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Abstract
Discord, originally notable as a signature of bipartite quantum correlation, in fact can be nonzero
classically, i.e. arising from noisy measurements by one of the two parties. Here we redefine
classical discord to quantify channel distortion, in contrast to the previous restriction of classical
discord to a state, and we then show a monotonic relationship between classical (channel) discord
and channel distortion. We show that classical discord is equivalent to (doubly stochastic) channel
distortion by numerically discovering a monotonic relation between discord and total-variation
distance for a bipartite protocol with one party having a noiseless channel and the other party
having a noisy channel. Our numerical method includes randomly generating doubly stochastic
matrices for noisy channels and averaging over a uniform measure of input messages. Connecting
discord with distortion establishes discord as a signature of classical, not quantum, channel
distortion.

1. Introduction

Discord is often touted as a quantifier of quantum correlations in a state, with nonzero discord said to
imply that observed correlations transcends non-quantum (i.e. ‘classical’) limits [1, 2], akin to, but different
from, a Bell inequality [3]. Treated as a quantum resource operationalized by state merging [4], discord in
quantum computing protocols [5, 6] is believed by many to deliver a quantum advantage to some protocols
[7]. However, this quantum nature of discord has been challenged by stochastic information, which shows
that discord is due to noisy measurement by one of the two parties [8]. Essentially, discord can be
understood in terms of a protocol amenable to a stochastic-information interpretation, and this
interpretation fails if and only if (iff) the two parties share bipartite entanglement [8]. Discord thus serves
as a fascinating starting point for studying stochastic information.

Previous work analyzed state discord in the context of classical states [8], i.e. analyzing discord as a
signature of classical rather than quantum correlations. Here we introduce the concept of classical channel
discord, which is based on averaging over all allowed channel input states for a given channel, with the
previous definition used in assessing how much discord is added to a state by the given channel. Our
expression for channel discord is amenable to numerical evaluation, which shows channel discord is
monotonic with respect to channel distortion. We augment this numerical analysis by solving analytically
the small but nontrivial two-bit case (each of two parties holds one bit) to confirm our numerics for this
case and establish a path for proving discord–distortion monotonicity, which is a challenging calculation as
we show. Our monotonicity result establishes meaningfully that channel discord and distortion are
essentially equivalent.
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Mathematically, discord in a two parties state refers to an apparent discrepancy between two expressions
for mutual information obtained by two parties named here as Alice (A) and Bob (B), one quantity
depending on joint probability and then other depending on conditional probability. The usual view of the
reason for quantum discord in a state is that conditional information must be adapted to the quantum case
by introducing measurement, and this incompatibility gives rise to nonzero discord [2]. Quantum discord
in a state has been shown to be equivalent to classical discord iff entanglement between the two parties is
zero, and this equivalence has been explained by showing that, in the absence of entanglement, discord
represents one party, namely Bob, suffering from noisy measurement whereas Alice’s measurements are
ideal [8]. Our goal is to show that classical channel discord, obtained by averaging channel-added discord to
all allowed channel input states, is equivalent to channel distortion by establishing a monotonic relation
between discord and total-variation, or Kolmogorov, distance, which quantifies channel distortion. We
analyze the general case numerically and solve analytically for the two-bit case.

Our article is structured as follows. In section 2 we summarise essential background on stochastic
information, discord, total-variation distance and doubly stochastic channels. Our approach is described in
section 3 and our approach specifically elaborates on our model for describing a noisy protocol for creating
channel discord. Furthermore, section 3 presents our notation and mathematical expressions, and our
methods for solving these expressions numerically. Subsequently, in section 4, we present our numerical
results and explain the plots, and we discuss the results thoroughly in section 5. In section 6, we summarise
our claims and provide an outlook. In appendices A and B we introduce convenient notation for probability
vectors and what we call Hadamard calculus respectively, which fundamental to our approach.

2. Background

In this section we discuss the background and context for our work. In section 2.1 we discuss informational
states including what we call stochastic information, which is a probabilistic mixture of definite
informational states; specifics regarding probabilistic information states are explained in appendix B, which
is based on the Hadamard notation explained in appendix A. Included in this discussion, we review the
notions of entropy by considering shared information between parties, and we also review the notions of
entropy and mutual information, all in the elegant Hadamard notation elaborated in appendix A, which we
apply for the first time to this application. Then, in section 2.2, we explain mappings of information states
in terms of channels with special emphasis on doubly stochastic channels. In this subsection we discuss
ways to quantify how stochastic a channel is. Finally, in section 2.3, we review the notion of classical discord
for states and the concepts of total-variation distance for stochastic information states; quantum discord is
explained in appendix C.

