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BOUNDS OF MULTIPLICATIVE CHARACTER SUMS
OVER SHIFTED PRIMES

BRYCE KERR

Abstract. For integer q, let χ be a primitive multiplicative character
mod q. For integer a coprime to q, we obtain a bound of the form∣∣∣∣∣∣

∑
n≤N

Λ(n)χ(n+ a)

∣∣∣∣∣∣ ≤ N

qδ
, N ≥ q3/4+ε,

where Λ(n) is the von Mangoldt function. This improves on a
series of previous results.

1. Introduction

One of Vinogradov’s fundamental contributions to mathematics is
the method of bilinear forms. This can be viewed as some general
framework to convert the problem of estimating an exponential sum
over a set with arithmetic structure to bounding the norm of a linear
operator. This method, combined with other techniques, allowed Vino-
gradov to make progress on famous problems including the zero free
region of the Riemann zeta function, Waring’s problem and the repre-
sentation of a number as the sum of three primes. Since Vinogradov’s
work, the method of bilinear forms has played a central role in number
theory.

Another one of the early applications of Vinogradov’s method is the
estimation of character sums over shifted primes. Let q be prime and
χ a primitive character mod q. Consider the sum

(1) Sa(q;N) =
∑
n≤N

Λ(n)χ(n+ a),

where a is an integer relatively prime to q and as usual,

Λ(n) =

{
log p, if n is a power of a prime p,

0, otherwise,
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is the von Mangoldt function. Vinogradov [15] showed an estimate of
the form

|Sa(q;N)| ≤ N

qδ
, N ≥ q3/4+ε.

This was considered a surprising result since a direct application of
the Riemann hypothesis for Dirichlet L-functions implies a nontrivial
estimate only in the longer range N ≥ q1+ε. Vinogradov’s estimate has
been improved by Karatsuba [8] by using some ideas of Burgess and
obtained an estimate of the form

|Sa(q;N)| ≤ N

qδ
, N ≥ q1/2+ε.(2)

In this paper we consider the problem of estimating Sa(q;N) for an
arbitrary integer q. This first appears to be considered by Rakhmonov [9,
10] who has shown that nontrivial cancellations in the sums Sa(q;N)
occur in the range N > q1+ε. This has been extended by Friedlander,
Gong and Shparlinski [4] to N > q8/9+ε, where the bound

(3) |Sa(q;N)| ≤ (N7/8q1/9 +N33/32q−1/18)qo(1),

is given for N ≤ q16/9. The current record on the longest range of pa-
rameters for which the sums Sa(q;N) are estimated for general modulus
is due to Rakhmonov [12] (see also [11] for sharper results in the case
of cubefree modulus) who has shown

|Sa(q;N)| � N exp (−0.6
√
q) , N ≥ q5/6+ε.(4)

Note the much shorter range of summation in Karatsubas estimate (2)
for prime modulus compared with (4). Estimating character sums for
general composite modulus is typically much harder than prime mod-
ulus and this has something to do with the current state of knowledge
regarding complete exponential sums over residue rings. For prime
modulus one may appeal to the Weil bound to obtain square root can-
cellation for such sums. For arbitrary modulus it is possible to apply
elementary methods to estimate complete sums, see for example [7,
Chapter 12], although applying such techniques requires counting ze-
ros of polynomials in residue rings which is often difficult to obtain
good bounds.

In this paper, we overcome some of these difficulties and provide an
estimate for the sums Sa(q;N) in the range N ≥ q3/4+ε.

Theorem 1. For N ≤ q, we have

|Sa(q;N)| ≤ q1/9+o(1)N23/27.
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2. The Heath-Brown identity

The following identity is due to Heath-Brown [6] and will be used to
transform sums over primes into bilinear sums.

Lemma 2. For integers J,X,Z and n satisfying

J ≥ 1, n < 2X and Z = X1/J ,

we have

Λ(n) = −
J∑
j=1

(−1)j
(
J

j

) ∑
mi≤Z
1≤i≤j

µ(m1) . . . µ(mj)
∑

n1,...,nj
m1...mjn1...nj=n

log n1.

Lemma 2 will be used to transform summation over primes to bi-
linear forms. Our next result allows some control over the lengths of
summation in the resulting bilinear forms and is standard in applica-
tions of Heath-Brown’s identity.

Lemma 3. Let j ≥ 2 be an integer and M1, . . . ,Mj, N1, . . . , Nj satisfy

Mj ≤Mj−1 ≤ · · · ≤M1, Nj ≤ Nj−1 ≤ · · · ≤ N1, N �
j∏
i=1

MiNi � N,

and

M1 ≤ Z.(5)

We have either

N1 ≥
(
N

Z

)1/2

,(6)

or there exists subsets I,J ⊆ {1, . . . , j} such that

Z ≤
∏
i∈I

Mi

∏
i∈J

Ni ≤ max{Z2, N1/3}.(7)

Proof. Let i0 ≥ 1 be the smallest integer such that∏
i≥i0

Mi ≤ Z.
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If i0 6= 1 then by (5)

Z ≤
∏

i≥i0−1

Mi ≤ Z2,

which gives a partition of the form (7). Hence we may suppose i0 = 1.
Let i1 ≥ 1 be the smallest integer such that∏

i≤j

Mi

∏
i≥i1

Ni ≤ Z.

We may suppose if i < i1 then

Ni ≥ Z,

since otherwise

Z ≤
∏
i≤j

Mi

∏
i≥i1−1

Ni ≤ Z2,

which gives a partition of the form (7). We next proceed on a case
by case basis depending on the value of i1. Suppose first that i1 ≤ 3.
Then using

N � N1 . . . NjM1 . . .Mj � N,

we have ∏
i<i1

Ni �
N

Z
,

which implies

N1 �
N1/2

Z1/2
.

Suppose next that i1 ≥ 4. Then from

N3
3 ≤ N1N2N3 ≤ N,

we obtain that

Z ≤ N3 ≤ N1/3,

which completes the proof. �

3. Pólya-Vinogradov Bound

We will use a variant of the Pólya-Vinogradov inequality with an
arithmetic condition on summation which is [4, Lemma 5].



SUMS OVER SHIFTED PRIMES 5

Lemma 4. For any integers M,N, a with (a, q) = 1 and any primitive
character χ (mod q) we have∣∣∣∣∣∣∣∣

∑
M<n≤M+N

(n,q)=1

χ(n+ a)

∣∣∣∣∣∣∣∣ ≤ q1/2+o(1) +Nq−1/2+o(1).

4. Burgess Bounds

In [4], the Burgess bound for the sums

V∑
v1,...,v2r=1

∣∣∣∣∣
q∑

x=1

χ

(
r∏
i=1

(x+ vi)

)
χ

(
2r∏

i=r+1

(x+ vi)

)∣∣∣∣∣ r = 2, 3,

was used to improve on Lemma 4 for small values of N . We a give
further improvement by using the methods of Burgess [1, 2] to bound
the sums

(8)
V∑

v1,...,v2r=1

∣∣∣∣∣
q∑

x=1

χ

(
r∏
i=1

(x+ dvi)

)
χ

(
2r∏

i=r+1

(x+ dvi)

)∣∣∣∣∣ , r = 2, 3,

which will then be combined with techniques from [4] to obtain new
bounds for sums of the form∑

n≤N
(n,q)=1

χ(n+ a).

4.1. The case r=2. The aim of this section is to improve on [4,
Lemma 10], see Lemma 7 below. This result will not be used in the
proof of Theorem 1 and may have independent interest. It is possible
one may incoporate the results of this section to obtain quantitative
improvements on Theorem 1.

We first recall a special case of [1, Lemma 7].

Lemma 5. For integer q let χ be a primitive character (mod q) and
let

f1(x) = (x− dv1)(x− dv2), f2(x) = (x− dv3)(x− dv4).

