
A unified model of species abundance, genetic diversity, and
functional diversity reveals the mechanisms structuring ecological
communities

Isaac Overcast*, Megan Ruffley*, James Rosindell, Luke Harmon, Paulo A. V. Borges, Brent C.
Emerson, Rampal S. Etienne, Rosemary Gillespie, Henrik Krehenwinkel, D. Luke Mahler,
Francois Massol, Christine E. Parent, Jairo Patiño, Ben Peter, Bob Week, Catherine Wagner,
Michael J. Hickerson**, Andrew Rominger**

Supporting Methods
Local community initial conditions
The local community has a fixed, finite carrying capacity ( ) and is assumed to always be𝐽
saturated. This is known as the zero-sum assumption and relaxing it typically has no effect on
predictions of species abundance within neutral models (Etienne et al. 2007). For reasons of
computational efficiency, to achieve a realistic scale in terms of numbers of individual
organisms, the units used in the local community simulations do not correspond to individual
organisms, but rather to demes (or ‘cohorts’, groups of individuals that perform the same actions
at the same time, see Harfoot et al. 2014). This notion of a deme is conceptually similar to that
of a propagule from MacArthur and Wilson (1963), which they defined as "the minimum number
of individuals of a given species needed to achieve colonization". We use a scaling parameter α
to give the number of individuals per deme and thus the local community size parameter gives𝐽
the number of demes in the local community. The total number of organisms in the local
community is therefore given by . The local community is initialised with individual demes𝐽 · α
from one or more species chosen from the metacommunity. If the local community represents a
continental island, or habitat patch that is well connected to the metacommunity, it is initialised
with independent random samples (with replacement) from the individuals in the𝐽
metacommunity. Here we are modelling a community of panmictic individuals that are
simultaneously and instantaneously isolated from the metacommunity as the initial state. More
abundant species in the metacommunity are thus likely to also be more abundant in these initial
conditions. Alternatively, if the local community represents a volcanic island origin, or other
region of empty habitat (e.g. following a large scale disturbance event), it is initialised as
saturated by one species from the metacommunity (Rosindell & Harmon 2013), here we choose
the most abundant.

Local community non-neutral dynamics
We based our environmental filtering model on a functional relationship common in
coevolutionary models as a way to relate trait interactions between species and their
environment with the probability of persistence in a community (Lande 1976; Nuismer & Harmon
2015; Andreazzi et al. 2017). Following Ruffley et al. (2019) we calculate the death rate for
species as𝑖
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(Eq 1)

Here, the species trait is given by , the local community environment has trait optimum , and𝑧
𝑖

𝑧
𝐸

the strength of the environmental filtering is controlled by . When is small ( 1), filtering has𝑠
𝐸

𝑠
𝐸

≪
only a mild effect, individual fitness differences are indistinguishable (i.e. approximately equal δ
for all individuals), and the assembly process approaches neutrality. Conversely when is large𝑠

𝐸
, the filtering effect is very strong, individuals are heavily penalized for traits dissimilar to(≫ 1)

the optimum (individual values can vary by several orders of magnitude), and the assemblyδ
𝑖

process is strikingly non-neutral. For intermediate values of the distribution of across the𝑠
𝐸

δ
community will gradually become more uneven as increases. In general, an of 1 or greater𝑠

𝐸
𝑠
𝐸

produces a noticeably non-neutral process, with values << 1 approaching neutrality.

We similarly compute the non-neutral death rate due to competitive exclusion such that the
probability of an individual dying increases as its trait value approaches the mean trait value
within the local community:

(Eq 2)

Here, the local community mean trait is given by and the strength of competition between𝑧
individuals is given by , all other parameters are as in Equation 1. When is large,𝑠

𝐸
𝑠
𝐸

competition has a strong effect, individuals with trait values closer to the local mean will have
higher and proportionally higher probability of death. By contrast, small produces weakδ 𝑠

𝐸
competition, a more even distribution of , and an increasingly neutral assembly process asδ 𝑠

𝐸
approaches 0.