2.1. Stochastic information
In this subsection we review the concept and mathematical framework for stochastic information based on
the probability-vector representation elaborated in appendix B which uses Hadamard calculus introduced
in appendix A. Then we discuss known concepts concerning entropy of a stochastic-information state by
using Hadamard calculus introduced in appendix A. Finally, we review bipartite stochastic information
including conditional entropy and mutual information.

The joint probability of messages shared between Alice, whose message size is MA, and Bob, whose
message size is MB, is the bipartite matrix

pAB =
∑
mm′

pAB
mm′δ

AB
mm′ ∈ matMA×MB

(
R�0

)
,
∥∥pAB

∥∥ = 1, (1)

using the notation that matMA×MB (R) refers to matrices with MA rows and MB columns whose entries are
from any ring R. The norm is defined by equation (A4). Here we have let δAB

mm′ denote a versor for message
m′ as discussed in appendix B.

In concordance with quantum-information nomenclature, we refer to δm̌ as a ‘pure state’ [9]. Impure
states refer to ‘mixed’ states, which are probabilistic mixtures of pure states and are obtained as a
probabilistic mixture of any pure state. We discuss mixed and pure bipartite stochastic-information states in
appendix B.

Now we discuss the entropy of the probability vector representing the mixed message. Mixedness of a
state p ∈ RM is quantified by entropy [10]

0 � H(p) := − p � log p � log M (2)

2
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using Hadamard notation explicated in appendix A. A state is pure iff its entropy is zero, which follows
from p ◦ log p = 0 for a versor. The lower bound for the entropy (2) is H(p) = 0 for a pure state. The upper
bound for entropy is H(p) = log M for a uniformly mixed state, with M as the size of p. A high-entropy
state is a state whose entropy is close to this bound. The joint state (1) has joint entropy HAB (2) and total
message size M. In our analysis, we always assume, without loss of generality, that

MA ≡ MB =⇒ MA =
√

M = MB. (3)

Thus, the joint entropy of the bipartite versor (B5) is zero as required for a pure state. The matrix
representation of pAB is an MA × MB matrix, with nonnegative real entries such that the sum of all entries is
one.

The marginal distribution is obtained by ignoring the other party’s share of the mixed state. Hence,
Alice’s marginal distribution is the probability vector

pA :=

(∑
m′

pAB
mm′

)
,
∥∥pA

∥∥ =
∑

m

pA
m (4)

using the unit one-norm. Similarly, we construct the marginal distribution pB by summing over Alice’s
degree of freedom.

Alice’s state conditioned on Bob’s state is

pA|B := pAB 
 pB =

(
pAB

mm′

pB
m′

)
(5)

with 
 explained in appendix A. The last term of equation (5) displays row-vector elements pA
m obtained by

element-wise division of each matrix element pAB
mm′ by respective column-vector elements pB

m′ . Similarly, the
conditional probability distribution for Bob is pB|A = pAB 
 pA analogous to (5).

The entropy of the conditional probability distribution pA|B is

HA|B (pAB
)
= H

(
pA|B

)
. (6)

Fact 1. A bipartite stochastic state pAB, which decomposes to pAB 
 pB and to pAB 
 pA, is conditionally pure
(cp) iff

HA|B ≡ 0 ≡ HB|A. (7)

Consequently, pAB is cp iff it is permutationally equivalent to a diagonal matrix; i.e. in diag([0, 1]),
which refers to the set of diagonal matrices whose entries are each in the real-number interval [0, 1]. Thus,

∃σ ∈ SMA ,σ′ ∈ SMB : ΠσpABΠσ′ ∈ diagmin{MA,MB}([0, 1]), (8)

i.e. is diagonal of size min{MA, MB} × min{MA, MB}. Furthermore, conditional probability distributions
pA|B and pB|A, which are obtained from a bipartite stochastic pure information state pAB, are necessarily
pure.

Operationally speaking, a bipartite state is cp only if Alice’s pure state can be known by Bob after he
measures his share of the joint stochastic-information state and vice versa. Consequently, the bipartite
versor (B5) used in equation (1) is cp.

Mutual information

IA;B
(

pAB
)

:=HA
(

pAB
)
+ HB

(
pAB

)
− HAB

(
pAB

)
=pAB � log

(
pAB 
 pA 
 pB

)
(9)

quantifies correlation between two parties, Alice and Bob, with the last part of this expression expressed in a
novel way by using Hadamard arithmetic. An equivalent, alternative mutual information definition is

JA;B
(

pAB
)

:=HA
(

pAB
)
− HA|B (pAB

)
= IA;B

(
pAB

)
. (10)

Consequently,
ΔA;B

(
pAB

)
:= IA;B

(
pAB

)
− JA;B

(
pAB

)
≡ 0 (11)

so IA;B
(

pAB
)

(9) and JA;B
(

pAB
)

(10) are equal.