Suppose at least 3 of v1, v2, v3, v4 are distinct and define

Ai =
∏
j 6=i

(dvi − dvj).
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Then we have ∣∣∣∣∣
q∑

x=1

χ(f1(x))χ(f2(x))

∣∣∣∣∣ ≤ 8ω(q)q1/2(q, Ai),

for some Ai 6= 0 with 1 ≤ i ≤ 4, where ω(q) counts the number of
distinct prime factors of q.

We use Lemma 5 and ideas from the proof of [1, Lemma 8] to show,

Lemma 6. For any primitive character χ modulo q and any positive
integer V we have,

V∑
v1,...,v4=1

∣∣∣∣∣
q∑

x=1

χ

(
2∏
i=1

(x+ dvi)

)
χ

(
4∏
i=3

(x+ dvi)

)∣∣∣∣∣ ≤ (V 2q+(d, q)3q1/2V 4)qo(1).

Proof. We divide the outer summation of

V∑
v1,v2,v3,v4=1

∣∣∣∣∣
q∑

x=1

χ

(
2∏
i=1

(x+ dvi)

)
χ

(
4∏
i=3

(x+ dvi)

)∣∣∣∣∣ ,
into two sets. In the first set we put all v1, v2, v3, v4 which contain at
most 2 distinct numbers and we put the remaining v1, v2, v3, v4 into the
second set. The number of elements in the first set is � V 2 and for
these sets we estimate the inner sum trivially. This gives

V∑
v1,...,v4=1

∣∣∣∣∣
q∑

x=1

χ

(
2∏
i=1

(x+ dvi)

)
χ

(
4∏
i=3

(x+ dvi)

)∣∣∣∣∣�
qV 2 +

V∑′

v1,...,v4=1

∣∣∣∣∣
q∑

x=1

χ

(
2∏
i=1

(x+ dvi)

)
χ

(
4∏
i=3

(x+ dvi)

)∣∣∣∣∣ ,
where the last sum is restricted to v1, v2, v3, v4 which contain at least 3
distinct numbers. With notation as in Lemma 5, we have

V∑′

v1,...,v4=1

∣∣∣∣∣
q∑

x=1

χ (f1(x))χ (f2(x))

∣∣∣∣∣ ≤ q1/2+o(1)
V∑′

v1,...,v4=1

4∑
i=1
Ai 6=0

(Ai, q).

Since Ai =
∏

i 6=j(dvi − dvj) = d3
∏

i 6=j(vi − vj) = d3A′i, we have

V∑′

v1,...,v4=1

4∑
i=1
Ai 6=0

(Ai, q) ≤ (d3, q)

V∑′

v1,...,v4=1

4∑
i=1
Ai 6=0

(A′i, q),
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and in [1, Lemma 8] it is shown

V∑′

v1,...,v4=1

4∑
i=1
Ai 6=0

(A′i, q) ≤ V 4qo(1),

from which the result follows. �

We next use Lemma 6 to improve on [4, Lemma 10] with respect to
the parameter d. For applications to Theorem 1, this is an important
factor for summation over mid length intervals.

Lemma 7. For any primitive character χ (mod q) and integers M ,
N , a and d satisfying

N ≤ q5/8d−5/4, d ≤ q1/6, (a, q) = 1,

we have ∣∣∣∣∣ ∑
M<n≤M+N

χ(dn+ a)

∣∣∣∣∣ ≤ q3/16+o(1)d3/8N1/2.

Proof. We proceed by induction on N . Since the result is trivial for
N ≤ q3/8, this forms the basis of the induction. We define

U = [0.25Nd3/2q−1/4], V = [0.25d−3/2q1/4],

and let

U = { 1 ≤ u ≤ U : (u, dq) = 1 }, V = { 1 ≤ v ≤ V : (v, q) = 1 }.

By the inductive assumption, for any ε > 0 and integer h ≤ UV < N
we have∣∣∣∣∣ ∑
M<n≤M+N

χ(dn+ a)

∣∣∣∣∣ ≤
∣∣∣∣∣ ∑
M<n≤M+N

χ(d(n+ h) + a)

∣∣∣∣∣+2q3/16+εd3/8h1/2,

for sufficiently large q. Hence∣∣∣∣∣ ∑
M<n≤M+N

χ(dn+ a)

∣∣∣∣∣ ≤ 1

#U#V
|W |+ 2q3/16+εd3/8(UV )1/2,

where

W =
∑
u∈U

∑
v∈V

∑
M<n≤M+N

χ(d(n+ uv) + a)

=
∑
u∈U

χ(u)
∑

M<n≤M+N

∑
v∈V

χ((dn+ a)u−1 + dv).
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We have

|W | ≤
q∑

x=1

ν(x)

∣∣∣∣∣∑
v∈V

χ(x+ dv)

∣∣∣∣∣ ,
where ν(x) is the number of representations x ≡ (dn+ a)u−1 (mod q)
with M < n ≤ M + N and u ∈ U . Two applications of Hölder’s
inequality gives

|W |4 ≤

(
q∑

x=1

ν2(x)

)(
q∑

x=1

ν(x)

)2 q∑
x=1

∣∣∣∣∣∑
v∈V

χ(x+ dv)

∣∣∣∣∣
4

.

From the proof of [4, Lemma 7] we have
q∑

x=1

ν(x) = N#U ,
q∑

x=1

ν2(x) ≤
(
dNU

q
+ 1

)
NUqo(1),

and by Lemma 6

q∑
x=1

∣∣∣∣∣∑
v∈V

χ(x+ dv)

∣∣∣∣∣
4

=
∑

v1,...v4∈V

q∑
x=1

χ

(
2∏
i=1

(x+ dvi)

)
χ

(
4∏
i=3

(x+ dvi)

)

≤
V∑

v1,...v4=1

∣∣∣∣∣
q∑

x=1

χ

(
2∏
i=1

(x+ dvi)

)
χ

(
4∏
i=3

(x+ dvi)

)∣∣∣∣∣
� V 2q1+o(1),

since V ≤ d−3/2q1/4. Combining the above bounds gives

|W |4 ≤
(
dNU

q
+ 1

)
NU(N#U)2V 2q1+o(1),

and since
#U = Uqo(1), #V = V qo(1),

we have∣∣∣∣∣ ∑
M<n≤M+N

χ(dn+ a)

∣∣∣∣∣ ≤
(
d1/4N

V 1/2
+
q1/4N3/4

U1/4V 1/2

)
qo(1) + 2q3/16+εd3/8(UV )1/2.

Recalling the choice of U and V we get∣∣∣∣∣ ∑
M<n≤M+N

χ(dn+ a)

∣∣∣∣∣ ≤
(
dN

q1/8
+ q3/16d3/8N1/2

)
qo(1) +

1

2
q3/16+εd3/8N1/2,

and since by assumption,

N ≤ q5/8d−5/4,
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we get for sufficiently large q∣∣∣∣∣ ∑
M<n≤M+N

χ(dn+ a)

∣∣∣∣∣ ≤ q3/16d3/8N1/2qo(1) +
1

2
q3/16+εd3/8N1/2

≤ q3/16+εd3/8N1/2.

�

Lemma 8. Let χ be a primitive character (mod q) and suppose (a, q) =
1. Then for N ≤ q43/72 we have∣∣∣∣∣∣∣∣

∑
M<n≤M+N

(n,q)=1

χ(n+ a)

∣∣∣∣∣∣∣∣ ≤ q3/16+o(1)N1/2.

