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Segmentation of Static and Dynamic Atomic-Resolution Microscopy
Data Sets with Unsupervised Machine Learning Using Local
Symmetry Descriptors
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Abstract

We present an unsupervised machine learning approach for segmentation of static and dynamic atomic-resolution microscopy data sets in
the form of images and video sequences. In our approach, we first extract local features via symmetry operations. Subsequent dimension
reduction and clustering analysis are performed in feature space to assign pattern labels to each pixel. Furthermore, we propose the stride
and upsampling scheme as well as separability analysis to speed up the segmentation process of image sequences. We apply our approach to
static atomic-resolution scanning transmission electron microscopy images and video sequences. Our code is released as a python module
that can be used as a standalone program or as a plugin to other microscopy packages.
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Introduction

The substantial advances of microscopy techniques and
aberration-corrected electron optics since the second half of the
last century have made it possible to probe materials at atomic
resolution (Hansma et al., 1988; Haider et al., 1998; Batson
et al., 2002), which opened up an era where materials can be stud-
ied down to the level of single atoms (Krivanek et al., 2010).
Aberration-corrected scanning transmission electron microscopes
(STEMs) have made it routine to acquire atomic-resolution
images, image series, and spectroscopic data of crystalline materi-
als. This information provides deep insights into the atomic struc-
ture of lattice defects, local atomic ordering, or complex interface
structures, such as grain-boundary phase transitions (Meiners
et al., 2020a, 2020b) and three-dimensional atomic arrangements
of nanoparticles (Van Aert et al., 2011).

As more and more atomic scale data becomes available, we are
facing the challenge of efficiently analyzing these large data sets
generated even in a single experiment (Belianinov et al., 2015;
Spurgeon et al., 2020). Typical tasks are to discover and label
recurrent patterns, to identify features of possible interest, to clas-
sify and quantify such features for large data sets, and to collect
the corresponding statistics. Machine-learning methods have
been shown to be effective in speeding up and automatizing the
data processing in various microscopy-related problems (Madsen

et al., 2018; Kalinin et al., 2019; Roberts et al., 2019; Kaufmann
et al., 2020; Spurgeon et al., 2020; Ziatdinov et al., 2020).

We will focus in the following on analyzing high-angle annular
dark-field (HAADF) STEM images of complex crystalline materi-
als at atomic resolution. The HAADF-STEM data set consists of
the detector signal intensity as function of the scanning position
of the focused electron beam. Such data is typically displayed as a
gray-scale image, which allows us to exploit the techniques and
terminology used for digital image processing in general.
Conversely, the algorithms described in the following are well
suited to comparable data sets from other atomic-scale imaging
techniques, for example, atomic force microscopy (AFM), high-
resolution transmission electron microscopy (HRTEM), and
scanning tunneling microscopy (STM). Within the scope of the
present work, however, we have not tested the methods on data
sets other than those coming from HAADF-STEM. We are also
interested in image series taken for the same area repeatedly—
equivalent to a (short) video, where the single image is usually
called a frame.

Despite all analogy to images in general, the experimental sig-
nal typically comes with much higher levels of noise compared
with photographic images. Tolerance to the experimentally char-
acteristic noise is, therefore, desirable. The noise level can be influ-
enced by the experimental conditions. For instance, short
exposure times imply higher noise levels due to the stochastic
nature of electron scattering. On the other hand, reduced expo-
sure times improve the time resolution of image series and limit
beam damage (Egerton et al., 2004). At present, experimental
conditions are chosen prior to data analysis. In perspective, how-
ever, on-the-fly analysis (and hence fast processing) will open new
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opportunities to optimize the trade-off by adapting the experi-
mental conditions directly to the needs of the on-going analysis.

For polycrystalline samples, a crucial subtask is to identify and
mark all regions that share a common characteristic, which is
called image segmentation. A successful segmentation may then
serve multiple purposes. First, it can help to visualize larger struc-
tures inherent to the data, but not always visible to the human eye
from a gray-scale image alone. Second, segmentation information
can be used to improve the signal-to-noise ratio in other data
channels in STEM (which share the x, y beam position), by selec-
tively accumulating weak signals from within each segment.
Third, if the segments map well onto the underlying crystallogra-
phy, measuring the segmented areas and boundaries yields direct
quantification of microstructural properties. Last, the certainty of
the classifier underlying the segmentation can be used to detect
“unusual” spots within a region, and hence help to find a relevant
isolated outlier, that is, a defect.

Segmentation is also an important principle of human visual
perception, as it helps us see “at a glance” different hierarchical
structures, both in daily life and in scientific analysis. Not surpris-
ingly, it is one of the most researched topics of machine learning
on images. Supervised algorithms are trained to recognize and
label the regions from a pre-defined set of possible patterns
(Arganda-Carreras et al., 2017; Vu et al., 2019). Unsupervised
algorithms aim at distinguishing features from the data at hand
(Nock & Nielsen, 2004; Mancas et al., 2005; Sadowski et al.,
2006; Navlakha et al., 2013; Borodinov et al., 2020).

