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Figure 1: Our self-supervised tone mapping operator is directly guided by the input HDR image and a novel feature contrast masking loss
that takes into account masking effects present in the Human Visual System. We minimize the difference between the HDR image and the
tone mapped image in feature space, after applying our contrast masking model. Left: The input HDR image and our tone mapped result.
Right: VGG feature map (1st layer, 12th channel) and our corresponding feature contrast masking response that effectively enhances low
contrast image details while compressing high contrasts.

Abstract

High Dynamic Range (HDR) content is becoming ubiquitous due to the rapid development of capture technologies. Neverthe-
less, the dynamic range of common display devices is still limited, therefore tone mapping (TM) remains a key challenge for
image visualization. Recent work has demonstrated that neural networks can achieve remarkable performance in this task when
compared to traditional methods, however, the quality of the results of these learning-based methods is limited by the train-
ing data. Most existing works use as training set a curated selection of best-performing results from existing traditional tone
mapping operators (often guided by a quality metric), therefore, the quality of newly generated results is fundamentally limited
by the performance of such operators. This quality might be even further limited by the pool of HDR content that is used for
training. In this work we propose a learning-based self-supervised tone mapping operator that is trained at test time specifically
for each HDR image and does not need any data labeling. The key novelty of our approach is a carefully designed loss function
built upon fundamental knowledge on contrast perception that allows for directly comparing the content in the HDR and tone
mapped images. We achieve this goal by reformulating classic VGG feature maps into feature contrast maps that normalize
local feature differences by their average magnitude in a local neighborhood, allowing our loss to account for contrast masking
effects. We perform extensive ablation studies and exploration of parameters and demonstrate that our solution outperforms
existing approaches with a single set of fixed parameters, as confirmed by both objective and subjective metrics.

CCS Concepts
• Computing methodologies → Collision detection; • Hardware → Sensors and actuators; PCB design and layout;

1. Introduction

High Dynamic Range (HDR) images can reproduce real-world
appearance by encoding wide luminance ranges. With the fast-

paced developments in capturing devices, access to HDR image
and video is becoming commonplace. Nevertheless, the majority of
widespread displays are still limited in the dynamic range they can
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reproduce, preventing direct reproduction of HDR content. There-
fore, the use of tone mapping techniques is yet needed in order to
adapt such content to current display capabilities.

Different tone mapping techniques have been developed for
decades [RHD∗10, BADC17], however the performance of even
the most prominent techniques strongly depends on the HDR image
content and specific parameter settings [ZWZW19,GJ21,PKO∗21].
Subjective evaluations of these different techniques indicate that
both specific algorithms as well as default parameter settings, as
often proposed by their respective authors, do not generalize well
across scenes [LCTS05,YBMS05,ČWNA08]. In these cases, man-
ual selection of a suitable algorithm and experience in fine-tuning
its parameters might be required for high-quality results. This hin-
ders smooth adoption of HDR technology and is the key obsta-
cle in developing machine learning solutions, as we discuss next.
Recently, an increasing number of learning-based tone mapping
methods have been proposed that show huge potential in terms of
generality and quality with respect to their traditional algorithm-
based predecessors. However, there are still some shortcomings.
First, most learning-based models regard tone mapping as an im-
age restoration task and optimize the network in a fully supervised
manner, which requires high-quality paired HDR and tone mapped
training data. Given a set of HDR scenes as training set, the Tone
Mapping Quality Index (TMQI) [YW12] is typically used to select
the best tone mapped image for each scene from a preexisting set of
tone mapped results, limiting the quality of newly generated results
to that of preexisting methods [ZWZW19,RSV∗19,PKO∗21]. And
second, since such methods treat tone mapping as an image restora-
tion task instead of an information reduction process, they usually
involve large-scale networks. Motivated by these observations, in
this work we seek an alternative solution that allows for reducing
the network size and optimizes information reduction for a given
HDR image content.

Since image contrast is arguably one of the key cues in the
Human Visual System (HVS) while seeing and interpreting im-
ages [Pal99], we aim at reproducing perceived contrast in HDR
scenes while also ensuring structural fidelity by reproducing vis-
ible image details. To this end, we propose a simple image-
specific, self-supervised tone mapping network that is trained at
test time and does not require any data labeling. The only train-
ing data is the input HDR image, and the key novelty in our ap-
proach is the loss function that directly compares the content in
the HDR and tone mapped images. Since the compared signals
present different luminance and contrast ranges, a direct compu-
tation of the loss in the feature space, as in e.g., perceptual VGG
loss [SZ14, JAFF16], leads to sub-optimal results as we demon-
strate in Sec. 4. To mitigate this problem, we first propose an
adaptive µ-law compression that accounts for the scene brightness
and brings HDR image histograms closer to those of low dynamic
range images (Fig. 3). Then, motivated by contrast perception liter-
ature [LF80,Fol94,WS97,DZLL00], we introduce in our loss func-
tion a non-linearity considering both the HVS response for stronger
contrasts and visual neighborhood masking, and we model it in the
network’s feature space. To this end, we first formulate a local con-
trast measure in the feature space, normalizing local feature dif-
ferences by their average magnitude in a local neighborhood. This
also allows for further abstraction from the magnitude difference

between HDR and LDR signals. Then, we introduce a compressive
non-linearity as a function of feature contrast magnitude for the
HDR signal, so that for higher magnitudes any departs in feature
contrast are less strongly penalized in the loss function. This di-
rectly translates into compressing higher contrasts while preserving
image details in the tone mapped images generated by our network.
Finally, we also introduce feature contrast neighborhood masking,
so that the loss function penalizes more weakly changes in feature
contrast when similar features are present in the spatial neighbor-
hood of the image.

We perform extensive ablation studies and exploration of param-
eters and demonstrate that our solution outperforms existing ap-
proaches for a single set of loss parameters, as confirmed by both
objective and subjective metrics. We will make our code publicly
available upon acceptance. For more results and explorations please
refer to the supplementary materials.

