w] = 1.

6. Upper Bounds I: LOGSPACE and ILD

In this section we will study BIREACH(G) for classes G of cliques, and prove the LOGSPACE and ILD upper
bounds from Theorem 3.3. If Γ is an unlooped clique then BIREACH(Γ) is the reachability problem over
reversible vector addition systems with states or, equivalently, the word problem for commutative semigroups
[29].

Fix a clique Γ = (V, I) where U and L are the sets of unlooped and looped vertices in Γ, respectively.
Furthermore, we are given a bidirected valence systemA = (Q,→) over Γ, and two states s, t ∈ Q. Intuitively,
the unlooped vertices in U represent N-counters, that may not fall below zero, and the looped vertices in L
represent Z-counters. BIREACH(Γ) asks whether there is a path between s and t where the all counters are
zero in the beginning and in the end. More formally, the graph monoid MΓ is a direct product of copies of the
group of integers Z and the bicyclic monoid B. The bicyclic monoid B contains all pairs a = (a−, a+) ∈ N

2 and
is equipped with the associative operation (a−, a+)⊕(b−, b+) = (a−+b−−min(a+, b−), a++b+−min(a+, b−)).
We identify (0, a+) with the nonnegative integer a+, and (a−, 0) with the nonpositive integer −a−.

Let Y ⊆ V be a set of vertices in Γ. Let ΦY : X∗
Γ → Z

Y be the morphism defined by ΦY (w)(y) =
|w|y − |w|ȳ . Let ΨY : X∗

Γ → B
Y be the morphism defined by ΨY (v)(v) = 1 and ΨY (v̄)(v) = −1 for all

v ∈ V , and ΨY (x)(v) = 0 for all x ∈ V ∪ V̄ with x /∈ {v, v̄}. Observe that the definition of ΨY is
consistent with our previous definition of ΨΣ : Σ∗ → N

Σ. The graph monoid MΓ is isomorphic to B
U × Z

L

via [w] 7→ (ΨU (w),ΦL(w)).

THE COMPLEXITY OF BIDIRECTED REACHABILITY IN VALENCE SYSTEMS 11

6.1. Unlooped vertices. For now let us focus on the paths from s w→ t with ΨU (w) = 0. By translating
A into an “equivalent” commutative semigroup presentation (Σ | R), we obtain the following result from
Proposition and Lemma 3 in [29]:

Theorem 6.1. One can decide in deterministic space 2O(|U|) · log ‖A‖ whether there exists a path s w→ t with
ΨU (w) = 0 and, if so, return such a path.

Let us define ReachA(p, q) = {ΨU (w) | p w→A q} ∩ N
U for any states p, q ∈ Q. The following lemma

states that U can be partitioned into bounded components B and simultaneously unbounded components
U \B, i.e. ReachA(p, q) contains vectors which are arbitrarily large in all (U \B)-components. The bounded
components are bounded exponentially in |U | and linearly in ‖A‖.

Theorem 6.2. One can compute in deterministic space 2O(|U|) · log ‖A‖ a set B ⊆ U and a number b ≤
2O(|U|) · ‖A‖ such that for all q ∈ Q we have:

• v(u) ≤ b for all v ∈ ReachA(s, q) and u ∈ B,
• for every c ∈ N there exists v ∈ ReachA(s, q) with v(u) ≥ c for all u ∈ U \B.

Lemma 6.2 follows from [17, Lemma 17], which states that for any commutative semigroup presentation
(Σ | R) and any u ∈ Σ∗, the equivalence class [u]≡R

can be represented as a hybrid linear set
⋃m

i=1{bi +
∑ℓ

j=1 λjpj | λ1, . . . , λℓ ∈ N} for some b1, . . . ,bm,p1, . . . ,pℓ ∈ N
Σ. Here a vector v ∈ N

Σ is viewed as a
commutative word over Σ. Observe that the hybrid linear set is bounded in a certain Σ-component if and
only if all period vectors pj are zero in that component. In all other components, the set is simultaneously
unbounded.

6.2. General cliques. Our approach to decide BIREACH(G) is as follows. We will compute a representation
for

EffA(s, t) = {ΦL(w) | s
w→A t, ΨU (w) = 0}.

Since [w] = 1 if and only if ΨU (w) = 0 and ΦL(w) = 0 we only need to test 0 ∈ EffA(s, t) using a system
of integer linear Diophantine equations. Observe that EffA(s, t) is either empty or a coset EffA(s, t) =
u+ EffA(s, s) for any u ∈ EffA(s, t). Using Lemma 6.1 we can test whether there exists a path s w→ t with
ΨU (w) = 0, witnessing EffA(s, t) 6= ∅, and, if so, we find u := ΦL(w) ∈ EffA(s, t). It remains to compute a
representation of the subgroup EffA(s, s).

Proposition 6.3. One can compute in deterministic space 2O(|U|) · log ‖A‖ vectors v1, . . . ,vn ∈ Z
L′

where
L ⊆ L′ and |L′| ≤ |Γ| such that EffA(s, s) = {v|L | v ∈ 〈v1, . . . ,vn〉, v|L′\L = 0}.

Let us sketch the proof for Proposition 6.3. We will simulate A by a bidirected valence system A′ over
a looped clique Γ′, i.e. a Z-VASS. By applying Lemma 4.2 on A′ we can then obtain the representation of
EffA(s, s). For the simulation let B ⊆ U be the set and the number b = ‖A‖ · 2O(|U|) from Lemma 6.2. The
idea is to maintain the B-counters in the finite state and the (U \ B)-counters using Z-counters. Clearly,
every valid A-run translates into a valid A′-run. Conversely, in a valid A′-run the (U \ B)-counters can
take negative values. We can prepend a cycle run which takes sufficiently large values in the components
from U \ B, and append the reverse cycle run to cancel its effect. This ensures that all counters remain
nonnegative throughout the run and can therefore be translated into a A-run.

The following provides the upper bounds for cases (1) and (2) in Theorem 3.3.

Proposition 6.4. If G is a UC-bounded class of cliques then BIREACH(G) belongs to ILD. If G is a class of
cliques of bounded size then BIREACH(G) belongs to LOGSPACE.

12 MOSES GANARDI, RUPAK MAJUMDAR, AND GEORG ZETZSCHE

Proof. Given a clique Γ ∈ G and a bidirected valence system A = (Q,→) over Γ, and states s, t ∈ Q.
As explained above we can test in exponential space (logarithmic space if G consists of cliques of bounded
size) whether EffA(s, t) is nonempty and, if so compute a vector u ∈ EffA(s, t). By Proposition 6.3 we can

compute a representation EffA(s, s) = {v|L | v ∈ 〈v1, . . . ,vn〉, v|L′\L = 0}. for some v1, . . . ,vn ∈ Z
L′

where L ⊆ L′ and |L′| ≤ |Γ|. We need to test whether 0 ∈ EffA(s, t), which is equivalent to −u ∈ EffA(s, s).
This holds if and only if there exists (x1, . . . , xn) ∈ Z

n such that
∑n

i=1 xivi(u) = −u(u) for all u ∈ L and
∑n

i=1 xivi(u) = 0 for all u ∈ L′ \ L, which is a system of |Γ| equations. This can be solved in ILD. If |Γ| is

bounded then this is in LOGSPACE (even TC
0) [11, Theorem 13]. �

Similarly we can prove the following result, which will be used in Section 7.

Theorem 6.5. Given a clique Γ ∈ G, a bidirected valence system A = (Q,→) over Γ, and states s, t ∈ Q,
one can test in exponential space (polynomial time if G is UC-bounded) if EffA(s, t) is nonempty and, if so,
compute a coset representation u+ 〈v1, . . . ,vn〉 for EffA(s, t).

7. Upper Bounds II: Polynomial Time, Exponential Time, and Exponential Space

In this section, we prove the upper bounds of (3) and (4 in Theorem 3.3. More precisely, let SC
±
d be

the class of graphs in SC
± where each unlooped clique has size at most d. Moreover, let SC±

d,ℓ be the class

of those graphs Γ in SC
±
d with h(Γ) ≤ ℓ. In this section, we prove that for every d, BIREACH(SC±

d) is in

EXPTIME and for every ℓ ≥ 0, the problem BIREACH(SC±
d,ℓ) is in P.

Key ideas and outline. Let us outline the main ideas in our upper bounds. The starting point are the
methods that have been used to decide the ordinary reachability problem for the graphs in SC

±
1 , i.e. PPN-

free transitive graphs with at most one unlooped node in each clique. As explained above, viewed as models
of computations, valence systems over such graphs correspond to storage mechanisms that are obtained by
building stacks and adding Z-counters. Here, building stacks corresponds to taking the disjoint union of two
graphs, and adding a Z-counter corresponds to adding a looped vertex that is adjacent to all other vertices.

Roughly speaking, this viewpoint was used in the first decidability result for REACH(SC±
1) by Lohrey

and Steinberg [27]: Relying on Parikh’s theorem on context-free languages, they observed that both these
transformations preserve semilinearity of the languages accepted by such machines. This resulted in a
non-elementary decision procedure. About a decade later, it was shown that REACH(SC±

1) is NEXPTIME-
complete and for every fixed ℓ, REACH(SC±

1,ℓ) is NP-complete [14]. This generalizes the fact that reachability

for pushdown systems with Z-counters is NP-complete (these correspond to a subset of SC±
1,1) as shown by

Hague and Lin [15]. In the algorithms from [15, 14], a critical ingredient is that given a context-free grammar,
one constructs an existential formula in Presburger arithmetic for the Parikh image, as shown by Verma,
Seidl, and Schwentick [34]. This permits a translation of the reachability problem to (an extension of)
existential Presburger arithmetic, which can be decided in NP.

Our core observation is that in the bidirected case, one can reduce to solvability of systems of integer
linear Diophantine equations (existential Presburger arithmetic, in contrast, is equivalent to solving systems
of integer linear Diophantine inequalities). Like the algorithm of Haase and Zetzsche [14], we first translate
the reachability problem into a problem on a certain type of grammars. However, this translation requires
new ideas, because we prove that here, the resulting grammars are bidirected, meaning they satisfy a carefully
chosen set of symmetry conditions. For example, in some appropriate sense, these allow productions to be
applied in reverse. We then prove an analogue (Theorem 7.6) of the translation of Verma, Seidl, and
Schwentick [34], which relies on those symmetry conditions and produces a system of Diophantine equations
instead of an existential Presburger formula. In the end, for given graphs in SC

±
d,ℓ, this results in systems of

linear Diophantine equations, which are exponential-sized in ℓ, but polynomial-sized for fixed ℓ.

THE COMPLEXITY OF BIDIRECTED REACHABILITY IN VALENCE SYSTEMS 13

In addition, we have to deal with a fixed number of N-counters (i.e. cliques of unlooped nodes) during
the construction of our grammar. Here, we rely on Theorem 6.5 to eliminate these N-counters.

The proof involves the following steps. First, in Section 7.1, we translate the bidirected reachability
problem to checking emptiness of bidirected grammars. After proving properties of bidirected grammars in
Section 7.2, we proceed in Section 7.3 to characterize emptiness of bidirected grammars in terms of cosets
of groups ZY . Then in Section 7.4, we show that these cosets can be computed by newly introduced circuits
that have gates for the addition and intersection of cosets. Finally, in Section 7.5, we translate these coset
circuits into equation systems.

7.1. From valence systems to grammars. We begin with the translation of valence systems over graphs
in SC

±
d into grammars. As mentioned above, the approach to translate such systems into grammars is not

new. However, if we want to do this while preserving an appropriate notion of bidirectedness, we have to be
much more careful.

The idea behind all these grammar translations is to simulate the runs of valence systems over disjoint
unions of graphs: Such a run is always obtained by starting from a run with neutral effect over one component,
then inserting a run with neutral effect over a different component, then again inserting a run from some
component, etc. Here, a key trick is to use a nonterminal symbol ap,q for each pair of states that represents
a run from p to q. Then, inserting a run from p to q for ap,q yields a new run. For general reachability, this
works even if we introduce nonterminals ap,q for which there does not exist a run: Such an ap,q will never
be replaced and causes no issues.

However, if we want to guarantee that our grammar is bidirected (we will define this later precisely), we
always have to make sure that every derivation can be reverted. In particular, every nonterminal that can
be produced should be able to derive something. This property will be captured in our notion of “realizable
placeholder runs” which we define next.

Decomposition into tree. First, we want to make the tree structure in the input graphs Γ ∈ SC
±
d explicit. We

may assume that our input graph has an unlooped vertex that is adjacent to all other vertices: Otherwise,
we can just add such a vertex. Our graph Γ = (V, I) in SC

±
d has a tree structure. We decompose its vertices

into a tree t accordingly:

(1) Consider the set U ⊆ V of vertices in Γ that are adjacent to all other vertices.
(2) If U is a strict subset of V , then Γ \ U has at least two connected components. Then we construct

the tree for each connected component. The tree for Γ is obtained by taking these trees and adding
a parent node containing U .

(3) Otherwise, Γ is a clique with ≤ d unlooped vertices. Then t contains one node with all of Γ.

Placeholder runs. Given a valence system A over Γ, a placeholder is a triple (p, s , q) or (p, s , q), where
where p and q are states in A and s is a subtree of t. Intuitively, a placeholder (p, s , q) represents a run
from p to q that is neutral and only uses operations belonging to s. A placeholder (p, s , q) also represents
such a run, but without the restriction that it has to cancel in the vertices belonging to the root of s. Hence
s can be thought of as representing the whole subtree s, whereas s represents the set of subtrees directly
under s. The set of placeholders is denoted by ρ(A).

We say that rx is above sy if either (i) r strictly contains s as a subtree or if (ii) rx = r and sy = r .
For each sx ∈ {s , s }, we define two sets of vertices:

(1) Vs ⊆ V consists of all vertices belonging to the subtree s or to an ancestor of the root of s.
(2) V̌

s
⊆ V consists of all vertices in Γ that belong to the subtree s.

(3) V̌
s

⊆ V consists of all vertices in Γ that belong to the subtree of s, but not to the root of s.

(4) V̂sx = Vs \ V̌sx for sx = s or sx = s .

14 MOSES GANARDI, RUPAK MAJUMDAR, AND GEORG ZETZSCHE

Given a subtree s of t, the automaton As is obtained from A by deleting all edges labeled with v ∈ Γ that

are incomparable to s. For each sx ∈ {s , s }, we will use the two projection maps π̂sx : X
∗
Γ → Z

V̂sx and

π̌sx : X
∗
Γ → MΓV̌sx

, which project a string over XΓ to the symbols belonging to the nodes in V̂sx and V̌sx ,

respectively, and return their image in Z
V̂sx or MΓV̌sx

, respectively. Here ΓU is the subgraph of Γ induced
by a vertex set U .

A run in (p, sx, q) is a sequence (q0, w1, q1) · · · (qm−1, wm, qm) of transitions in As such that q0 = p, qm = q,
and π̌sx(w1 · · ·wm) = 1. Let R ⊆ ρ(A) be a subset. An R-placeholder run in (p, sx, q) is a sequence

(1) σ0(p1, s
x1
1 , q1)σ1 · · · (pm, sxm

m , qm)σm

where (i) p = q0 and q = pm+1, (ii) for i ∈ [1,m], sxi

i is above sx and (pi, s
xi

i , qi) ∈ R, (iii) σi : qi
wi→ pi+1

is a run in As for each i ∈ [0,m] and (iv) π̌sx(w1 · · ·wm) = 1. An almost R-placeholder run is such a
R-placeholder run where we also allow sxi

i = sx and only impose that π̌
s

(w1 · · ·wm) = 1.

The effect of the R-placeholder run in (1) is (p1, s
x1
1 , q1)+· · ·+(pm, sxm

m , qm)+π̂sx(w1 · · ·wm) ∈ N
ρ(A)+Z

V .

The set of effects of R-placeholder runs in (p, sx, q) is denoted ER
(p,sx,q) ⊆ N

ρ(A)+Z
V . The effect of an almost

R-placeholder runs is defined as (p1, s
x1
1 , q1)+· · ·+(pm, sxm

m , qm)+π̂
s

(w1 · · ·wm) ∈ N
ρ(A)+Z

V . By E′R
(p,sx,q),

we denote the set of effects of almost R-placeholder runs in (p, sx, q).
We now inductively define which placeholders and which placeholder runs are realizable:

• An R-placeholder in τ is realizable if all τ ′ ∈ R are realizable.
• A placeholder τ is realizable if there exists a realizable placeholder run in τ .

In particular, all ordinary runs in τ are realizable (set R = ∅). The set of realizable placeholder runs in
τ ∈ ρ(A) is denoted by Uτ . Every realizable placeholder run is of the form (1) (even those that are ordinary
runs, which just have m = 0). Hence, they have a well-defined effect. The set of effects of realizable
placeholder runs in (p, sx, q) is denoted E(p,sx,q) ⊆ N

ρ(A) + Z
V .

The notion of realizable placeholder run achieves what we mentioned above: A realizable placeholder run
can only use realizable placeholders, for which we have already established the existence of a run. Clearly,
a placeholder run in (p, t , q) is just a neutral run in (p, t , q). Thus:

Theorem 7.1. There exists a neutral run from p to q in A if and only if E
(p,t ,q)

6= ∅.

Our goal is to describe the sets Eτ using grammars. For this, it will be useful to have a characterization
of Eτ that describes how to “build up” elements of Eτ successively. This is the purpose of the sets Wτ ,
which we define next. For this, we need to define the subsets Yrx , Zrx ⊆ N

ρ(A) + Z
V :

Zrx = {x ∈ N
ρ(A) + Z

V | x(v) = 0 for every v ∈ V̌rx

and x(p, sy, q) = 0 for every p, q ∈ Q and every sy below rx or equal to rx}

and Yrx is the intersection of all Zsy where sy is below rx. To simplify notation, if τ = (p, rx, q), we
also write Zτ for Zrx (analogously for Yτ). Let us inductively define the tuple (Wτ)τ∈ρ(A), where for

W(p,sx,q) ⊆ N
ρ(A) + Z

V . It is the smallest tuple such that

(1) If s is a leaf and R ⊆ {τ ∈ ρ(A) | Wτ ∩ Zτ 6= ∅} then E′R
(p,s ,q)

⊆ W
(p,s ,q)

.