Since the difference between crystal patterns in atomic-resolu-
tion images is dominated by the local arrangement of atomic col-
umns, conventional segmentation methods such as thresholding
(Mancas et al., 2005; Sadowski et al., 2006) and region merging
(Nock & Nielsen, 2004; Navlakha et al., 2013) are not straightfor-
wardly applicable to go beyond the detection of single columns.
An alternative is the use of suitable descriptors (Borodinov
et al., 2020). A typical descriptor-based unsupervised segmenta-
tion proceeds as follows. (1) The algorithm computes local fea-
tures for small areas (patches) across the entire image. The
feature values for each patch define a “point” in feature space.
(2) This image representation is projected to a subspace of
reduced dimensionality based on the variance of all available
points. (3) Clustering analysis is used to further partition feature
space. (4) The algorithm classifies the original patches by using a
metric to identify the “nearest” cluster.

Supervised algorithms also use descriptor-based classifiers, but
the classification nowadays employs nonlinear mappings (e.g.,
deep neural networks) trained on pre-labeled data. Such machine-
learning methods (Arganda-Carreras et al., 2017; Vu et al., 2019)
have been explored in the biological community to segment tissue
images, which require a large amount of labeled data to train a
classification model or a neural network, which are not yet avail-
able for atomic scale images of crystalline matter. While good pro-
gress has been demonstrated in the literature, the drawback of
supervised models is that data labeling is time-consuming, and
that the supervised models may interpret patterns absent from
training data in unexpected ways.

In the context of imaging crystals, the desired segmentation
must reflect the known hierarchical structure of solid matter,
such as crystal lattices, lattice defects, crystal grains, microstruc-
tures, or texture. It should do so in a transparent manner, that
is, the individual steps listed above should be accessible to the
human scientist to ensure a correct interpretation, and reversely,
guarantee that the segmentation proceeds in the intended way.

To summarize the requirements at this point, we aim at a seg-
mentation algorithm that (1) detects crystallographic features of
the imaged area without prior knowledge, (2) is robust against rel-
atively high noise levels, (3) is computationally fast, and (4) is
interpretable in each of its stages. With these criteria in mind,
we developed an unsupervised segmentation algorithm based on
local symmetry in atomic-resolution images, which is encoded in
local descriptors. By design, the algorithm autonomously detects
distinct features with characteristic local symmetry of crystalline
material, but simultaneously provides a high degree of flexibility
and controllable noise tolerance. This control is achieved by setting
manually the hyperparameters of the algorithm as discussed in
detail in the following, and summarized in Appendix A. In the
future, some of these hyperparameters might be set automatically
from the data set at hand. We furthermore propose an extension
in order to efficiently segment large-scale image sequences contain-
ing similiar features that evolve over time, for example, in in situ
STEM videos captured at atomic resolution. The main steps of
our workflow include feature extraction via symmetry operations,
dimension reduction of local descriptors, clustering analysis to par-
tition feature space, stride and upsampling, and separability analysis.
They are summarized in Figure 1 and detailed in the next section.

Methodology

Feature Extraction via Symmetry Operations

We aim at segmenting the microscopy images into multiple crys-
tal patterns that are different in terms of symmetry, that is, locally
self-similar under certain coordinate transformations (the sym-
metry operations). Four types of symmetry operations are
involved in the two-dimensional (2D) crystal patterns: pure trans-
lations, rotations, reflections, and glide-reflections. The main idea
of symmetry-based feature extraction is to take a finite set of can-
didate symmetry operations, apply them all to a small region (a
“patch”) of the image and score the degree to which the symmetry
applies. Denoting the 2D coordinate of the patch by r = (x, y),
the associated coordinate transformations read as follows.

Translation by vector t:

r � r+ t.

Rotation by angle a around center c:

r � R(r− c)+ c with R = cosa sina
− sina cosa

( )
.

(Glide) reflection at an axis c · − sinb
cosb

( )
= D, which forms

angle b to the x-axis and lies at oriented distance D from the origin:

r � M(r− c)+ c+ t = Mr+ t′,

where c is any point on the axis, and t the glide along the axis, with

M = cos 2b sin 2b
sin 2b − cos 2b

( )

and

t′ = l
cosb
sinb

( )
︸�����︷︷�����︸

t

+2D
− sinb
cosb

( )
.

When the glide parameter l is zero, this is a pure reflection.

2 Ning Wang et al.

https://doi.org/10.1017/S1431927621012770
Downloaded from https://www.cambridge.org/core. IP address: 91.41.66.77, on 05 Nov 2021 at 10:05:14, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/S1431927621012770
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


As the parameters of these symmetry operations (t, c, a, b, D,
and l) may take various values, there are many possible symmetry
operations. This yields a symmetry-score vector as a local descrip-
tor for the chosen patch. In other words, the candidate symmetry
operation together with the symmetry scoring makes a
local-symmetry-feature extractor. We shift the extractor across
the entire image in order to extract the local-symmetry informa-
tion everywhere in the image. The schematic diagram for this cal-
culation is shown in Figure 2.

To quantify the degree to which a candidate symmetry opera-
tion, O, matches the image locally, we compare how well a small
patch of the image, Px,y, centered at the pixel (x, y), maps to the

actual image at the transformed coordinates, OPx,y . The similarity
between the two patches is determined via Pearson’s correlation
coefficient. Pearson’s correlation coefficient takes a value in the
range from −1 to 1, where larger values mean stronger similarity.
To compute it, we first evaluate the mean intensities

mPx,y =
1

NiNj

∑
i,j

Px,y(i, j) (1)

and, analogously, mOPx,y . Px,y(i, j) are the intensities at the position
(i, j) in their relative coordinates. The Pearson’s correlation coef-
ficient is then evaluated according to

rO(x, y) ; Corr(Px,y, OPx,y)

=
∑

i,j [Px,y(i, j)− mPx,y ] · [OPx,y(i, j)− mOPx,y ]������������������������∑
i,j [Px,y(i, j)− mPx,y ]

2
√

·
����������������������������∑

i,j [OPx,y(i, j)− mOPx,y ]
2

√ .