3
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2.2. Stochastic map and stochastic matrix
A noisy channel is any mapping that changes the entropy (or noise, which is monotonically related) of a
state in a non-decreasing way and adds noise to at least one state [11]. We are specifically interested in noisy
channels that can be represented as stochastic matrices that map probability vectors representing states [8].

Under the action of a channel represented by matrix E , the state, represented by p, maps to Ep. We
require that E is a square matrix with nonnegative entries such that either rows or columns sum to one.
Hence, the norm of the state p is unchanged by the stochastic map by stochastic matrix E . The entropy of
this state after passing through the channel is H(Ep) � H(p). A doubly stochastic matrix is a stochastic
matrix whose rows and columns both sum to one.

In the bipartite setting, an identity mapping by Alice concomitant with a stochastic map E by Bob, yields
the resultant bipartite state

pAB �→ IpABE = pABE . (12)

with the trivial identity map I on Alice’s side and the noise matrix E only acting on Bob’s share. By the
Perron–Frobenius theorem, E being stochastic or doubly stochastic implies that this mapping has at least
one stationary vector with all entries being positive real numbers with this vector corresponding to the
largest eigenvalue of the matrix representing the mapping [12].

Although we discuss discord and total-variation distance in terms of measurement described by a noisy
measurement channel represented by a stochastic matrix, we focus on doubly stochastic matrices due to the
abundance of mathematical properties that we can exploit for generating and understanding our results. For
stochastic information theory, doubly stochastic matrices are the non-quantum analogue of quantum
completely positive trace-preserving maps [13].

Birkhoff’s theorem says that any doubly stochastic matrix can be written as a convex hull of permutation
matrices, which is known as the Birkhoff polytope [14]. The doubly stochastic matrix thus represents a
random permutation of bits in the string. Furthermore, for each strictly positive matrix A, exactly one
doubly stochastic matrix TA exists such that TA = DAD′ with the diagonal matrices D and D′ having
positive diagonal-elements and themselves unique up to a scalar factor [15, 16]. Here we present key
background information on doubly stochastic matrices needed for our study. Specifically, we define doubly
stochastic matrices and connect these matrices with the Birkhoff polytope, also known as a permutahedron.
A permutation σ is represented by a permutation matrix Πσ , whose entries are all zeroes and ones such that
only one instance of one appears in each row or column. For ℘ a length-M! probability vector, a
permutahedron E is the convex sum

E =
∑
σ∈SM!

℘ ·Πσ , Πσ ∈ matM!

(
{0, 1}

)
=⇒ E ∈ matM! (R) . (13)

Note that EΠσ = ΠσE .

2.3. Classical discord and distortion for a state
In appendix C, we summarise quantum discord; in this subsection, we summarise classical discord for
stochastic-information states [8]. Whereas quantum discord is the discrepancy ΔA;B between mutual
information I (9) and J (10) for quantum states, classical discord (11) is zero in the ideal case. However,
discord is nonzero if, analogous to the quantum case, which optimizes over all possible measurements,
classical discord also involves noisy measurements.

Alice’s measurements are treated as ideal whereas Bob’s measurements are treated as being noisy,
described by a stochastic or a doubly stochastic mapping E acting on the state (12) [8]. The resultant state,
after Bob’s noisy measurement, is pABE (12). Whereas the mutual information I (9) is known, the
alternative mutual information (10) is modified to include the effect of Bob’s noisy measurements and is
consequently described by

JA;B
E

(
pAB

)
:= JA;B

(
pABE

)
(14)

with the subscript E referring to Bob’s noisy channel as we always treat Alice’s as ideal: I. In other words,
the conditional information inherent in inferring alternative mutual information (14) involves Bob
announcing his results to Alice, and Bob’s measurement apparatus is noisy: described by stochastic or
doubly stochastic channels, as described in section 2.2, prior to ideal measurement and announcement by
Bob. Following this definition of alternative mutual information involving noisy measurement (14), discord
for stochastic information is [8]

ΔA;B
E

(
pAB

)
:= IA;B

(
pAB

)
− JA;B

E
(

pAB
)

(15)

for specified noisy channel E , which only affects J and not I. State discord (15) is considered to be classical
because states are distributions and because channels are stochastic maps; i.e. all the mathematical objects

4
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are distributions and their mappings and hence does not require a Hilbert-space description. This
E-dependent discord is necessarily nonnegative due to the data-processing inequality [11].

By analogy with quantum discord, which minimizes over all measurement, classical discord corresponds
to minimizing state discord (15) over all allowed channels {E} [8]. For shared stochastic-information states,
classical discord quantifies how much stochasticity is added by a noisy measurement process. If this noise is
described by a doubly stochastic channel, this noise corresponds to random permutations, following
Birkhoff’s theorem, corresponding to instances of measuring some messages incorrectly as other messages,
with the identity permutation corresponding to measuring all integers correctly. Non-zero discord can be
interpreted as quantifying stochasticity added by measurement only if entanglement is zero; otherwise a
quantum model is required to describe correlations [8]. Analogous to quantum state merging
operationalizing quantum discord [4], stochastic-information state merging operationalizes classical
discord [8].