Proof. We have∣∣∣∣∣∣∣∣
∑

M<n≤M+N
(n,q)=1

χ(n+ a)

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
d|q

µ(d)
∑

M/d<n≤(M+N)/d

χ(dn+ a)

∣∣∣∣∣∣
≤
∑
d|q

∣∣∣∣∣∣
∑

M/d<n≤(M+N)/d

χ(dn+ a)

∣∣∣∣∣∣ .
Let

Z =

⌊
N1/2

q3/16

⌋
,

then by Lemma 7 we have

∑
d|q

∣∣∣∣∣∣
∑

M/d<n≤(M+N)/d

χ(dn+ a)

∣∣∣∣∣∣ =

∑
d|q
d≤Z

∣∣∣∣∣∣
∑

M/d<n≤(M+N)/d

χ(dn+ a)

∣∣∣∣∣∣+
∑
d|q
d>Z

∣∣∣∣∣∣
∑

M/d<n≤(M+N)/d

χ(dn+ a)

∣∣∣∣∣∣
≤
∑
d|q
d≤Z

q3/16+o(1)d−1/8N1/2 +
∑
d|q
d>Z

N

d
.
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By choice of Z we get∑
d|q
d≤Z

q3/16+o(1)d−1/8N1/2 +
∑
d|q
d>Z

N

d
≤
(
q3/16N1/2 +

N

Z

)
qo(1) ≤ q3/16+o(1)N1/2,

which gives the desired bound. It remains to check that the conditions
of Lemma 7 are satisfied. For each d|q with d ≤ Z, we need

N

d
≤ q5/8d−5/4, d ≤ q1/6,

which on recalling the choice of Z is satisfied for N ≤ q43/72. �

By partial summation we deduce from Lemma 8.

Lemma 9. Let χ be a primitive character (mod q) and suppose (a, q) =
1. Then for N ≤ q43/72 we have∣∣∣∣∣∣∣∣

∑
M<n≤M+N

(n,q)=1

(log n)χ(n+ a)

∣∣∣∣∣∣∣∣ ≤ q3/16+o(1)N1/2.

4.2. The case r=3. Throughout this section we let
(9)
f1(x) = (x+dv1)(x+dv2)(x+dv3), f2(x) = (x+dv4)(x+dv5)(x+dv6),

and

(10) F (x) = f ′1(x)f2(x)− f1(x)f ′2(x),

and write v = (v1, . . . v6). We generalize the argument of Burgess [2]
to give an upper bound for the cardinality of the set

A(s, s′) = {v : 0 < vi ≤ V, there exists an x such that

(s, f1(x)f2(x)) = 1, s|F (x), s|F ′(x), s′|F ′′(x)},

which will then be combined with the proof of [2, Theorem 2] to bound
the sums (8). The proof of the following Lemma is the same as [2,
Lemma 3].

Lemma 10. Let s′|s and consider the equations

(11) (λ, s) = 1, (f1(−t), s/s′) = 1,

(12) 6(f1(X) + λf2(X)) ≡ 6(1 + λ)(X + t)3 (mod s),

(13) 6(1 + λ) ≡ 0 (mod s′).
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Let

A1(s, s
′) = {v, λ, t : 0 < vi ≤ V, vi 6= v1, i ≥ 2,

0 < λ ≤ s, 0 < t ≤ s/s′, (11), (12), (13)},
then we have

#A(s, s′)� V 3 + #A1(s, s
′).

We next make the substitutions

Y = X + dv1,

Vi = vi − v1, i ≥ 2,(14)

T = t− dv1 (mod s/s′),

so that

f1(X) = Y (Y + dV2)(Y + dV3) = Y 3 + d(V2 + V3)Y
2 + d2V2V3Y

= g1(Y ),(15)

f2(X) = (Y + dV4)(Y + dV5)(Y + dV6) = Y 3 + dσ1Y
2 + d2σ2Y + d3σ3

= g2(Y ),
(16)

where

σ1 = V4 + V5 + V6,

σ2 = V4V5 + V4V6 + V5V6,(17)

σ3 = V4V5V6,

and we see that (12) becomes

(18) 6(g1(Y ) + λg2(Y )) ≡ 6(1 + λ)(Y + T )3 (mod s).

The proof of the following Lemma follows that of [2, Lemma 4].

Lemma 11. With notation as in (14) and (17), consider the equations

(19) (s/s′, T ) = 1, (s/s′, T − dV3) = 1,

(20)
6d2T 3(V 2

3 −σ1V3+σ2)−18d3σ3T
2+18d4V3σ3T−6d5V 2

3 σ3 ≡ 0 (mod s),

(21) 6d3σ3 ≡ 0 (mod s′),

and let

A2(s, s
′) = {(V3, V4, V5, V6, T ) :

0 < |Vi| ≤ V, 0 < T ≤ s/s′, (19), (20), (21)}.
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Then we have

#A1(s, s
′)� (d, s)V (1 + V/s)#A2(s, s

′).

Proof. We first note that (11) and (14) imply (19). Let

B1 = {(V2, V3,V4, V5, V6, T ) : 0 < |Vi| ≤ V,

0 < λ ≤ s, (λ, s) = 1, 0 < T ≤ s/s′, (13), (18), (19)},
so that

#A1(s, s
′) ≤ V#B1.

Using (15) and (16) and considering common powers of Y in (18) we
get

(22) 6d(V2 + V3 + λσ1) ≡ 18(1 + λ)T (mod s),

(23) 6d2(V2V3 + λσ2) ≡ 18(1 + λ)T 2 (mod s),

(24) 6d3λσ3 ≡ 6(1 + λ)T 3 (mod s).

By (22) we see that

6dV2 ≡ 18(1 + λ)T − 6dV3 − 6dλσ1 (mod s),

which hasO ((d, s)(1 + V/s)) solutions in V2. The equations (13) and (24)
imply that

6d3σ3 ≡ 0 (mod s′),

and

(25) 6λ(d3σ3 − T 3) ≡ 6T 3 (mod s).

Since (T, s/s′) = 1 by the above equations, there are O(1) possible
values of λ. Finally combining (22), (23) and (25) gives (20). �

The following is [2, Lemma 2].

Lemma 12. For any integer s and polynomial G(X) with integer co-
efficients, we have

#{0 ≤ x < s, G(x) ≡ 0 (mod s), (s,G′(x))|6} ≤ so(1),

where the term o(1) depends only on the degree of G.

The proof of the following Lemma follows that of [2, Lemma 5].

Lemma 13. For s′′|(s/s′) consider the equations

(26) (s, 6d3σ3) = s′s′′,

(27) 6d2(V 2
3 − σ1V3 + σ2) ≡ 0 (mod s′′),

and let

A3(s, s
′, s′′) = {(V3, V4, V5, V6) : 0 < |Vi| ≤ V, (26), (27)}.
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Then we have

#A2(s, s
′) ≤ so(1)

∑
s′′|s/s′

s′′#A3(s, s
′, s′′).

Proof. For s′′|(s/s′), let

A′3(s, s′, s′′) = { (V3, V4, V5, V6, T ) ∈ A2(s, s
′) : (s, 6d3σ3) = s′s′′},

so that

(28) #A2(s, s
′) =

∑
s′′|(s/s′)

#A′3(s, s′, s′′).

Let S = (s′, s/s′), so that (s′/S, s/s′) = 1. For elements of A3(s, s
′, s′′),

since

(29) 6d3σ3 ≡ 0 (mod Ss′′),

we have by (19), (20) and (26)

(30) 6d2(V 2
3 − σ1V3 + σ2) ≡ 0 (mod Ss′′),

hence (20) implies that

6d2(V 2
3 − σ1V3 + σ2)

Ss′′
T 3 − 18d3σ3

Ss′′
T 2

+
18d4σ3V3
Ss′′

T − 6d5σ3V
2
3

Ss′′
≡ 0 (mod s/(s′s′′)).(31)

Let

G(T ) =
6d2(V 2

3 − σ1V3 + σ2)

Ss′′
T 3 − 18d3σ3

Ss′′
T 2 +

18d4σ3V3
Ss′′

T − 6d5σ3V
2
3

Ss′′
,

so that

3G(T )− TG′(T ) = −18d3σ3
Ss′′

(T − dV3)2.

Writing 6d3σ3 = s′s′′σ′ with (σ′, s) = 1, we see from (19) that for some
integer y with (y, s/s′) = 1 that

3G(T )− TG′(T ) = −3s′

S
y.