(2)

We emphasize that the relative coordinates are not necessarily
Cartesian coordinates. We employ polar coordinates and circular-
shape patches to handle rotation and reflection operations. The
intensity at polar grids are obtained through cubic spline interpo-
lation as implemented in scipy (Pedregosa et al., 2011).

In the remainder of this subsection, we employ the general
procedure illustrated in Figure 2 to obtain two groups of local

Fig. 1. Main steps in our image-segmentation workflow. An atomic-resolution HAADF-STEM image of an iron–niobium intermetallic compound with two phases (m
phase and Laves phase) is used for demonstration. The hyperparameters in the workflow are described in Appendix A. (1a) Input image, for example, HAADF-STEM,
AFM, or STM image. (1b) Extracting local descriptors via symmetry operations. Local descriptors for translational symmetries (cf. Section “Extracting features via
translation operations”, Fig. 3) of four selected pixels are visualized here. (1c) Dimension reduction with principal component analysis (PCA). Here, three compo-
nents are employed to obtain the scatter plot (cf. Section “Dimension reduction”). (1d) K-means clustering analysis to separate patterns in feature space. Two
clusters are shown in this plot, while more clusters might be involved in other cases. (1e) Segmented image plotted as superposition of pattern labels and
raw image intensities. (1f) Separability analysis: Here, we show a separability map for all possible translational operations. We may select symmetry operations
with best separability to segment more images with similiar features. The application to an in situ high-resolution TEM video sequence is discussed in the result
section and shown in the Supplementary material.

Fig. 2. A schematic diagram illustrating the symmetry-based local descriptors.
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descriptors. The application to the translation operations provides
us with local descriptors that have natural translational invariance
within the same crystal pattern. In contrast, the local descriptors
that are obtained by performing the rotation and reflection oper-
ations are not translationally invariant. In the latter case, we add a
so-called max-pooling step to enforce the translational invariance,
similar to the treatment adopted in convolutional neural networks
(Boureau et al., 2010). In max-pooling, the maximum value of the
symmetry score inside a “pooling window” becomes the new fea-
ture to characterize local symmetry. Max-pooling is usually
employed to coarse-grain from single pixels to pooling window
resolution. We generalize this to an arbitrary spatial grid indepen-
dent of the pooling window size by employing a moving pooling
window, always centered at the grid point, where the pooling win-
dows of neighboring grid points may overlap.

Extracting Features via Translation Operations
Based on the general procedure illustrated in Figure 2, we calcu-
late the translational-symmetry-based local descriptors at the
pixel (x, y) as follows. We select a patch centered at (x, y),
Px,y(i, j), where i and j are the coordinates in the Cartesian coor-
dinate system with the origin at (x, y). The absolute value of i (j) is
not larger than the half height (width) of the patch, |i| ≤ px and
|j| ≤ py . We denote the translation shift as Tm,n, which shifts the
patch by m pixels vertically and by n pixels horizontally. The
transformed patch by this operation is simply the patch located
at (x +m, y + n), namely, Tm,nPx,y = Px+m,y+n. Substituting this
into equation (2), we obtain the symmetry score for the transla-
tion operation Tm,n,

rTm,n
(x, y) = Corr(Px,y, Px+m,y+n). (3)

In practice, we confine the translation shift in a region of shape
(2wx + 1, 2wy + 1), that is, |m| ≤ wx and |n| ≤ wy, and select
uniformly a fixed number N of translation shifts in this region.
The symmetry scores for the selected translation shifts form a fea-
ture vector of length N , which is the local descriptor characteriz-
ing the local translational symmetries.

In our package (Wang, 2021a, 2021b, 2021c), we implement
the translation-based local descriptors with two methods, the
direct and the fast Fourier transform (FFT) based ones. In the
direct method, we evaluate the symmetry score equation (3) for
the selected translation shifts directly in the low-level C code
that is parallelized with open multi-processing (OpenMP) and
wrapped as a python module. This method is suitable when the
number of selected translational shifts N is not large. For the
case with large N , the implementation based on FFT is more suit-
able, since it exploits the convolution theorem to significantly
reduce the computational cost. We detail the FFT implementation
in the Appendix.

To understand the significance of the translation descriptor,
we take an extreme case in which we use all translation shifts in
the region |m| ≤ wx and |n| ≤ wy to form the local descriptors.
In this case, the symmetry scores for all the translation shifts
form a 2D map of shape (2wx + 1, 2wy + 1), as shown in
Figure 3, which is denoted as the local-correlation map in this
paper. Indeed, the local-correlation map approaches the auto-
correlation function of the perfect crystal in the limit of large
patch sizes. On the other hand, the auto-correlation function is
the real-space Fourier-transform of the power spectrum in recip-
rocal space, as a trivial consequence of the Fourier convolution

theorem. Thus, in the limit of large patches, the local-correlation
map’s information content is equivalent to the power spectrum of
window FFTs (Borodinov et al., 2020). The key difference, how-
ever, appears for small patch sizes. While window FFTs suffer
from wrap-around errors if the window is not matched with the
underlying periodicity, the local-correlation map does not suffer
from this limitation. This allows us to choose a suitable patch
size independently from the lattice periodicity. In Figure 4, we
evaluate the local-correlation maps with various patch sizes.
The first and second rows are the local-correlation maps of two
different pixels in the left crystal grain in Figure 10. The similarity
between the local-correlation maps of two pixels increases with
increasing patch size, which implies the increasing translational
invariance of local descriptors within the same crystal pattern.
This translational invariance of the descriptors can also be
exploited to reduce the computational effort in a stride and
upsampling scheme, as detailed in Appendix C. The basic idea
is to select a coarse-grained set of patches for which the descrip-
tors are computed, and interpolate the segmentation to single-
pixel resolution at the end.