2. Related work

In this section we first summarize related research on contrast per-
ception modeling, and then we discuss tone mapping techniques
with emphasis on those that explicitly process contrast as well as
more recent learning-based methods.

2.1. Contrast perception modeling

Visual sensitivity is affected by a number of key image dimen-
sions such as luminance level [AJP92], spatial and temporal fre-
quency [Rob66], or local image contrast [Wat89], as well as their
interactions. In particular, changes in sensitivity as a function of
local image contrast are generally termed masking effects. There
are two main masking effects related to spatial contrast percep-
tion that have been widely studied and applied to computer graph-
ics applications: contrast self-masking and visual contrast masking.
Contrast self-masking [DZLL00] is characterized by a strong non-
linearity that allows for stronger absolute changes for higher supra-
threshold contrasts than for lower near-threshold contrasts before
such changes become noticeable [KW96]. Visual masking (also
called neighborhood masking) [LF80, Fol94, WS97, DZLL00] is a
phenomenon in which sensitivity is locally reduced with increases
in image local contrast [Dal92]. When contrasts with similar spa-
tial frequencies are present in a close neighborhood, the thresholds
for detection of lower contrasts and for change discrimination of
higher contrast rise. To model this effect, the input image contrast
is decomposed into frequency bands using a filter bank such as a
Laplacian pyramid [Pel90, MDC∗21], a cortex transform [Dal92],
wavelets [DZLL00], or discrete cosine transforms (DCTs) [Wat93],
and then the visual masking is modeled for each frequency band.

Modeling contrast self-masking and neighborhood masking has
been proven to be beneficial for several applications including im-
age [DZLL00] or video [YJS∗21] compression, image quality eval-
uation [Lub95,MDC∗21], rendering [BM98,RPG99], and foveated
rendering [TAKW∗19]. Existing works apply such contrast percep-
tion models in the primary image contrast domain (or disparity do-
main [DER∗10]), and employ predefined filter banks. Instead, we
use a neural network and compute per-channel contrast signals over
feature maps, where optimal filters are learned for the task at hand,
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and we formulate a novel loss function that models contrast self-
masking and neighborhood masking in the feature contrast domain.

2.2. Tone mapping techniques

We first summarize traditional global and local tone mapping oper-
ators and then discuss learning-based tone mapping techniques.

2.2.1. Traditional methods

Traditional tone mapping methods can be roughly categorized into
global methods, that apply the same transfer function to the whole
image [DMAC03, JH93, LRP97, MDK08], and local methods, in
which the applied function varies for each pixel by taking into
account the influence of neighborhood pixels [FLW02, RSSF02,
DD02, MMS06]. An interested reader may refer to extensive sur-
veys that discuss in length these methods [RHD∗10, BADC17,
MMS15]. Other techniques, such as exposure fusion [MKVR07,
RC09] directly composite a low dynamic range high-quality image
by fusing a set of bracketed exposures, bypassing the reconstruc-
tion of an HDR image. In our pipeline we also fuse several expo-
sures to obtain the final tone mapped image, however, this fusion
is performed in feature space instead of in image domain, and our
contrast masking loss actively guides this process.

Recently, a number of model-based tone mapping algorithms
achieving higher performance have been proposed. We introduce
them here and include them in our comparisons in Sec. 4.2.1. Shan
et al. [SJB09] introduced a method that operates in overlapping
windows over the image in which dynamic range compression is
optimized globally for the image while window-based local con-
straints are also satisfied. This allows for both small details and
large image structures to be preserved. Liang et al. [LXZ∗18] de-
signed a hybrid l1-l0 multi-scale decomposition model that decom-
poses the image into a base layer, to which an l1 sparsity term is
imposed to enforce piecewise smoothness, and a detail layer, to
which an l0 sparsity term is imposed as structural prior, in order
to avoid halos and over-enhancement of contrast. Li et al. [LJZ18]
propose to decompose HDR images into color patches and cluster
them according to different statistics. Then, for each cluster they
apply principal component analysis to find a more compact domain
for applying different tone mapping curves. In general, these tradi-
tional methods are model-based and need to introduce prior infor-
mation, furthermore, they usually require careful parameter tuning
which is not user-friendly for non-expert users.

The closest to our goals are gradient domain techniques [FLW02,
MMS06, STO16] that effectively compress/enhance contrast. Fat-
tal et al. [FLW02] consider gradients between neighboring pix-
els, while Shibata et al. [STO16] employ a base- and detail-layer
decomposition, manually pre-selecting parameters to guide con-
trast manipulations. Mantiuk et al. [MMS06] proposes a multi-
resolution contrast processing that is driven by a perceptual contrast
self-masking model as proposed in [KW96]. In contrast, our model
additionally takes into account neighborhood masking effects, fur-
ther, contrast masking effects are computed in feature domain in-
stead of traditional image domain.

2.2.2. Learning-based methods

Due to the great success of deep learning in image processing tasks,
new learning-based tone mapping operators have been proposed
during the last years. Most of these works fall under the category
of supervised methods, i.e., they need HDR-LDR (low dynamic
range) image pairs in order to train their proposed models. Patel
et al. [PSR17] propose to train a generative adversarial network
(GAN) in order to learn a combination of traditional tone mapping
operators that allows for better generalization across scenes. Dur-
ing training, in order to select the target tone mapped image, they
select the best scoring tone mapped image (using the TMQI met-
ric [YW12]) among a set of tone mapped results using different
traditional methods. Rana et al. [RSV∗19] instead propose using
a multi-scale conditional generative adversarial network, and then
followed the same procedure for selecting tone mapped images for
training. Zhang et al. [ZWZW19] use a carefully designed loss
function to push tone mapped images into the natural image mani-
fold. The target tone mapped images for training are manually ad-
justed by photographers using the tone mapping operators available
in Photomatix2 and HDRToolbox. Su et al. [SWL∗21] propose an
explorable tone mapping network based on BicycleGAN [ZZP∗17]
and use LuminanceHDR to generate suitable tone mapped tar-
get images, selecting the top-scoring ones using the TMQI met-
ric. To mitigate the challenge of finding target tone mapped im-
ages suitable for training, Panetta et al. [PKO∗21] use low-light
images based on the insight that they have under-exposed regions
that model well the distribution of HDR images while also having
characteristics considered as under-exposed when viewed in dis-
plays with limited dynamic range. The method proposed by Yang
et al. [YXS∗18] allows to recover image details by training an end-
to-end network for reconstructing HDR images from LDR ones,
and then performing tone mapping. They use Adobe Photoshop as a
black box to empirically generate ground truth tone mapped images
with human supervision. Recently, Zhang et al. [ZZWW21] pro-
pose a semi-supervised method by combining unsupervised losses
and a supervised loss. In this manner, their method only requires
a few HDR-LDR pairs with well tone mapped images. For the su-
pervised loss term, they use LDR images from the previously dis-
cussed work of Zhang et al. [ZWZW19]. Inspired by image quality
assessment metrics, Guo and Jiang [GJ21] also propose a semi-
supervised method and obtain HDR-LDR pairs from fine-tuning
raw bracketed exposures using Adobe Photoshop.