(2) If rx is above sy and W(p,sy,q) ∩ Zsy 6= ∅, then W(p,sy ,q) ∩ Yrx ⊆ W(p,rx,q).
(3) If rx is above sy and W(p,rx,q) ∩ Zrx 6= ∅, then (p, rx, q) ∈ W(p,sy,q).
(4) If (p′, rx, q′) + u ∈ W(p,rx,q) and v ∈ W(p′,rx,q′), then v + u ∈ W(p,rx,q).

Once the notion of realizable placeholder runs and the sets Wτ is established, it only requires standard
arguments that Eτ and Wτ ∩ Zτ agree.

Proposition 7.2. For every τ ∈ ρ(A), we have Wτ ∩ Zτ = Eτ .

THE COMPLEXITY OF BIDIRECTED REACHABILITY IN VALENCE SYSTEMS 15

A saturation procedure. Consider the definition of Wτ . In order to argue that an element belongs to Wτ ,
we need to apply two kinds of steps alternatingly: (i) produce new elements in Wτ using rules (1)–(4) and
(ii) observe that Wτ ∩ Zτ has become non-empty so as to enable more rules among (1)–(4). Here, our key
idea is to use grammars to decide if applying rules (1)–(4) proves a set Wτ ∩ Zτ non-empty. Hence, we
assume that for a certain set R ⊆ ρ(A) we have already established that Wτ ∩ Zτ 6= ∅ for every τ ∈ R.
Then, we construct grammars and decide their emptiness to check if this leads to more τ such that Wτ ∩Zτ

is non-empty.
Let us make this formal. Let R ⊆ ρ(A) be a subset. We inductively define the tuple (WR

τ)τ∈ρ(A), where

WR
τ ⊆ N

ρ(A) + Z
V for every τ ∈ ρ(A). It is the smallest tuple such that

(1) If s is a leaf, then E′R
(p,s ,q)

⊆ WR

(p,s ,q)
.

(2) If rx is above sy and (p, sy, q) ∈ R, then WR
(p,sy,q) ∩ Yrx ⊆ WR

(p,rx,q).

(3) If rx is above sy and (p, rx, q) ∈ R, then (p, rx, q) ∈ WR
(p,sy,q).

(4) If (p′, rx, q′) + u ∈ WR
(p,rx,q) and v ∈ WR

(p′,rx,q′), then v + u ∈ WR
(p,rx,q).

We now perform the procedure outlined above: We start with R(0) = ∅ and then set R(i+1) = {τ ∈ ρ(A) |

WR(i)

τ ∩ Zτ 6= ∅}. Then we clearly have R(0) ⊆ R(1) ⊆ · · · and thus there is some n with R(n+1) = R(n).
The following is immediate from the definition of Wτ .

Proposition 7.3. For every τ ∈ ρ(A), we have WR(n)

τ = Wτ .

Thus, in order to decide BIREACH in polynomial time, it suffices to decide, given a set R(i) as above,
whether WR

τ ∩ Zτ is empty for each τ ∈ ρ(A). To do this, we will construct certain grammars for which
we will show that emptiness can be decided in polynomial time. Here, we will use the fact that each R(i)

is obtained from the process above: We will assume that R ⊆ ρ(A) is admissible, meaning that there exists
some i with R = R(i).

Grammars. Traditionally, grammars are used to derive strings, whereas our grammar model derives vectors.
We could also develop our theory using grammars that generate strings, but since we are only interested
in the generated strings up to reordering of letters, the exposition is simpler if our grammars directly work
with vectors. More specifically, our grammars have a set N of nonterminal symbols (which can be rewritten
by a grammar rule) and a set T of terminal symbols (which can not be rewritten). Moreover, we allow the
letters in T to occur negatively, whereas the letters in N can only occur non-negatively. Hence, we can
derive vectors in N

N + Z
T : In other words, these are vectors u ∈ Z

N∪T , where u(a) ≥ 0 for each a ∈ N .
We say that a vector v ∈ N

N occurs in such a u if u(a) ≥ v(a) for every a ∈ N . A k-grammar is a tuple
G = (N, T, P), where

• N is a finite alphabet of nonterminals, which is a disjoint union N =
⋃k

i=0 Ni,

• T is a finite alphabet of terminals, which is a disjoint union T =
⋃k

i=0 Ti,
• P is a finite set of productions of one of two forms:

– a → b with a ∈ Ni, b ∈ Nj , i 6= j.
– a → u with a ∈ N0 and u ∈ N

N0 + Z
T .

In this setting, we use the notation N[i,j] =
⋃

i≤r≤j Nr, and analogously for T[i,j]. Moreover, we define
R ⊆ N as the subset of a ∈ N that appear on some right-hand side of the grammar. We then also write
Ri = R ∩Ni and use the notation R[i,j] as for N and T .

In these grammars, derivations produce vectors in N
N + Z

T instead of words. A configuration is a
vector v ∈ N

N + Z
T . For i ∈ [0, k], we define the i-derivation relation ⇒i as follows. For configurations

v,v′ ∈ N
N + Z

T , we have v ⇒0 v′ if there is some a ∈ N0 and a production a → u with u ∈ Z
N[0,k]∪T

16 MOSES GANARDI, RUPAK MAJUMDAR, AND GEORG ZETZSCHE

level 5

level 4

level 3

level 2

level 1

level 0

Figure 2. Example for choosing the level of s and s for each subtree s of t. The division
of the looped nodes into

⋃

i∈[1,k] Ti is obtained by placing each looped node into Ti, where

i is the level of the s directly above it.

such that v(a) > 0 and v′ = v− a+u. Given ⇒i , by
∗⇒i we denote the reflexive transitive closure of ⇒i .

Moreover, we define the generated set L(a) for each a ∈ Ni:

L(a) = {u ∈ N
N[i+1,k] + Z

T[i+1,k] | a ∗⇒i u}.

We now define ⇒i based on all relations ⇒i′ for i′ < i: We have v ⇒i v′ if there is an a ∈ Ni with
v(a) > 0 and a production a → a′ for some a′ ∈ Ni′ for some i′ < i, and a u ∈ L(a′) ∩ N

N[i,k] + Z
T[i,k] such

that v′ = v − a+ u.

The grammar construction. Let us now show how to construct a grammarG = (N, T, P) such that N = ρ(A)
and L(τ) = WR

τ for every τ ∈ ρ(A). Recall that Γ = (V, I). The set T will consist of the looped vertices of
Γ, but also some auxiliary letters defined as follows. We pick an arbitrary linear order ≪ on Q. Then we
have the letters Θ = {z

p,s ,q
| p ≪ q, s is a leaf of t}. In other words, for any two states in Q and each leaf

s of t, we create one letter in Θ. We set T = {v ∈ V | vIv} ∪Θ.
First, we divide the sets N = ρ(A) and T into levels. The idea is that types (p, s , q) with leaves s have

level 0 and the higher a subtree s is in t, the higher its level. Moreover, a type (p, s , q) should have strictly
higher level than (p, s , q). Since Γ ∈ SC

±
d,ℓ, we know that the height of t is h(Γ) ≤ ℓ. We choose a map

ι : {s , s | s is a subtree of t} → [0, k] such that (i) for every leaf s of t, we have ι(s) = 0, (ii) if rx is above
sy, then ι(rx) > ι(sy). This can clearly be defined with some k ≤ 2ℓ. Here, we need 2ℓ, because s and s
must be on different levels. See Fig. 2 for an example of how to choose the levels for each sx. This yields

the partition N =
⋃k

i=0 Ni with Ni = {(p, sx, q) ∈ ρ(A) | ι(sx) = i}. Moreover, we set T =
⋃k

i=0 Ti where

for i ∈ [1, k], we have v ∈ Ti if and only if ι(s) = i, where s is the subtree whose root node contains v.
Moreover, T0 = Θ.

We begin by describing the productions a → u for a ∈ N0 and u ∈ N
N0 + Z

T . For this, we pick some
leaf s of t. Our goal is to guarantee L(p, s , q) 6= ∅ if and only if WR

(p,s ,q)
∩ Z

s
6= ∅ for any p, q ∈ Q.

To achieve this, we use Theorem 6.5. We construct a valence system Âs over a graph Γ̃s as follows. The
graph Γ̃s = (Ṽs, Ĩs) has vertices Ṽs = Us ⊎ Ls ⊎ Rs, where Us (Ls) is the set of unlooped (looped) vertices

in V that belong to s and Rs = {(p′, s , q′) ∈ R | p′, q′ ∈ Q}. Moreover, Γ̃s is a clique, and a vertex is

looped if and only if it is in Ls ⊎ Rs. In other words, Γ̃s is constructed by taking the vertices belonging
to s (which already form a clique) and adding for each (p′, s , q′) ∈ Rs another looped vertex. Then Âs is
obtained from As by adding, for any (p′, s , q′) ∈ Rs, an edge from p′ to q′ labeled by (p′, s , q′), and an

THE COMPLEXITY OF BIDIRECTED REACHABILITY IN VALENCE SYSTEMS 17

edge from q′ to p′ labeled −(p′, s , q′). Now Theorem 6.5 allows us to compute v,u1, . . . ,un ∈ Z
Ls∪Rs such

that v + 〈u1, . . . ,un〉 = EffÂs
(p, q). We now want to turn this coset representation into productions for the

grammar. For this, we need some notation. Then, given a vector u ∈ Z
Us∪Rs , define α(u) ∈ N

Rs + Z
U by

α(u)(p′, s , q′) = x+ y, where

x =

{

u(p′, s , q′) if u(p′, s , q′) ≥ 0

0 otherwise
and y =

{

−u(q′, s , p′) if u(q′, s , p′) < 0

0 otherwise

Note that then α(u) ∈ N
Rs+Z

Us and moreover, for any p′, q′ ∈ Q, we have α(u)(p′, s , q′)−α(u)(q′, s , p′) =
u(p′, s , q′)− u(q′, s , p′).

Now we include the productions

(p, s , q) → α(v), (p, s , q) → (p, s , q) + α(uj), (p, s , q) → (p, s , q) + α(−uj),(2)

(q, s , p) → α(−v), (q, s , p) → (q, s , p) + α(uj), (q, s , p) → (q, s , p) + α(−uj),(3)

for every j ∈ [1, n]. Moreover, we include the production

(4) (p, s , q) → (p, s , q) + (p, s , q) + (q, s , p)

for every (p, s , q) ∈ R. Finally, we will need productions that allow us to eliminate a pair (p, s , q) and
(q, s , p). If p ≪ q, we add the two productions

(p, s , q) → z
p,s ,q

, (q, s , p) → −z
p,s ,q

.(5)

In addition to these level-0 productions, we also add the following for every ry and sx:

(C1) If rx is above sy and (p, sy, q) ∈ R, then we have a production (p, rx, q) → (p, sy, q).
(C2) If rx is above sy and (p, rx, q) ∈ R, then we have a production (p, sy, q) → (p, rx, q).

Bidirected grammars. We are now ready to present the symmetry conditions of bidirected grammars. If G
is a k-grammar, then an involution is a map ·† : N → N with such that for a ∈ Ni, we have a† ∈ Ni for

i ∈ [0, k] and (a†)
†
= a. In this case, for u ∈ Z

N∪T , we define u† ∈ Z
N∪T as u†(a) = u(a†) for a ∈ N and

u†(a) = −u(a) for a ∈ T . Here, u† can be thought of as the inverse of u.
Let G be a k-grammar. We define the relation on N as follows. For a ∈ Ni and b ∈ N[i,k], we have

a b if and only if there is a configuration u ∈ Z
N[i,k]∪T[i,k] with a ⇒i b+u. For each a ∈ Ni, we define the

monoid ∆a, which is generated by all b+ b† with b ∈ N[i+1,k] and a ∗
 b. Hence, ∆a ⊆ N

N[i+1,k] . Intuitively,
the elements of ∆a are vectors that are produced on level i and can only be eliminated later, on higher
levels. The latter will be possible because they consist of pairs of “inverse” nonterminals. We therefore
often describe what is derivable “up to differences in ∆a”. This motivates the following equivalence: For
u,u′ ∈ N

N[i+1,k] + Z
T[i+1,k] , we have u ≈a u′ if and only if there are d,d′ ∈ ∆a with u+ d = u′ + d′.

We say that G is bidirected if there is an involution ·† : N → N such that

(1) for every production a → u in P , we have a production a† → u† in P and
(2) for every b ∈ R and production a → b, there is also a production b → a, and
(3) if a ∈ R0, then a ∗⇒0 a+ a+ a†.
(4) for every a ∈ R, we have L(a) 6= ∅,
(5) for every a ∈ R0 and every production a → b + u with b ∈ R0 and u ∈ N

R0 + Z
T , there is a

x ∈ N
R + Z

T such that x ≈a a+ u† and b ∗⇒0 x,

We show that the grammar that we construct above is in fact bidirected. Here, the involution is given by

(p, sx, q)
†
= (q, sx, p). Intuitively, a bidirected grammar has two aspects of reversibility: Each nonterminal

a ∈ N has an inverse a†. Moreover, productions can be reversed in two ways: By rule (1) we can invert every
letter, and by rules (5) and (2), we can apply it backwards. Furthermore, we guarantee that we can produce

18 MOSES GANARDI, RUPAK MAJUMDAR, AND GEORG ZETZSCHE

pairs of inverse letter by rule (3) and that every nonterminal that appears on a right-hand side produces
some vector. We prove the following:

Proposition 7.4. Given a graph Γ in SC
±
d,ℓ and a valence system A over Γ, and an admissible R ⊆ ρ(A),

we can construct in polynomial time a bidirected k-grammar G = (N, T, P) with k ≤ 2ℓ such that N = ρ(A)
and L(τ) 6= ∅ if and only if WR

τ ∩ Zτ 6= ∅ for each τ ∈ ρ(A) with τ ∈ Ni.

Let us sketch why the grammar is bidirected. The conditions Items 1 to 3 are obvious from the construc-
tion. Moreover, the condition Item 4 follows from L(τ) 6= ∅ if and only if WR

τ ∩ Zτ 6= ∅ for every τ ∈ ρ(A).
Finally, the condition Item 5 is clear for all productions except those in (2) and (3). For the latter, this

follows essentially from the bidirectedness of Âs and from the property (4).

7.2. Properties of bidirected grammars. In this section, we establish several properties of bidirected
grammars that will help us later to express emptiness using linear integer Diophantine equations. Here, the
main property is that in a bidirected grammar, we can, in some sense, reverse each production.

First, note that in a k-grammar, we allow productions a → b such that a ∈ Ni and b ∈ Nj for arbitrary
i 6= j. In what follows, it will be convenient to assume that the k-grammar is in normal form, meaning that
for such productions, with i 6= j, we always have j ∈ {i − 1, i + 1}, hence we only ever go to neighboring
levels. This can easily be achieved by adding “intermediate” nonterminals and productions that cross levels
successively. If a grammar is in normal form, the derivation relation has a simplified formulation: We have
u ⇒i v if there is an a ∈ Ni−1 and w ∈ L(a) with u(a) ≥ 1 and v = u − a +w (hence, we can drop the
requirement w ∈ N

N[i,k] + Z
T[i,k]).

A k-grammar is called i-bidirected if for every a ∈ Ri and every derivation a ∗⇒i u + v with u ∈ Z
Ri ,

u 6= 0, v ∈ Z
R[i,k]∪T[i,k] , then u ∗⇒i a+v′ for some v′ with v′ ≈a v†. In other words, if we can derive a vector

with level-i nonterminals u and level-i terminals v, then from u, we can derive a+ v†, up to a difference in
∆a. In short, up to differences in ∆a, we can reverse derivations on level i that start in nonterminals that
appear on some right-hand side. Note that if G is i-bidirected, then on Ri,

∗
 is symmetric and thus an

equivalence. We establish the following.

Theorem 7.5. If G is bidirected, then it is i-bidirected for each i ∈ [0, k].

Proof sketch. We first claim that G is i-bidirected if and only if it is “step-wise” i-bidirected in the following
sense: for every a ∈ Ri and every step a ⇒i b+ v with b ∈ Ri and v ∈ N

Ri + Z
T , there is a v′ ∈ N

Ri + Z
T

with b ∗⇒i a + v′ and v′ ≈a v†. While “only if” is clear, we prove the converse by writing a derivation
a ∗⇒i u+ v with u = b+ u′ as a sequence of steps aj ⇒i aj+1 + xj , so that a0 = a and an = b, plus some
other derivation steps that derive x1 + · · · + xn

∗⇒i u′ + v. We then apply the condition to reverse each
step aj ⇒i aj+1 + xj . This leads to b ∗⇒i a + y for some y ≈a x1

† + · · · + xn
†. Using condition (1) of

bidirected grammars, we can then argue that y ∗⇒i z for some z ≈a (u′ + v)
†
. Putting these together yields

the desired derivation.
Once the claim is established, the lemma follows by induction on i: i-bidirectedness implies the step-wise

condition on level i+ 1. Furthermore, bidirected grammars are 0-bidirected. �

7.3. Expressing emptiness in terms of cosets. In this section, we will see how to express emptiness of
bidirected grammar in terms of certain cosets of ZN∪T . This will allow us to reduce the emptiness check to
systems of integer linear Diophantine equations. In order to express emptiness in terms of cosets, we need
to prove a correspondence between derivations in G on level i and those cosets. We begin by defining the
cosets used in our characterization. A central role will be played by the group Ha, which we define for each
a ∈ Ri:

(6) Ha = 〈−b+ u | b ∈ Ri and b ⇒i u and a ∗
 b〉

THE COMPLEXITY OF BIDIRECTED REACHABILITY IN VALENCE SYSTEMS 19

Hence, Ha is the group generated by all differences that are added when applying derivation steps b ⇒i u
for a ∗

 b. Note that if a ∗⇒i u, then −a+u ∈ Ha. We will need a coset to express that in such a derivation,
there are no level-i letters left. We will do this by intersecting with

Si = Z
N[i+1,k]∪T[i+1,k] = {u ∈ Z

N∪T | u(b) = 0 for every b ∈ N[0,i] ∪ T[0,i]}.