Channel distortion, which is used in rate-distortion theory [11], quantifies the minimum number of bits
required per symbol that could be achieved over a channel so that the input signal can be approximately
reconstructed at the output without exceeding a given expected distortion. Mathematically, rate-distortion
theory, distortion functions quantify the cost of representing a symbol by an approximate symbol. Typical
distortion functions include Hamming distortion, squared-error distortion and total-variation.

Total-variation, or Kolmogorov, distance between probability distributions p and p′ (B2), namely [17],

D
(

p, p′) :=
1

2

∑
m∈[M]

|pm − p′m| . (16)

has been widely used for extremum problems, such as controlling uncertain stochastic systems [18],
approximating a family of probability distributions by a given probability distribution, maximizing or
minimizing entropy subject to total-variation distance constraints, quantifying uncertainty of probability
distributions by total-variation distance metric, stochastic minimax control, and in many problems of
information, decision theory, and minimax theory [19], testing for scale families [20] and distortion of
channels [11]. Thus, total-variation distance is well studied and valuable across a broad spectrum of
applications, including for us in comparing total-variation distance to discord.

3. Approach

In this section, we begin by explaining our model, which involves three agents: Alice and Bob who share
messages and Charlie who provides random messages from a distribution. After describing the model, we
develop the mathematics required to analyse the effect of noisy measurement in terms of average discord
and average distortion in section 3.2. Finally we elaborate on our methods for solving the expressions and
what we plot in section 3.3.

3.1. Model
We describe our model for discord as a three-agent protocol involving Charlie, Alice and Bob. By describing
the tasks performed by each of the three agents, we have fully described the protocol and the pertinent
quantifiers of discord and distortion. Although this model is implied in a previous study of classical discord,
we need to make explicit the agents of this protocol and their actions to be clear in our study of channel
discord.

Charlie generates joint distributions

{ pAB ∈ matMA×MB

(
R�0

)
} (17)

with prior Q
(

pAB
)

and then computes IA;B
(

pAB
)

(9) for each pAB. For given pAB (1), Charlie generates a
length-ς sequence of pairs of integers {(

mA ∈ [MA], mB ∈ [MB]
)}

(18)

by sampling over pAB. In each instance, the first integer message mA is sent to Alice and the second integer
message sent to Bob. As A and B can experience noise in their readout, the resultant messages, mA ′

and mB ′
,

can differ from the original messages, mA and mB.
Alice and Bob send this noisy pair, mA ′

and mB ′
, to Charlie. At the end of this part of the protocol,

Charlie has stored the length-ς sequence {mA ′
, mB′ }. Charlie then infers the distribution pA ′B ′

from these
data, with this inferred state represented by p̃A′B′

.
As Alice’s instrument is assumed to be noiseless, mA ′ ≡ mA, Charlie’s procedure is greatly simplified: he

does not send Alice the message but just stores it. The message pair is thus {(mA, mB′
)}. Charlie’s inferred

5
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state is p̃ABE ∈ matMA×MB

(
R�0

)
, which approximates the actual state pABE after Bob’s noisy measurement

and equation (1). Charlie computes all permutations of the state p̃ABE , with each permuted state denoted

p̃ABEΠσ .
He thence estimates the alternative mutual information JA;B

σ (10) with the subscript σ indicating which

of the permuted states p̃ABEΠσ is being considered. With these results at hand, Charlie estimates the discord

for each p̃ABEΠσ and computes the minimum discord over all σ. Then he averages over results for many
generated states pAB to obtain an estimate for average discord for a specific channel corresponding to Bob’s
noisy measurement.

For each estimate p̃ABEΠσ , he computes the distortion, which he quantifies by the total-variation

distance DA;B
σ

(
p̃ABEΠσ

)
, between pAB and the estimate p̃ABEΠσ. Charlie repeats this task for all

permutations σ to obtain the minimum total-variation distance and then averages over all states to obtain
average distortion. The mathematical description of this procedure is in section 3.2.4.

In each instance Alice receives noiseless message mA, which is the versor δmA , which she reads and sends
the same message back to Charlie. Thus, for our mathematical analysis, Alice’s role is superfluous, hence
neglected in our protocol.

In each instance Bob receives message mB. His measurement is noisy, which we describe by a doubly
stochastic channel E described in section 2.3. This noise corresponds to permutations of the message basis
so some messages are seen to be different messages incorrectly except in the case of the identity permutation
𝟙, which corresponds to reading the message correctly.