These learning methods are intrinsically limited by the input
data they see during training. Therefore, using images tone mapped
with existing methods as target, although allows for training new
models with better generalization, fundamentally limits the qual-
ity that such new learned models can achieve. In contrast, we pro-
pose a self-supervised network that only takes as input the original
HDR image for training, and learns a tone mapping operator re-
lying on a carefully designed loss function that takes into account
contrast masking effects present in the Human Visual System. To
our knowledge, the only work that does not need carefully selected
HDR-LDR image pairs is the work of Hou et al. [HDQ17], how-
ever, they rely on combining feature losses from different layers
chosen empirically and only demonstrate their approach for two
selected images.
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3. Proposed Method

In this section we present our image-specific, self-supervised tone
mapping network, whose structure is shown in Fig. 2. The input
HDR image is first normalized, and then decomposed into three
differently exposed LDR images (Section 3.1). The three expo-
sures are first transformed into feature space by an encoder with
shared weights, then they are fused in this feature space, and fi-
nally decoded into the output tone mapped image (Section 3.2). To
compute the training loss, first the normalized HDR image is pro-
cessed by an adaptive µ-law compression that brings its distribution
closer to typical LDR image histogram distribution (Section 3.3).
Then, the processed HDR image along with its tone mapped coun-
terpart go through a VGG network to derive their respective fea-
ture spaces (we employ VGG19 [SZ14], which we denote VGG for
brevity). Finally, we compute the L1 loss in feature space, however,
instead of the standard perceptual loss between corresponding fea-
tures [SZ14,JAFF16], we compute feature contrast and model con-
trast self-masking and neighborhood masking effects (Section 3.4).

3.1. Multiple Exposure Selection

HDR images are stored in linear intensity space and might feature
extremely large dynamic range compared to LDR images. More-
over, the distribution of pixel intensities in the HDR image is also
unbalanced, where pixels with very high intensity have large values
but correspond small image regions, while low-brightness pixels
usually cover larger portions of the image [EKD∗17, PKO∗21]. In
neural network applications, to align such HDR image characteris-
tics to those of LDR images, the logarithm of HDR pixel intensities
is often applied [EKD∗17, ZWZW19, SWL∗21]. This way a com-
pressive response of the HVS to increasing luminance values (the
Weber-Fechner law) is modeled as it is common in the tone map-
ping literature [RHD∗10]. However, as we detail in Section 4.3, we
found that our tone mapping network leads to better results when
multiple differently exposed images with linear pixel intensity re-
lation are used instead.

As HDR images are typically stored as relative positive values,
before choosing the exposures, we first derive the normalized IHDR

image, where each pixel value is multiplied by 0.5, and divided
by the mean of the original HDR image ISRC intensity [EKM17].
To estimate the exposure range for each exposure we employ an
automatic procedure originally proposed for HDR image quality
evaluation [ANSAM21]. This way we obtain the low elow and high
ehigh exposures† , and additionally we derive an intermediate third
exposure as emid = (elow + ehigh)/2. As we show in detail in the
supplemental, we found that selected this way three exposures lead
to overall good results. Only two exposures are not sufficient and
four or more exposures do not improve tone mapping quality, while
increasing the computation cost. Note that in contrast to standard
multi-exposure 8-bit LDR images, our three exposure selection is
sufficient to represent high dynamic range information for tone

† Note that the goal of Andersson et al. [ANSAM21] is to get aesthetical
results. We divide by two both elow and ehigh, resulting in less dark and less
bright exposures, respectively. Our goal is that all relevant content is within
reasonable pixel values (not too dark, not too bright).

mapping purposes. We do not perform pixel quantization, so the
only information loss is due to clipping higher intensities into the
range [0,1] by the clip() function:

Ie-x = clip(2ex IHDR), (1)

where Ie-x represents one of multi-exposure images with the expo-
sure factor ex.

3.2. Tone Mapping Network

The tone mapping network is composed of an encoder E , a fea-
ture fusion module F , and a decoder D. All details on the num-
ber of layers, as well as the per-layer kernel size, channel number,
and stride extent are specified in the bottom-left corner of Fig. 2.
All layers use Relu [NH10] as the activation function except for
the last layer using sigmoid. The three input exposures are used
as an input to the encoder network E with shared weights between
the exposures. The resulting feature maps are then processed by
the fusion module F that is essential for information exchange be-
tween the exposures. Our loss function, guided by the HDR image,
ensures that the contrast of the tone mapped image is reproduced
from the most meaningful exposure, while its magnitude is me-
diated through complementary information from other exposures.
Saturated (clipped) or poorly exposed regions in any exposure are
strongly penalized by the loss, since they differ from the input HDR
image. Image-specific learned filter weights lead to an optimized
HDR image representation. Finally, the decoder D reconstructs the
output tone mapped image ITM. For more stable training and faster
convergence, residual connections are added between each input
and the output [HZRS16].