We sometimes use the variant S′
i = Z

N[i+1,k] + Z
T[i,k] if we only want to make sure there are no more level-i

nonterminals. Using Ha and Si, we can now define the coset that will (essentially) characterize the language
L(a). For a ∈ Ri, we set

(7) La = (a+Ha) ∩ Si.

One of the main results of this section will be that for a ∈ Ri, we can describe L(a) in terms of La. Following
the theme that we can do things only “up to differences in ∆a” on each level, we need a group version of
∆a. For every a ∈ Ni, we have the subgroup Da ⊆ Z

Ni+1 , which we define next. If a ∈ Ni with i ∈ [0, k− 1],
we set Da = 〈b+ b† | b ∈ Ni+1, a ∗

 b〉. For a ∈ Nk, we define Da = {0}. Thus, Da is the group generated
by ∆a, for every a ∈ N . With this terminology, we prove that La = L(a) +Da, i.e. La describes L(a) up to
a difference in Da. By our observations above about Ha, it is obvious that L(a) is included in La. The core
argument in our proof is that La ⊆ L(a) +Da.

However, the purpose of our translation is to check whether L(a) is empty for a ∈ Ni that do not
necessarily belong to Ri: Those are the nonterminals for which we do not know whether L(a) is empty. Such
sets L(a) do not directly correspond to cosets. However, we will be able to use cosets to characterize when
L(a) is empty. Here, we use the cosets Ka. For a ∈ Ni, i ∈ [0, k − 1], we define

Ka = (La + 〈−b+Mb | b ∈ Ri+1, a ∗
 b〉) ∩ Si+1,

where Mb is to be defined later. We shall see that the coset Ka corresponds to those vectors in N
N[i+1,k] +

Z
T[i+1,k] that can be derived using a. The cosets Mb will correspond to the set of vectors that are derivable,

but may still contain level-i terminals:

M(a) = {u ∈ N
N[i+1,k] + Z

T[i,k] | a ∗⇒i u}.

Thus, M(a) differs from L(a) by collecting all derivable u ∈ N
N[i+1,k] + Z

T , where all level-i nonterminals
have been eliminated, but not necessarily all level-i terminals. Thus, we have L(a) = M(a) ∩ Si. Just as La

is a coset analogue of L(a), we have a coset analogue Ma of M(a). We define:

Ma = (a+Ha) ∩ S′
i.

The cosets Kb for b ∈ N[0,k−1], we will be able to characterize emptiness of L(a) for a ∈ N[1,k]. In order to
do the same for a ∈ N0, we need a final type of cosets. For each production a → u with u = b1+ · · ·+ bn+v
in our grammar with b1, . . . , bn ∈ N0 and v ∈ Z

T , we define

Ka→u = (Mb1 + · · ·+Mbn + v) ∩ S0.

The goal of this section is to show the following analogue of the translation of Verma, Seidl, and Schwentick
[34] to Presburger arithmetic. Here, we express the set L(a) of derivable vectors of a nonterminal a as a
coset. Recall that a subset of ZN∪T is a coset if and only if it is some projection of a set of solutions to a
system of integer linear Diophantine equations.

Theorem 7.6. If G = (N, T, P) is bidirected, then for every a ∈ R, we have M(a)+Da = Ma. In particular,
L(a) +Da = La.

Let us compare the proof of Theorem 7.6 with the construction of Verma, Seidl, and Schwentick [34]. In
their translation (which is based on a characterization of reachability in certain VASS due to Esparza [12]),
they show that if we assign to each production p in a context-free grammar a number x(p) saying how often

20 MOSES GANARDI, RUPAK MAJUMDAR, AND GEORG ZETZSCHE

p is applied, then there exists a derivation consistent with this choice if and only if two conditions are met:
First, the number of times each nonterminal is produced by productions coincides with the number of times
it is consumed (except for the start-symbol: it is consumed once more than it is produced). Second, the
set of nonterminals that are produced and consumed (i.e. for which x(p) > 0) must be connected : For each
nonterminal, it must be possible to reach its consumed nonterminal by way of the used productions. The
last condition is crucial: Otherwise, if we pick each of the the productions a → u and b → bv once, where
u and v only contain terminal symbols and a, b are nonterminals, then these do not constitute a derivation
with start-symbol a, because the production b → bv cannot be applied. However, if we had also chosen
productions a → b and b → a once each, there would be a derivation.

Roughly speaking, we show that in the case of bidirected grammars, one can drop the connectedness
requirement: Then, the requirement that each nonterminal be produced and consumed equally often is
expressible using equations. However, we cannot drop connectedness entirely: Instead, we observe that
independently of a particular derivation, the set of nonterminals decomposes into connected components:
Those induced by ∗

 . Then, instead of stipulating connectedness of the set of used nonterminals, we merely
have to require that all used nonterminals belong to the same ∗

 -component. This guarantees that there
exists some “connecting derivation” involving any two used nonterminals, which may not be part of the
vector x. In the example above, this corresponds to allowing ourselves to using a → b and b → a.

We then show that this indeed gives rise to a complete derivation: By using the connecting derivations
and their reverse applications, we can construct a derivation. These connecting derivations and their reverses
are formalized in the concept of what we call “Kirchhoff graphs”.

Let a ∈ Ri. A Kirchhoff graph for a is a directed graph whose set of vertices is {b ∈ Ri | a
∗
 b}, that has

an edge (b, c) for any b, c ∈ Ri with a ∗
 b and a ∗

 c, and where an edge (b, c) is weighted by an element
gb,c ∈ N

N[i+1,k] +Z
T[i+1,k] such that (i) b ∗⇒i c+ gb,c for every b, c, and (ii) gb,b = 0 for every b, and (iii) for

any vertices b, c, d, we have gb,c + gc,d ≈a gb,d. Let us observe that in a Kirchhoff graph for a, we have

ge,f + ge′,f ′ ≈a (ge,e′ + ge′,f) + (ge′,e + ge,f ′) ≈a (ge,e′ + ge′,e) + (ge′,f + ge,f ′) ≈a ge′,f + ge,f ′ .

This implies, more generally, that if π is a permutation of {1, . . . , ℓ} and e1, . . . , eℓ, f1, . . . , fℓ ∈ Ri are nodes
in the Kirchhoff graph, then

ge1,f1 + · · ·+ geℓ,fℓ ≈a ge1,fπ(1)
+ · · ·+ geℓ,fπ(ℓ)

.

The term stems from the fact that these graphs satisfy (up to ≈a) a condition like Kirchhoff’s law on voltage
drops: The weight sum of every cycle is zero.

Theorem 7.7. If G is i-bidirected, then for each a ∈ Ri, there exists a Kirchhoff graph for a.

Proof. Write {b ∈ Ri | a
∗
 b} = {b1, . . . , bn}. To simplify notation, we write gr,s instead of gbr,bs . We have

to pick gj,j = 0. Since G is i-bidirected, we know that ∗
 is symmetric. In particular, for any j ∈ [1, n− 1],

there exists a gj,j+1 such that bj
∗⇒i bj+1 + gj,j+1. Moreover, i-bidirectedness of G guarantees that there

exists a gj+1,j with gj+1,j ≈bj gj,j+1
† such that bj+1

∗⇒i bj + gj+1,j . Note that since a ∗
 bj and ∗

 is

symmetric, we have ∆bj = ∆a and thus gj+1,j ≈a gj,j+1
†. Finally, for r, s ∈ [1, n] with r < s, we pick

gr,s = gr,r+1 + · · ·+ gs−1,s and similarly gs,r = gs,s−1 + · · ·+ gr+1,r.
Let us now show that this is indeed a Kirchhoff graph for a. We clearly have br

∗⇒i bs + gr,s for any
r, s ∈ [1, n]. It remains to show that gr,s + gs,t ≈a gr,t for any r, s, t ∈ [1, n]. It suffices to do this in the case
that |s− t| = 1, because the other cases follow by induction. Consider the case t = s+1 (the case s = t+1 is
analogous). We have to show that gr,s+gs,s+1 ≈a gr,s+1. If r ≤ s, then both sides are identical by definition.
If r > s, then gr,s is defined as gr,s = gr,s+1+gs+1,s. By the choice of gs+1,s, we know that gs+1,s ≈a gs,s+1

†

and thus gs+1,s + gs,s+1 ≈a 0. Therefore, we have gr,s + gs,s+1 = gr,s+1 + gs+1,s + gs,s+1 ≈a gr,s+1. �

THE COMPLEXITY OF BIDIRECTED REACHABILITY IN VALENCE SYSTEMS 21

To prove Theorem 7.6, we need two simple lemmas. The first is a simple consequence of the properties
shown in Section 7.2.

Theorem 7.8. If G = (N, T, P) is bidirected and a ∈ Ri, then Da ⊆ Ha.

Next observe that in La, we also have vectors that are obtained by subtracting the effect of a derivation
step. We now show that if our grammar is i-bidirected, then each such subtraction can be realized by a
sequence of ordinary derivation steps: The lemma says that every element of Ha can be written as a positive
sum of derivation effects (up to a difference in Da).

Theorem 7.9. If G = (N, T, P) is i-bidirected, then for a ∈ Ri, we have

Ha = {−b+ u | ∃b ∈ Ri : b ⇒i u and a ∗
 b}∗ +Da.

We are now ready to prove Theorem 7.6.

Proof of Theorem 7.6. We begin with the inclusion “⊆”. A simple induction on the length of a derivation
shows that every element of M(a) belongs to Ma. Lemma 7.8 tells us that Da ⊆ Ha, and since Da ⊆ Si,
this implies Ma + Da ⊆ Ma, hence M(a) + Da ⊆ Ma. We now prove “⊇”. An element of Ma is of the
form a + v with v ∈ Ha and a + v ∈ S′

i. We claim that then a+ v belongs to M(a) +Da. Since v ∈ Ha,
Lemma 7.9 tells us that v =

∑n

j=1 −bj + uj + xj with bj ∈ Ri, a
∗
 bj , uj ∈ N

Ri , xj ∈ N
N[i+1,k] + Z

T[i,k]

where bj ⇒i uj + xj for j ∈ [1, n].
Since G is i-bidirected by Lemma 7.5, Lemma 7.7 yields a Kirchhoff graph for a with weights gb,c for any

b, c ∈ Ri with a ∗
 b and a ∗

 c. Let us now construct a derivation in G. Without loss of generality, we may
assume that u1, . . . ,uℓ 6= 0 and uℓ+1 = · · · = un = 0. For each j ∈ [1, ℓ], we pick some nonterminal cj ∈ Ri

such that c1 = a and uj−1(cj) > 0 for j ∈ [2, ℓ]. By our choice of the g’s, we can now derive as follows.
We use the derivation steps bj ⇒i uj + xj . But since it is possible that bj+1 ⇒i uj+1 + xj+1 cannot be
applied after bj ⇒i uj + xj , we use derivations cj

∗⇒i bj + gcj ,bj as connecting derivations. Here, we think
of the gcj ,bj as “garbage” that we produce in order to use the connecting derivations. Afterwards, we will
use additional steps, to cancel out these garbage elements. We begin with a connecting derivation in order
to apply b1 ⇒i u1 + x1:

a = c1
∗⇒i b1 + gc1,b1 ⇒i u1 + x1 + gc1,b1 = a+ (−c1 + u1) + gc1,b1 .

Now c2 must occur in a+(−c1+u1+x1)+gc1,b1 and thus we can apply c2
∗⇒i b2+gc2,b2 , etc. If we repeat

this ℓ times, we arrive at:

a ∗⇒i a+
ℓ∑

j=1

−cj + uj + xj + gcj,bj .

Let us denote the sum on the right-hand side by y. Since want to derive a+
∑ℓ

j=1(−bj + uj + xj) instead

of a + y, we now need to correct two aspects: (i) Our derivation subtracted c1, . . . , cℓ instead of b1, . . . , bℓ,
so we need to add c’s and subtract b’s and (ii) we need to cancel out the garbage elements gcj,bj . When
replacing b’s by c’s, it could be that some c’s are equal to b’s, so for (i), we don’t have to change those.
So we pick a permutation π of {1, . . . , ℓ} and a number r ∈ [1, ℓ] so that (a) cj = bπ(j) for j ∈ [1, r] and
(b) {bπ(r+1), . . . , bπ(ℓ)} and {cr+1, . . . , cℓ} are disjoint. Now observe that the nonterminals {bπ(r+1), . . . , bπ(ℓ)}
are never consumed in the derivation arriving at a+y. However, since a+v ∈ Si, we know that b1+ · · ·+ bℓ
must occur in

∑ℓ
j=1 uj . Therefore, in particular bπ(r+1) + · · · + bπ(ℓ) must occur in y. But this means we

22 MOSES GANARDI, RUPAK MAJUMDAR, AND GEORG ZETZSCHE

can, for each j ∈ [r+1, ℓ], apply the derivation bπ(j)
∗⇒i cj +gbπ(j),cj to y (in any order). Then we arrive at

a ∗⇒i a+

ℓ∑

j=1

−cj + uj + xj + gcj,bj +

ℓ∑

j=r+1

−bπ(j) + cj + gbπ(j),cj

= a+

ℓ∑

j=1

−bj + uj + xj +





ℓ∑

j=1

gcj,bj +

ℓ∑

j=r+1

gbπ(j),cj





Moreover, since a+ v ∈ Si, we know that bℓ+1 + · · ·+ bn must occur in
∑ℓ

j=1 −bj + uj + xj , and so we can

just apply the steps bj ⇒i uj + xj for j ∈ [ℓ+ 1, n] in any order to obtain:

a ∗⇒i a+

n∑

j=1

−bj + uj + xj +





ℓ∑

j=1

gcj,bj +

ℓ∑

j=r+1

gbπ(j),cj



 .

Now since a+ v ∈ S′
i, the right-hand side contains no more level-i nonterminals. Hence, the right-hand side

belongs to M(a). Finally, since π(j) = j for j ∈ [1, r] and gcj ,cj ≈ 0 for j ∈ [1, ℓ], the term in parentheses
belongs to Da. Hence, we have a+ v ∈ M(a) +Da.

Finally, note that L(a)+Da = La follows from M(a)+Da = Ma, because Da ⊆ Si and thus L(a)+Da =
(M(a) ∩ Si) +Da = (M(a) +Da) ∩ Si = Ma ∩ Si = La. �

While Theorem 7.6 describes what nonterminals a ∈ Ri can derive, we also need an analogue that at least
characterizes emptiness of L(a) for a ∈ Ni. The following is a straightforward consequence of the previous
steps.

Corollary 7.10. Suppose G is i-bidirected and a ∈ Ni for i ∈ [2, k]. Then L(a) 6= ∅ if and only if there is
some a′ ∈ Ni−1 and a production a → a′ such that Ka′ 6= ∅.

Since Corollary 7.10 applies only to a ∈ N[1,k], we also need an analogue for a ∈ N0, which follows directly
from the definition of k-grammars and previous lemmas.

Corollary 7.11. Suppose G is bidirected and a ∈ N0. Then L(a) 6= ∅ if and only if there is some production
a → u with u ∈ N

N0 + Z
T such that Ka→u 6= ∅.

7.4. Constructing coset circuits. In our algorithm, we will compute matrix representations for each
of the cosets defined in the last section. As an intermediate step towards the matrix representations, we
compute a representation of the cosets in terms of “coset circuits”, which can be seen as compressed matrix
representations.

Let Y be a finite set. A matrix representation of a coset S ⊆ Z
Y is a matrix A ∈ Z

X×Z and a vector
b ∈ Z

X such that Y ⊆ Z and S = {πY (x) | Ax = b}, where πY : ZZ → Z
Y is the projection onto Z

Y . Note
that if we have a coset S represented as S = v+ 〈u1, . . . ,un〉, we can easily compute a matrix representation
for it, since S = {x ∈ Z

Y | ∃x1, . . . , xn ∈ Z : x = v + x1 · u1 + · · ·+ xn · un}.
A coset circuit over Z

Y is a directed acyclic graph C, whose vertices will be called gates, where

(1) every gate g with in-degree-0 is labeled by a matrix representation of a coset C(g) and
(2) every gate with in-degree > 0 is labeled either by + or by ∩.

In a coset circuit, each gate g evaluates to a coset C(g) of ZY : The in-degree-0 gates evaluate to their labels.
Moreover, a gate g with incoming edges from g1, . . . , gm, m ≥ 1, evaluates to either C(g1) + · · ·+ C(gm) or
C(g1) ∩ · · · ∩ C(gm) depending on whether v is labeled by + or ∩.

We now show how to construct a coset circuit that contains a gate for each of the cosets used in Section 7.3.
The definition of these cosets does not tell us directly how to compute the cosets using sums and intersections.

THE COMPLEXITY OF BIDIRECTED REACHABILITY IN VALENCE SYSTEMS 23

In fact, Ha is even defined using a (potentially infinite) generating set. Therefore, the first step is to show
that Ha is generated by finitely many cosets on the same level.

Theorem 7.12. Let G = (N, T, P) be a k-bidirected grammar. For every a ∈ Ni, i ∈ [2, k], we have
Ha = 〈−b+ Lc | b ∈ Ni, c ∈ Ni−1, a

∗
 b, b → c ∈ P 〉.

This is a straightforward consequence of Theorem 7.6. We have now described each coset in terms of
other cosets using sum, intersection, and generated subgroup. In order to describe cosets only using sums
and intersections, we need a simple lemma.