Before we move on to the discussion of the rotation/reflection-
based local descriptors, it is worthwhile to first analyze what crys-
tal patterns the translational-symmetry-based local descriptors are
suitable to discriminate. Apparently, if the two crystal patterns
have different Bravais lattices, lattice vectors, or orientations, we

Fig. 3. Computing the local descriptors at pixel (x, y) based on translation opera-
tions. Left plot: an experimental HAADF-STEM image of two copper grains left and
right separated here vertically by a grain boundary. Right plot: the calculated local-
correlation map at pixel (x, y).

Fig. 4. Local-correlation maps of two selected pixels within the same crystal pattern
in an HAADF-STEM image of size 1, 024× 1, 024 pixels (shown in Fig. 10) evaluated
with various patch sizes. The size of the local-correlation maps is 41× 41 pixels.
The first (second) row are the local-correlation maps of pixel A (B). The first, second,
and third columns are evaluated with square patch sizes of 4× 4, 12× 12, and
20× 20 pixels, respectively.
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can employ the translational-symmetry-based local descriptors to
discriminate them easily. But can the translation-symmetry-based
local descriptors also discriminate crystal patterns that have the
same Bravais lattice, lattice vectors and orientation and differ
only in 2D plane group symmetries? As the entry in the local-
correlation map is evaluated through the correlation coefficient
between the original and the translationally shifted patch, the
local-correlation map has the same symmetry as the auto-
correlation function of the crystal pattern, the Patterson symmetry
(Aroyo, 2002).

The relationship between the 17 plane group symmetries and
the 7 Patterson symmetries is presented in Table 1 (Aroyo,
2002). The local-correlation map can only have seven Patterson
symmetries because of extra constraints (Aroyo, 2002). First,
there is always a twofold rotational axis at the center, that is,
the centrosymmetry. Second, the glide-reflection symmetry is
not allowed and is replaced by the corresponding reflection sym-
metry. Clearly, if the two crystal patterns with the same lattice
vectors and orientation have the same Patterson symmetry and
different plane group symmetries, the translational-symmetry-
based local descriptors cannot discriminate them. Thus, other
types of symmetry operations need to be taken into account.

Extracting Features via Rotation and Reflection Operations
Following the procedure shown in Figure 2, we present the imple-
mentation of the rotation-reflection-based local descriptors. In
this case, it is more convenient to take circular patches and
employ polar coordinates, interpolated from the original cartesian
coordinates via cubic spline interpolation. The patches are rotated
by a specific angle or reflected across a specific axis, and the sym-
metry score is again the Pearson’s correlation coefficient between
the original and the transformed patches, according to equation
(2). We select a set of rotation angles {60◦, 90◦, 120◦, 180◦} com-
patible with plane lattices, and also a set of reflection axes with
different orientations. We then transform patches either by rota-
tion around the central pixels or by reflections in the reflection
axes through the central pixels. The symmetry score for each can-
didate symmetry operation represents a specific rotation or reflec-
tion symmetry feature. The local descriptors we obtain here

cannot be used straightforwardly in the segmentation since they
are not translationally invariant within the same crystal pattern.
We present an example for a given reflection symmetry operation
in Figure 5. The symmetry scores show clearly different prefer-
ences to the crystal patterns on the left- and right-hand sides.
However, the symmetry scores are not homogeneously distributed
within the crystal pattern indicating the point-group nature of the
reflection and rotation symmetries. We add a max-pooling step to
enforce the translational invariance, similar to the treatment in
the convolutional neural networks (Boureau et al., 2010). As the
max-pooling does not contain training parameters, our segmenta-
tion approach is still kept free of training.

Dimension Reduction

The local descriptor is a high-dimensional feature vector with
each channel characterizing a specific symmetry. Only a few of
these symmetries are relevant for distinguishing the crystal pat-
terns present in the image. The other symmetry scores (in fact,
the majority of entries) varies somewhat randomly across the
image, and this random noise makes it difficult to discern differ-
ent regions without an image-adapted metric, that would have
high weights for relevant symmetries and low weights for the oth-
ers. To circumvent this issue, it is advantageous to first reduce the
dimensionality of the feature space.

We employ principal component analysis (PCA) for the
dimension reduction. The implementation of PCA in scikit-learn
(Pedregosa et al., 2011) is employed in our code. PCA provides an
orthogonal basis in feature space, which diagonalizes the covari-
ance matrix of the data set. As is common practice, we then
choose those basis vectors that contribute most to the total vari-
ance. These optimal features are denoted PCA features. The num-
ber of PCA features is a parameter that can be either specified by
users, or by requiring a lower bound for the so-called percentage
of the variance explained, that is, the fraction of the total variance
represented by the chosen PCA features. In Figure 6, we plot the
percentage of variance explained (PVEn for the n most relevant
features) versus the number n of PCA features for the
HAADF-STEM image shown in Figure 10 for different patch

TABLE 1. The Seven Patterson Symmetries and the Plane Groups (Aroyo, 2002).