3.3. Adaptive µ-law compression

Our image-specific tone mapping network is self-supervised by the
input HDR image ISRC that requires its transformation by the VGG
network into a feature space (Fig. 2). We first adapt the range of
intensity values by converting ISRC into IHDR as discussed in Sec-
tion 3.1. However, as shown in Fig. 3 (top row) this image IHDR

still has a strong skew of its histogram towards low intensity val-
ues (typical for HDR images [EKD∗17, PKO∗21]), which strongly
differs from LDR image characteristics. Since LDR images are typ-
ically used for training VGG, we resort to a µ-law compression to
correct for these problems:

Iµ =
log(1+µIHDR)

log(1+µ)
, (2)

This algorithm is widely used in HDR image coding [JKX∗11]
and inverse tone mapping [WXTT18, STKK20] to re-arrange the
intensity distribution. Fig. 3 (bottom row) shows an example of
this transformation, where image details become more visible and
the long tail in the histogram is corrected. Typically a fixed scal-
ing constant µ is used to derive the transformed image Iµ, but as
we show in the insets in Fig. 4 (left), the resulting image appear-
ance strongly depends on the selected µ value. We observe that the
choice of µ also affects greatly the performance of the VGG-based
loss that drives our tone mapping network, where larger µ values
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Figure 2: Overview of our method. The input HDR image ISRC is first normalized into IHDR, and then three exposures Ie-low, Ie-mid, and Ie-high

are selected. A network with learnable HDR-image-specific weights is used to encode (E) each exposure into feature space, fuse (F) the
resulting features, and decode (D) them into the output tone mapped image. The appearance and contrast of the output tone mapped image
ITM is directly guided by the normalized HDR IHDR that is further processed into Iµ using an adaptive µ-law compression. Both ITM and Iµ
are transformed into feature space (VGG) and compared taking into account our novel contrast masking model f . As shown in the bottom-
right inset Iµ is transformed into the feature space VGG(Iµ), where the ratio between feature contrast self-masking Ms and feature contrast
neighborhood masking Mn define the feature contrast masking model f (VGG(Iµ)). Finally, the L1 loss is computed between f (VGG(Iµ))
and f (VGG(ITM)). The inset in the bottom-left shows the structure of decoder (E), feature fusion (F), and decoder (D) networks.

are required for darker HDR images. We propose an adaptive µ-
law compression, where the µ value changes with the median pixel
intensity value iHDR that is computed for the IHDR image:

µ = λ1(iHDR)
γ1 +λ2(iHDR)

γ2 , (3)

with fitted parameter values λ1 = 8.759, γ1 = 2.148, λ2 = 0.1494,
and γ2 = −2.067. We derive this function experimentally for a
number of representative HDR images featuring different appear-
ances as well as different iHDR (i.e., brightness). We use the TMQI
quality metric [YW12] to select the best performing µ values, and
then by visual inspection we confirm this selection. Fig. 4 (right)
shows the fitted curve based on this procedure.

3.4. Feature Contrast Masking Loss

In this section we propose the feature contrast masking (FCM) loss
that guides our tone mapping network to reproduce image details
and overall perceived contrast. To this end, we first model feature
contrast, and then introduce self contrast masking and neighbor-
hood masking for such feature contrast inspired by their analogues
in image domain described in Sec. 2.1.

Feature contrast While the HDR image representation Iµ, which
results from the adaptive µ-law compression (Sec. 3.3), greatly fa-
cilitates its meaningful processing by the VGG network, still sig-
nificant intensity differences might exist with respect to its tone

mapped version ITM. Such intensity differences translate into corre-
sponding differences in the feature magnitude when Iµ and ITM are
transformed by the VGG network (Fig. 2). To further reduce such
feature magnitude differences we compute per-channel a local fea-
ture contrast:

Cp =
fp− f̄p
| f̄p|+ ε

, (4)

where fp denotes the feature magnitude at pixel p, f̄p is the Gaus-
sian filtered feature value computed for the patch P that is cen-
tered at p, and ε is a small constant to avoid division by zero. We
experimentally set the patch P size to 13×13 pixels (refer to the
supplemental for details). Effectively, in the numerator the feature
difference with respect to its local neighborhood is first computed
and then normalized. Such normalization enables further reduction
of the impact of differences in absolute feature magnitudes between
Iµ and ITM. Note that Eq. 4 is aligned with contrast definitions for
images that also use Laplacian and Gaussian filter responses in the
numerator and denominator, respectively [Pel90]. More complex
filter banks such as Laplacian pyramid [MDC∗21], cortex trans-
form [Dal92], wavelets [DZLL00], or discrete cosine transforms
(DCT) [Wat93] are often used for advanced contrast processing op-
erations.

Feature contrast self-masking An important property of contrast
perception is a higher sensitivity to contrast discrimination for
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mean normalized to 0.5. Bottom row: Iµ derived using the adaptive
µ-law compression (Eqs. 2 and 3). Notice the dramatically different
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Experimentally derived µ selection as a function of HDR image
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lower contrasts rather than suprathreshold contrasts [KW96], which
is often called contrast self-masking [DZLL00]. In the context of
tone mapping this means that even small contrast changes can be
perceived in low-contrast image regions, which are often neglected
when global tone mapping operators are applied [MMS15]. Con-
versely, for larger image contrast, even strong contrast compression
might remain invisible. Many tone mapping operators take advan-
tage of this effect [DD02,FLW02,MMS06]. Different from conven-
tional methods, we do not model contrast self-masking in the image
contrast domain, but rather for feature contrast domain C (we skip
the pixel index p for brevity) as defined in Eq. 4:

Ms = sign(C)|C|α, (5)

where Ms denotes a non-linear response to feature contrast mag-
nitude controlled by the compressive power factor α. The func-
tion sign(x) = x

|x|+ε
preserves the feature contrast polarity in

Ms. We experimentally set αIµ = 0.5 when processing Iµ while
we keep αITM = 1.0 for ITM, allowing for visually pleasant low-

contrast detail enhancement (refer to the supplemental for more
details). Fig. 5 visualizes a feature map VGG(Iµ) for a selected
VGG channel, as well as our response Ms to feature contrast C.
As can be seen Ms vividly responds for low-contrast details in
the sky and rocks that are strongly suppressed in VGG(Iµ). Note
that when VGG(Iµ) is directly used in the perceptual VGG loss
LVGG = ||VGG(Iµ)−VGG(ITM)||1 [JAFF16] that will drive the tone
mapping operation, such details are likely to be neglected in the
resulting ITM due to low penalty in the loss.