To elucidate our model, we consider the specific case of a two-bit channel. Thus, we assume that Charlie
generates a single bit each for Alice and Bob; i.e. MA = MB = 2 and mA, mB ∈ {0, 1}. Let the noisy channel
be the mapping of 0 to 0, i.e. 0 �→ 0, with probability 2

3 . Then, by the doubly stochastic property, 0 �→ 1
with probability 1

3 and 1 �→ 1 with probability 2
3 so 1 �→ 0 with probability 1

3 the matrix describing this

mapping is doubly stochastic. Bob sends the message mB ′
obtained from his measurement back to Charlie.

Note that, for the execution of this protocol, the same stochastic matrix, which describes Bob’s
measurement noise, is applied once per instance, i.e. each time that Bob reports each measurement
outcome.

3.2. Mathematics
In this subsection, we describe in section 3.2.1 how Charlie generates states as randomly chosen joint
distributions to be sent to Alice and Bob, and then we describe how random channels are generated in
section 3.2.2 for Bob. In section 3.2.3 we describe mathematically how the channel is applied to the joint
state. Permutations are applied to states, and both discord and distortion are minimized over all
permutations, as described in section 3.2.4. Finally, in section 3.2.4, we explain how average discord and
average distortion are estimated.

3.2.1. Generating joint distributions
In this subsection, we explain mathematically how Charlie generates pAB. Charlie constructs a prior
Q
(

pAB
)
, which is heavily weighted over high-entropy states, meaning that state entropy (2) is close to the

upper bound. By sampling this prior, Charlie obtains states with high, low and medium entropy by a linear
interpolation between states drawn randomly from Q

(
pAB

)
and the state represented by the identity matrix

denoted 𝟙. This linear interpolation generates a continuum of interpolated states for each of the Nrand states.
Thus, Charlie generates random states from which he draws messages to send to Alice and Bob.

To sample from Q
(

pAB
)
, we generate a random p ∈ matMA×MB (R) with each of the M = MAMB entries

chosen uniformly from [0, 1]. The matrix p is then normalized by dividing all entries by their sum. This
method of selecting random states leads to states that are mostly high-entropy with the maximum entropy
being log

(
MAMB

)
. For MA = MB, which corresponds to a square matrix, the maximum entropy is log M

for M the square (3) of MA.

Alternatively, Charlie can sample from a joint-state prior Q
(

pAB
cp

)
for cp states, with cp states satisfying

fact 1. Conditionally pure states are permutationally equivalent to diagonal matrices diagmin{MA,MB}([0, 1]),

as explained in equation (8). Thus, For MA = MB, a cp state is constructed by generating a random
pcp ∈ diagMB ([0, 1]) with each of the diagonal entries chosen uniformly from [0, 1] and then normalized
such that the sum of diagonal elements is one. As for general states, such cp states also tend to have high
entropies.

6
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Sampling either Q
(

pAB
)

or Q
(

pAB
cp

)
yields a candidate state pAB

cp , which is then mapped to a family

according to

pAB
cp �→

apAB
cp + b𝟙

norm apAB
cp + b𝟙

∀ a ∈ [0, 1], b ∈ [B], (19)

where B � 1 to ensure sufficiently many medium- and low-entropy states. The channel representing Bob’s
noisy measurement then acts on Bob’s message share, and we explain how to generate these channels in the
next subsection.

3.2.2. Generating channels
In this subsection, we explain how to generate a random doubly stochastic channel for Bob. As the doubly
stochastic channel is a permutahedron discussed in section 2.2, generating a random channel is equivalent
to constructing the length MB! weight, or probability, vector ℘, which corresponds to the probability
coefficients for reverse lexicographic ordering of permutations {σ}, similarly to reverse lexicographical
ordering of the vector of permutation matrices (B4). A given weight vector ℘ has associated entropy

0 � H(℘) � log MB!, (20)

which is the entropy of the corresponding channel E . Now we explain how to generate ℘ from a
distribution P that is an equal weighting of a uniform prior P↑, resulting in high-entropy weight vectors ℘↑
such that its entry H(℘↑) (2) is the maximum entropy log MB!, and another prior P↓ that generates states
℘↓ with low entropy H(℘↓) (2).

To generate P↑, we first set each entry of ℘↑ be 1 and then normalize this length MB! weight vector by
dividing each element by ‖℘‖1. In contrast, we generate P↓ by uniformly randomly generating the first
element of ℘↓, namely ℘1

↓, from the interval [0, 1] and replace

℘1
↓ ←

℘1
↓

MB!
. (21)

The next element of the weight vector, namely, ℘2
↓, is drawn uniformly from the interval[
1 − ℘1

↓, 1
]

,

and we continue according to the rule that ℘� is drawn uniformly from[
1 −

�−1∑
j=1

℘j
↓, 1

]
.