Summary statistics
We utilize a framework of generalized Hill numbers as community-scale summary statistics,
following a growing literature indicating their effectiveness for summarizing community-scale
patterns in various types of biological data (Chao et al. 2014; but see Leinster and Cobbold
2012 for an alternative framework). The attribute diversity component of generalized Hill
numbers have the form:

(Eq 3)
where S is species richness, vu is the attribute value for species u, au is the abundance of
species u, and q is the order of the equation. qAD quantifies the relative frequency of species
attribute values (e.g. abundance, trait, or π) and is undefined for order 1, but a limit exists as q
approaches 1 (see Chao et al. 2014). The qAD value is difficult to interpret directly and is not
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comparable across different data types, but it can be converted into an effective number of
species or species equivalents:

(Eq 4)
where = 1 for species diversity and genetic diversity, and = 2 for trait diversity. Hill numbersφ φ
calculated in this way are not directly comparable across simulations, as different S will change
their interpretation. To account for this, all Hill number values for all data types are additionally
normalized by dividing by S, converting them to percentages and allowing for comparability
across communities of differing richness.

Simulation parameters and prior ranges
When simulating data with the goal of performing inference on empirical data it is of great
importance to choose parameter values and prior ranges on parameters that are informed by
knowledge of the focal community. One consideration is that increasing the number of free
parameters will exponentially increase the number of simulations that will need to be generated,
so it is critical to identify and fix as many parameters as possible to biologically realistic values.
A similar concern arises around prior ranges, in that broad prior ranges will require more
simulations, while narrow ranges may place undue restrictions on the simulations. In general,
metacommunity parameters should be fixed for specific values and not assigned prior ranges,
as these will be very difficult to estimate from the data, in practice. In terms of metacommunity
parameters, the number of species in the metacommunity (SM) should be bounded on the low
end by the number of species in the focal community, and on the high end by the number of
species in the region that could reasonably colonize the local community. If published speciation
(λ), extinction (ε ) and trait evolution (σ2

M) values exist, these should be used. If not then
preliminary macroevolutionary simulations may be run with external tools, such as ToyTree
(Eaton 2020), to identify reasonable values. The number of individuals in the metacommunity
(JM) should be "large" with respect to the abundances of the taxa in the focal community. For
mammals 1e5 or 1e6 may be appropriate, whereas for arthropods this should be significantly
higher. A precise value for JM may be difficult to reasonably estimate, but fortunately this
parameter is relatively insensitive to misspecification, as it primarily modulates colonization
probability. Of the population genetic parameters, only the number of individuals per deme ( )α
may take a prior range, whereas the mutation rate (μ) and sequence length (L) should be fixed
to correspond to the values of the data in hand. In terms of a prior range, is a scalingα
parameter from demes to individuals to parameterize Ne in the coalescent model. Taking an
estimate of θ, for example nucleotide diversity (π), and (for haploid data) rearranging: θ = 2Neμ,
one may obtain θ/2μ = Ne as an estimate of Ne. Dividing this by proposed values of should beα
on the order of the average number of samples per population. Parameters dictating processes
in the local community are of utmost importance (J, m, and sE). The number of individuals in the
local community (J) may be fixed to the value of the number of individuals in the sample or it
may take a prior range to account for sampling bias, values of which should not exceed one



order of magnitude of the number of observed samples. The migration rate into the local
community (m) will dramatically impact the local community structure. If values are too low
(<0.001), the community will approach mono-dominance, and if they are too high (>0.1) the
local community will appear as a random sample of the metacommunity. Finally, values of
ecological strength (sE) which are very large (>10) or very small (<0.001) will converge to a
neutral model. Therefore, for non-neutral simulations, a reasonable prior range for this
parameter is [0.01-5].