Feature contrast neighborhood masking Inspired by successful
applications of neighborhood masking, as discussed in Sec. 2.1, we
also model feature contrast neighborhood masking. Image contrast
neighborhood masking is performed selectively for different spa-
tial frequency bands that requires image decomposition by a filter
bank [DZLL00, Lub95]. We approximate this process by model-
ing feature contrast neighborhood masking per channel, where fea-
tures with similar frequency characteristics are naturally isolated.
Our goal is to suppress the magnitude of Ms when there is a high
variation of feature magnitudes fp in the local neighboring of pixel
p that we measure as:

Mn =
σb
|µb|+ ε

, (6)

where µb and σb denote the mean and standard deviation of feature
magnitude fp in the patch P that is centered at pixel p. Again,
we experimentally set the patch P size to 13×13 pixels. Finally,
our feature contrast masking is calculated as the ratio of self and
neighborhood masking:

f (VGG(I)) =
Ms

1+Mn
(7)

As can be seen in Fig. 5, Mn vividly responds in the regions with
high local feature variation as seen in VGG(Iµ), so that the fi-
nal feature contrast masking measure f (VGG(Iµ)) is strongly sup-
pressed in such regions. In particular, this means that in the regions
of strong image contrast, such as the horizon line, f (VGG(Iµ)) is
relatively much smaller with respect to the orginal VGG(Iµ) fea-
ture magnitudes. Consequently, when including f (VGG(Iµ)) into
the loss computation that drives tone mapping, the penalty for any
distortion of such high contrast is much smaller than in the per-
ceptual VGG loss LVGG that directly employs VGG(Iµ). Effectively,
this gives the tone mapping network more freedom for compressing
image contrast in such regions.

We compute our feature contrast masking (FCM) lossLFCM as the
L1 loss between the masked feature maps f () for the transformed
input HDR image Iµ and the output tone mapped image ITM:

LFCM = || f (VGG(Iµ))− f (VGG(ITM))||1 (8)

To further illustrate the behavior of our loss, In Fig. 6 we con-
sider simple sinusoid patterns with three different contrasts (c1, c2,
and c3). The corresponding feature maps of the VGG network are
shown in the top-left image row. We distort each sinusoid by in-
creasing their respective amplitudes by the same factor δ and their
corresponding feature maps are shown in the bottom-left row.

We compare the feature map difference ∆VGG used in the VGG
lossLVGG [JAFF16] (top-right row) and the corresponding ∆FCM used
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VGG(𝐼𝐼𝜇𝜇) 𝑀𝑀n 𝑓𝑓(VGG(𝐼𝐼𝜇𝜇))𝑀𝑀s𝐼𝐼TM

Figure 5: Feature contrast masking visualization of VGG feature maps (1st layer, 18th channel). From left to right: tone mapped image ITM,
original VGG feature map VGG(Iµ), and feature contrast self-masking Ms, neighborhood masking Mn, and final f (VGG(Iµ)) masking terms.

∆VGG(𝐼𝐼𝑐𝑐𝑛𝑛) = VGG 𝐼𝐼𝑐𝑐𝑛𝑛
′ − VGG 𝐼𝐼𝑐𝑐𝑛𝑛

∆FCM 𝐼𝐼𝑐𝑐𝑛𝑛 = 𝑓𝑓 VGG 𝐼𝐼𝑐𝑐𝑛𝑛
′ − 𝑓𝑓 VGG 𝐼𝐼𝑐𝑐𝑛𝑛

Feature maps from VGG

𝐼𝐼𝑐𝑐1
′ = 𝐼𝐼𝑐𝑐1+𝛿𝛿 𝐼𝐼𝑐𝑐1

′ = 𝐼𝐼𝑐𝑐1+𝛿𝛿 𝐼𝐼𝑐𝑐1
′ = 𝐼𝐼𝑐𝑐1+𝛿𝛿

∆FCM(𝐼𝐼𝑐𝑐2)∆FCM(𝐼𝐼𝑐𝑐1) ∆FCM(𝐼𝐼𝑐𝑐3)

∆VGG(𝐼𝐼𝑐𝑐2)∆VGG(𝐼𝐼𝑐𝑐1) ∆VGG(𝐼𝐼𝑐𝑐3)VGG(𝐼𝐼𝑐𝑐3)VGG(𝐼𝐼𝑐𝑐2)VGG(𝐼𝐼𝑐𝑐1)

VGG(𝐼𝐼𝑐𝑐1
′) VGG(𝐼𝐼𝑐𝑐2

′) VGG(𝐼𝐼𝑐𝑐3
′)

Figure 6: Left: VGG feature maps (1st layer, 2nd channel) for three
input sinusoids of increasing image contrast (c1 < c2 < c3) (upper
row) that is distorted by further increasing their amplitudes by the
same factor δ (bottom row). Right: the differences ∆VGG between
the VGG feature maps, which are computed for each sinusoid and
its distorted version, show a weak dependence to the input sinusoid
contrast (upper row), while the corresponding differences ∆FCM re-
sulting from our feature contrast masking model stronger penalize
the distortion for smaller contrast sinusoids.

in our FCM lossLFCM (bottom-right row). As can be seen, ∆FCM gives
highest penalty when the distortion δ is added to the lowest contrast
pattern. This forces our tone mapping, driven by LFCM, to reproduce
image details in low-contrast areas. The VGG loss LVGG remains
similar irrespectively on the input sinusoid contrast that puts equal
pressure on the tone mapping network to reproduce image details
for large contrast regions that cannot be perceived, and low-contrast
regions where they are clearly visible.