If T0 is a root of G(T ) (mod s/(s′s′′)) then since (s′/S, s/s′) = 1 we
have

(G′(T0), s/(s
′s′′))|3,

hence from Lemma 12, the number of possible values for T is� s′′so(1).
Finally (30) implies

6d2(V 2
3 − σ1V3 + σ2) ≡ 0 (mod s′′),

and the result follows from (28). �
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Lemma 14. With notation as in Lemma 13, for integers s, s′, s′′ sat-
isfying s′|s and s′′|s/s′ we have

#A3(s, s
′, s′′) ≤ (d3, s)V 4so(1)/(s′s′′).

Proof. Bounding the number of solutions to the equation (27) trivially
and recalling the definition of σ3 from (17), we see that

#A3(s, s
′, s′′) ≤ V#{(V4, V5, V6) : 0 < |Mi| ≤ V, (s, 6d3V4V5V6) = s′s′′}.

(32)

Writing s = (d3, s)s1, d
3 = (d3, s)d1, we see that

(s, 6d3V4V5V6) = s′s′′,

implies

(s1, 6V4V5V6) = s′s′′/(d3, s).

For integers s1, s2, s3, let

A4(s1, s2, s3) = {V4, V5, V6 : 0 < |Vi| ≤ V, s1|6V4, s2|6V5, s3|6V6},
so that from (32)

#A3(s, s
′, s′′) ≤ V

∑
s1s2s3=s′s′′/(d3,s)

A4(s1, s2, s3).

Since

A4(s1, s2, s3)�
V 3

s1s2s3
=

(d3, s)V 3

s′s′′
,

we see that

#A3(s, s
′, s′′) ≤ (d3, s)V 4so(1)

s′s′′
.

�

Combining the above results we get

Lemma 15. Let s′|s and

A(s, s′) = { v : 0 < vi ≤ V, there exists an x such that

(s, f1(x)f2(x)) = 1, s|F (x), s|F ′(x), s′|F ′′(x)}.
Then

#A(s, s′) ≤ (d, s)4
(
V 6

ss′
+
V 5

s′

)
so(1) + V 3.

Proof. From Lemma 10, Lemma 11, Lemma 13 we see that

#A(s, s′) ≤ V 3 + (d, s)

(
1 +

V

s

)
V
∑
s′′|s/s′

s′′#A3(s, s
′, s′′),
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and from Lemma 14 we have∑
s′′|s/s′

s′′#A3(s, s
′, s′′) ≤ so(1)(d3, s)V 4

s′
,

which gives the desired result. �

For integer q, we define the numbers h1(q), h2(q), h3(q) as in [2],

h1(q)
2 = smallest square divisible by q,

h2(q)
3 = smallest cube divisible by q,(33)

h3(q) = product of distinct prime factors of q.

The following is [2, Theorem 2].

Lemma 16. Let χ be a primitive character mod q and let

q = q0q1q2q3,(34)

where the qi are pairwise coprime. Let the integers l0, l1, l2 satisfy

l0|h1(q0)/h3(q0), l1|h2(q1)/h3(q1), l2|h2(q2)/h3(q2),(35)

and consider the equations

(36) l0h1(q1q2q3)|F (x), (F (x), h1(q0)) = l0,

(37) l1h2(q2q3)|F ′(x), (F ′(x), h2(q1)) = l1,

(38) l2h2(q3)|F ′′(x), (F ′′(x), h2(q2)) = l2,

and let

C = C(l0, l1, l2, q0, q1, q2, q3) = {1 ≤ x ≤ q : (36), (37), (38)}.(39)

Then we have∣∣∣∣∣∑
x∈C

χ(f1(x))χ(f2(x))

∣∣∣∣∣ ≤ q1/2+o(1)
(q2q3l1)

1/2l2
h2(q2)

.

We next present some results which are used by Burgess in the proof
of [2, Theorem B] and we will use in combination with Lemma 15 and
Lemma 16 in the proof of Lemma 19 below. Since these result are
nontrivial and Burgess does not provide a proof, we give details for the
sake of completeness.

Lemma 17. With notation as in (33), let q, u and i be positive integers
satisfying i ∈ {1, 2} and 1 ≤ u ≤ q. There exists unique integers q0, `0
satisfying

q0|q, (q0, q/q0) = 1, `0hi(q/q0)|u, (u, hi(q0)) = `0, `0|hi(q0)/h3(q0).
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Proof. We first show q0, l0 exist. For integer n with prime factorization

n =
k∏
j=1

p
αj
j ,

and i ∈ {1, 2} we have

hi(n) =
k∏
j=1

p
b(αj+i)/(i+1)c
j , h3(n) =

k∏
j=1

pj.(40)

Suppose q has prime factorization

q =
k∏
j=1

p
αj
j ,

and define βj by

(u, q) =
k∏
j=1

p
βj
j .(41)

Let K0 denote the set

K0 = {1 ≤ j ≤ k : b(αj + i)/(i+ 1)c > βj} ,(42)

and define q0, `0 by

q0 =
∏
j∈K0

p
αj
j , (u, hi(q0)) = l0 =

k∏
j∈K0

p
βj
j .

First note that

(q0, q/q0) = 1.(43)

From (40)

l0hi

(
q

q0

)
=
∏
j∈K0

p
βj
j

∏
1≤j≤k
j 6∈K0

p
b(αj+i)/(i+1)c
j ,

and if j 6∈ K0 then
b(αj + i)/(i+ 1)c ≤ βj,

which by (41) implies

l0hi (q/q0) |(u, q).(44)

We have

hi(q0)

h3(q0)
=

k∏
j∈K0

p
b(αj+i)/(i+1)c−1
j ,
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and if j ∈ K0 then

b(αj + i)/(i+ 1)c − 1 ≥ βj,

which implies

l0|hi(q0)/h3(q0).(45)

It follows from (43), (44) and (45) that q0, l0 satisfy the desired prop-
erties. We next show q0, l0 are unique. Suppose q1, l1 satisfy

q1|q, (q1, q/q1) = 1,(46)

l1hi(q/q1)|u, (u, hi(q1)) = l1,(47)

and

l1|hi(q1)/h3(q1).(48)

We will show q1 = q0 and l1 = l0. From (46), there exists a subset
K1 ⊆ {1, . . . , k} such that

q1 =
∏
j∈K1

p
αj
j , q/q1 =

∏
1≤j≤k
j 6∈K1

p
αj
j .(49)

and since (u, hi(q1)) = l1, we have

l1 =
∏
j∈K1

p
min{b(αj+i)/(i+1),βj}
j .(50)

By (40), (47) and (49), if j 6∈ K1 then

b(αj + i)/(i+ 1)c ≤ βj.

Recalling (42), this implies

{1, . . . , k}/K1 ⊆ {1, . . . , k}/K0,

and hence

K0 ⊆ K1.(51)

From (40), (48) and (50), if j ∈ K1 then

min{b(αj + i)/(i+ 1), βj} ≤ b(αj + i)/(i+ 1)c − 1,

which implies

βj < βj + 1 ≤ b(αj + i)/(i+ 1)c.
By (42)

K1 ⊆ K0,

which combined with (51) implies

K1 = K0,
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and hence

q1 = q0, l1 = l0,

which completes the proof.
�

Lemma 18. With notation as in Lemma 16, for each 1 ≤ x ≤ q there
exists unique integers q0, q1, q2, q3, l0, l1, l2 satisfying

q = q0q1q2q3 and (qi, qj) = 1 if i 6= j,

l0|h1(q0)/h3(q0), l1|h2(q1)/h3(q1), l2|h2(q2)/h3(q2),

l0h1(q1q2q3)|F (x), (F (x), h1(q0)) = l0,

l1h2(q2q3)|F ′(x), (F ′(x), h2(q1)) = l1,

l2h2(q3)|F ′′(x), (F ′′(x), h2(q2)) = l2.