Theorem 7.13. Let A be an abelian group, g1, . . . , gn ∈ A, and U and S subgroups such that (gi+U)∩S 6= ∅
for each i ∈ [1, n]. Then we have 〈(g1 + U) ∩ S, . . . , (gn + U) ∩ S〉 = (〈g1, . . . , gn〉+ U) ∩ S.

Using Lemma 7.13, we can now express each coset in terms of sums and intersections of previous cosets.
To simplify notation, write Pa = {(b, c) | b ∈ Ni, c ∈ Ni−1, a

∗
 b, b → c ∈ P}. Note that

Ha = 〈−b+ u | a ∗
 b, b → u ∈ P 〉 for a ∈ N0, Ha = 〈−b+ Lc | (b, c) ∈ Pa〉 for a ∈ N[1,k].

Thus, for a ∈ N0, we have a finite generating set for Ha given explicitly in the grammar and can thus create
a leaf gate for Ha labeled by an explicit matrix representation for Ha. However, for a ∈ N[1,k], we need to
eliminate the the 〈·〉 operator. To this end, we write

Ha = 〈−b+ Lc | (b, c) ∈ Pa〉 =
∑

(b,c)∈Pa

〈(−b+ c+Hc) ∩ Si−1〉 =
∑

(b,c)∈Pa

(〈−b+ c〉+Hc) ∩ Si−1(8)

where in the first step, we plug in the definition of Lc and in the second step, we apply Lemma 7.13. Here,
the sum on the right only uses those (b, c) ∈ Pa for which (〈−b+ c〉+Hc)∩ Si−1 6= ∅. Now, each 〈−b+ c〉 is
a group for which we can create a gate with an explicit representation. We also need to express Ka in terms
of sum and intersection. First note that for b ∈ Ni+1,

(9) 〈−b+Mb〉 = 〈−b+ ((b +Hb) ∩ S′
i+1)〉 = 〈(−b+ S′

i+1) ∩Hb〉 = Hb ∩ 〈−b+ S′
i+1〉

provided that (−b+ S′
i+1) ∩Ha 6= ∅; otherwise, 〈−b+Mb〉 is the trivial group {0}. In the first equality, we

plug in the definition of Ma. The second is due to the definition of S′
i+1, and the third applies Lemma 7.13,

relying on (−b+ S′
i+1) ∩Hb being non-empty. This implies that for a ∈ Ri,

(10)

Ka = (La + 〈−b+Mb | b ∈ Ri+1, a
∗
 b〉) ∩ Si+1 =



La +
∑

b∈Ri+1,a
∗
 b

〈−b+Mb〉



 ∩ Si+1

=



La +
∑

b∈Ri+1,a
∗
 b

Hb ∩ 〈−b+ S′
i+1〉



 ∩ Si+1,

where the last sum only uses those Hb∩〈−b+S′
i+1〉 for which (−b+S′

i+1)∩Hb 6= ∅. The equality follows from
the definition of Ka and (9). Note that for −b+ S′

i+1, it is again easy to construct a matrix representation.
Finally, observe that all these coset definitions rely on the relation . On N0, we can compute directly.
On N[1,k], we have to rely on cosets. To this, note that for a, b ∈ Ni, we have a b if and only if there is a
c ∈ Ri−1 with a production a → c and some u ∈ Lc with u(b) = 1. In other words, if and only if Lc∩Ob 6= ∅,
where Ob is the coset {u ∈ Z

N∪T | u(b) = 1}.
We observe that the constructed coset circuit has depth ≤ ck for some constant c: The gates for Ha,

La, Ma only depend on gates created in the last iteration of the for-loop. Moreover, each of them only
adds a constant depth to the gates produced before. The gates Ka depend on gates Hb created in the same
iteration, thus also adding only constant depth. Finally, note that the entries in the matrices in the labels

24 MOSES GANARDI, RUPAK MAJUMDAR, AND GEORG ZETZSCHE

Algorithm 1: Construction of coset circuit for a bidirected k-grammar

Input: Bidirected k-grammar G = (N, T, P)
Create gates for Si, S

′
i, Oa, and 〈−a+ b〉 for each i ∈ [1, k], a, b ∈ N

Compute on N0

Create gates for Ha, La, and Ma for each a ∈ R0

Create gates for Ka→u for productions a → u, a ∈ N0, u ∈ N
N0 + Z

T

for i = 1, . . . , k do
Create gate for Lc ∩Ob for each c ∈ Ni−1, b ∈ Ni

Compute the relation on Ni based on non-emptiness of Lc ∩Ob with c ∈ Ni−1, b ∈ Ni

Compute ∗
 on Ni and then Pa for each a ∈ Ni

Create gate for Ha, then for La, then for Ma for each a ∈ Ri according to (7), (8) and (10)
Create gate for Ka for each a ∈ Ri−1

of the leaves require at most polynomially many bits: The gates for Si, S
′
i, Oa, 〈−a + b〉 and for Ha, La,

and Ma for a ∈ R0 are obtained directly from the productions of G. The numbers in those, in turn, have at
most polynomially many bits as they are computed using the polynomial time algorithm from Theorem 6.5.

7.5. From coset circuits to linear Diophantine equations. In each of our three algorithms for BIREACH,
we use the same basic procedure to check emptiness of coset circuits. Let n = |Y |. We compute, for each
gate g, a matrix Ag ∈ Z

sg×tg and a vector bg ∈ Z
sg such that C(g) = {πn(x) | x ∈ Z

tg , Agx = bg}, where
for any r ∈ N, by πn, we denote the projection : Zr → Z

n onto the last n coordinates for any r ≥ n. If g
has in-degree 0, then g is already labeled with such a matrix A and vector b. Now suppose g has incoming
gates g1, . . . , gr. Let A1, . . . ,Ar and b1, . . . ,br with Ai ∈ Z

si×ti , b ∈ Z
si , denote the matrices and vectors

constructed for the gates g1, . . . , gr. Then the matrix A ∈ Z
s×t and b ∈ Z

s for g have the shape

A =








A1

. . .

Ar

0

B C








, b =








b1

...
br

0








where B and C are chosen depending on whether g is labeled with + or ∩.
If the label is +, then B ∈ Z

n×(t1+···+tr),C ∈ Z
n×n, are chosen so that Bx = c expresses that in x, the

last n coordinates are the sum of y1 + · · · + yr, where for each i ∈ [1, r], the vector yi ∈ Z
n contains the

coordinates t1+ · · ·+ ti−n, . . . , t1+ · · ·+ ti, i.e. the last n coordinates corresponding to Ai. Hence, we have
s = s1 + · · · + sr + n and t = t1 + · · · + tr + n. If the label is ∩, then B ∈ Z

rn×(t1+···+tr),C ∈ Z
rn×n are

chosen so that Bx = c expresses that for each i ∈ [1, r], the last n coordinates of x agree with coordinates
t1 + · · · + ti − n, . . . , t1 + · · · + ti of x, i.e. the last n coordinates corresponding to Ai. Thus, we obtain
s = s1 + · · ·+ sr + rn and t = t1 + · · ·+ tr + n.

Thus, in any case, we have max{s, t} ≤ (r+1) ·maxi max{si, ti}. Moreover, the magnitude does not grow
at all: We have ‖A‖ ≤ max{‖Ai‖ | i ∈ [1, r]} and ‖b‖ ≤ max{‖bi‖ | i ∈ [1, r]}. Suppose m is an upper
bound on the number of rows and columns of the matrices in the leafs of C, and M is an upper bound on
their magnitude. Then for any gate g of depth i, the resulting matrix Ag ∈ Z

sg×tg and vector bg ∈ Z
sg

satisfy max{sg, tg} ≤ (r + 1)i ·m and ‖Ag‖, ‖bg‖ ≤ M .

Theorem 7.14. For every fixed d, ℓ ∈ N, the problem BIREACH(SC±
d,ℓ) is in P.

Proof. According to Lemma 7.1, we have to decide whether E
(p,s ,q)

6= ∅. By Proposition 7.2, this is

equivalent to W
(p,t ,q)

∩Z
t

6= ∅. In order to decide the latter, we apply the saturation procedure described

THE COMPLEXITY OF BIDIRECTED REACHABILITY IN VALENCE SYSTEMS 25

after Proposition 7.3. For this, we need to compute the set R(i+1) from R(i). Now Proposition 7.4 allows us
to construct in polynomial time a k-grammar G with k ≤ 2ℓ such that a ∈ R(i+1) if and only if L(a) 6= ∅.
Given this grammar, we construct a coset circuit C as described above in polynomial time. As noted above,
the circuit has depth ≤ ck for some constant c ∈ N. For each gate g in this coset circuit, we compute a
matrix representation for the coset C(g). The resulting matrix A ∈ Z

s×t and vector b ∈ Z
s will satisfy

s, t ≤ (r+1)ck ≤ (r+1)2ℓ, where r is the largest in-degree of a gate in C. Since ℓ is fixed, s and t are bounded
polynomially in the input. Moreover, the magnitude of A and b is at most the magnitude of the matrices
in the leaves of C, which means the entries of A and b only require polynomially many bits. Therefore, we
can check emptiness of C(g) using Theorem 3.2. �

Theorem 7.15. For every fixed d ∈ N, the problem BIREACH(SC±
d) is in EXPTIME.

Proof. We use the same algorithm as in Theorem 7.14. Since now ℓ is part of the input, the depth ck ≤ 2cℓ
of the coset circuit is no longer fixed. Thus, the bound (r+1)2cℓ on the number of rows and columns of the
matrix, is now exponential. The entries in the matrix are, however, still polynomial. We can therefore check
emptiness of C(g) by using Theorem 3.2, which now results in an exponential time bound. �

For the last result, we again use the same algorithm. However, now the algorithm of Theorem 6.5 runs
in exponential space and causes the of matrix entries to use exponentially many bits. However, the coset
circuits can still be checked for emptiness in exponential time, resulting overall in an EXPSPACE algorithm.

Theorem 7.16. The problem BIREACH(SC±) is in EXPSPACE.

26 MOSES GANARDI, RUPAK MAJUMDAR, AND GEORG ZETZSCHE

References

[1] Eric Allender, Robert Beals, and Mitsunori Ogihara. “The Complexity of Matrix Rank and Feasible
Systems of Linear Equations”. In: Comput. Complex. 8.2 (1999), pp. 99–126. doi: 10.1007/s000370050023.
url: https://doi.org/10.1007/s000370050023.

[2] Carme Àlvarez and Raymond Greenlaw. “A compendium of problems complete for symmetric log-
arithmic space”. In: Comput. Complex. 9.2 (2000), pp. 123–145. doi: 10.1007/PL00001603. url:
https://doi.org/10.1007/PL00001603.

[3] Jürgen Avenhaus and Klaus Madlener. “The Nielsen reduction and P-complete problems in free
groups”. In: Theoretical Computer Science 32.1-2 (1984), pp. 61–76.

[4] Krishnendu Chatterjee, Bhavya Choudhary, and Andreas Pavlogiannis. “Optimal Dyck Reachability
for Data-Dependence and Alias Analysis”. In: Proc. ACM Program. Lang. 2.POPL (Dec. 2018). doi:
10.1145/3158118. url: https://doi.org/10.1145/3158118.

[5] Swarat Chaudhuri. “Subcubic algorithms for recursive state machines”. In: POPL ’08. ACM, 2008,
pp. 159–169.

[6] Tsu-Wu J. Chou and George E. Collins. “Algorithms for the Solution of Systems of Linear Dio-
phantine Equations”. In: SIAM J. Comput. 11.4 (1982), pp. 687–708. doi: 10.1137/0211057. url:
https://doi.org/10.1137/0211057.

[7] Wojciech Czerwiński and Lukasz Orlikowski. “Reachability in Vector Addition Systems is Ackermann-
complete”. In: CoRR abs/2104.13866 (2021). arXiv: 2104.13866. url: https://arxiv.org/abs/2104.13866.

[8] Vincent Danos and Jean Krivine. “Formal Molecular Biology Done in CCS-R”. In: Electron. Notes
Theor. Comput. Sci. 180.3 (2007), pp. 31–49. doi: 10.1016/j.entcs.2004.01.040. url: https://doi.org/10.1016/j.entcs.2004.01.040.

[9] Vincent Danos and Jean Krivine. “Reversible Communicating Systems”. In: CONCUR 2004 - Con-
currency Theory. Ed. by Philippa Gardner and Nobuko Yoshida. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2004, pp. 292–307.

[10] Volker Diekert and Anca Muscholl. “Solvability of Equations in Graph Groups Is Decidable”. In: Int.
J. Algebra Comput. 16.6 (2006), pp. 1047–1070. doi: 10.1142/S0218196706003372.

[11] Michael Elberfeld, Andreas Jakoby, and Till Tantau. “Algorithmic Meta Theorems for Circuit Classes
of Constant and Logarithmic Depth”. In: 29th International Symposium on Theoretical Aspects of Com-
puter Science, STACS 2012, February 29th - March 3rd, 2012, Paris, France. Ed. by Christoph Dürr
and Thomas Wilke. Vol. 14. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2012, pp. 66–
77. doi: 10.4230/LIPIcs.STACS.2012.66. url: https://doi.org/10.4230/LIPIcs.STACS.2012.66.

[12] Javier Esparza. “Petri nets, commutative context-free grammars, and basic parallel processes”. In:
Fundamenta Informaticae 31.1 (1997), pp. 13–25.

[13] Christoph Haase and Simon Halfon. “Integer Vector Addition Systems with States”. In: Reachability
Problems - 8th International Workshop, RP 2014, Oxford, UK, September 22-24, 2014. Proceedings.
Ed. by Joël Ouaknine, Igor Potapov, and James Worrell. Vol. 8762. Lecture Notes in Computer Science.
Springer, 2014, pp. 112–124.doi: 10.1007/978-3-319-11439-2_9. url: https://doi.org/10.1007/978-3-319-11439-2%5C_9.

[14] Christoph Haase and Georg Zetzsche. “Presburger arithmetic with stars, rational subsets of graph
groups, and nested zero tests”. In: 34th Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2019, Vancouver, BC, Canada, June 24-27, 2019. IEEE, 2019, pp. 1–14. doi: 10.1109/LICS.2019.8785850.

[15] Matthew Hague and Anthony Widjaja Lin. “Model Checking Recursive Programs with Numeric Data
Types”. In: Computer Aided Verification - 23rd International Conference, CAV 2011, Snowbird, UT,
USA, July 14-20, 2011. Proceedings. Ed. by Ganesh Gopalakrishnan and Shaz Qadeer. Vol. 6806. Lec-
ture Notes in Computer Science. Springer, 2011, pp. 743–759. doi: 10.1007/978-3-642-22110-1_60.

[16] Ilya Kapovich, Richard Weidmann, and Alexei Myasnikov. “Foldings, graphs of groups and the mem-
bership problem”. In: International Journal of Algebra and Computation 15.01 (2005), pp. 95–128.

https://doi.org/10.1007/s000370050023
https://doi.org/10.1007/s000370050023
https://doi.org/10.1007/PL00001603
https://doi.org/10.1007/PL00001603
https://doi.org/10.1145/3158118
https://doi.org/10.1145/3158118
https://doi.org/10.1137/0211057
https://doi.org/10.1137/0211057
https://arxiv.org/abs/2104.13866
https://arxiv.org/abs/2104.13866
https://doi.org/10.1016/j.entcs.2004.01.040
https://doi.org/10.1016/j.entcs.2004.01.040
https://doi.org/10.1142/S0218196706003372
https://doi.org/10.4230/LIPIcs.STACS.2012.66
https://doi.org/10.4230/LIPIcs.STACS.2012.66
https://doi.org/10.1007/978-3-319-11439-2_9
https://doi.org/10.1007/978-3-319-11439-2%5C_9
https://doi.org/10.1109/LICS.2019.8785850
https://doi.org/10.1007/978-3-642-22110-1_60

REFERENCES 27

[17] Ulla Koppenhagen and Ernst W. Mayr. “The Complexity of the Coverability, the Containment, and
the Equivalence Problems for Commutative Semigroups”. In: Fundamentals of Computation Theory,
11th International Symposium, FCT ’97, Kraków, Poland, September 1-3, 1997, Proceedings. Ed. by
Bogdan S. Chlebus and Ludwik Czaja. Vol. 1279. Lecture Notes in Computer Science. Springer, 1997,
pp. 257–268. doi: 10.1007/BFb0036189. url: https://doi.org/10.1007/BFb0036189.

[18] R. Landauer. “Irreversibility and heat generation in the computing process”. In: IBM Journal of
Research and Development 5.3 (1961), pp. 183–191.

[19] Serge Lang. Algebra. Revised Third Edition. Springer-Verlag, 2005.
[20] Jérôme Leroux. “Vector Addition System Reversible Reachability Problem”. In: CONCUR 2011 –

Concurrency Theory. Ed. by Joost-Pieter Katoen and Barbara König. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2011, pp. 327–341. isbn: 978-3-642-23217-6.

[21] Jérôme Leroux, Grégoire Sutre, and Patrick Totzke. “On the Coverability Problem for Pushdown
Vector Addition Systems in One Dimension”. In: Automata, Languages, and Programming - 42nd
International Colloquium, ICALP 2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part II. Ed. by
Magnús M. Halldórsson et al. Vol. 9135. Lecture Notes in Computer Science. Springer, 2015, pp. 324–
336. doi: 10.1007/978-3-662-47666-6_26.

[22] Yuanbo Li, Qirun Zhang, and Thomas W. Reps. “Fast graph simplification for interleaved Dyck-
reachability”. In: Proceedings of the 41st ACM SIGPLAN International Conference on Programming
Language Design and Implementation, PLDI 2020, London, UK, June 15-20, 2020. Ed. by Alastair
F. Donaldson and Emina Torlak. ACM, 2020, pp. 780–793. doi: 10.1145/3385412.3386021. url:
https://doi.org/10.1145/3385412.3386021.