Simulation and inference performance and runtimes
The runtimes for any given simulation are a complex function of the input parameters.
Simulation runtimes are generally insensitive to metacommunity parameters such as the
number of individuals (JM), the number of species (SM) and the speciation (λ), extinction (ε ) and
trait evolution (σ2

M) rates, as the metacommunity is generated once at simulation initialization,
and then remains static for the duration. Local community parameters have a much stronger
impact on runtimes, specifically increasing the number of individuals in the local community (J)
will increase runtimes polynomially in all cases. Decreasing the rate of migration into the local
community (m) will increase runtimes only when measuring time to equilibrium ( ). As anΛ
example, with all other parameters set to the defaults, running a local community to 100
generations with J = 1000 takes ~5 seconds, and with J = 5000 takes ~1 minute. Runtimes are
less sensitive to population genetic parameters, for example the number of individuals per deme
( ) and the mutation rate (μ) will have little impact on runtime for reasonable values, andα
runtimes will scale linearly with sequence length (L). One critical strength of MESS is that it has
massive parallelization built-in, automatically scaling to as many processors as are available.
Running 10,000 simulations for parameter values used in the simulation experiments (Table S2)
on a workstation with 40 cores takes approximately 20 hours.

In terms of fitting MESS to empirical data, runtimes for the built-in automated machine learning
(ML) process will vary as a function of the number of simulations in the dataset and chosen
parameters of the inference procedure, with the vast majority of this time dedicated to training
the ML. Running ML classification and prediction with default parameters will take less than an
hour on a standard workstation, though the results will be unsatisfactory. In all cases inference
will improve, but runtimes will be greatly increased (on the order of several hours) by including
automatic feature selection (`select_features=True`) and ML parameter tuning
(`param_search=True`). Once trained MESS ML models may be reused to infer assembly
model class and estimate parameters, in which case classification and prediction are
functionally instantaneous.
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Supporting Tables and Figures
Table S1: MESS model behavior with fixed Λ exploratory analysis simulation parameter
values
MESS model parameters used for generating figure 2 in the main text. All parameters are fixed
at intermediate values, and only the community assembly model is allowed to vary. The U([x])
notation indicates that the exact values within the square brackets were sampled uniformly.

Parameter Value(s)

Community assembly model U([Neutral, Competition, Environmental filtering])

In situ speciation model Point mutation

Local community initial conditions Monodominance

𝐽
𝑀

5e5

𝑆
𝑀

250

λ 2

ε 0.7

σ2
𝑀

2

𝐽 1000

ν [0, 0.0005, 0.005]

m 0.005

𝑠
𝐸

0.1

Λ 0.75

L 570

µ 2.2e-8

α 2000



Table S2: MESS model temporal behavior exploratory analysis simulation parameter
values
MESS model parameters used for generating figure 3 in the main text. All parameters are fixed
at intermediate values, and only the community assembly model is allowed to vary. The U([x])
notation indicates that the exact values within the square brackets were sampled uniformly.

Parameter Value(s)

Community assembly model U([Neutral, Competition, Environmental filtering])

In situ speciation model Point mutation

Local community initial conditions Monodominance

𝐽
𝑀

5e5

𝑆
𝑀

250

λ 2

ε 0.7

σ2
𝑀

2

𝐽 1000

ν U([0, 0.0005, 0.005])

m 0.005

𝑠
𝐸

0.1

Λ U(0, 1)

L 570

µ 2.2e-8

α 2000



Table S3: Machine learning classifier model selection simulation parameter values
MESS model parameter values used for model selection simulations and machine learning
classifier cross-validation. Parameters with specified ranges were sampled from either uniform
(U) or log-uniform(LU) distributions, and all other parameters were fixed at the indicated values.
The U([x]) notation indicates that the exact values within the square brackets were sampled
uniformly.