Patterson symmetry p2 p2mm c2mm p4 p4mm p6 p6mm

Plane groups p1, p2 p1m1, p1g1, p2mm, p2mg, p2gg c1m1, c2mm p4 p4mm, p4gm p3, p6 p3m1, p31m, p6mm

Fig. 5. An example to illustrate the calculation of reflection-based local descriptors. The rotation-based local descriptors can be obtained in a similar way. (a) An
experimental HAADF-STEM image of two copper grains left and right separated vertically by a grain boundary. (b) The symmetry scores for a specific reflection
symmetry operation at all pixels. The angle between the reflection axis and the horizontal line is 36◦. The color coding represents values of reflection symmetry
scores in the range −0.57 to 0.9. (c) The max-pooling enforces the translational invariance by only taking the largest elements in the pooling window. A pooling
window of size 31× 31 pixels is used here.
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sizes. When the patch size is large enough, the first few PCA fea-
tures are sufficient to capture the main variance of the image. We
demonstrate below in the section “Application examples” that the
dominant PCA features also have good separability to distinguish
crystal patterns, making PCA suitable for dimension reduction in
this work.

The correlation with the patch size is not surprising. We have
shown above that the intrinsic uncorrelated noise of the image
gives rise to noise in the symmetry scores, but averages out
increasingly well as the patch size is increased. What we see in
Figure 6 is therefore how the image noise carried over to the sym-
metry scores smears out relevant features over several compo-
nents. Choosing the number of PCA features by a fixed
threshold for the PVEn value, therefore, compensates to some
extent the problem of choosing an optimal patch size and
makes the overall procedure more robust. A suitable threshold
depends on the image noise level and the number and fractions
of distinct crystalline phases in the image. A threshold value of
80–90% is recommended based on our experience.

K-Means Clustering

We feed the PCA features into the k-means clustering algorithm
(MacQueen, 1967; Arthur & Vassilvitskii, 2007) to cluster the pix-
els in the feature space. This algorithm finds the cluster centers by
minimizing the within-cluster sum of squares criterion that mea-
sures the internal variability of clusters. Each cluster corresponds
to a specific crystal pattern, and the pixels grouped into the same
cluster are assigned with the same pattern label. Once the cluster
centers are found, we partition the feature space into Voronoi
cells. We employ the implementation of k-means clustering in
scikit-learn (Pedregosa et al., 2011) in our code. The cluster cen-
ters are first initialized randomly and then optimized in an itera-
tive way. The number of clusters is one hyperparameter that needs
to be specified by the users. It means that users need to specify the
number of crystal patterns into which they want to partition an
image.

Once the relevant crystal patterns have been identified, they
can be used to construct a “fast” classifier based on only those
symmetries that are actually most relevant to the crystal patterns

in the image. This might be particularly useful for image series
and videos, as one restricts the computationally intense brute-
force extraction of crystal pattern classifiers to a few representative
frames, and then uses the symmetry-selective classifier for the full
segmentation. This consideration leads us to develop a separabil-
ity-analysis scheme for efficient segmentation of image series and
videos.

Speedup for Image Series: Separability Analysis

We employ a separability-analysis scheme to reduce the compu-
tational cost for segmentation of a large number of images with
similar features, for example, in situ videos. The separability-anal-
ysis scheme selects the symmetry operations that are most relevant
to the crystal patterns in the image. The selected symmetry oper-
ations can then be used to segment other images with similar fea-
tures. The computational cost is reduced drastically as much fewer
symmetry operations are used to segment these images. In prac-
tice, we first perform a segmentation of a representative image,
which might be the first frame of a video. A large number of sym-
metry operations is required in this step, as we do not know
beforehand which symmetry operation is crucial for the segmen-
tation. After that, we calculate the Fisher’s separability (Fisher,
1936) for each symmetry operation. For a given symmetry opera-
tion O, its Fisher’s separability is defined by

SO =
∑K

k=1 Nk(mk − m)2∑K
k=1 Nks2

k

, (4)

K is the total number of patterns (classes). mk and m are the
within-class mean and the total mean of the symmetry feature
generated by the given symmetry operation O. s2

k is the within-
class variance. The separability indicates how well the symmetry
operation O can discriminate the crystal patterns. We then use
Fisher’s separability to select a small number of symmetry opera-
tions for segmentation of all other images.

To explore the potential benefit of this optimization, we per-
formed a time cost and accuracy test with an HAADF-STEM
video of 163 frames. The results are shown in Figure 7. We first
perform a segmentation on the first frame with 289 translational
operations. With the pattern labels obtained from this segmenta-
tion, we perform a separability analysis and calculate each trans-
lational operation’s separability. We then select n translational

Fig. 6. The percentage of variance explained versus the number of PCA features for
the HAADF-STEM image shown in Figure 10. The percentage of variance explained is
evaluated via the ratio between the sum of variances of PCA features and that of raw
features. Different colors represent different patch sizes. The black dashed line indi-
cates 90% of total variance.

Fig. 7. Time cost and accuracy for segmentation of an HAADF-STEM video with 163
frames and different numbers of post-selected translational operations. The raw and
segmented videos are shown in the Supplementary material.
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operations with the best separability and measure the time cost
and accuracy of the segmentation with them. n is chosen to be
2, 50, 100, 150, 200, and 289 in this test, and the accuracy is cal-
culated relative to the segmentation result with 289 translational
operations. We see a linear decrease of the time cost with the
decreasing number of translational operations, whereas the accu-
racy is always over 95%.