[23] Yuanbo Li, Qirun Zhang, and Thomas W. Reps. “On the complexity of bidirected interleaved Dyck-
reachability”. In: Proc. ACM Program. Lang. 5.POPL (2021), pp. 1–28. doi: 10.1145/3434340. url:
https://doi.org/10.1145/3434340.

[24] Markus Lohrey. “The rational subset membership problem for groups: a survey”. In: Groups St An-
drews. Vol. 422. 2013, pp. 368–389.

[25] Markus Lohrey and Géraud Sénizergues. “When is a graph product of groups virtually-free?” In:
Communications in Algebra® 35.2 (2007), pp. 617–621.

[26] Markus Lohrey and Benjamin Steinberg. “An automata theoretic approach to the generalized word
problem in graphs of groups”. In: Proceedings of the American Mathematical Society 138.2 (2010),
pp. 445–453.

[27] Markus Lohrey and Benjamin Steinberg. “The submonoid and rational subset membership problems
for graph groups”. In: Journal of Algebra 320.2 (2008), pp. 728–755.

[28] Markus Lohrey and Georg Zetzsche. “Knapsack in Graph Groups”. In: Theory Comput. Syst. 62.1
(2018), pp. 192–246. doi: 10.1007/s00224-017-9808-3.

[29] Ernst WMayr and Albert R Meyer. “The complexity of the word problems for commutative semigroups
and polynomial ideals”. In: Advances in Mathematics 46.3 (1982), pp. 305–329. issn: 0001-8708. doi:
https://doi.org/10.1016/0001-8708(82)90048-2. url: https://www.sciencedirect.com/science/article/pii/0001870882900482.

[30] David Melski and Thomas Reps. “Interconvertibility of a class of set constraints and context-free-
language reachability”. In: Theor. Comput. Sci. 248(1-2) (2000), pp. 29–98.

[31] K. A. Mikhailova. “The occurrence problem for direct products of groups”. In: Matematicheskii Sbornik
(Novaya Seriya) 70(112) (2 1966), pp. 241–251.

[32] Omer Reingold. “Undirected connectivity in log-space”. In: J. ACM 55.4 (2008), 17:1–17:24. doi:
10.1145/1391289.1391291. url: https://doi.org/10.1145/1391289.1391291.

[33] T. Reps, S. Horwitz, and M. Sagiv. “Precise interprocedural dataflow analysis via graph reachability”.
In: POPL 95: Principles of Programming Languages. ACM, 1995, pp. 49–61.

https://doi.org/10.1007/BFb0036189
https://doi.org/10.1007/BFb0036189
https://doi.org/10.1007/978-3-662-47666-6_26
https://doi.org/10.1145/3385412.3386021
https://doi.org/10.1145/3385412.3386021
https://doi.org/10.1145/3434340
https://doi.org/10.1145/3434340
https://doi.org/10.1007/s00224-017-9808-3
https://doi.org/https://doi.org/10.1016/0001-8708(82)90048-2
https://www.sciencedirect.com/science/article/pii/0001870882900482
https://doi.org/10.1145/1391289.1391291
https://doi.org/10.1145/1391289.1391291

28 REFERENCES

[34] Kumar Neeraj Verma, Helmut Seidl, and Thomas Schwentick. “On the Complexity of Equational
Horn Clauses”. In: Automated Deduction - CADE-20, 20th International Conference on Automated
Deduction, Tallinn, Estonia, July 22-27, 2005, Proceedings. Ed. by Robert Nieuwenhuis. Vol. 3632.
Lecture Notes in Computer Science. Springer, 2005, pp. 337–352. doi: 10.1007/11532231_25.

[35] D. Wise. From Riches to RAAGs: 3-maniforld, right-angled Artin groups, and cubical geometry. Amer-
ican Mathematical Society, 2012.

[36] Guoqing Xu, Atanas Rountev, and Manu Sridharan. “Scaling CFL-Reachability-Based Points-To
Analysis Using Context-Sensitive Must-Not-Alias Analysis”. In: ECOOP 2009 - Object-Oriented Pro-
gramming, 23rd European Conference, Genoa, Italy, July 6-10, 2009. Proceedings. Ed. by Sophia
Drossopoulou. Vol. 5653. Lecture Notes in Computer Science. Springer, 2009, pp. 98–122. doi: 10.1007/978-3-642-03013-0_6.
url: https://doi.org/10.1007/978-3-642-03013-0%5C_6.

[37] Dacong Yan, Guoqing Xu, and Atanas Rountev. “Demand-driven context-sensitive alias analysis for
Java”. In: Proceedings of the 20th International Symposium on Software Testing and Analysis, ISSTA
2011, Toronto, ON, Canada, July 17-21, 2011. Ed. by Matthew B. Dwyer and Frank Tip. ACM, 2011,
pp. 155–165. doi: 10.1145/2001420.2001440. url: https://doi.org/10.1145/2001420.2001440.

[38] Georg Zetzsche. “Monoids as Storage Mechanisms”. PhD thesis. Technische Universität Kaiserslautern,
2016.

[39] Georg Zetzsche. “Monoids as StorageMechanisms”. In: Bull. EATCS 120 (2016). url: http://eatcs.org/beatcs/index.php/beatcs/article/view/459.
[40] Georg Zetzsche. “The emptiness problem for valence automata over graph monoids”. In: Inf. Comput.

277 (2021), p. 104583. doi: 10.1016/j.ic.2020.104583.
[41] Qirun Zhang and Zhendong Su. “Context-sensitive data-dependence analysis via linear conjunctive lan-

guage reachability”. In: Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Program-
ming Languages, POPL 2017, Paris, France, January 18-20, 2017. Ed. by Giuseppe Castagna and An-
drew D. Gordon. ACM, 2017, pp. 344–358. doi: 10.1145/3009837.3009848. url: https://doi.org/10.1145/3009837.3009848.

[42] Qirun Zhang et al. “Fast algorithms for Dyck-CFL-reachability with applications to alias analysis”.
In: ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI ’13,
Seattle, WA, USA, June 16-19, 2013. Ed. by Hans-Juergen Boehm and Cormac Flanagan. ACM, 2013,
pp. 435–446. doi: 10.1145/2491956.2462159. url: https://doi.org/10.1145/2491956.2462159.

https://doi.org/10.1007/11532231_25
https://doi.org/10.1007/978-3-642-03013-0_6
https://doi.org/10.1007/978-3-642-03013-0%5C_6
https://doi.org/10.1145/2001420.2001440
https://doi.org/10.1145/2001420.2001440
http://eatcs.org/beatcs/index.php/beatcs/article/view/459
https://doi.org/10.1016/j.ic.2020.104583
https://doi.org/10.1145/3009837.3009848
https://doi.org/10.1145/3009837.3009848
https://doi.org/10.1145/2491956.2462159
https://doi.org/10.1145/2491956.2462159

REFERENCES 29

Appendix A. Additional material for Section 4.2

A.1. BIREACH and subgroup membership.

Theorem 4.2. Given a looped graph Γ, a bidirected valence system A over Γ and two states s, t from A,
one can compute words w0, w1, . . . , wn ∈ X∗

Γ in logspace such that {[w] ∈ MΓ | s w→ t} = [w0]〈[w1], . . . , [wn]〉

Proof. Consider a bidirected valence system A over Γ with state set Q and two states s, t ∈ Q. Let (Q,E)
be the undirected graph where E = {{p, q} | p x→ q}. First we compute a spanning forest F ⊆ E in
logspace: Let e1, . . . , em be an enumeration of the edges in E. Then we include an edge ei = (p, x, q) in F
if and only if there exists no path between p and q in the subgraph (Q, {e1, . . . , ei−1}). This can be tested
in deterministic logspace [32]. If s and t are contained in distinct components of F , we can return any
no-instance of SUBMEM(Γ). Otherwise we restrict A and F to the connected component of s. Then we
compute a set of transitions T which contains for every edge {p, q} ∈ F a transition p x→ q and its reverse
transition q x̄→ p. Observe that the undirected version of T is a tree. Between any two states p, q there is a
unique simple path using only transitions from T . Any other path from p to q which uses only transitions
from T has the same effect since it is obtained from the simple path from p to q by repeatedly inserting
loops r x→ r′ x̄→ r. Let w0 be the label of the unique simple path from s to t using transitions from T .

Let C = {[w] ∈ MΓ | s w→ t} and S = {[w] ∈ MΓ | t w→ t}. Clearly S is a subgroup of MΓ and C
is a left coset of S in MΓ, namely C = [w0]S. It remains to compute a generating set for S. For any
transition τ = (p, x, q) of A with τ /∈ T consider the unique cycle γτ : t

u→ p x→ q v→ t where the paths t u→ p
and q v→ t are simple and only use transitions from T . We claim that the effects of the cycles γτ for all
τ ∈ E \ T generates S. Consider any cycle γ : q0

x1→ q1
x2→ . . . xn→ qn in E where q0 = qn = t. We show

that x1 . . . xn can be written as the product of effects of cycles γτ and their inverses by induction on the
number of transitions in γ not contained in T . If the cycle only uses transitions from T then we must have
x1 . . . xn = 1. Otherwise, suppose that i is minimal with τ = (qi−1, xi, qi) /∈ T . Let γτ : t

u→ qi−1
xi→ qi

v→ t,
which satisfies [u] = [x1 . . . xi−1]. We can replace γ by the cycle

t u→ qi−1
xi→ qi

v→ t v̄→ qi
xi+1→ . . . xn→ qn

without changing its effect. Since t v̄→ qi
xi+1→ . . . xn→ qn uses strictly fewer transitions not contained in T

than γ we can write [v̄xi+1 . . . xn] as a product of effects of cycles γτ and their inverses. This concludes the
proof. �

Theorem 4.1. If Γ is looped, then BIREACH(Γ) and SUBMEM(Γ) are logspace inter-reducible.

Proof. Let Γ be a looped graph. Reducing SUBMEM(Γ) to BIREACH(Γ) is easy: To test [w] ∈ 〈[w1], . . . , [wk]〉
we construct a bidirected valence system A with two states s, t and the transitions s w̄→ t and t wi→ t for all
1 ≤ i ≤ k, and the reverse transitions. Then [w] ∈ 〈[w1], . . . , [wk]〉 holds if and only if there exists u ∈ X∗

Γ

with s u→ t and [u] = 1.
Conversely, we can compute in logspace a coset representation {[w] ∈ MΓ | s w→ t} = [w0]〈[w1], . . . , [wn]〉

by Lemma 4.2. Then it remains to test whether [w̄0] ∈ 〈[w1], . . . , [wn]〉. �

A.2. Undecidability.

Theorem A.1. Let Γ be a graph with two non-adjacent vertices u and v where u is unlooped. For any k ∈ N

there exists W = {w1, . . . , wk} ⊆ {u, v}∗ such that for all x ∈ (W ∪ W̄)∗ we have x ≡Γ ε if and only if
x ↔∗

R ε where R = {(wiw̄i, ε) | i ∈ [1, k]}.

Proof. First we claim that, if x ≡Γ ε where x ∈ X∗
Γ then x does not contain any factor of the form uviū or

uv̄iū with i ≥ 1. This is true because such a factor in x cannot be eliminated by deletions of uū, vv̄ or v̄v.

30 REFERENCES

Define wi = uvi and let W = {wi | i ∈ [1, k]}. We clearly have ≡R⊆≡Γ. For the converse we prove the
following stronger statement: For all x ∈ (W ∪W̄)∗ with x ≡Γ ε we have x ≡R ε and any occurrence of wiw̄j

in x satisfies i = j, We proceed by induction on |x| where the case |x| = 0 is clear. If |x| > 0 then x must
contain either uū, vv̄, or, if v is looped, v̄v. Since any occurrence of u in a word from W is followed by v, and
any occurrence of v̄ in a word from W is followed by v̄ or ū, it must be the case that vv̄ occurs in x. Again
by the definition of W , the word x is of the form x = suvmv̄nūt where m,n ∈ [1, k] and s, t ∈ (W ∪ W̄)∗.
We have x ≡Γ suvm−1v̄n−1ūt. By the remark from the beginning we must have m = n = 1 or m,n ≥ 2. If
m = n = 1 then x ≡Γ st. If m,n ≥ 2 then x ≡Γ swm−1w̄n−1t ∈ (W ∪ W̄)∗ and, by induction hypothesis,
we obtain m− 1 = n− 1, which also implies x ≡Γ st. In both cases we obtain by the induction hypothesis
that x ≡R st ≡R ε and that any occurrence of wiw̄j in st satisfies i = j. Hence also occurrence of wiw̄j in
x = swnw̄nt satisfies i = j. This concludes the proof. �

Theorem A.2. Let Γ be a graph with two non-adjacent vertices u and v. There exists a finite set W ⊆ {u, v}∗

and a morphism ϕ : (W ∪ W̄)∗ → X∗
Γ such that for all y ∈ X∗

Γ we have y ≡Γ◦ ε if and only if there exists

x ∈ (W ∪ W̄)∗ such that x ≡Γ ε and ϕ(x) = y. Furthermore, ϕ(w) ∈ XΓ for all w ∈ W and ϕ(w̄) = ϕ(w)
for all w ∈ W (it respects inverses).

Proof. If Γ = Γ◦, i.e. both u and v are looped, then we set W = V and ϕ to be the identity. Now assume
that u is unlooped and let W = {w1, w2, w3, w4} be a set from Lemma A.1, satisfying x ≡Γ ε if and only if
x ↔∗

R ε where R = {(wiw̄i, ε) | i ∈ [1, k]}. Let ϕ : (W ∪ W̄)∗ → X∗
Γ be the morphism defined by

w1 7→ u w2 7→ v w3 7→ ū w4 7→ v̄

w̄1 7→ ū w̄2 7→ v̄ w̄3 7→ u w̄4 7→ v

We claim that for all y ∈ X∗
Γ we have y ≡Γ◦ ε if and only if there exists x ∈ (W ∪W̄)∗ such that x ↔∗

R ε and
ϕ(x) = y. For the “if”-direction observe that any derivation x ↔R x1 ↔R · · · ↔R xn = ε can be translated
into a derivation ϕ(x) ↔Γ◦ ϕ(x1) ↔Γ◦ · · · ↔Γ◦ ϕ(xn) = ϕ(ε) = ε since ϕ(wi)ϕ(w̄i) ≡Γ ε.

For the “only if”-direction consider a derivation y →Γ◦ y1 →Γ◦ · · · →Γ◦ yn = ε. We prove by induction
over n that there exists x ∈ (W ∪ W̄)∗ with x →∗

R ε and ϕ(x) = y. By induction hypothesis there exists
x1 ∈ (W ∪ W̄)∗ with x1 →∗

R ε and ϕ(x1) = y1. There exist s, t ∈ (W ∪ W̄)∗ such that x1 = st, y1 = ϕ(s)ϕ(t)
and y1 = ϕ(s) z ϕ(t) where z ∈ {uū, vv̄, ūu, v̄v}. We need to choose x ∈ (W ∪ W̄)∗ such that x →R x1 and
ϕ(x) = y:

• If z = uū then set x = sw1w̄1t.
• If z = vv̄ then set x = sw2w̄2t.
• If z = ūu then set x = sw3w̄3t.
• If z = v̄v then set x = sw4w̄4t.

This concludes the proof. �

Theorem 3.1. If Γ− contains C4 as an induced subgraph, then BIREACH(Γ) is undecidable.

Proof. Let us assume that Γ− ∼= C4. We want to show that BIREACH(Γ) is undecidable by a reduction from
BIREACH(C4◦), which is undecidable by Theorem 4.3 and Theorem 4.1.

Let the vertex set of Γ− be V = {u1, v1, u2, v2} with edges {u1, u2}, {u1, v2}, {v1, u2}, {v1, v2}. Let Γ1 and
Γ2 be the subgraphs of Γ induced by V1 = {u1, v1} and V2 = {u2, v2}, respectively. By Lemma A.2 there exist
finite sets W1 ⊆ V ∗

1 , W2 ⊆ V ∗
2 and morphisms ϕ1 : (W1 ∪ W̄1)

∗ → (V1 ∪ V̄1)
∗, ϕ2 : (W2 ∪ W̄2)

∗ → (V2 ∪ V̄2)
∗

such that for all i ∈ {1, 2} and y ∈ (Vi ∪ V̄i)
∗ we have y ≡Γ◦

i
ε if and only if there exists x ∈ (Wi ∪ W̄i)

∗ such

that x ≡Γi
ε and ϕi(x) = y. Let W = W1 ∪W2 and let ϕ : (W ∪ W̄)∗ → (V ∪ V̄)∗ be the unique morphism

that extends ϕ1 and ϕ2. For all y ∈ (V ∪ V̄)∗ it satisfies y ≡Γ◦ ε if and only if there exists x ∈ (W ∪ W̄)∗

with x ≡Γ ε and ϕ(x) = y. Furthermore, the morphism satisfies ϕ(w̄) = ϕ(w) for all w ∈ W by Lemma A.2.

REFERENCES 31

Given a valence system A over C4◦ ∼= Γ◦, and states s, t we want to test whether there exists a run s y→A t
with y ≡Γ◦ ε. We can assume that every transition in A is labeled by a single symbol from V ∪ V̄ , by
splitting transitions. Construct the valence system B over Γ obtained by replacing every transition p v→ q by
transitions p w→ q for all w ∈ W with ϕ(w) = v. Observe that B is bidirected because the morphism respects
inverses. Moreover, there exists a run s x→B t with x ≡Γ ε if and only if there is a run s y→A t with y ≡Γ◦ ε.
This concludes the proof. �

Appendix B. Additional material for Section 5

Theorem B.1. BIREACH(Γ) is LOGSPACE-hard under AC
0 many-one reductions for every Γ.