Parameter Value(s)

Community assembly model U([Neutral, Competition, Environmental filtering])

In situ speciation model Point mutation

Local community initial conditions Monodominance

𝐽
𝑀

5e5

𝑆
𝑀

250

λ 2

ε 0.7

σ2
𝑀

2

𝐽 U(1000, 5000)

ν LU(0.0005, 0.005)

m 0.005

𝑠
𝐸

0.1

Λ U(0, 1)

L 570

µ 2.2e-8

α 2000



Table S4: Machine learning regression parameter estimation simulation parameter values
MESS model parameter values used for parameter estimation simulations and machine learning
regression cross-validation. Parameters with specified ranges were sampled from either uniform
(U) or log-uniform(LU) distributions, and all other parameters were fixed at the indicated values.
The U([x]) notation indicates that the exact values within the square brackets were sampled
uniformly.

Parameter Value(s)

Community assembly model Neutral

In situ speciation model Point mutation

Local community initial conditions Monodominance

𝐽
𝑀

5e5

𝑆
𝑀

250

λ 2

ε 0.7

σ2
𝑀

2

𝐽 U(1000, 5000)

ν LU(0.0005, 0.005)

m U(0.001, 0.01)

𝑠
𝐸

LU(0.01, 10)

Λ U(0, 1)

L 570

µ 2.2e-8

α U(1000, 10000)



Table S5: MESS parameter estimates for empirical datasets
Parameter estimates and 95% prediction intervals for the empirical datasets analyzed in the
main text. Parameters estimated include number of individuals per deme (α), ecological strength
(sE), migration rate (m), local speciation probability (ν), and fraction of equilibrium (Λ).

Λ α sE generation m ν

Mauritius
Weevils

0.934
(0.804-1.000)

7107.251
(3496.731-9831.389)

0.391
(0.002-0.995)

1259.572
(402.725-3590.325)

0.007
(0.002-0.010)

0.003
(0.001-0.005)

Reunion
Weevils

0.930
(0.802-1.000)

7178.214
(3506.795-9823.661)

0.415
(0.002-0.997)

1259.572
(402.725-3590.325)

0.007
(0.002-0.010)

0.003
(0.001-0.005)

Reunion
Spiders

0.894
(0.838-0.999)

8296.900
(6268.000-9735.000)

0.023
(0.001-0.061)

791.100
(392.000-884.000)

0.005
(0.002-0.008)

0.001
(0.001-0.003)

Australian
Trees

0.426
(0.056-0.834)

855.300
(519.000-1333.000)

0.168
(0.004-0.639)

113.400
(12.000-198.000)

0.006
(0.001-0.010)

0.003
(0.001-0.005)

Galapagos
Snails

0.758
(0.321-0.995)

6777.409
(1741.969-9876.601)

0.180
(0.001-0.932)

658.921
(110.059-2009.187)

0.004
(0.001-0.009)

0.003
(0.001-0.005)



Figure S1: Machine learning cross-validation parameter estimation
1000 parameter estimation cross-validation (CV) replicates using environmental filtering
community assembly model simulations and summary statistics from all data axes. True
parameter values are on the x-axes and the corresponding point estimates are on the y-axes. A
parameter that is well estimated will have CV results that fall on or around the identity line.
Parameters depicted are: individuals per deme ( ), environmental strength (sE), local communityα
size (J), migration rate (m), number of generations, and speciation rate ( ).𝑣



Figure S2: Machine learning cross-validation parameter estimation
1000 parameter estimation cross-validation (CV) replicates using competition community
assembly model simulations and summary statistics from all data axes. True parameter values
are on the x-axes and the corresponding point estimates are on the y-axes. A parameter that is
well estimated will have CV results that fall on or around the identity line. Parameters depicted
are: individuals per deme ( ), environmental strength (sE), local community size (J), migrationα
rate (m), number of generations, and speciation rate ( ).𝑣



Figure S3: Posterior predictive simulations for the 5 examined empirical datasets
Principal component analysis plots showing summary statistics for 50 posterior predictive
simulations (blue points) projected to the first two PCs. Summary statistics of the observed
communities are depicted in red: a) Mauritius weevils; b) Reunion weevils; c) Reunion spiders;
d) Australian rainforest trees; e) Galapagos snails.