After randomly generating all these MB! elements, we normalise this weight vector to obtain ℘↓.
Now that we have generated an instance of a low-entropy weight vector ℘↓ and a high-entropy weight

vector ℘↑ we generate numerous vectors in between the two by linear interpolation, thereby sampling the
continuous set

℘
(
℘↓,℘↑, a

)
:=

a℘↓ + (1 − a)℘↑∥∥a℘↓ + (1 − a)℘↑
∥∥ ∀ a ∈ [0, 1], (22)

This interpolation (22) yields medium-entropy channels to round out the sampling.
As we have generated many random instances of ℘ (22), we can construct corresponding descriptions of

doubly stochastic channels. The elements of ℘ are coefficients of reverse lexicographically ordered
permutation matrices, and this weighted sum is then the permutahedron that describes random doubly
stochastic channel E with entropy given by the entropy of its representative weight vector. Mathematically,
the matrix description of the channel is

E = ℘ ·Π, Π := (Πσ;σ ∈ SMB!) , (23)

for ℘ and Π length-MB! vectors of real numbers and permutation matrices (B4), respectively, and σ ∈ SMB!

is drawn in reverse lexicographical order.

3.2.3. Applying the channel to the joint distributions
To describe Bob’s noisy measurement mathematically, we apply the generated random channel, discussed in
section 3.2.2, to Bob’s share of the entire message pAB sent by Charlie. First suppose that Alice and Bob each
have noisy measurements described by channels EA and EB, respectively. Then the state sent back to Charlie
from Alice and Bob is

EApABEB ∈ matMA×MB (C), pAB ∈ matMA×MB(C), EA ∈ matMA×MA(C), EB ∈ matMB×MB (C), (24)

7
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corresponding to one application of a noisy channel for each of Alice’s and Bob’s noisy measurements but
noiseless transmission back to Charlie. As Alice’s measurement is noiseless, we assign

EA ≡ 𝟙, EB = :E . (25)

Remark 1. In section 3.1, Charlie estimates pABE to be p̃ABE by repeated sampling but here, in the
mathematical description, we work with exact descriptions of the state (24).

3.2.4. Estimating discord and distortion
After Charlie receives pABE (24), he computes all permutations of this matrix. Charlie generates each of the
MB! instances of MB × MB permutation matrices Πσ (B3), for each σ drawn from permutation group SMB

in reverse lexicographical order. For each instance σ, Charlie obtains the permuted state by multiplying
pABE by each permutation matrix Πσ .

Here we redefine average discord to quantify channel distortion, in contrast to the earlier definition of
classical discord in terms of fluctuations for a state [8], and we define average distortion. This redefinition
of average discord, in terms of channels, then allows us to show numerically the monotonic relationship
between classical (channel) discord and channel distortion. Average discord is obtained first by minimizing
discord (15) over all state permutations and then by averaging over all states according to the prior Q

(
pAB

)
in section 3.2.1. Similarly, average distortion is obtained by averaging state-dependent distortion (16) over
the prior of states Q

(
pAB

)
.

For average discord, we first extend state-dependent discord (15) to be the minimized state-dependent
discord over all permutations of the state

min
σ

ΔA;B
E

(
pABΠσ

)
. (26)

Averaging over the prior Q
(

pAB
)

yields channel discord

ΔA;B (E) :=

∫
dQ

(
pAB

)
min
σ

ΔA;B
E

(
pABΠσ

)
, (27)

which quantifies the discord due to noisy measurement in a state-independent but of course
prior-dependent way. Average discord is obtained by sampling the integral (27) to obtain the estimate
Δ̃A;B(E).

Similarly, we extend the definition of distortion D (16) first by minimizing over permutations and then
by averaging over the prior Q

(
pAB

)
. The state- and channel-dependent distortion is

DA;B
E

(
pAB

)
:=D

(
pABE , pAB

)
(28)

and its minimization over all permutations is

min
σ

DA;B
E

(
pABΠσ

)
. (29)

Then, analogous to average discord (27), we integrate to obtain channel distortion

DA;B (E) :=

∫
dQ

(
pAB

)
min
σ

DA;B
E

(
pABΠσ

)
(30)

for a given channel. Average discord is obtained by sampling the integral (27) to obtain the estimate
D̃A;B(E).