Application Examples

In Figure 8, we present an application to the HAADF-STEM
image containing two phases (m phase and Laves phase) of the
iron–niobium intermetallic compound. More experimental details
can be found in Šlapáková et al. (2020). The pattern labels are cor-
rectly assigned to the pixels in the two phases, as shown in
Figure 8.

This example nicely illustrates why our segmentation approach
works in an unsupervised manner. To show this, we calculate the
Fisher’s separability (Fisher, 1936) and variances for all features in
the local descriptors and the five PCA features with largest vari-
ances. In Figure 9, we see a strong correlation between separability
and variance. A feature that has a larger variance also has a better
separability. We might think of features with good separability as
the signal and those with bad separability as the noise. The corre-
lation between separability and variance is crucial for the unsu-
pervised approach, which results in a good signal-to-noise ratio
and ultimately successful segmentation.

The second example is shown in Figure 10. In this example, we
segment an HAADF-STEM image containing two differently ori-
ented copper crystals separated vertically by one tilt grain boun-
dary with the reflection- and rotation-symmetry-based local
descriptors, separately. The reflection-symmetry-based local
descriptors successfully partition the image into the left (green)
and right (violet) crystal, but are not capable of identifying the
grain boundary as seen in Figure 10b. This is because the reflec-
tion symmetries are sensitive to the local crystal orientation. The
rotation-symmetry-based local descriptors group the two grains
into the same crystal pattern (green) as shown in Figure 10c
and segment the grain boundary region (violet) based on its dif-
ferent rotational symmetry. The results emphasize the influence of
the choice of local descriptors, since they capture different sym-
metry information. In this example, the reflection-symmetry-
based local descriptors are not rotationally invariant, and there-
fore, both disoriented crystals are partitioned into different crystal

patterns. In contrast, the rotation-symmetry-based local descrip-
tors are rotationally invariant and result in different interpretation
of the crystal patterns in the image.

In our third example shown in Figure 11, we segment the
HAADF-STEM image of Pd nanocrystals obtained from electro-
chemical etching of a PdCoO2 single crystal (Podjaski et al.,
2019). These nanocrystals have two twin variants and many free
volumes (holes) in between. The image has, therefore, significant
variations in the overall intensity (mass-thickness contrast of
HAADF), from zero-thickness in the hole, single nanograin to
multiple grains stacked along the projection. Nevertheless, we
observe that the segmentation using the local-correlation map
descriptor retains a very good spatial resolution, correctly identi-
fies the twin phases (yellow, blue), and makes them readily visible
in the segmented image in comparison to the original one.

Fig. 8. (a) An HAADF-STEM image of size 1, 024× 1, 024 pixels containing two phases
(m phase and Laves phase) of the iron–niobium intermetallic compound. The pixel
size is 0.125× 0.125 Å. (b) The image superimposed of the HAADF intensity and
the pattern labels. (c) The zoomed plot of the white window. The repeating units
of the two phases are marked in green and blue.

Fig. 9. The separability and variance of all features in the local descriptors and the
five PCA features.

Fig. 10. (a) An HAADF-STEM image of size 1, 024× 1, 024 pixels containing two Cu
single-crystal grains and a tilt grain boundary. The pixel size is 0.0623× 0.0623 Å.
(b) Segmentation via the reflection-based local descriptors. The image is superim-
posed of the HAADF intensity and the class labels. (c) Segmentation via the rota-
tion-based local descriptors. The image is superimposed of the HAADF intensity
and the pattern labels.

Microscopy and Microanalysis 7

https://doi.org/10.1017/S1431927621012770
Downloaded from https://www.cambridge.org/core. IP address: 91.41.66.77, on 05 Nov 2021 at 10:05:14, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/S1431927621012770
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Furthermore, we added in a third pattern (red), and the algorithm
assigns it to the hole and some strongly blurred regions that are
essentially structureless, demonstrating that the algorithm can
deal with image parts without a crystalline structure.

In a fourth example, we demonstrate that our unsupervised seg-
mentation can also be applied to atomic-resolution TEM videos
obtained from in situ heating experiments. The video sequence
shows the temperature-induced de-twinning process in an
FeMnCoCrNiC-based high entropy alloy obtained at 900◦C. The
raw video and segmented video are presented in the
Supplementary material. Without prior knowledge in the structure
present in the image, the unsupervised segmentation is able to iden-
tify the matrix and twin regions, which is the basis for a complete
quantitative analysis of the data set. From the segmented data,
important information such as the de-twinning speed and migra-
tion dynamics of the incoherent twin boundary can be inferred
with little effort after segmentation using feature tracking.

We provide the jupyter notebooks for the calculations in this
section (Wang, 2021c), and all the figures might be reproduced
with little effort.

Conclusion

We present an unsupervised machine-learning approach to seg-
ment atomic-resolution microscopy images without prior knowl-
edge of the underlying crystal structure. In our approach, we
extract a local descriptor through scoring candidate symmetry
operations by the Pearson’s correlation coefficient, which forms
an abundance feature vector to characterize the local symmetry
information. We then use PCA to reduce the dimension of the
local descriptors. After that, we feed the PCA features into a
k-means clustering algorithm in order to assign pattern labels
to pixels. To reduce computational cost, a stride and upsampling
scheme is proposed. A separability-analysis step is added in order
to segment image series or video sequences efficiently. We present
the successful application to experimental HAADF-STEM
images, image series, and high-resolution TEM videos, and reveal
one important feature of the unsupervised segmentation
approach, the strong correlation between the feature’s separability
and variance. We package our code as a python module, and release

it in the github (Wang, 2021c), conda-forge (Wang, 2021b), and the
python package index repository (Wang, 2021a). More tests can be
found in the example folder in our github repository.