Proof. We need to reduce from the reachability on undirected graphs to BIREACH(Γ) since the former
problem is LOGSPACE-complete under AC0 many-one reductions [2, 32]. To do so, we simply replace every

undirected edge between nodes p and q by transitions p
ε
−→ q and q

ε
−→ p. �

Theorem B.2. If G is closed under subgraphs and LC-unbounded then BIREACH(G) is ILD-hard under
logspace many-one reductions

Proof. Given a system of linear Diophantine equations Ax = b where A ∈ Z
m×n has columns a1, . . . , an ∈

Z
m. Since G is LC-unbounded and closed under induced subgraphs it contains a looped clique Γm with m

nodes v1, . . . , vm. Let ϕ : Zm → X∗
Γm

be the function ϕ(k1, . . . , km) = vk1
1 . . . vkm

m . Then we construct the

valence system A over Γm with two states p and q and the transitions p
ϕ(ai)
−−−→ p for all 1 ≤ i ≤ n and

p
ϕ(b)
−−−→ q, and their reverse transitions. Then Ax = b has a solution x ∈ Z

n if and only if there exists
w ∈ Γ∗

m with [w] = 1 and p w→ q. �

Theorem B.3. If Γ has two non-adjacent vertices then BIREACH(Γ) is P-hard.

Proof. We can assume that Γ only consists of two non-adjacent vertices u and v. Observe that MΓ◦ is
a free group over u and v. Subgroup membership in the free group over two generators is P-hard by [3],
and hence also BIREACH(Γ◦) by Theorem 4.1. We can reduce from BIREACH(Γ◦) to BIREACH(Γ) using
Lemma A.2, similarly to the proof Theorem 3.1: There exists a finite set W ⊆ {u, v}∗ and a morphism
ϕ : (W ∪ W̄)∗ → X∗

Γ such that for all y ∈ X∗
Γ we have y ≡Γ◦ if and only if there exists x ∈ (W ∪ W̄)∗ with

x ≡Γ ε and ϕ(x) = y. Hence reachability in a bidirected valence system over Γ◦ can be logspace reduced to
reachability in a bidirected valence system over Γ by replacing each transition p v→ q, v ∈ XΓ by transitions
p w→ q for all w ∈ W with ϕ(w) = v. �

Theorem B.4. If G is closed under induced subgraphs and UC-unbounded then BIREACH(G) is EXPSPACE-
hard under logspace many-one reductions.

Proof. We reduce from the word problem over commutative semigroups, known to be EXPSPACE-hard [29].
Since G is UC-unbounded and closed under induced subgraphs, it contains an unlooped clique Γ of size |Σ|.
We can assume that Σ is its node set. Let A be the bidirected valence system over Γ with three states
q0, q1, q2, the transitions q0

ū→ q1, q1
v→ q2, and the transitions q x̄y→ q for all (x, y) ∈ R, and their reverse

transitions. Then u ≡R v holds if and only if q0
w→ q2 for some w ∈ X∗

Γ with [w] = 1. �

Appendix C. Additional material for Section 6

We need the following result. Let ΨΣ : Σ∗ → N
Σ be the function where ΨΣ(w)(x) is the number of

occurrences of x in w.

Theorem C.1. Let (Σ | R) be a commutative semigroup presentation.

32 REFERENCES

(1) If u ≡R v then there exists a derivation u = u0 →R u1 →R · · · →R un = v such that |ui| ≤

max{|u|, |v|}+ ‖R‖2
|Σ|

+ ‖R‖ where ‖R‖ = |R| ·max(x,y)∈R |xy|. In particular, we can test whether

u ≡R v and, if so, compute such a witnessing derivation in deterministic space 2O(|Σ|) log(‖R‖ +
|u|+ |v|).

(2) For all u ∈ Σ∗ there exist vectors b1, . . . ,bm,p1, . . . ,pℓ ∈ N
Σ such that

ΨΣ([u]≡R
) =

m⋃

i=1

{bi +

ℓ∑

j=1

λjpj | λ1, . . . , λℓ ∈ N}

and ‖b1‖, . . . , ‖bℓ‖ ≤ (|u|+ ‖R‖) · 2O(|Σ|).

Proof. The bound on the lengths |ui| follows from Proposition and Lemma 3 in [29]. To compute the path we
use Reingold’s logspace algorithm for undirected connectivity, which also computes a path between two given

vertices [32]. Let G be the graph with vertex set [0, N]Σ where N = max{|u|, |v|}+ ‖R‖2
|Σ|

+ ‖R‖ and edges
between any two vectors u,v if and only if there exists (x, y) ∈ R with u ≥ ΨΣ(x) and u−ΨΣ(x)+ΨΣ(y) = v.
Then u ≡R v if and only if ΨΣ(u) and ΨΣ(v) are connected in G, and any path from ΨΣ(u) to ΨΣ(v) is
easily translated into a derivation from u to v. The second part is shown in [17, Lemma 17]. �

C.1. Unlooped vertices. Fix a clique Γ = (V, I) where U and L are the sets of unlooped and looped
vertices in Γ, respectively. Furthermore, we are given a bidirected valence system A = (Q,→) over Γ, and
two states s, t ∈ Q. For Y ⊆ V let πY : X∗

Γ → (Y ∪ Ȳ)∗ be the projection to the alphabet Y ∪ Ȳ .
To transfer the results from Lemma C.1 to the valence system A, we need to translate A into an equivalent

commutative semigroup presentation. Without loss of generality let the state set of A be Q = {1, . . . , k}.
Furthermore, we can ensure that each transition p w→ q is of the form w = w−w+ for some w−, w+ ∈ U∗,
by splitting transitions and adding intermediate states. Let U ′ = U ∪ {α, β} where α, β are fresh symbols.
Define the commutative semigroup presentation (U ′, R) by

R = {(αpβk−pπU (w
−), αqβk−qπU (w

+)) | p w−w+→ q} ∪ {(xy, yx) | x, y ∈ U ′}.

Any path p w→ q with ΨU (w) = 0 can be translated into a derivation in R from αpβk−p to αqβk−q, and vice
versa.

Theorem 6.1. One can decide in deterministic space 2O(|U|) · log ‖A‖ whether there exists a path s w→ t with
ΨU (w) = 0 and, if so, return such a path.

Proof. By Lemma C.1 one can determine in deterministic space 2O(|Σ|) log(‖R‖ + |u| + |v|) if there is a
derivation in R from αpβk−p to αqβk−q and, if so, compute such a derivation, which can then be translated
into a path s w→ t in A with ΨU (w) = 0. �

Theorem 6.2. One can compute in deterministic space 2O(|U|) · log ‖A‖ a set B ⊆ U and a number b ≤
2O(|U|) · ‖A‖ such that for all q ∈ Q we have:

• v(u) ≤ b for all v ∈ ReachA(s, q) and u ∈ B,
• for every c ∈ N there exists v ∈ ReachA(s, q) with v(u) ≥ c for all u ∈ U \B.

Proof. By Lemma C.1 there exist vectors b′
1, . . . ,b

′
m,p′

1, . . . ,p
′
ℓ ∈ N

U ′

such that

ΨU ′([αsβk−s]≡R
) =

m⋃

i=1

{b′
i +

ℓ∑

j=1

λjp
′
j | λ1, . . . , λℓ ∈ N}

REFERENCES 33

and ‖b′
1‖, . . . , ‖b

′
ℓ‖ ≤ ‖A‖ · 2O(|U|). By setting Jq = {i ∈ [1,m] | b′

i(x) = q, b′
i(y) = k − q} we obtain

ReachA(s, q) =
⋃

i∈Jt

{bi +

ℓ∑

j=1

λjpj | λ1, . . . , λℓ ∈ N}

where bi and pj are the restrictions of b′
i and p′

j to U , respectively.

We set B = {u ∈ U | pj(u) = 0 for all j ∈ [1, ℓ]} and b = ‖A‖ · 2O(|U|), which satisfy the properties
claimed by the lemma. It remains to show how to compute B. Observe that u ∈ B if and only if there exists
v ∈ ReachA(s, s) with v(u) > 0. This can be decided as follows: Let Au be obtained from A by adding a
new state ⊥, loops ⊥ u→ ⊥ and ⊥ ū→ ⊥, and transitions q v̄→ ⊥ and ⊥ v→ q for all states q ∈ Q and v ∈ U .
Then there exists v ∈ ReachA(s, s) with v(u) > 0 if and only if there exists w ∈ X∗

Γ with s w→ ⊥ in Au and

ΨU (w) = 0. The latter can be decided in deterministic space 2O(|U|) · log ‖A‖ by Lemma 6.1. �

C.2. General cliques.

Proposition 6.3. One can compute in deterministic space 2O(|U|) · log ‖A‖ vectors v1, . . . ,vn ∈ Z
L′

where
L ⊆ L′ and |L′| ≤ |Γ| such that EffA(s, s) = {v|L | v ∈ 〈v1, . . . ,vn〉, v|L′\L = 0}.

Proof. Let B ⊆ U be the set and the number b = ‖A‖ · 2O(|U|) from Lemma 6.2. The idea is to maintain the
B-counters in the state and the (U \B)-counters using Z-counters. Let Γ′ be the looped clique with vertex
set L′ = (U \B)∪L. Let A′ be the valence system over Γ′ with the state set Q× [0, b]B. For every transition
p w→ q in A and vectors a,b ∈ [0, b]B we add a transition (p, a) πL′(w)→ (q,b) to A′ if a⊕ΨB(w) = b. Clearly
A′ is bidirected. In the following we will prove that

(11) EffA(s, s) = {ΦL(w
′) | (s,0) w′→A′ (s,0), ΦU\B(w

′) = 0}.

If this is proven then by Lemma 4.2 we can compute vectors v1, . . . ,vn ∈ Z
L′

such that 〈v1, . . . ,vn〉 =
{ΦL′(w′) | (s,0) w′→ (s,0)}. Therefore EffA(s, s) = {v|L | v ∈ 〈v1, . . . ,vn〉, v|L′\L = 0}.

It remains to prove (11). If s = s0
w1→ s1

w2→ . . . wn→ sn = s is a run in A with ΨU (w1 . . . wn) = 0 then
(s0,b0) π(w1)→ (s1,b1) π(w2)→ . . . π(wn)→ (sn,bn) is a run in A′ where bi = ΨB(w1 . . . wi) for all i ∈ [0, n] and
bn = 0. Observe that ΨU (w1 . . . wi) ∈ ReachA(s, si) and hence bi ∈ [0, b]B by Lemma 6.2. Furthermore we
have ΦL(π(w1) . . . π(wn)) = ΦL(w1 . . . wn) and ΦU\B(π(w1) . . . π(wn)) = ΦU\B(w1 . . . wn) = 0.

Conversely, suppose there is a run (s0,b0) π(w1)→ (s1,b1) π(w2)→ . . . π(wn)→ (sn,bn) in A′ with s0 = s and

sn = s for some run s0
w1→ . . . wn→ sn satisfying bi =

⊕i
j=1 ΨB(wj) = ΨB(w1 . . . wi) and bn = 0. Furthermore

we have ΦU\B(w1 . . . wn) = ΦU\B(π(w1) . . . π(wn)) = 0. Let ui = ΨU\B(w1 . . . wi) for all i ∈ [0, n]. Let
c ∈ N such that c⊕ ui(u) ∈ N for all i ∈ [0, n] and u ∈ U \B. By assumption there exists a run s w→ s in A
such that ΨU (w) ∈ N

U and ΨU (w)(u) ≥ c for all u ∈ U \ B. Then s w→ s w1...wn→ s w̄→ s is a run in A with
ΦL(ww1 . . . wnw̄) = ΦL(w1 . . . wn) = ΦL(π(w1) . . . π(wn)). It remains to prove that ΨU (ww1 . . . wnw̄) = 0.
Observe that

ΨB(ww1 . . . wnw̄) = ΨB(w)⊕ΨB(w1 . . . wn)⊕ΨB(w̄) = ΨB(w) ⊕ΨB(w̄) = 0.

where the second equality follows from bn = Ψ(w1 . . . wn) = 0 and the third equality follows from ΨB(w) ∈
N

B. To show ΨU\B(ww1 . . . wnw̄) = 0, we only need to prove that ΨU\B(ww1 . . . wi) ∈ N
U\B for all i ∈ [0, n]

since ΦU\B(w1 . . . wn) = 0. This holds because ΨU\B(ww1 . . . wi)(u) = ΨU\B(w)(u) ⊕ ΨU\B(w1 . . . wi)(u),
ΨU\B(w)(u) ≥ c and c⊕ΨU\B(w1 . . . wi)(u) ∈ N for all u ∈ U \B. This concludes the proof. �

Theorem 6.5. Given a clique Γ ∈ G, a bidirected valence system A = (Q,→) over Γ, and states s, t ∈ Q,
one can test in exponential space (polynomial time if G is UC-bounded) if EffA(s, t) is nonempty and, if so,
compute a coset representation u+ 〈v1, . . . ,vn〉 for EffA(s, t).

34 REFERENCES

Proof. The proof is analogous to the proof of Proposition 6.4. To compute a generating set for EffA(s, s)

we compute the vectors v1, . . . ,vn ∈ Z
L′

with EffA(s, s) = {v|L | v ∈ 〈v1, . . . ,vn〉, v|L′\L = 0}, which is
a projection of a solution set of a linear Diophantine system. By [6] we can compute in polynomial time
u1, . . . ,um ∈ Z

L with EffA(s, s) = 〈u1, . . . ,um〉. Using Lemma 6.1 we can test whether EffA(s, t) 6= ∅, and,
if so, find u ∈ EffA(s, t) in exponential space (log-space if G is UC-bounded). This gives us the representation
u+ 〈u1, . . . ,un〉 for EffA(s, t). �

Appendix D. Additional material for Section 7

D.1. Placeholder runs. In this section, we prove Proposition 7.2.

Proof of Proposition 7.2. Proof. We say that an almost R-placeholder run in τ is realizable if all τ ′ ∈ R are
realizable. Let E′

τ be the set of all effects of an almost placeholder run in τ . Observe that E′
τ ∩ Zτ = Eτ .

Hence it remains to show that Wτ = E′
τ . Since the sets Wτ and E′

τ are defined inductively it is to natural to
prove both inclusions of Wτ = E′

τ by inductions on the number of rules needed to witness that an element
belongs to the sets.

First we prove Wτ ⊆ E′
τ for all τ ∈ ρ(A). Let W

(0)
τ ⊆ W

(1)
τ ⊆ . . . be the smallest sets satisfying:

(1) If s is a leaf and R ⊆ {τ ∈ ρ(A) | W
(k)
τ ∩ Zτ 6= ∅} then E′R

(p,s ,q)
⊆ W

(k+1)

(p,s ,q)
.

(2) If rx is above sy and W
(k)
(p,sy,q) ∩ Zsy 6= ∅, then W

(k)
(p,sy ,q) ∩ Yrx ⊆ W

(k+1)
(p,rx,q).

(3) If rx is above sy and W
(k)
(p,rx,q) ∩ Zrx 6= ∅, then (p, rx, q) ∈ W

(k+1)
(p,sy,q).

(4) If (p′, rx, q′) + µ ∈ W
(k)
(p,rx,q) and ν ∈ W

(k)
(p′,rx,q′), then ν + µ ∈ W

(k+1)
(p,rx,q).

We prove W
(k)
τ ⊆ E′

τ for all τ ∈ ρ(A) by induction on k.

(1) Let R ⊆ {τ ∈ ρ(A) | W
(k)
τ ∩ Zτ 6= ∅}. Since E′R

(p,s ,q)
⊆ W

(k+1)

(p,s ,q)
we need to show that E′R

(p,s ,q)
⊆

E′
(p,s ,q)

. By induction hypothesis we know that W
(k)
τ ∩ Zτ ⊆ E′

τ ∩ Zτ = Eτ for all τ ∈ ρ(A).

Therefore all τ ∈ R are realizable, which implies E′R
(p,s ,q)

⊆ E′
(p,s ,q)

.

(2) Suppose that rx is above sy and W
(k)
(p,sy ,q) ∩ Zsy 6= ∅. Take κ ∈ W

(k)
(p,sy ,q) ∩ Yrx . The goal is to show

that κ ∈ E′
(p,rx,q). By induction hypothesis κ ∈ E′

(p,sy ,q), i.e. κ is the effect of a realizable almost

placeholder run

σ : (q0
w1→ p1)(p1, s

x1
1 , q1)(q1

w2→ p2) · · · (pm, sxm
m , qm)(qm

wm→ pm+1)

in (p, sy, q). In particular, all sxi

i are above or equal to sy. Indeed, all such sxi

i are above rx or equal
to rx since κ ∈ Yrx . Furthermore we have π̌

r
(w1 · · ·wm) = 1: First all runs qi

wi→ pi+1 are in As.

We know π̌
s

(w1 · · ·wm) = 1 and π̂
s

(w1 · · ·wm)(v) = 0 for all v ∈ V̌
r

because κ ∈ Yrx . Hence σ
is a realizable almost placeholder run in (p, rx, q) and therefore κ ∈ E′

(p,rx,q).

(3) Suppose that rx is above sy and W
(k)
(p,rx,q) ∩ Zrx 6= ∅. The goal is to show that (p, rx, q) ∈ E′

(p,sy ,q).

By induction hypothesis there exists κ ∈ E′
(p,rx,q) ∩ Zrx , which is the effect of a realizable almost

placeholder run σ in (p, rx, q). In fact σ is a realizable placeholder run since κ ∈ Zrx . Therefore
(p, rx, q) is realizable, and thus (p, rx, q) is a realizable almost placeholder run in (p, sy, q), with effect
(p, rx, q) ∈ E′

(p,sy,q).

(4) Suppose that (p′, rx, q′)+µ ∈ W
(k)
(p,rx,q) and ν ∈ W

(k)
(p′,rx,q′). The goal is to show that ν+µ ∈ E′

(p,rx,q).