Proof. By Lemma 17, there exists unique integers q0, l0 satisfying (q0, q/q0) =
1 and

l0|h1(q0)/h3(q0), l0h1(q/q0)|F (x), (F (x), h1(q0)) = l0.

A second application of Lemma 17 gives unique q1, l1 satisfying (q1, q/(q0q1)) =
1 and

l1|h2(q1)/h3(q1), l1h2(q/(q0q1))|F ′(x), (F ′(x), h2(q1)) = l1.

A third application of Lemma 17 gives unique q2, l2 satisfying (q2, q/(q0q1q2)) =
1 and

l2h2(q/(q0q1q2))|F ′′(x), (F ′′(x), h2(q2)) = l2, l2|h2(q2)/h3(q2),

and the result follows after defining q3 = q/(q0q1q2). �

Lemma 19. For any primitive character χ modulo q and any integer
V < q1/6d−2, we have

V∑
v1,...,v6=1

∣∣∣∣∣
q∑

x=1

χ

(
3∏
i=1

(x+ dvi)

)
χ

(
6∏
i=4

(x+ dvi)

)∣∣∣∣∣ ≤ V 3q1+o(1).

Proof. Let C(`0, . . . , q3) be as in (39) and f1, f2, F be as in (9) and (10).
By Lemma 18, as `0, `1, `2, q0, q1, q2, q3 range over values satisfying the
conditions of Lemma 16, the sets C(`0, . . . , q3) partition the set

{1 ≤ x ≤ q, (f1(x)f2(x), q) = 1},



SUMS OVER SHIFTED PRIMES 19

into disjoint subsets. Therefore∣∣∣∣∣
q∑

x=1

χ

(
3∏
i=1

(x+ dvi)

)
χ

(
6∏
i=4

(x+ dvi)

)∣∣∣∣∣
≤
∑
`0,...,`2
q0,...,q3

∣∣∣∣∣∣
∑

x∈C(`0,...,q3)

χ(f1(x))χ(f2(x))

∣∣∣∣∣∣ ,
where the last sum is extended over all `0, . . . , q3 satisfying the condi-
tions of Lemma 16. Summing over 1 ≤ v1, . . . , v6 ≤ V , interchanging
summation and using bounds for the divisor function, we see that there
exists some `0, . . . , q3 such that

V∑
v1,...,v6=1

∣∣∣∣∣
q∑

x=1

χ

(
3∏
i=1

(x+ dvi)

)
χ

(
6∏
i=4

(x+ dvi)

)∣∣∣∣∣
≤ qo(1)

∑
1≤v1,...,v6≤V

∣∣∣∣∣∣
∑

x∈C(`0,...,q3)

χ(f1(x))χ(f2(x))

∣∣∣∣∣∣ .(52)

For fixed v1, . . . , v6, if summation over x in (52) is nonempty then there
exists some 1 ≤ x ≤ q such that

(q, f1(x)f2(x)) = 1, `1h2(q2q3)|F (x), `1h2(q2q3)|F ′(x), `2h2(q3)|F ′′(x).

Hence by Lemma 15 and Lemma 16,
V∑

v1,...,v6=1

∣∣∣∣∣
q∑

x=1

χ

(
3∏
i=1

(x+ dvi)

)
χ

(
6∏
i=4

(x+ dvi)

)∣∣∣∣∣ ≤(
(q, d)4

(
V 6

l1h2(q2q3)l2h2(q3)
+

V 5

l2h2(q3)

)
+ V 3

)
(qq2q3l1)

1/2l2
h2(q2)

qo(1)

≤
(
(q, d)4V 6q1/2 + (q, d)4V 5q2/3 + V 3q

)
qo(1),

from the definition of li, hi, qi. The result follows since the term V 3q
dominates for V ≤ q1/6d−2. �

We next use Lemma 19 to improve on [4, Lemma 7].

Lemma 20. For any primitive character χ modulo q and integers M ,
N , d and a satisfying

N ≤ q7/12d−3/2, d ≤ q1/12, (a, q) = 1,

we have ∣∣∣∣∣ ∑
M<n≤M+N

χ(dn+ a)

∣∣∣∣∣ ≤ q1/9+o(1)d2/3N2/3.
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Proof. Using the same argument from Lemma 7, we proceed by induc-
tion on N . Since the result is trivial for N ≤ q1/3, this forms the basis
of our induction. Define

U = [0.5Nd2q−1/6], V = [0.5d−2q1/6],

and let

U = { 1 ≤ u ≤ U : (u, dq) = 1 }, V = { 1 ≤ v ≤ V : (v, q) = 1 }.

Fix ε > 0, by the inductive hypothesis, for any integer h ≤ UV < N
we have∣∣∣∣∣ ∑
M<n≤M+N

χ(dn+ a)

∣∣∣∣∣ ≤
∣∣∣∣∣ ∑
M<n≤M+N

χ(d(n+ h) + a)

∣∣∣∣∣+ 2q1/9+εd2/3h2/3,

for sufficiently large q. Hence∣∣∣∣∣ ∑
M<n≤M+N

χ(dn+ a)

∣∣∣∣∣ ≤ 1

#U#V
|W |+ 2q1/9+εd2/3(UV )2/3,

where

W =
∑
u∈U

∑
v∈V

∑
M<n≤M+N

χ(d(n+uv)+a) =
∑
u∈U

χ(u)
∑

M<n≤M+N

∑
v∈V

χ((dn+a)u−1+dv).

We have

|W | ≤
q∑

x=1

ν(x)

∣∣∣∣∣∑
v∈V

χ(x+ dv)

∣∣∣∣∣ ,
where ν(x) is the number of representations x ≡ (dn+ a)u−1 (mod q)
with M < n ≤ M + N and u ∈ U . Two applications of Hölder’s
inequality gives,

|W |6 ≤

(
q∑

x=1

ν2(x)

)(
q∑

x=1

ν(x)

)4 q∑
x=1

∣∣∣∣∣∑
v∈V

χ(x+ dv)

∣∣∣∣∣
6

.

As in Lemma 7

q∑
x=1

ν(x) = N#U ,
q∑

x=1

ν2(x) ≤
(
dNU

q
+ 1

)
NUqo(1),
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and by Lemma 19

q∑
x=1

∣∣∣∣∣∑
v∈V

χ(x+ dv)

∣∣∣∣∣
6

=
∑

v1,...v4∈V

q∑
x=1

χ

(
3∏
i=1

(x+ dvi)

)
χ

(
6∏
i=4

(x+ dvi)

)

≤
V∑

v1,...v4=1

∣∣∣∣∣
q∑

x=1

χ

(
3∏
i=1

(x+ dvi)

)
χ

(
6∏
i=4

(x+ dvi)

)∣∣∣∣∣
≤ V 3q1+o(1).

The above bounds give

|W |6 ≤
(
dNU

q
+ 1

)
NUqo(1)(N#U)4

(
V 3q

)
qo(1),

so that∣∣∣∣∣ ∑
M<n≤M+N

χ(dn+ a)

∣∣∣∣∣ ≤
(
d1/6N

V 1/2
+
q1/6N5/6

U1/6V 1/2

)
qo(1)+2q1/9+εd2/3(UV )2/3.