Supplementary material. To view supplementary material for this article,
please visit https://doi.org/10.1017/S1431927621012770.
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Appendix A. Summary of Hyperparameters

We summarize the hyperparameters in our workflow.

1. descriptor_name. It is used to select the type of local descriptors. We have
implemented five types of descriptors till now. The default is local-correla-
tion-map.
(a) local-correlation-map. The translational-symmetry-based local descrip-

tor in subsection “Extracting Features via Translation Operations” are
used for segmentation. The translational operations are chosen uni-
formly from a window.

(b) preselected_translations. The translational-symmetry-based local
descriptors in subsection “Extracting Features via Translation
Operations” are used for segmentation. Different from local-correla-
tion-map, the translational operations are provided by users explicitly.

(c) rotational_symmetry_maximum_pooling, the rotational-symmetry-
based local descriptors with maximum pooling discussed in subsec-
tion “Extracting Features via Rotation and Reflection Operations.”

(d) reflection_symmetry_maximum_pooling. The reflectional-symmetry-
based local descriptors with maximum pooling discussed in subsec-
tion “Extracting Features via Rotation and Reflection Operations.”

(e) power_spectrum, absolute values of discrete Fourier transform
(Borodinov et al., 2020; Jany et al., 2020).

2. For each type of the local descriptors above, we need some hyperparameters
to specify the implementation details. We list all the relevant hyperpara-
meters below.
(a) local-correlation-map.

• patch_x. The half height of rectangular patches that are translated to
calculate translational-symmetry-based local descriptors, corresponding
to px in subsection “Extracting Features via Translation Operations.”

• patch_y. The half width of rectangular patches corresponding to py ,
corresponding to py in subsection “Extracting Features via
Translation Operations.”

• window_x. The half height of the rectangular shift window that con-
fine translation shifts corresponding to wx in subsection “Extracting
Features via Translation Operations.”

• window_y. The half width of the rectangular shift window that con-
fine translation shifts corresponding to wy in subsection “Extracting
Features via Translation Operations.”

• max_num_points. The maximum number of translation operations to
choose from the shift window. There are (2∗wx + 1)∗(2∗wy + 1)
translation operations in the shift window. Instead of using all the
translation operations, we setup a uniform grid in the shift window
and only use the grid points to choose the translation operations.
We build the uniform grid as dense as possible, and the number of
grid points are not larger than max_num_points.

• method. This parameter is used to select the method to compute
local descriptors, which can be “direct” or “fft.” The default is
“direct.” We implemented two methods to calculate local-correlation
map, the direct method and the method based on fast Fourier
transform.

(b) preselected_translations.
• patch_x. Its syntax has been explained above.
• patch_y. Its syntax has been explained above.
• preselected_translations, which is a 2D numpy array. Each row spec-
ifies a translational vector.

(c) rotational_symmetry_maximum_pooling.
• radius. The radius of the circular patch.
• window_x. The half height of the rectangular window for max
pooling.
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• window_y. The half weight of the rectangular window for max
pooling.

(d) reflection_symmetry_maximum_pooling.
• radius. Its syntax has been explained above.
• num_reflection_plane. The number of reflection planes correspond-
ing to the number of reflection-symmetry-based features.

3. n_patterns. The number of patterns to partition the image into. It corre-
sponds to the number of clusters in K-means clustering. The default is 2.

4. upsampling. A Boolean parameter. If True, the upsampling is per-
formed on the output label array to match the size of input image.
The default is True.

5. stride. The stride size for both vertical and horizontal directions.
6. separability_analysis. A Boolean parameter. If True, the separability

analysis is performed for each feature. The default is False.
7. random_state. It can be an integer value or None. The random number

generation is required in the centriod initialization in the K-means clus-
tering. We may set this parameter to an integer value for reproducibil-
ity. The default is None.

8. sort_labels_by_pattern_size. A Boolean parameter. If True, sort the pat-
tern labels by size of patterns. The smallest pattern has a label of 0, and
the largest pattern has a label of n_patterns-1. The default is True.

Appendix B. FFT Implementation of Translational-
Symmetry-Based Local Descriptors

The numerator of Pearson’s correlation coefficient for translation Tm,n can be
rewritten as

∑px
i=−px

∑py
j=−py

[I(x + i, y + j)− mx,y] (B.1)

· [I(x + i+m, y + j+ n)− mx+m,y+n]

=
∑px
i=−px

∑py
j=−py

I(x + i, y + j)I(x + i+m, y + j+ n)
(B.2)

− (2px + 1)(2py + 1)mx,ymx+m,y+n (B.3)

where I( · · · ) denotes the pixel values of the entire image, and

mx,y =
1

(2px + 1)(2py + 1)

∑px
i=−px

∑py
j=−py

I(x + i, y + j). (B.4)

Similarly, the norm of the displaced patch in the denominator can be writ-
ten as

∑px
i=−px

∑py
j=−py

[I(x + i+m, y + j+ n)− mx,y]
2

=
∑px
i=−px

∑py
j=−py

[I(x + i+m, y + j+ n)]2

− (2px + 1)(2py + 1)(mx+m,y+n)
2

(B.5)

The norm of the undisplaced patch corresponds to the special case
m = n = 0.