By induction hypothesis (p′, rx, q′)+µ ∈ E′
(p,rx,q) and ν ∈ E′

(p′,rx,q′), i.e. (p
′, rx, q′)+µ is the effect of a

realizable almost placeholder run σ1 in (p, rx, q) and ν is the effect of a realizable almost placeholder

REFERENCES 35

run σ2 in (p′, rx, q′). Let σ be obtained from σ1 by replacing any occurrence of the placeholder
(p′, rx, q′) by σ2. Observe that σ is a realizable almost placeholder run in (p, rx, q) with effect ν +µ,
and hence ν + µ ∈ E′

(p,rx,q).

For the converse direction, we show for all τ ∈ ρ(A) and all realizable almost placeholder runs σ that
its effect belongs to Wτ , by lexicographic induction, where we first order by the weight of σ and then by
the “below” order on the node descriptions sx in τ . For every realizable almost placeholder run σ in τ we
inductively define a weight: If σ = σ0(p1, s

x1
1 , q1)σ1 · · · (pm, sxm

m , qm)σm then its weight is |σ0 . . . σm|+
∑m

i=1 ωi

where |σ0 . . . σm| is the total number of edges used in the runs σi, and ωi is the minimal weight of a realizable
placeholder run in (pi, s

xi

i , qi).
For the induction base we consider a realizable almost placeholder run consisting of a single transition

(p, w, q) in (p, s , q) for some leaf s. Its effect is contained in E′∅

(p,s ,q)
⊆ W

(p,s ,q)
by (1).

For the induction step consider a realizable almost placeholder run

σ = σ0(p1, s
x1
1 , q1)σ1 · · · (pm, sxm

m , qm)σm

in (p, sx, q), i.e. (i) p = q0 and q = pm+1, (ii) for i ∈ [1,m], sxi

i is above or equal to sx and (pi, s
xi

i , qi) is
realizable, (iii) σi : qi

wi→ pi+1 is a run in As for each i ∈ [0,m] and (iv) π̌
s

(w1 · · ·wm) = 1.

(1) If sx = s then σ is a realizable placeholder run in (p, s , q). By induction hypothesis the effect κ of
σ is contained in W

(p,s ,q)
. From κ ∈ Z

s
= Y

s
and (2) we obtain κ ∈ W

(p,s ,q)
.

(2) Now assume that sx = s and let t1, . . . , tk be the immediate subtrees of s. Let u be the projection of

w1 . . . wm to the alphabet V̌
s

∪ ¯̌V
s

, which satisfies u ≡Γ ε. We can uniquely factorize u = u1 . . . un

where ui ∈ (V̌
t
ij

∪ ¯̌V
t
ij

)+ for some i1, . . . , in ∈ [1, k] with ij 6= ij+1 for all j ∈ [1, n− 1].

(a) If n = 1 then u ∈ (V̌ti1
∪ ¯̌Vti1

)∗ and hence the runs σ0, . . . , σm are runs in Ati1
. Therefore σ is

a realizable placeholder run in (p, ti1 , q). By induction hypothesis the effect κ of σ is contained
in W

(p,t
i1

,q)
. From κ ∈ Z

t
i1

⊆ Y
s

and (2) we obtain κ ∈ W
(p,s ,q)

.

(b) If n > 2 then there exists ℓ ∈ [1, n] such that uℓ ≡Γ ε by properties of a free product of monoids.
There exists a placeholder run σ′ contained in σ of the form

σ′ = σ′
i(pi, s

xi

i , qi)σi+1 · · ·σj−1(pj , s
xj

j , qj)σ
′
j ,

where σ′
i : q

′
i−1

w′
i→ pi is a suffix of σi, and σ′

j : qj w′
j→ p′i+1 is a prefix of σj , and uℓ is the projection

of w′
iwi+1 . . . wj−1w

′
j to V̌s

∪ ¯̌V
s

. Since σ is a realizable almost placeholder run in (p, s , q), σ′ is

a realizable almost placeholder run in (q′i−1, s , p′i+1). Observe that (q′i−1, s , p′i+1) is realizable

since we can replace in σ′ all placeholders of the form (ph, s , qh) by realizable placeholder runs
in (ph, s , qh) to obtain a realizable placeholder run in (q′i−1, s , p′i+1). Let ν be the effect of σ′

and µ be the effect of σ without σ′. We can then replace σ′ in σ by the realizable placeholder
(q′i−1, s , p′i+1) to obtain an almost placeholder run σ′′ in (p, s , q) with effect (q′i−1, s , p′i+1)+µ.
Observe that σ′ and σ′′ have smaller weight than σ. By induction hypothesis we know that
ν ∈ W

(q′
i−1,s ,p′

i+1)
and (q′i−1, s , p′i+1) + µ ∈ W

(p,s ,q)
. By (4) the effect ν + µ of σ belongs to

W
(p,s ,q)

, as desired.

�

�

D.2. Languages generated by the constructed grammar. In this section, we prove that L(τ) 6= ∅ if
and only WR

τ 6= ∅. We prove that L(τ) 6= ∅ if and only ifWR
τ ∩Zτ 6= ∅ by showing that (i) WR

τ ∩Zτ ⊆ L(τ) for
every τ ∈ ρ(A) and that (ii) for every u ∈ L(τ) with τ ∈ Ni, there exists a d ∈ ∆i such that u+d ∈ WR

τ ∩Zτ .

36 REFERENCES

Here, ∆i is defined as follows. For i ∈ [0, k − 1], we define ∆i ⊆ N
ρ(A) as the submonoid generated by all

a+ a† with a ∈ R[i+1,k]. Moreover, ∆k consists just of 0. Thus, we establish the following two facts.

Proposition D.1. For every τ ∈ ρ(A), we have WR
τ ∩ Zτ ⊆ L(τ).

Proposition D.2. For every τ ∈ ρ(A) with τ ∈ Ni and every u ∈ L(τ), there exists a d ∈ ∆i such that
u+ d ∈ WR

τ ∩ Zτ .

Observe that Propositions D.1 and D.2 together imply that L(τ) 6= ∅ if and only if WR
τ 6= ∅.

We begin with Proposition D.1. We show Proposition D.1 by proving that for every u ∈ WR
τ with u ∈ Ni,

we have τ ∗⇒i u in the grammar. This implies that WR
τ ∩Zτ ⊆ L(τ). We first prove two auxiliary lemmas.

Theorem D.3. For every a ∈ R0, we have a+ a† ∗⇒0 0.

Proof. Let a = (p, s , q) for some leaf s of t and states p, q ∈ Q and suppose p ≪ q (the other case is
symmetric). We use each of the productions in (5) once to obtain

a+ a† = (p, s , q) + (q, s , p) ⇒0 z
p,s ,q

+ (q, s , p) ⇒0 z
p,s ,q

− z
p,s ,q

= 0.

�

Theorem D.4. For any p, q ∈ Q and every leaf s with a = (p, s , q) ∈ R and x ∈ EffÂs
(p, q), we have

(p, s , q) ∗⇒0 x.

Proof. Suppose s is a leaf of t and x ∈ EffÂs
(p, q). In the construction of the grammar, we compute

v,u1, . . .un ∈ Z
Rs∪Ls so that EffÂs

(p, q) = v+ 〈u1, . . . ,un〉. Therefore, we can write x = v+x1 ·u1 + · · ·+
xn · un + x′

1 · (−u1) + · · ·+ x′
n · (−un) for some x1, . . . , xn, x

′
1, . . . , x

′
n ∈ N. Note that we can derive

(p, s , q) ∗⇒0 α(v) +

n∑

j=1

xj · α(uj) + x′
j · α(−uj)

by using each production (p, s , q) → (p, s , q) + α(uj) exactly xj-times, then each production (p, s , q) →
(p, s , q) + α(−uj) exactly x′

j-times and finally the production (p, s , q) → α(v) once. Let us denote the
derived vector by y.

Now observe that the vector y−x can be written as a sum of vectors c+ c† with c ∈ R0. By Lemma D.3,
we can derive c+ c† ∗⇒0 0 for each such c. This implies that y ∗⇒0 x. �

The first step is to prove this for τ = (p, s , q), where s is a leaf. In this case, we have to show the
following.

Theorem D.5. For every leaf s of t and every p, q ∈ Q and every x ∈ E′R
(p,s ,q)

, we have τ ∗⇒0 u.

Proof. Let

(q0, w1, p1)(p1, s
x1
1 , q1)(q1, w2, p2) · · · (pm, sxm

m , qm)(qm, wm, pm+1)

be an almost R-placeholder run in (p, s , q). We want to show that its effect x = (p1, s
x1
1 , q1) + · · · +

(pm, sxm
m , qm) + π̂

s
(w1 · · ·wm) ∈ N

ρ(A) + Z
T satisfies τ ∗⇒0 x.

Since this is an almost R-placeholder run, we have (pj , s
xj

j , qj) ∈ R for j ∈ [1,m] and since R is admissible,

this implies that (pj , s , qj) ∈ R for each j ∈ [1,m]. Therefore, the sequence

(q0, w1, p1)(p1, s , q1)(q1, w2, p2) · · · (pm, s , qm)(qm, wm, pm+1)

is also an almostR-placeholder run. By definition of Âs, this implies that y := (p1, s , q1)+· · ·+(pm, s , qm)+
π̂
s

(w1 · · ·wm) belongs to EffÂs
(p, q). According to Lemma D.4, we have (p, s , q) ∗⇒0 y.

REFERENCES 37

Since furthermore, we have a production (pj , s , qj) → (pj , s
xj

j , qj) for each j ∈ [1,m], we can derive

y ∗⇒0 x. Hence we have (p, s , q) ∗⇒0 x. �

We are now ready to prove Proposition D.1.

Proof of Proposition D.1. As mentioned above, we prove that for every u ∈ WR
τ with τ ∈ Ni, we have

τ ∗⇒i u.
We proceed by induction on the number of rule applications used to conclude that u ∈ WR

τ . In other
words, we proceed by induction on n and we assume that τ ∗⇒i u if u’s membership in WR

τ can be derived
in < n steps. And we prove that then every u′, whose membership can be derived in n steps, also satisfies
τ ∗⇒i u′.

The induction base is done in Lemma D.5. So suppose u belongs to WR
τ and can be derived in n steps.

We consider each rule in the definition of WR
τ :

(1) Suppose rx is above sy and (p, sy, q) ∈ R and u ∈ WR
(p,sy ,q) ∩ Yrx . Then since u ∈ WR

(p,sy ,q) and can

be derived in < n steps, we know by induction that (p, sy, q) ∗⇒i′ u, where i′ is the level of sy.
Since (p, sy, q) ∈ R, there is a production (p, rx, q) → (p, sy, q). Moreover, the fact that u ∈ Yrx

allows us to conclude (p, rx, q) ∗⇒i u.
(2) Suppose rx is above sy and (p, rx, q) ∈ R. Then there is a production (p, sy, q) → (p, rx, q) in the

grammar and hence we have (p, sy, q) ⇒i (p, rx, q), where i the level of sy.
(3) Suppose (p′, rx, q′) + u ∈ WR

(p,rx,q) and v ∈ WR
(p′,rx,q′), where the memberships (p′, rx, q′) + u ∈

WR
(p,rx,q) and v ∈ WR

(p′,rx,q′) can be derived in < n steps. We have to show that then (p, rx, q) ∗⇒i

v + u, where i the level of rx.
By induction, we know that (p, rx, q) ∗⇒i (p′, rx, q′) + u and that (p′, rx, q′) ∗⇒i v. By applying

these derivations one after the other, we obtain (p, rx, q) ∗⇒i v + u.

This establishes that indeed for every u ∈ WR
τ with u ∈ Ni, we have τ ∗⇒i u. This implies the inclusion

WR
τ ∩Zτ ⊆ L(τ): If u ∈ WR

τ , then we know τ ∗⇒i u. Since furthermore u ∈ Zτ , we even have u ∈ L(τ). �

Our next step is to prove Proposition D.2. We begin with the case that τ = (p, s , q) for some leaf s of t.

Theorem D.6. Let s be a leaf of t and p, q ∈ Q. For every u ∈ L(p, s , q), there exists a d ∈ ∆0 such that
u+ d ∈ WR

(p,s ,q)
∩ Z

s
.

Proof. We first observe that if (p, s , q) ∗⇒0 u′ using only productions (2) to (4) and Item (C1), then
u′ ∈ E′R

(p,s ,q)
. This follows by induction from the construction of the productions (2) to (4). For this, also

note that each element α(uj) and α(−uj) in (2) and (3) belongs to EffÂs
(p, p).

Now let u ∈ L(p, s , q). Then u is obtained using both (i) productions (2) to (4) and Item (C1) and
(ii) the productions in (5). This means, there is a u′ obtained from (p, s , q) using (2) to (4) and Item (C1)
with (p, s , q) ∗⇒0 u′, such that u is obtained from u′ by applying productions in (5). Since u ∈ L(p, s , q)
contains no level-0 terminal symbols, the productions in (5) must have been applied pairwise. This means,

we have u′ = u+d′ for some d = (b1+ b1
†)+ · · ·+(br+ br

†) with b1, . . . , br ∈ R0. Since R is admissible, this
implies that for each j ∈ [1, r], we have WR

bj
∩ Zbj 6= ∅ and also WR

bj
† ∩ Zbj

† 6= ∅. Therefore, we can replace

in d′ each bj by the effect uj of an R-placeholder run in bj and we can replace bj
† by uj

†: Note that uj
†

is the effect of an R-placeholder run in bj
†. Let d be the resulting vector in N

ρ(A). Then clearly d ∈ ∆0.
Moreover, we have u+ d ∈ WR

(p,s ,q)
∩ Z

s
. �

We are now ready to prove Proposition D.2.

38 REFERENCES

Proof of Proposition D.2. We prove the statement by induction on i: Lemma D.6 is the case i = 0. Now
suppose the statement holds for all i′ < i. To prove the statement for i, we apply another induction by the
number of derivation steps to derive an element of L(τ). More precisely, we show that for any n ≥ 1, if
τ ∗⇒i u in at most n steps, then there exists a d ∈ ∆i such that u + d ∈ WR

τ . Suppose this holds for all
step counts < n.

Let τ ∗⇒i u in n steps with τ ∈ Ni. We distinguish two cases.

(1) Suppose n = 1. Then there is a τ ′ ∈ Ni′ for some i′ < i such that τ ′ ∗⇒i′ u and u ∈ L(τ ′) ∩ Si−1.
Since u ∈ L(τ ′), our induction hypothesis on i′ yields some d′ ∈ ∆i′ such that u+ d′ ∈ WR

τ ′ ∩ Zτ ′ .
Since u ∈ Si−1, we also have u′ ∈ Yτ .
Therefore, it follows from the definition of WR

τ that there is a d ∈ ∆i with u+ d ∈ WR
τ .

(2) Suppose n > 1 and write τ = (p, rx, q). Then there is a u′ such that (p, rx, q) ∗⇒i u′ in < n steps
and u′ = (p′, rx, q′) + v and some x with (p′, rx, q′) ⇒i x so that u = x + v. By our induction
hypothesis, we know that there is a d′ ∈ ∆i such that u′ + d′ ∈ WR

(p,rx,q). Moreover, there is a

d̃ ∈ ∆i with x+ d̃ ∈ WR
(p′,rx,q′). According to the last rule in the definition of WR

τ , this implies that

v+d+x+ d̃ ∈ WR
(p,rx,q). In particular, we have u+d+ d̃ = v+x+d+ d̃ ∈ WR

τ . Since d+ d̃ ∈ ∆i,

this proves our claim.

�

D.3. Reversibility of the constructed grammar. We have already verified conditions Items 1 to 4. It
remains to show the following.

Theorem D.7. The constructed grammar satisfies Item 5 of the reversibility conditions.

Proof. The property Item 5 is clear immediately except for the productions in (2) and (3). Let us first prove
the property for a production (p, s , q) → u with u = α(v) on the left of (2). Write u = b+x+y for b ∈ R0,
x ∈ N

R0 , and y ∈ Z
T .

The vector u is chosen so that u = α(v) with v ∈ EffÂs
(p, q). By construction of Âs, this implies that

there is a run

(12) (q0, w1, p1)(p1, s1 , q1)(q1, w2, p2) · · · (pm, sm, qm)(qm, wm, pm+1)

with p = p0, q = pm+1 and (pj , s , qj) ∈ Rs for j ∈ [1,m] and there is a run qj
wj→ pj+1 in As and

[π
s

(w1 · · ·wm)] = 1, and (p1, s , q1) + · · · + (pm, s , qm) = x and y = [π̂
s

(w1 · · ·wm)]. Let a = (p, s , q).

Moreover, we assume b = (p1, s , q1): If b = (pj , s , qj), the proof is analogous.

Observe that (p1, s , q1) ∈ Rs by construction of Âs. Moreover, consider the sequence

(13) (p1, w̄1, q0)(p, s , q)(pm+1, w̄m, qm)(qm, s , pm) · · · (q2, s , p2)(p2, w̄2, q1).

Since Âs is also bidirected, this corresponds to a run in Âs from p1 to q1. Therefore, there is a vector

u′ ∈ EffÂs
(p1, q1) with u′ = (u− (p1, s , q1))

†
+ (p, s , q). According to Lemma D.4, there is a u′′ with

(p1, s , q1)
∗⇒0 u′′ and u′′ ≈b u

′. Since a ∗
 b, this implies u′′ ≈a u′. We can therefore derive

u ⇒0 u+ (p, s , q) + (q, s , p) ∗⇒0 u− (p1, s , p1) + u′′.

Since

u′′′ := u− (p1, s , q1) + u′′ ≈a u− (p1, s , q1) + (u− (p1, s , q1))
†
+ (p, s , q) ≈a u+ u† + (p, s , q),

the vector u′′′ is obtained from u+u†+(p, s , q) by adding an element from ∆a. Finally, Lemma D.3 allows
us to derive u + u† to an element that is ≈a 0. In particular, we obtain some u′′′′ with u′′′ ∗⇒0 u′′′′ with
u′′′′ ≈a (p, s , q). This concludes the proof for the production (p, s , q) → α(v).