Recalling the choice of U and V we get∣∣∣∣∣ ∑
M<n≤M+N

χ(dn+ a)

∣∣∣∣∣ ≤ d7/6N

q1/12+o(1)
+q1/9+o(1)d2/3N2/3+

2

5
q1/9+εd2/3N2/3,

and since

N ≤ q7/12d−3/2,

we have by assumption on N and d∣∣∣∣∣ ∑
M<n≤M+N

χ(dn+ a)

∣∣∣∣∣ ≤ q1/9+o(1)d2/3N2/3 +
2

5
q1/9+εd2/3N2/3

≤ q1/9+εd2/3N2/3,

for sufficiently large q. �

Using Lemma 20 as in the proof of Lemma 8 we get,

Lemma 21. Let χ be a primitive character (mod q) and suppose (a, q) =
1, then for N ≤ q23/42 we have∣∣∣∣∣∣∣∣

∑
M<n≤M+N

(n,q)=1

χ(n+ a)

∣∣∣∣∣∣∣∣ ≤ q1/9+o(1)N2/3.
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Proof. We have∣∣∣∣∣∣∣∣
∑

M<n≤M+N
(n,q)=1

χ(n+ a)

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
d|q

µ(d)
∑

M/d<n≤(M+N)/d

χ(dn+ a)

∣∣∣∣∣∣
≤
∑
d|q

∣∣∣∣∣∣
∑

M/d<n≤(M+N)/d

χ(dn+ a)

∣∣∣∣∣∣ .
Let

Z =

⌊
N1/3

q1/9

⌋
,

then by Lemma 20 we have

∑
d|q

∣∣∣∣∣∣
∑

M/d<n≤(M+N)/d

χ(dn+ a)

∣∣∣∣∣∣ =

∑
d|q
d≤Z

∣∣∣∣∣∣
∑

M/d<n≤(M+N)/d

χ(dn+ a)

∣∣∣∣∣∣+
∑
d|q
d>Z

∣∣∣∣∣∣
∑

M/d<n≤(M+N)/d

χ(dn+ a)

∣∣∣∣∣∣
≤
∑
d|q
d≤Z

q1/9+o(1)N2/3 +
∑
d|q
d>Z

N

d
.

Since by choice of Z∑
d|q
d≤Z

q1/9+o(1)N2/3 +
∑
d|q
d>Z

N

d
≤
(
q1/9N2/3 +

N

Z

)
qo(1) ≤ q1/9+o(1)N2/3,

we get the desired bound. It remains to check that the conditions of
Lemma 7 are satisfied. For each d|q with d ≤ Z we need

N

d
≤ q7/12d−3/2, d ≤ q1/12,

and from the choice of Z, this is satisfied for N ≤ q23/42. �

From Lemma 21 and partial summation we deduce.
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Lemma 22. Let χ be a primitive character (mod q) and suppose (a, q) =
1, then for N ≤ q23/42 we have∣∣∣∣∣∣∣∣

∑
M<n≤M+N

(n,q)=1

(log n)χ(n+ a)

∣∣∣∣∣∣∣∣ ≤ q1/9+o(1)N2/3.

5. Bilinear Character Sums

Lemma 23. Let χ be a primitive character (mod q). Then for integers
u1, u2, λ we have∣∣∣∣∣

q∑
n=1

χ(n+ u1)χ(n+ u2)e
2πiλn/q

∣∣∣∣∣ =

∣∣∣∣∣
q∑

n=1

χ(n+ λ)χ(n)e2πi(u1−u2)n/q

∣∣∣∣∣ .
Proof. Let

τ(χ) =

q∑
n=1

χ(n)e2πin/q,

be the Gauss sum, so that

|τ(χ)| = q1/2 and

q∑
n=1

χ(n)e2πian/q = χ(a)τ(χ).

Writing

χ(n+ u1) =
1

τ(χ)

q∑
λ1=1

χ(λ1)e
2πi(n+u1)λ1/q,

and

χ(n+ u2) =
1

τ(χ)

q∑
λ2=1

χ(λ2)e
2πi(n+u2)λ2/q,

we have

q∑
n=1

χ(n+ u1)χ(n+ u2)e
2πiλn/q =

1

τ(χ)τ(χ)

q∑
λ1=1

q∑
λ2=1

χ(λ1)e
2πiλ1u1/qχ(λ2)e

2πiλ2u2/q

q∑
n=1

e2πin(λ+λ1+λ2)/q.
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By orthogonality of the exponential function

q∑
λ1=1

q∑
λ2=1

χ(λ1)e
2πiλ1u1/qχ(λ2)e

2πiλ2u2/q

q∑
n=1

e2πin(λ+λ1+λ2)/q =

χ(−1)e−2πiu2λ/qq

q∑
λ1=1

χ(λ1 + λ)χ(λ1)e
2πiλ1(u1−u2)/q,

and hence∣∣∣∣∣
q∑

n=1

χ(n+ u1)χ(n+ u2)e
2πiλn/q

∣∣∣∣∣ =
q

|τ(χ)|2

∣∣∣∣∣
q∑

n=1

χ(n+ λ)χ(n)e2πin(u1−u2)/q

∣∣∣∣∣
=

∣∣∣∣∣
q∑

n=1

χ(n+ λ)χ(n)e2πin(u1−u2)/q

∣∣∣∣∣ .
�

Lemma 24. Let χ be a primitive character (mod q). Let h4(q) denote
the smallest square dividing q. For integers b, λ with b 6≡ 0 (mod q) ,
there exists an integer c satisfying (c, q) = 1 such that∣∣∣∣∣∣∣

q∑
n=1

(n,q)=1

χ

(
1 +

b

n

)
e2πiλn/q

∣∣∣∣∣∣∣ ≤ (b, q)(4c+ λb, h4(q))
1/2q1/2+o(1).

Proof. Consider first when λ ≡ 0 (mod q). Then from Lemma 23 we
have∣∣∣∣∣∣∣

q∑
n=1

(n,q)=1

χ

(
1 +

b

n

)
e2πiλn/q

∣∣∣∣∣∣∣ =

∣∣∣∣∣
q∑

n=1

|χ(n)|e2πibn/q
∣∣∣∣∣ =

∣∣∣∣∣∣∣
q∑

n=1
(n,q)=1

e2πibn/q

∣∣∣∣∣∣∣ ,
and from [7, Equation 3.5] we have∣∣∣∣∣∣∣

q∑
n=1

(n,q)=1

e2πibn/q

∣∣∣∣∣∣∣ ≤ (b, q),

so that ∣∣∣∣∣∣∣
q∑

n=1
(n,q)=1

χ

(
1 +

b

n

)
e2πiλn/q

∣∣∣∣∣∣∣ ≤ (b, q) ≤ (b, q)q1/2+o(1).
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Next consider when λ 6≡ 0 (mod q). We first note that if χ is a non-
trivial character (mod p), with p prime, then we have from the Weil
bound, see [13, Theorem 2G]∣∣∣∣∣∣∣

p∑
n=1

(n,p)=1

χ

(
1 +

b

n

)
e2πiλn/p

∣∣∣∣∣∣∣� p1/2.

For p prime and integers λ, b, c, α, let N(λ, b, c, pα) denote the number
of solutions to the congruence

(53) λ(n2 + bn) ≡ cb (mod pα), 1 ≤ n ≤ pα, (n, p) = 1.

We will show if (c, p) = 1 then

(54) N(λ, b, c, pα) ≤ 6(λ, pα)(4c+ λb, pα)1/2.

If there exists a solution n to (53) then since (c, p) = 1 we must have
(λ, pα)|(b, pα). Define `0, b0, γ, β by

λ = pγ`0, (`0, p) = 1 and b = pβb0, (b0, p) = 1.

The above implies γ ≤ β and

N(λ, b, c, pα) ≤ pγN1,

where N1 counts the number of solutions to the congruence
(55)
n2 + pβb0n ≡ cλ−10 b0p

β−γ (mod pα−γ), 1 ≤ n ≤ pα−γ, (n, p) = 1.

By Hensel’s Lemma

N(λ, b, c, pα) ≤ (2 +N∗) pγ,(56)

where N∗ counts the number of solutions to

n2 + pβb0n ≡ cλ−10 b0p
β−γ (mod pα−γ), 1 ≤ n ≤ pα−γ,(57)

and

2n+ pβb0 ≡ 0 mod p, (n, p) = 1.(58)

Assume N∗ 6= 0. If p is odd we may write (55) as(
n+

pβb0
2

)2

≡ cλ−10 b0p
β−γ +

p2βb20
4

(mod pα−γ).