4. Results and Ablation Study

In this section we first describe the implementation details of our
approach. Then, we provide objective and subjective comparisons
including both traditional methods and state-of-the-art learning-
based approaches. Finally, we perform an ablation study showing
how each of the components of our approach contributes to achiev-
ing the final quality of our results.

4.1. Implementation

We adopt an online training strategy and train a model for each
HDR image at test time. Our model is implemented on TensorFlow

and the results reported in the paper are computed with a RTX
8000 GPU. We use the Adam optimizer with an initial learning
rate of 2 × 10−4 and an exponential decay factor of 0.9 every ten
epochs. The training converges after 400 epochs, which translates
into around 583 ± 6.62 seconds, for an image resolution of 768 ×
384. We fix a single set of parameters for all our experiments and
results. As discussed in the previous section, we set P = 13×13,
αIµ = 0.5, and αITM = 1.0. We compute our loss function based on
the first three layers of VGG. Please refer to the supplemental for
experimental exploration of these parameters.

4.2. Results and comparisons

We include in our comparisons thirteen tone mapping operators
including nine traditional methods which for simplicity we re-
fer to as: Mantiuk [MMS06], Shan [SJB09], Durand [DD02],
Drago [DMAC03], Mertens [MKVR07], Reinhard [RSSF02],
Liang [LXZ∗18], Shibata [STO16], and Li [LJZ18]; and four re-
cent learning-based methods: Guo [GJ21], Zhang [ZZWW21],
DeepTMO [RSV∗19] and TMO-Net [PKO∗21]. We use the pub-
licly available implementations of these methods or if not available,
their implementation in HDRToolBox [BADC17]. For the case of
DeepTMO [RSV∗19] and TMO-Net [PKO∗21], we were not able
to access their implementations, therefore we directly use the re-
sults provided in their works for comparisons.

We use a large test set of 275 images gathered from
the Fairchild dataset [Fai07], Poly Haven‡, the Laval In-
door HDR Database [GSY∗17], and the LVZ-HDR benchmark
dataset [PKO∗21], which cover various indoors, outdoors, bright
and dark scenes.

4.2.1. Objective evaluation

For objective comparisons we adopt as metrics the Tone Mapped
Image Quality Index (TMQI) [YW12], the Blind Tone Mapped
Quality Index (BTMQI) [GWZ∗16] and the Blind/Referenceless
Image Spatial Quality Evaluator (BRISQUE) [MMB12]. The for-
mer two metrics are widely used for evaluating tone mapping op-
erators [GJ21, ZZWW21, LXZ∗18], while the latter is typically
used as a blind metric for evaluating contrast [JYL19, LHLK17,

‡ https://polyhaven.com/hdris
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Table 1: Mean and standard deviation for TMQI (including TMQIS and TMQIN), BTMQI and BRISQUE computed for the 275 images in
our test set.

Methods TMQI (↑) TMQIS (↑) TMQIN (↑) BTMQI (↓) BRISQUE (↓)
Ours 0.9248 ± 0.0432 0.8938 ± 0.0582 0.7062 ± 0.2369 2.9065 ± 1.0481 21.2208 ± 8.5981

Guo [GJ21] 0.8883 ± 0.0354 0.8166 ± 0.0762 0.5975 ± 0.2002 3.7110 ± 1.0239 23.9528 ± 8.2566
Zhang [ZZWW21] 0.8767 ± 0.0600 0.8343 ± 0.0872 0.5118 ± 0.2686 3.7440 ± 1.4209 22.0520 ± 8.9580
Liang [LXZ∗18] 0.8964 ± 0.0490 0.8534 ± 0.0737 0.5194 ± 0.2605 3.5333 ± 1.0915 25.1433 ± 8.5510
Shibata [STO16] 0.7689 ± 0.0506 0.7498 ± 0.0858 0.1203 ± 0.1719 4.3470 ± 0.7469 32.2273 ± 8.9383

Li [LJZ18] 0.8480 ± 0.0612 0.8301 ± 0.0743 0.3716 ± 0.2939 4.3670 ± 1.1621 24.0348 ± 8.5411
Shan [SJB09] 0.8301 ± 0.0732 0.7458 ± 0.1448 0.4174 ± 0.2792 4.0685 ± 0.9839 22.8230 ± 8.5913

Durand [DD02] 0.8719 ± 0.0669 0.8375 ± 0.0989 0.4824 ± 0.2685 3.6537 ± 1.1016 22.0285 ± 8.4576
Drago [DMAC03] 0.8794 ± 0.0537 0.8600 ±0.0803 0.4840 ± 0.2558 4.0213 ± 1.2733 22.6600 ± 8.2405

Mertens [MKVR07] 0.8425 ± 0.0717 0.8403 ± 0.0923 0.3373 ± 0.2848 4.8981 ± 1.6026 23.2085 ± 8.8589
Reinhard [RSSF02] 0.8506 ± 0.0533 0.8176 ± 0.0864 0.3903 ± 0.2347 4.2774 ± 1.4580 25.5317 ± 7.7396
Mantiuk [MMS06] 0.8529 ± 0.0753 0.8903 ± 0.0849 0.3238 ± 0.3050 4.5339 ± 1.4086 21.2943 ± 8.8302

Table 2: Mean and standard deviation for TMQI (including TMQIS and TMQIN), BTMQI and BRISQUE computed for the
DeepTMO [RSV∗19] and TMO-net [PKO∗21] test sets. The former contains 100 images from the Fairchild dataset [Fai07] while the latter
contains 457 captured images from their own dataset.