REFERENCES 39

For productions (p, s , q) → α(uj), we can note that if v+〈u1, . . . ,un〉 = EffÂs
(p, q), then each uj belongs

to EffÂs
(p, p) and then argue as above. �

D.4. Properties of bidirected grammars. We begin with some simple observations.

Theorem D.8. If G = (N, T, P) is bidirected, and a ∈ Ri, then a ∗⇒i a+ a+ a†.

Proof. We proceed by induction on i. For i = 0, this is one of the conditions of bidirectedness. For i > 0
and a ∈ Ri, we know that there is some a′ ∈ Ri−1 such that there are productions a → a′ and a′ → a.

By induction, we have a′ ∗⇒i−1 a′ + a′ + a′
†
. Moreover, since there is a production a′

† → a† and a ∈ Ri

guarantees a production a′ → a, we obtain a ∗⇒i a+ a+ a†. �

Theorem D.9. If G is i-bidirected and a ∈ Ri with a ∗⇒i u′ for some u,u′ ∈ N
R[i,k] +Z

T[i,k] with u′ ≈a u,
then there is a d ∈ ∆a with a ∗⇒i u+ d.

Proof. First, we claim that for any a, b ∈ Ri with a ∗
 b, there exists a d ∈ ∆a such that a ∗⇒i a+b+b†+d.

If a ∗
 b, there is a v ∈ N

R[i,k] + Z
T[i,k] with a ∗⇒i b + v such that a ⇒i b + v. Since G is i-bidirected, we

have b ∗⇒i a + v′ for some v′ ≈a v†. By Lemma D.8, we have b ∗⇒i b + b + b† and thus a ∗⇒i b + v ∗⇒i

b+ b+ b† + v ∗⇒i a+ v + v′ + b+ b†. Since v′ ≈a v†, we have v + v′ ∈ ∆a. This proves our claim.
Now consider a ∗⇒i u′. Since u′ ≈a u, we know that there exist d,d′ ∈ ∆a with u+d = u′ +d′. By our

claim, we know that there is a d′′ ∈ ∆a such that a ∗⇒i a+ d′ + d′′. Thus, we have a ∗⇒i a+ d′ + d′′ ∗⇒i

u′ + d′ + d′′ = u+ d′′. �

The following lemma tells us that i-bidirectedness can be checked as a property of each derivation step.

Theorem D.10. If G is bidirected, then the following are equivalent:

(1) G is i-bidirected.
(2) for every a ∈ Ri and every step a ⇒i b+v with b ∈ Ri and v ∈ N

Ri +Z
T , there is a v′ ∈ N

Ri +Z
T

with b ∗⇒i a+ v′ and v′ ≈a v†.

Proof. Clearly, if G is i-bidirected, then the second condition is satisfied, so let us show the converse. First,
observe that if the second condition holds, then ∗

 is symmetric: Indeed, if a b, then the condition
implies that b ∗

 a. Second, we claim that for any a, b ∈ Ri with a ∗
 b, there exists a d ∈ ∆a such that

a ∗⇒i a + b + b† + d. It clearly suffices to show this in the case a b, the general case then follows by
induction. If a b, there is a u ∈ N

R[i,k] + Z
T[i,k] such that a ⇒i b + u. Since the second condition

holds, this implies that b ∗⇒i a+ u′ for some u′ ≈a u†. By Lemma D.8, we have b ∗⇒i b + b+ b† and thus
a ∗⇒i b + u ∗⇒i b + b + b† + u ∗⇒i a+ u + u′ + b + b†. Since u′ ≈a u†, we have u + u′ ∈ ∆a. Third, our
claim implies that if a ∗⇒i u′ for some u′ ≈a u, then there exists a d ∈ ∆a with a ∗⇒i u+ d.

Now suppose a ∗⇒i u+ v with u ∈ N
Ri and v ∈ N

R[i,k] + Z
T[i,k] . We pick one letter b ∈ Ri occurring in

u and write u = b+ u′ for some u′ ∈ N
Ri . In the derivation a ∗⇒i u+ v, we choose the chain a0, . . . , an of

nonterminals that leads to b, i.e. a0 = a, an = b and such that aj+1 is created by replacing aj for j ∈ [0, n−1].
Hence, there are vectors x1, . . . ,xn ∈ N

R[i,k] + Z
T[i,k] so that we use the productions aj ⇒i aj+1 + xj+1 for

j ∈ [0, n− 1] to obtain b. Then, we have a0 ⇒i a1 + x1 ⇒i a2 + x2 + x1 ⇒i · · · ⇒i an + xn + · · · + x1

and also x1 + · · ·+ xn
∗⇒i u′ + v. By the second condition and our observations at the beginning, for each

j ∈ [1, n], there exists a dj ∈ ∆a such that aj
∗⇒i aj−1 + xj

† + dj . Putting these together, we obtain

b = an
∗⇒i a0 + x1

† + d1 + · · ·+ xn
† + dn = a+ x1

† + · · ·+ xn
† + d,

where we define d = d1 + · · ·+dn. Since x1 + · · ·+xn
∗⇒i u′ +v, we therefore have b ∗⇒i a+(u′ + v)

†
+d

and thus

u = b+ u′ ∗⇒i a+ (u′ + v)
†
+ d+ u′ = a+ u′ + u′† + v† + d.

40 REFERENCES

Finally, since u ∈ N
Ri and thus L(c) 6= ∅ for every c occurring in u (and also a ∗

 c), we know that there is
some e ∈ N

R[i+1,k] + Z
T[i+1,k] with u ∗⇒i e. But then we have u+ u† ∗⇒i e+ e†, where e+ e† ∈ ∆a. Thus,

we have u ∗⇒i a+ e + e† + v† + d. Now with v′ = v† + e + e† + d, we clearly have v′ ≈a v†. Thus, G is
i-bidirected. �

Theorem 7.5. If G is bidirected, then it is i-bidirected for each i ∈ [0, k].

Proof. According to Lemma D.10, it suffices to show that for a ⇒i b+v with a, b ∈ Ri and u ∈ N
R[i,k]+Z

T[i,k] ,
there exists a v′ ≈a v† with b ∗⇒i a + ṽ. If a ⇒i b + v, then this is due to a production a → ã for some
ã ∈ Ri−1, a derivation ã ∗⇒i−1 b̃ + v, and a production b̃ → b. Since G is (i − 1)-bidirected, there exists a

v′ ≈ã v† and a derivation b̃ ∗⇒i−1 ã + v′. Since ã+ v′ ≈ã ã+ v†, we know from Lemma D.9 that we can

derive b̃ ∗⇒i ã+v†+ d̃ for some d̃ ∈ ∆ã. Moreover, since d̃ ∈ ∆ã, there is a d ∈ ∆a with d̃ ∗⇒i−1 d. Hence,

we have b̃ ∗⇒i−1 ã+ v† + d.

Note that since a, b ∈ Ri, we also have productions b → b̃ and ã → a, so that we also have b ⇒i

a+ v† + d. �

D.5. Expressing emptiness in terms of cosets.

Theorem D.11. If G = (N, T, P) is i-bidirected, and a ∈ Ri and b ∈ Ri with a ∗
 b. Then there is some

d ∈ ∆a such that a ∗⇒i a+ b+ b† + d.

Proof. Since a ∗
 b, there is some u ∈ N

N[i,k] + Z
T[i,k] with a ∗⇒i b + u. Since G is i-bidirected, this

implies b ∗⇒i a + u′ with u′ ≈a u†. By Lemma D.8, we know that b ∗⇒i b + b + b†. Hence, we have
a ∗⇒i b + u ∗⇒i b + b + b† + u ∗⇒i a + u + u′ + b + b†. Now observe that since u′ ≈a u†, we have
u+ u′ ∈ ∆a. �

Theorem 7.8. If G = (N, T, P) is bidirected and a ∈ Ri, then Da ⊆ Ha.

Proof. Consider some b ∈ Ri+1 with a ∗
 b. Then there must be an a′ ∈ Ri with a ∗

 a′ and a production

a′ → b. By Lemma D.8, we have a′ ∗⇒i a′ + a′ + a′
†
and thus a′ ∗⇒i a′ + b + b†. Therefore, we have

b+ b† ∈ Ha. �

Theorem 7.9. If G = (N, T, P) is i-bidirected, then for a ∈ Ri, we have

Ha = {−b+ u | ∃b ∈ Ri : b ⇒i u and a ∗
 b}∗ +Da.

Proof. Since G is bidirected, we know that Da ⊆ Ha. Thus, the inclusion “⊇” is clear. For the the converse,
it suffices to show that for every b ∈ Ri with a ∗

 b and b ⇒i u, the vector −(−b + u) belongs to the
right-hand side. We write u = v + x with v ∈ N

Ri and x ∈ N
N[i+1,k] + Z

T . Since G is i-bidirected, we
know that v ∗⇒i b+ x′ such that x′ ∈ x† +Db. But this implies −v + b+ x′ belongs to the monoid on the
right-hand side. Moreover, the two elements (−b+ u) and −v + b+ x′ differ in

−(−b+ u)− (−v + b+ x′) = −x− x′ ∈ −x− x† +Db ⊆ Db

and since a ∗
 b and G is i-bidirected, we also have b ∗

 a and thus Db = Da. Thus −(−b + u) belongs to
the right-hand side. �

Corollary 7.10. Suppose G is i-bidirected and a ∈ Ni for i ∈ [2, k]. Then L(a) 6= ∅ if and only if there is
some a′ ∈ Ni−1 and a production a → a′ such that Ka′ 6= ∅.

Proof. Suppose L(a) 6= ∅. Then there is a derivation a ⇒i u1
∗⇒i u with u ∈ Si. In particular, the

first derivation step must be due to some production a → a′ with u1 ∈ L(a′). This means a′ ∈ Ri−1

and thus u1 ∈ La′ according to Theorem 7.6. Write u1 = b1 + · · · + bn + v, where b1, . . . , bn ∈ Ri and

REFERENCES 41

v ∈ N
N[i+1,k] + Z

T[i,k] . Since u1
∗⇒i u, we know that for each j ∈ [1, n], we have bj

∗⇒i vj for some
vj ∈ N

N[i+1,k] + Z
T[i,k] such that u = v1 + · · ·+ vn + v. This means in particular that vj ∈ M(bj) and thus

Si ∋ u = u1 + (−b1 + v1) + · · ·+ (−bn + vn) ∈ La′ + 〈−b1 +Mbj 〉+ · · ·+ 〈−bn +Mbn〉.

Moreover, since b1 + · · · + bn + v = u1 ∈ L(a′), the nonterminals b1, . . . , bn satisfy a′ ∗
 bj for j ∈ [1, n].

Thus, u belongs to Ka′ .
Conversely, suppose Ka′ 6= ∅ for some production a → a′. Then a′ ∈ Ri−1 and thus La′ = L(a′) + Da′

according to Theorem 7.6. Consider some u ∈ Ka′ and write u = u1 + v1 + · · · + vn with u1 ∈ La′ and
vj = (−1)εj (−bj + xj) for some bj ∈ Ri, a

′ ∗
 bj , and xj ∈ Mbj .

In order to construct a derivation, we have to eliminate those summands vj with εj = 1, because they
do not directly correspond to derivation steps. Hence, we define v̂1, . . . , v̂n as follows. For j ∈ [1, n], if

εj = 0, then b̂j = bj and x̂j = xj ; if εj = 1, then b̂j = bj
† and x̂j = xj

†. Then v̂j = −b̂j + x̂j . Then

each difference v̂j − vj is either 0 or (−b†j + x†)− (−1)(−bj + xj) = −bj
† − bj + xj

† + xj . Therefore, with

b = b1 + b1
† + · · ·+ bn + bn

† and g = x1 + x1
† + · · ·+ xn + xn

†, we have

u1 + v̂1 + · · ·+ v̂n + b = u1 + v1 + · · ·+ vn + g.

Since u1 ∈ L(a′) +Da′ and b ∈ ∆a′ , we have u1 + b ∈ L(a′) +Da′ , so that Lemma D.11 implies that we
can write u1 + b = y − d with some y ∈ L(a′) and d ∈ ∆a′ . This implies

(14) y + v̂1 + · · ·+ v̂n = u1 + v1 + · · ·+ vn + g + d.

Now notice that since u1 + b = y − d, we know that b must occur in y. In particular, b̂1 + · · · + b̂n
must occur in y. Hence, we have a derivation a′ ∗⇒i y + v̂1 + · · · + v̂n. By (14), we have thus derived
u1 + v1 + · · · + vn + g + d = u + g + d. Since u ∈ Si and g ∈ N

N[i+1,k] ⊆ Si, it remains to eliminate the
level-i nonterminals in d. However, since d ∈ N

Ri , we can pick for each f occurring in d some ef ∈ L(e),
e ∈ N

N[i+1,k]+Z
T[i+1,k] . Then, if d = f1+· · ·+fr, then we have a ∗⇒i u+g+ef1+· · ·+efr ∈ N

N[i+1,k]+Z
T[i+1,k] .

We therefore have L(a) 6= ∅. �

D.6. Constructing coset circuits.

Theorem 7.13. Let A be an abelian group, g1, . . . , gn ∈ A, and U and S subgroups such that (gi+U)∩S 6= ∅
for each i ∈ [1, n]. Then we have 〈(g1 + U) ∩ S, . . . , (gn + U) ∩ S〉 = (〈g1, . . . , gn〉+ U) ∩ S.

Proof. The inclusion “⊆” is obvious because U and S are subgroups.
Suppose h = x1g1 + · · · + xngn + u ∈ S for some x1, . . . , xn ∈ Z and u ∈ U . Since (gi + U) ∩ S 6= ∅,

we can choose ui ∈ U for each i ∈ [1, n] such that gi + ui ∈ S. We compute in the quotient A/S. Note
that since h ∈ S and gi + ui ∈ S, we have [u] = −[x1g1 + · · · + xngn] = [x1u1 + · · · + xnun] and thus
u− x1u1 − · · · − xnun ∈ S. Therefore, we have

(15) h = x1(g1 + u1)
︸ ︷︷ ︸

∈〈(g1+U)∩S〉

+ · · · + xn(gn + un)
︸ ︷︷ ︸

∈〈(gn+U)∩S〉

+ u− x1u1 − · · · − xnun
︸ ︷︷ ︸

∈U∩S

.

This proves that h belongs to the left-hand side of the equation in the lemma, since it is closed under adding
U ∩ S. �

Theorem 7.12. Let G = (N, T, P) be a k-bidirected grammar. For every a ∈ Ni, i ∈ [2, k], we have
Ha = 〈−b+ Lc | b ∈ Ni, c ∈ Ni−1, a

∗
 b, b → c ∈ P 〉.

Proof. By definition, we have Ha = 〈−b + L(c) | b ∈ Ri, c ∈ Ri−1, a
∗
 b, b → c ∈ P 〉. Since Theorem 7.6

tells us that Lc = L(c) +Dc, the inclusion “⊆” is immediate. For “⊇”, because of L(c) +Dc, we shall prove
that Dc ⊆ Ha. For this, it suffices to prove that every generator e+ e† with e ∈ Ri, c

∗
 e, of Dc belongs to

Ha. Since c ∗
 e, e appears on a right-hand side of a production and thus L(e) 6= ∅. Hence, there is some

42 REFERENCES

u ∈ Z
N[i+1,k]∪T with e ∗⇒i u. This implies that e+ e† ∗⇒i u+u†. Since u+u† ∈ Da ⊆ Ha (by Lemma D.8)

and e + e† − (u+ u†) ∈ Ha, this proves that e+ e† ∈ Ha. �

D.7. From coset circuits to linear Diophantine equations.

Theorem 7.16. The problem BIREACH(SC±) is in EXPSPACE.

Proof. We again proceed as in Theorem 7.14 and in Theorem 7.15. However, since now even d is part of the
input, when we construct the grammar, the algorithm from Theorem 6.5 runs in exponential space. However,
the dimensions of all vectors in the grammar are still polynomial. Therefore, our coset circuit has linear
depth and the matrices labeling its leaves have entries that require exponentially many bits. The resulting
matrix for each gate therefore has an exponential number of rows and columns and its entries require at
most exponentially many bits. Thus, we can again apply Theorem 3.2 to check emptiness of the gate in
exponential time. All together, we obtain an exponential space algorithm. �

	1. Introduction
	2. Bidirected Valence Systems
	2.1. Algebraic Preliminaries
	2.2. (Bidirected) Valence Systems and Reachability
	2.3. Examples
	2.4. Decidability Landscape for Reachability

	3. Main Results
	4. Bidirected reachability and subgroup membership
	4.1. BIREACH and subgroup membership
	4.2. Undecidability

	5. Lower Bounds
	6. Upper Bounds I: LOGSPACE and ILD
	6.1. Unlooped vertices
	6.2. General cliques

	7. Upper Bounds II: Polynomial Time, Exponential Time, and Exponential Space
	7.1. From valence systems to grammars
	7.2. Properties of bidirected grammars
	7.3. Expressing emptiness in terms of cosets
	7.4. Constructing coset circuits
	7.5. From coset circuits to linear Diophantine equations

	References
	Appendix A. Additional material for Section 4.2
	A.1. BIREACH and subgroup membership
	A.2. Undecidability

	Appendix B. Additional material for Section 5
	Appendix C. Additional material for Section 6
	C.1. Unlooped vertices
	C.2. General cliques

	Appendix D. Additional material for Section 7
	D.1. Placeholder runs
	D.2. Languages generated by the constructed grammar
	D.3. Reversibility of the constructed grammar
	D.4. Properties of bidirected grammars
	D.5. Expressing emptiness in terms of cosets
	D.6. Constructing coset circuits
	D.7. From coset circuits to linear Diophantine equations