If there exists an integer n satisfying the conditions (58) then β = γ =
0. By (58) and the change of variable n → n − b

2
, we see that N∗ is

bounded by the number of solutions to

p2n2 ≡ b

(
cλ−1 +

b

4

)
(mod pα), 1 ≤ n ≤ pα−1,
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and hence

N∗ ≤ 2(4c+ bλ, pα)1/2.

Combining the above with (56) establishes (54). Suppose next p = 2.
Recall (56) and the notation used in (57), (58). If N∗ 6= 0 then there
exists an integer n satisfying

2n+ 2βb0 ≡ 0. mod 2,

which implies β ≥ 1. We see that any solution to (57) and (58) satisfies(
n+ 2β−1b0

)2 ≡ cλ−10 b0p
β−γ + p2(β−1)b20. (mod pα−γ).(59)

Suppose first β ≥ 2. Then from (n, 2) = 1, we must have

cλ−10 b0p
β−γ + p2(β−1)b20 ≡ 1 (mod 2),

which implies

N∗ ≤ 4,

hence from (56)

N(λ, b, c, pα) ≤ 6(λ, pα).

If β = 1 then reducing both sides of (59) mod 2 and using (n, 2) = 1
we must have γ = 1. Arguing as in the case p 6= 2

N∗ ≤ 4(c+ bλ/4, 2α)1/2 ≤ 4(4c+ bλ, 2α)1/2,

and hence from (56)

N(λ, b, c, pα) ≤ 6(4c+ bλ, 2α)1/2(λ, 2α),

which completes the proof of the bound (54).
Recall that h4(q) denotes the smallest square dividing q. Suppose

q = p2α is an even prime power and χ a primitive character mod p. Let
c be defined by

χ(1 + pα) = e2πic/p
α

.

Since χ is primitive, we have (c, p) = 1. From the argument of [1,
Lemma 2] (see also [7, Lemma 12.2]) we have by (54)∣∣∣∣∣∣∣

q∑
n=1

(n,q)=1

χ

(
1 +

b

n

)
e2πiλn/q

∣∣∣∣∣∣∣� pαN(λ, b, c, pα)� (λ, q)(4c+ λb, h4(q))
1/2q1/2.

Suppose next q = p2α+1 is an odd prime power, with p > 2 and χ a
primitive character mod q. Let c be defined by

χ(1 + pα+1) = e2πic/p
α

,
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so that (c, p) = 1. From the argument of [1, Lemma 4] (see also [7,
Lemma 12.3])∣∣∣∣∣∣∣

q∑
n=1

(n,q)=1

χ

(
1 +

b

n

)
e2πiλn/q

∣∣∣∣∣∣∣� p(2α+1)/2N(λ, b, c, pα) + pαN(λ, b, c, pα+1)

� p(2α+1)/2(λ, pα)(4c+ λb, pα)1/2 + pα(λ, pα+1)(4c+ λb, pα+1)1/2

� (λ, q)(4c+ λb, h4(q))
1/2q1/2.

Finally if q = 22α+1, then from the argument of [1, Lemma 3]∣∣∣∣∣∣∣
q∑

n=1
(n,q)=1

χ

(
1 +

b

n

)
e2πiλn/q

∣∣∣∣∣∣∣� 21/22αN(λ, b, c, 2α)

� (λ, q)(4c+ λb, h4(q))
1/2q1/2.

Combining the above bounds gives the desired result when q is a prime
power. For the general case, suppose χ is a primitive character (mod q)
and let q = pα1

1 p
α2
2 ...p

αk
k be the prime factorization of q. By the Chinese

Remainder Theorem we have

χ = χ1χ2...χk,

where each χi is a primitive character (mod pαii ). Let qi = q/pαii , then
by the above bounds and another application of the Chinese remainder
theorem (see [7, Equation 12.21]), for some absolute constant C∣∣∣∣∣∣∣

q∑
n=1

(n,q)=1

χ

(
1 +

b

n

)
e2πiλn/q

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
p
α1
1∑

n1=1
(n1,p1)=1

· · ·
p
αk
k∑

nk=1
(nk,pk)=1

χ1

(
1 +

b∑k
i=1 niqi

)
e2πiλn1/p

α1
1 ...χk

(
1 +

b∑k
i=1 niqi

)
e2πiλnk/p

αk
i

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
k∏
i=1

 p
αi
i∑

ni=1
(ni,pi)=1

χi

(
1 +

b

niqi

)
e2πiλni/p

αi
i


∣∣∣∣∣∣∣∣

≤
k∏
i=1

C(λ, pαii )(λ, pαii )(4cpi + λb, h4(p
αi
i ))1/2p

αi/2
i ,
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for some integers cpi satisfying (cpi , pi) = 1. By the Chinese remainder
theorem, there exists an integer c satisfying

c ≡ cpi (mod pαii ), 1 ≤ i ≤ k, (c, q) = 1.

Therefore, the above implies∣∣∣∣∣∣∣
q∑

n=1
(n,q)=1

χ

(
1 +

b

n

)
e2πiλn/q

∣∣∣∣∣∣∣� (λ, q)(4c+ λb, h4(q))
1/2q1/2+o(1).

and the result follows from Lemma 23. �

Lemma 25. Let K,L be natural numbers satisfying K,L ≤ q and for
any two sequences (αk)

K
k=1 and (β`)

L
`=1 of complex numbers supported

on integers coprime to q and any integer a coprime to q, let

W =
∑
k≤K

∑
`≤L

αk β` χ(k`+ a),

where χ is a primitive character mod q. Then

W ≤ AB

(
KL1/2 + q1/4K1/2L+

KL

q1/8

)
qo(1),

where

A = max
k≤K
|αk| and B = max

`≤L
|β`|.

Proof. By the Cauchy-Schwarz inequality

|W |2 ≤ A2K
∑
k≤K

∣∣∣∣∣∑
`≤L

β`χ(k`+ a)

∣∣∣∣∣
2

≤ A2B2K2L+ A2K

∣∣∣∣∣∣∣∣
∑
k≤K

∑
`1,`2≤L
`1 6=`2

β`1β`2χ(k`1 + a)χ(k`2 + a)

∣∣∣∣∣∣∣∣ .
Let

W1 =
∑
k≤K

∑
`1,`2≤L
`1 6=`2

β`1β`2χ(k`1 + a)χ(k`2 + a),
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then we have

|W1| ≤
2B2

q

∑
`1<`2≤L
(`1,q)=1
(`2,q)=1

∣∣∣∣∣
q∑
s=1

∑
k≤K

e−2πisk/q
q∑

λ=1

χ(λ+ a`−11 )χ(λ+ a`−12 )e2πisλ/q

∣∣∣∣∣
≤ 2B2

q

∑
`1<`2≤L
(`1,q)=1
(`2,q)=1

q∑
s=1

∣∣∣∣∣∑
k≤K

e−2πisk/q

∣∣∣∣∣
∣∣∣∣∣
q∑

λ=1

χ(λ+ a`−11 )χ(λ+ a`−12 )e2πisλ/q

∣∣∣∣∣ .
By Lemma 23 and Lemma 24, there exists an integer c satisfying
(c, q) = 1 such that

∑
`1<`2≤L
(`1,q)=1
(`2,q)=1

q∑
s=1

∣∣∣∣∣∑
k≤K

e−2πisk/q

∣∣∣∣∣
∣∣∣∣∣
q∑

λ=1

χ(λ+ a`−11 )χ(λ+ a`−12 )e2πisλ/q

∣∣∣∣∣�
q1/2+o(1)S,

where

S =
∑

1≤`1<`2≤≤L
(`1,q)=1
(`2,q)=1

q∑
s=1

min

(
K,

1

||s/q||

)
(`, q)(4c`1`2 + a(`1 − `2)s, h4(q))1/2,

where h4(q) denotes the smallest square dividing q. We have

S �
∑
d|q

2i≤2K

Kd

2i
Sd,i,

where

Sd,i =
∑

1≤`1<`2≤L

(`1,q)=1
(`2,q)=1

`2−`1≡0 mod d

∑
s≤(2i+1−1)q/K

(4c`1`2 + a(`1 − `2)s, h4(q))1/2.