3.2.5. Example: two-bit channel
We now elucidate our model by considering the special case where Charlie generates a single bit for Alice
and a single bit for Bob: MA = MB = 2. Thus, equation (1) implies that the joint probability of messages
shared between Alice and Bob is specified by the matrix

pAB =

(
p00 p01

p10 p11

)
, pij � 0, p00 + p01 + p10 + p11 = 1. (31)

The two-bit state (31) is subjected to a distortion channel whose form is dictated by equation (23), which
implies

E =

(
1 − μ

μ

)
·
(
𝟙
X

)
= (1 − μ)𝟙+ μX =

(
1 − μ μ

μ 1 − μ

)
, 0 � μ � 1. (32)

8
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Consequently, the entropy is
H = −(1 − μ) log(1 − μ) − μ log μ (33)

according to equation (20).
Applying the channel to the two-bit state yields

pABE =

(
p00 p01

p10 p11

)
·
(

1 − μ μ
μ 1 − μ

)
=

(
(1 − μ)p00 + μp01 μp00 + (1 − μ)p01

(1 − μ)p10 + μp11 μp10 + (1 − μ)p11

)
. (34)

We then compute the state discord per equation (26), and we could perform a similar calculation for state
distortion per equation (16). The explicit expression for discord (26) is(

(1 − μ)p00 + μp01 + (1 − μ)p10 + μp11

)
log

(
(1 − μ)p00 + μp01 + (1 − μ)p10 + μp11

)
+
(
μp00 + (1 − μ)p01 + μp10 + (1 − μ)p11

)
log

(
μp00 + (1 − μ)p01 + μp10 + (1 − μ)p11

)
−
(
(1 − μ)p00 + μp01

)
log

(
(1 − μ)p00 + μp01

)
−
(
μp00 + (1 − μ)p01

)
log

(
μp00 + (1 − μ)p01

)
−
(
(1 − μ)p10 + μp11

)
log

(
(1 − μ)p10 + μp11

)
−
(
μp10 + (1 − μ)p11

)
log

(
μp10 + (1 − μ)p11

)
−
(
p00 + p10

)
log

(
p00 + p10

)
−
(
p01 + p11

)
log

(
p01 + p11

)
+ p00 log

(
p00

)
+ p01 log

(
p01

)
+ p10 log

(
p10

)
+ p11 log

(
p11

)
(35)

as a function of state pAB and channel parameter μ.
If we could integrate discord and distortion over all possible joint states, i.e. over the formal variables

p00, p01, p10, pl1 with respect to an appropriate prior distribution, then we could obtain channel discord and
distortion via equations (27) and (30), respectively. Note that the resulting expressions depend only on μ.
On the other hand, if discord is monotonic with respect to entropy for all states {pAB}, i.e. for all points on
the tetrahedron, then discord would be monotonic with respect to this average.

3.3. Methods
In this subsection we discuss how we average discord and average distortion for many randomly chosen
channels, with each of these channels corresponding to a different noisy measurement process implemented
by Bob. First, we explain in section 3.3.1 how many instances of states we generate and how to create those
instances. Then, in section 3.3.2, we explain how we generate all permutation matrices and thence all
permuted states. Then we explain how we generate random channels {E} numerically in section 3.3.3 and
how many such channels. Finally, in section 3.3.4 we explain how we calculate the states sent back to
Charlie, how to use these states to compute average discord and average distortion, and then study their
relations.

3.3.1. Numerically generating states

We begin by generating joint states from either prior Q
(

pAB
)

or Q
(

pAB
cp

)
as described in section 3.2.1. In

practice, we generate random states as follow. First we choose B = 99 in equation (19) as we have
discovered empirically that this value of B yields a good spread of low-, medium- and high-entropy states.
Then we step through values of linear interpolation parameter a by increasing in step sizes that grow
quadratically: the coefficient a of 𝟙 increases in steps of ([� − 1]0.0101)2 for � ∈ [100].

For each choice of a and fixing b = (1 − a)B, we choose a new random instance of pAB according to the
random-matrix construction method described in section 3.2.1. We insert a, b and pAB into equation (19)
to obtain one instance of a state for calculating average discord and average distortion.

3.3.2. Numerically generating all permutation matrices
Our analysis considers different messages sizes M such that MA = MB =

√
M, where we have chosen to

study only cases for which Alice’s and Bob’s messages are the same size. For each message size all
permutation matrices are generated according to the mathematical description in section 2. We need to
construct MB! permutation matrices, each of size MB × MB, representing permutations σ ∈ SMB . Each row
of the matrix corresponds to a permuted version of the length-MB initial row vector, which is the vector
comprising entries that are the column numbers themselves. These columns correspond to reverse
lexicographical ordering of the permutations, with reverse lexicographical ordering discussed in section 2.

We apply perms from MATLAB® to the initial vector, and the output is the MB!× MB matrix Θ, whose
elements are column indices for nonzero entries of permutation matrices Πσ . For each of the MB! rows,
labelled by σ in reverse lexicographical order, we construct the corresponding MB × MB permutation
matrix Πσ , whose entries are all zeroes and ones such that only one instance of one appears in each row or
column as described in and around equation (B3).