Methods TMQIQ (↑) TMQIS (↑) TMQIN (↑) BTMQI (↓) BRISQUE (↓)
Ours 0.9106 ± 0.0511 0.8987 ± 0.0664 0.6052 ± 0.2807 3.3420 ± 1.0686 19.5406 ± 9.1347

DeepTMO [RSV∗19] 0.9052 ± 0.0619 0.8810 ± 0.0717 0.6015 ± 0.2679 3.4230 ± 1.1502 27.5489 ± 7.6865
Ours 0.9073 ± 0.0541 0.8939 ± 0.0551 0.6020 ± 0.3126 3.3069 ± 1.2266 23.1010 ± 8.5232

TMO-Net [PKO∗21] 0.8609 ± 0.0594 0.8066 ± 0.0825 0.4723 ± 0.2871 3.9633 ± 1.2477 26.6078 ± 8.1895

SWH∗20]. We briefly discuss here these metrics, please refer to
the supplemental for a more detailed description.

TMQI is a full-reference tone mapping image quality metric,
which consists of two main terms assessing the structural fidelity
(TMQIS) and the naturalness (TMQIN) of the tone mapped image.
BTMQI is a no-reference tone mapping metric, which is composed
of three terms accounting for entropy (richness of information),
naturalness, and presence of structural details. BRISQUE is a well-
known no-reference image quality metric based on natural scene
statistics that quantifies the naturalness of an image and considers
distortions such as noise, ringing, blur, or blocking artifacts.

We show in Table 1 the results of these objective metrics for
eleven of the tested methods with our testing set, while Table 2
shows the results for DeepTMO and TMO-Net, for which we use
their provided test sets and results. We include examples of our
results compared to the seven best performing methods in Fig. 7,
and compared to DeepTMO and TMO-Net in Fig. 8. We include
more results and comparisons in our supplemental.

Our proposed approach outperforms previous methods in differ-
ent aspects. We discuss now more in detail results for the best per-
forming approaches. In general, all approaches except DeepTMO
yield low TMQIN values, indicating that they fall short in preserv-
ing the naturalness of the image. For the case of DeepTMO, the
low performance in the BRISQUE metric indicates that the tone
mapped images do not preserve natural image statistics (Fig. 8,
first three columns). We can also see that TMO-Net additionally
produces saturated results in the brightest regions of the image

(Fig. 8, last three columns). Looking into Fig. 7 we can observe
that Guo over-enhances dark regions, sometimes resulting in heavy
artifacts (garage scene), while Zhang tends to produce overly dark
results in regions with low brightness. This is in agreement with a
relatively low score in structural fidelity TMQIS, indicating that
the tone mapped images differ from the HDR in terms of con-
veyed structural information. While Liang performs well in terms
of TMQIS, it tends to produce under-saturated results with lower
contrast (e.g., garage and store scenes), which is in agreement with
a relatively low performance in the BRISQUE metric. Drago and
Durand also perform well in terms of TMQIS. However, we can
see that Drago produces blurry results and fails to reproduce fine
details, such as the floor tiling in the station scene or the highlights
of the bottles in the store scene. Durand presents good scores in
terms of BRISQUE score which means the tone mapped images do
align with natural image statistics, however in some cases it over-
enhances contrast, producing artifacts such as those around the car
windows in the garage scene or those in the luminous numbers
of the station display sign. For these same regions, when the im-
ages are tone mapped with Reinhard, we can observe halos due to
strong contrast edges. Finally, Mantiuk has the lowest TMQIN of
the methods included in Fig. 7. This method tends to produce very
dark images with low contrast.

Our method outperforms existing approaches for all tested met-
rics, exhibiting a good contrast reproduction while preserving the
details present in the HDR images. Our results also produce natural
images without visible artifacts.
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Figure 7: Visual comparisons for the best performing methods and their TMQI scores. Overall, our results achieve good contrast reproduction
while preserving the details (highlights of the bottles in store, floor in station) and avoiding visual artifacts (display sign in station, car edges
and windows in garage). Please refer to the text for an in-depth discussion of the observed differences.

submitted to EUROGRAPHICS xxxx.



10 Chao Wang, Bin Chen, Hans-Peter Seidel, Karol Myszkowski, Ana Serrano / Learning a self-supervised tone mapping operator via feature contrast masking loss

Figure 8: Visual comparisons for DeepTMO [RSV∗19] and TMO-Net [PKO∗21] on images from their respective test set. DeepTMO tends to
produce over-enhanced contrast and saturated results that do not preserve natural image statistics. TMO-Net can not handle some challenging
scenarios, producing saturated results in very bright regions and overly dark pixels in dark regions.

4.2.2. Subjective evaluation

To further validate the performance of our approach we additionally
performed a subjective study. We included the six best performing
methods in terms of average TMQI score according to our previous
objective evaluation, in particular: Guo [GJ21], Zhang [ZZWW21],
Liang [LXZ∗18], Drago [DMAC03], Durand [DD02], and ours.
The study was approved by the <hidden for anonymity> Ethical
Board, and participants provided written consent for participating
in the study. A total of twelve participants voluntarily took part
in the study. We included fifteen scenes covering different scenar-
ios and, for each scene, we showed the six tone mapped images
at a random order. We asked the participants to rank them from 1
(preferred) to 6 (least preferred). The images were displayed in a
DELL UltraSharp U2421E monitor (1920 × 1200 resolution, 60
HZ refresh rate).

We show in Fig. 9 the preference rankings for each method, ag-
gregated for all participants and scenes (refer to the supplemen-
tal for individual results for each scene). We use Kruskal-Wallis
(non-parametric extension of ANOVA) for analyzing the rankings,
since these do not follow a normal distribution [JMB∗14,RGSS10].
We then compute post-hocs using pairwise Kruskal-Wallis tests ad-
justed by Bonferroni correction for multiple test. Results reveal a
statistically significant difference in the rankings for the different
methods (p < 0.001), with our approach being ranked significantly
higher than all others (refer to the supplemental for statistical tests
for all pairwise comparisons).