Fix some d, i and consider Si,d. If d 6= 1 and d|(`2 − `1) then since
(ac`1`2, q) = 1 we must have

(4c`1`2 + a(`1 − `2)s, q)1/2 ≤ 4.
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This implies

Sd,i �
2iqL

K

∑
1≤`≤L

`≡0 mod d

1� 2iqL2

Kd
.

If d = 1 then

S1,i =
∑
e|h4(q)

e1/2Se,1,i,

where Se,1,i counts the number of solutions to the congruence

4ca−1`1`2 + (`1 − `2)s ≡ 0 mod e, 1 ≤ `1 < `2 ≤ L, s ≤ (2i+1 − 1)q

K
.

Fixing `1, `2 with O(L2) choices gives at most

2i+1q

Ke
+ 1,

possibilities in remaining variable s. This implies

S1,i � L2
∑
e|h4(q)

(
2iq

Ke1/2
+ e1/2

)
qo(1) � L2

(
2iq

K
+ q1/4

)
qo(1),

since

h4(q) ≤ q1/2.

Combining the above estimates gives

S �
(
L2 +

KL2

q3/4

)
qo(1),

and hence

|W1| ≤ B2

(
q1/2L2 +

L2K2

q1/4

)
qo(1).

This implies

|W |2 ≤ A2B2

(
K2L+ q1/4K1/2L+

KL

q1/8

)
qo(1),

which completes the proof. �

Next, we use an idea of Garaev [5] to derive a variant of Lemma 25
in which the summation limits over ` depend on the parameter k.

Lemma 26. Let K,L be natural numbers and let the sequences (Lk)
K
k=1

and (Mk)
K
k=1 of nonnegative integers be such that Mk < Lk ≤ L for

each k. For any two sequences (αk)
K
k=1 and (β`)

L
`=1 of complex numbers
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supported on integers coprime to q and for any integer a coprime to q,
let

W̃ =
∑
k≤K

∑
Mk<`≤Lk

αk β` χ(k`+ a).

Then

W̃ � AB
(
KL1/2 + (1 +K1/2q−1/2)q1/4K1/2L

)
(Lq)o(1),

where

A = max
k≤K
|αk| and B = max

`≤L
|β`|.

Proof. For real z we denote

eL(z) = exp(2πiz/L).

For each inner sum, using the orthogonality of exponential functions,
we have∑
Mk<`≤Lk

β` χ(k`+ a) =
∑
`≤L

∑
MK<s≤Lk

β` χ(k`+ a) · 1

L

∑
− 1

2
L<r≤ 1

2
L

eL(r(`− s))

=
1

L

∑
− 1

2
L<r≤ 1

2
L

∑
Mk<s≤Lk

eL(−rs)
∑
`≤L

β` eL(r`)χ(k`+ a).

In view of [7, Bound (8.6)], for each k ≤ K and every integer r such
that |r| ≤ 1

2
L we can write∑

Mk<s≤Lk

eL(−rs) =
∑
s≤Lk

eL(−rs)−
∑
s≤Mk

eL(−rs) = ηk,r
L

|r|+ 1
,

for some complex number ηk,r � 1. Thus, if we put α̃k,r = αk ηk,r and

β̃`,r = β` eL(r`), it follows that∑
K0<k≤K

∑
Mk<`≤Lk

αk β` χ(k`+a) =
∑

− 1
2
L<r≤ 1

2
L

1

|r|+ 1

∑
k≤K

∑
`≤L

α̃k,rβ̃`,r χ(k`+a).

Applying Lemma 25 with the sequences (α̃k,r)
K
k=1 and (β̃`,r)

L
`=1, and

noting that ∑
− 1

2
L<r≤ 1

2
L

1

|r|+ 1
� logL,

we derive the stated bound. �
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6. Proof of Theorem 1

We first partition the sum Sa(q;N) into dyadic intervals to get

Sa(q;N) =
∑
2i≤N

S̃a(q; 2i),

where

S̃a(q; 2i) =
∑
n≤N

2i≤n<2i+1

Λ(n)χ(n+ a).

This implies there exists some integer K ≤ N such that

Sa(q;N)� N o(1)S̃a(q;K).

Hence to establish Theorem 1 it is sufficient to show

S̃a(q;K)� .

We apply Lemma 2 with

J = 9, Z = K1/9,(60)

to get∣∣∣S̃a(q;K)
∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣
J∑
j=1

(−1)j
(
J

j

) ∑
K≤m1...mjn1...nj<2K
m1...mjn1...nj≤N
m1,...,mj≤Z

(m1...mjn1...nj ,q)=1

µ(m1) . . . µ(mj) log n1χ(m1 . . .mjn1 . . .mj + a)

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Letting Sj be defined by

Sj =
∑

K≤m1...mjn1...nj<2K
m1...mjn1...nj≤N
m1,...,mj≤Z

(m1...mjn1...nj ,q)=1

µ(m1) . . . µ(mj) log n1χ(m1 . . .mjn1 . . .mj + a),

(61)

we see that

|S̃a(q;K)| ≤
J∑
j=1

(
J

j

)
|Sj|.(62)
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We partition summation occuring in (61) into dyadic intervals to get

Sj =
∑

k1,...,kj

∑
`1,...,`j

∑
m1...mjn1...nj≤N
m1,...,mj≤Z

2ki−1≤mi<2ki

2`i−1≤ni≤2`i
(m1...mjn1...nj ,q)=1

µ(m1) . . . µ(mj) log n1χ(m1 . . .mjn1 . . .mj + a).

Taking a maximum over j in (62) then a maximum over dyadic parti-
tions, there exists positive integers M1, . . . ,Mj, N1, . . . , Nj satisfying

2M1, . . . , 2Mj ≤ Z and K �M1 . . .MjN1 . . . Nj � K,

such that

|S̃a(q;K)| ≤ N o(1)S,

where

S =
∑

m1...mjn1...nj≤N
Mi≤mi<2Mi
Ni≤ni<2Ni

(m1...mjn1...nj ,q)=1

µ(m1) . . . µ(mj) log n1χ(m1 . . .mjn1 . . . nj + a).

Recalling (60) and applying Lemma 3, either there exists some 1 ≤ i ≤
j such that

Ni � K4/9,(63)

or there exists subsets I,J ⊆ {1, . . . , j} such that

K1/9 �
∏
i∈I

Mi

∏
i∈J

Ni � K1/3.(64)

If (63) then we apply Lemma 21 to summation over ni. This gives

S � q1/9K1+o(1)

N
1/3
i

� q1/9K23/27+o(1) � q1/9N23/27+o(1),

provided

Ni ≤ q23/42.(65)

If (65) does not hold then we use Lemma 4. Noting that

Ni ≤ N ≤ q,

we get

S � N1+o(1)q1/2

Ni

� N1+o(1)

q1/21
.
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In either case we have

S � N1+o(1)

q1/12
+ q1/9N23/27+o(1).(66)

Suppose next (64). In this case we apply Lemma 26 with parameter

L =
∏
i∈I

Mi

∏
i∈J

Ni,
K

L
.

Using (64) and the bound K � N , we get

S �
(
K

L1/2
+ q1/4K1/2L1/2 +

K

q1/8

)
qo(1)

�
(
N17/18 + q1/4N2/3 +

N

q1/8

)
qo(1).

Hence if either (63) or (64)

S �
(

N

q1/21
+ q1/9N23/27 +N17/18 + q1/4N2/3

)
N o(1).

We may assume N ≥ q3/4 since otherwise the above bound is trivial.
In the range q3/4 ≤ N ≤ q we may simplify the above to

S � q1/9+o(1)N23/27,

and the result follows from (62).
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