The sums appearing in the equations (B.3)–(B.5) for all translations (m, n)
with −wx ≤ m ≤ wx and −wy ≤ n ≤ wy can be computed efficiently via fast
Fourier transforms (FFTs). For this, we note that the sums can be brought to a
common form

SA,Bm,n =
∑px
i=−px

∑py
j=−py

A(i, j)B(i+m, j+ n). (B.6)

A(i, j) is required for a range (− px . . .px)× (− py . . .py) and (i′ = i+m, j′ =
Bj+ n) for a larger range (− px − wx). . .px + wx)× (− py − wy . . .py + wy).
For the sum in equation (B.3), A(i, j) = I(x + i, y + j) and B(i′, j′) =
I(x + i′, y + j′). For equations (B.4) and (B.5), A(i, j) = 1 in both cases,
while B(i′ , j′) = I(x + i′, y + j′) for the mean and B(i′, j′) = [I(x + i′ ,
y + j′)]2 for the norm.

We now embed A and B in an extended range (0 . . .Wx − 1)× (0 . . .
Wy − 1) using periodic boundary conditions and zero-padding, see
Figure B.1. We are free to choose optimal Wx and Wy satisfying
Wx ≥ 2(wx + px)+ 1 and Wy ≥ 2(wy + py)+ 1. This means that originally
positive indices i, j (including zero) are left unchanged, negative ones are mapped
to Wx + i and Wx + j, respectively, and the values not covered by the original
ranges are set to zero. We denote the mapped quantities with A′ and B′. The
sums in equation (B.6) can then be extended to cover the full range,

SA,Bm,n =
∑Wx−1

i=0

∑Wy−1

j=0

A′(i, j)B′([i+m] mod Wx , [j+ n] mod Wy), (B.7)

which, in turn, is easily recognized as a periodic convolution. Using the Fourier
theorem, the convolution can be obtained from a forward discrete Fourier
transform

SA,Bm,n =
1

WxWy

∑Wx−1

i=0

∑Wy−1

j=0

[Ã
′
(i, j)]∗B̃′

(i, j)

· exp 2pi
i ·m
Wx

+ j · n
Wy

)

( )[ ]
,

(B.8)

where the complex-valued quantity

Ã(k, l) =
∑Wx−1

i=0

∑Wy−1

j=0

A′(i, j) exp −2pi
i · k
Wx

+ j · l
Wy

( )[ ]
(B.9)

Fig. B.1. Sketch of the FFT algorithm for shifted summation. After embedding A and
B in a sufficiently large periodic range with zero-padding, the shifted summation
becomes a periodic convolution in the extended range. Periodicity is indicated by
showing a 2× 2 repetition.
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is obtained from an inverse discrete Fourier transform. B̃
′
is obtained analo-

gously. The forward and inverse discrete Fourier transforms can be computed
using FFT algorithms with an effort O(WxWy ln [WxWy]). This can be con-
trasted to the straightforward algorithm with an effort of (2wx + 1)(2wy + 1)
(2px + 1)(2py + 1) ≈ 1

4 (WxWy)
2 if wx ≈ px and wy ≈ py . For computing the

three sums in equations (B.3)–(B.5), one needs four inverse transforms, and
three forward transforms. Additional savings could be made by precalculating
the patch norms for the entire image rather than for each patch center x, y in
the required environment, and by precalculating the inverse transform for the
case A(i, j) = 1 once for all patch centers, reducing the subsequent effort to 4
FFTs per patch center.

Appendix C. Speedup Scheme for Single Images/Frames:
Stride and Upsampling

We employ a stride and upsampling scheme to reduce computational cost.
Stride means we only calculate local descriptors for a fraction of pixels, that
is, the image is downsampled. The upsampling scheme is then employed to
estimate pattern labels of the pixels whose local descriptors are not evaluated.
To assign a pattern label for each pixel, a straightforward approach would
require to calculate local descriptors and perform clustering for all pixels,
for example, around one million pixels for a 1, 024× 1, 024 image.
Alternatively, we may first use the stride scheme to downsample the image,
and then perform upsampling after the clustering is finished in order to
match the size of the original image. In this way, we can reduce the computa-
tional cost drastically. The stride scheme we employ is identical to the one used
in convolutional neural networks. To be more specific, in the first step of our
approach, instead of calculating the local descriptors for each pixel by shifting
the local-symmetry-feature extractors every time by one unit, we shift them by
a step size of s units vertically and horizontally and only calculate the local
descriptors for a fraction of pixels. The selected pixels in the stride step will
obtain pattern labels from the k-means clustering whereas those unselected

ones will not. To assign pattern labels to the unselected ones, we simply do
a nearest neighbor interpolation in our upsampling step, that is, the unselected
pixels obtain pattern labels identical to the selected pixels that are closest to
them. In the end, we obtain a segmented image that has the same size as
the original one. The upsampling scheme contains no training parameters,
which keeps our whole approach free of training.

In Figure C.1, we show a time cost and accuracy test for the stride and
upsampling scheme. The purpose is not to provide an absolute timing bench-
mark, but to illustrate the tuning opportunities inherent to this scheme. For
this test, we use an HAADF-STEM image of size 1, 024× 1, 024 pixels. The
time cost decreases roughly with 1/stride2 whereas the accuracy keeps above
97% for all the strides in this test.

Fig. C.1. Time cost and accuracy for segmentation of an HAADF-STEM image (shown
in Fig. 10) with different strides.
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