4.3. Ablation Studies

In this section we evaluate the importance of each of the compo-
nents in our method for achieving the final quality of the results.
Table 3 shows the results of the objective metrics for different com-
binations of (i) input: linear HDR [RSV∗19], log HDR [ZWZW19,
SWL∗21] or our multiple exposure fusion (MEF); (ii) HDR com-
pression algorithm for computing the loss: linear, log or our adap-
tive µ-law compression (Ada µ); and (iii) loss function: LVGG or our
LFCM. Figure 10 shows the corresponding visual results. Please, re-
fer to the supplemental for extended results on the ablation.

In general, we can see that our loss LFCM, which considers mask-

Figure 9: Preference rankings for each method aggregated across
the twelve participants and fifteen scenes. Different colors indicate
the received rankings (from 1 to 6). Pairwise comparisons between
methods reveal that preference rankings are significantly different,
except those methods marked in the same set (gray squares), which
are statistically indistinguishable.

ing effects, plays an important role in emphasizing the local con-
trast, especially in large contrast regions, such as the clouds in the
sky. Compared with our multiple exposure fusion (MEF), the log-
arithm input leads to overall darker results (brightness distortion),
and the linear input can cause overexposure with missing informa-
tion in the highlight regions. Finally, we can see Ada µ-law com-
pression is important for overall image contrast, when linear or log-
arithmic transformations are applied instead, the resulting images
are flatter in terms of contrast.

5. Conclusions

In this work we propose an image-specific self-supervised tone
mapping approach that leads to consistent high-quality results for
a large variety of HDR scenes. Previous learning-based approaches
present two main limitations: (i) the variety of HDR content they
can represent and adequately tone map is limited by the images
used during training, and (ii) most of these approaches are super-
vised, i.e., they need HDR-LDR image pairs for training. These
LDR images are obtained either from tone mapped results from
previous methods, or manually tone mapped images. Therefore, the
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Table 3: Mean and standard deviation for TMQI (including TMQIS and TMQIN), BTMQI and BRISQUE computed for different variations
of components in our pipeline.

Input IHDR 7→ Iµ Loss TMQI (↑) TMQIS (↑) TMQIN (↑) BTMQI (↓) BRISQUE(↓)
log log LVGG 0.5785 ± 0.1073 0.3759± 0.1965 0.0066± 0.0578 6.6324 ± 0.5731 42.5287 ± 7.4740

MEF linear LFCM 0.8776 ± 0.0610 0.8763± 0.0966 0.4555 ± 0.2642 3.9174 ± 1.4472 21.4104 ± 8.9001
MEF Ada µ LVGG 0.9178 ± 0.0462 0.8913 ± 0.0607 0.6596 ± 0.2470 3.1934 ± 1.1220 22.1773 ± 8.6294
linear Ada µ LFCM 0.8522 ± 0.0793 0.8166± 0.1206 0.4173 ± 0.2902 4.5342± 1.6754 30.2186 ± 13.7742
log Ada µ LFCM 0.8166 ± 0.0563 0.8921 ± 0.0774 0.0844 ± 0.0741 5.0949 ± 1.1779 22.4499 ± 8.3301

MEF Ada µ LFCM 0.9248 ± 0.0432 0.8938 ± 0.0582 0.7062 ± 0.2369 2.9065 ± 1.0481 21.2208 ± 8.5981

Input Loss
log log ℒVGG

𝑰𝑰 ↦ 𝑰𝑰HDR 𝝁𝝁 Input Loss
MEF linear ℒFCM

𝑰𝑰 ↦ 𝑰𝑰HDR 𝝁𝝁 Input Loss
MEF Ada 𝜇𝜇 ℒVGG

𝑰𝑰 ↦ 𝑰𝑰HDR 𝝁𝝁 Input Loss
linear Ada 𝜇𝜇 ℒFCM

𝑰𝑰 ↦ 𝑰𝑰HDR 𝝁𝝁 Input Loss
log Ada 𝜇𝜇 ℒFCM

𝑰𝑰 ↦ 𝑰𝑰HDR 𝝁𝝁 Input Loss
MEF Ada 𝜇𝜇 ℒFCM

𝑰𝑰 ↦ 𝑰𝑰HDR 𝝁𝝁

Figure 10: Example visualizations of our ablation study. Better contrast, brightness and detail reproduction is achieved with our full pipeline
including multiple exposure fusion (MEF), adaptive µ-law compression (Ada µ), and LFCM loss.

quality of the trained tone mapping model is limited to that of the
results selected for training. In contrast, our network directly learns
to represent the input HDR image and the tone mapping process is
guided by a novel feature contrast masking model that allows for
representing important image contrast perception characteristics of
the Human Visual System directly in the feature space. This in turn
enables to derive a powerful and perceptually meaningful loss that
uses such feature contrast masking to guide the tone mapping op-
eration. The loss gives the network more freedom for compressing
higher contrast while enhancing weak contrast, as it is often desir-
able for high quality HDR scene reproduction and an overall pleas-
ant appearance, all in the context of local image content as modeled
by neighborhood masking.

Limitations and future work In some very rare cases our method
may produce soft halos at high contrast edges as shown in Fig. 11.
In future work we would like to experiment with edge stopping fil-
ters while deriving feature contrast and neighborhood masking for
avoiding this issue. Nevertheless, these soft artifacts are not present
in most of our results, and whenever present, they are not obviously
visible as confirmed by both objective and subjective evaluations.
As discussed in Trentacoste et al. [TMHD12], unsharp masking or
weak counter-shading effects, similar to these soft halos, may be
an effective way of enhancing perceived image contrast due to the
Cornsweet illusion and are often employed for image enhancement.
In future work we would also like to accelerate our tone mapping
processing, which is the key limitation of our technique. We would
also like to investigate the utility of our adaptive µ-law compres-
sion for other learning-based applications that involve HDR con-
tent. Finally, another interesting avenue for future work would be

employing our feature contrast masking model for other tasks such
as image style transfer, where contrast characteristics in the source
image should be conveyed to the target image.

Figure 11: Example exposure of the original HDR image (left) and
our tone mapped result (right). The inset shows a failure case in
which a soft halo appears around the edge of the mountain.
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