9
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Specifically, to generate Πσ , we pick row σ from the matrix Θ, denoted as a vector Θσ . The value of the
entry in the first column of Θσ indicates which element of the first row of Πσ is one, with the rest of the
elements in that row being zero. Then we proceed to the second entry of the vector Θσ , and its value
indicates which element of the second row of Πσ is one. We continue for all MB rows of Πσ and then repeat
for all σ ∈ SMB . In this way we have constructed the full set of permutation matrices for message mB.

3.3.3. Numerically generating random channels
We generate 6000 doubly stochastic channels, each channel represented by some weight vector ℘

(
℘↓, a

)
(22), regardless of message size. Construction of each of these weight vectors proceeds according to the
mathematical description in section 3.2.2. We choose to generate 6000 instances of random channels
because we allow for 100 equally spaced values of a in equations (22) and 60 randomly chosen ℘↓ for
each a.

A doubly stochastic channel is a permutahedron, and we have generated the set of all permutation
matrices Πσ ∈ SMB in section 3.3.2. Specifically, we generate random weight vectors according to
equation (22), thereby yielding low-, medium- and high-entropy (20) weight vectors. The resultant set of
6000 randomly generated weight vectors faithfully represents 6000 randomly generated channels, and our
interpolation (22) ensures good sampling of a wide range of channel entropies. In addition, we manually
add the noiseless channel 𝟙 to our simulations to include the instance of zero average discord and zero
average distortion.

3.3.4. Relating average discord to average distortion
Now that state pAB is generated numerically according to the procedure described in section 3.3.1, for both

Q
(

pAB
)

corresponding to random initial states and Q
(

pAB
cp

)
for random cp states, we calculate the

corresponding pABE for each permutation σ. These permuted returned states {pABEΠσ} are used to
calculate both average discord and average distortion. Mathematical expressions for average discord and
average distortion are given in section 3.2.4.

We begin with how we calculate average discord ΔA;B (E) (27). First we calculate each ΔA;B
E

(
pABΠσ

)
for

each pAB and then minimize over all σ ∈ SMB according to equation (26), thereby obtaining the minimized
ΔA;B (E). The next step is to average over all pAB. As explained in section 3.3.1, we generate a random state
pAB for each choice of linear interpolation parameter a (22), which suffices to sample the integral (27) fairly
and thus obtain a good estimate Δ̃A;B(E) of the actual average discord ΔA;B(E).

The procedure for calculating average distortion DA;B(E) (30) is similar. First we calculate each
DA;B

E
(

pABΠσ

)
for each pAB and then minimize over all σ ∈ SMB according to equation (29), thereby

obtaining the minimized DA;B (E). The next step is to average over all pAB. As explained in section 3.3.1, we
generate a random state pAB for each choice of linear interpolation parameter a (22), which suffices to
sample the integral (30) fairly and thus obtain a good estimate D̃A;B(E) of the actual average distortion
DA;B(E).

Finally, we relate estimated average discord to estimated average distortion by plotting Δ̃A;B(E) against
D̃A;B(E). Specifically, we choose sufficiently large yet tractable message sizes, namely, MB ∈ {6, 7} and make
distinct plots for each MB. For each randomly chosen channel, the resultant single point on the graph
corresponding to Δ̃A;B(E) and D̃A;B(E) is marked, and we thereby obtain a scatter plot. We create plots for
two cases, random initial states and random initial cp states, and compare these two cases.

3.3.5. Example: two-bit channel

We explicitly analyze the relationship between average channel discord (27) and channel distortion (30) in
the case of a two-bit channel as described in section 3.2.5. By doing so, we establish the monotonicity of
discord as a function of channel entropy. Our approach follows.

(a) We first recognize that the set of possible channels E can be parameterized by a single number
0 � μ � 1 per equation (32). Hence, the channel discord can be expressed as a function of μ.
Furthermore, the channel discord is defined to be an integral with respect to some measure over an
integrand that itself depends on μ. If we prove that the integrand is monotonic in μ over some interval,
we will also have proved that the integral is monotonic in μ over the same interval.

(b) We can therefore assess the monotonicity of the channel discord (26), which we write here simply as Δ,
as a function of H (33) by examining the derivative of Δ with respect to H and applying the chain rule:

dΔ

dH
=

dΔ
dμ
dH
dμ

=
(
log(1 − μ) − log μ

)−1 · dΔ

dμ
. (36)
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Figure 1. Scatter plot of average discord Δ̃A;B(E) vs average distortion D̃A;B(E) for Bob’s random noisy measurements
represented by 6001 randomly chosen doubly stochastic channels {E}. Each instance of E is evaluated for 100 random initial
bipartite states {pAB}, described in section 3.3.1, with sizes being (a) MA = MB = 6 and (b) MA = MB = 7. The representative
weight-vector (℘) entropy for each E is colour-coded in the heat map ranging from zero to (a) log 6! and (b) log 7! following the
method described in section 4.1. The black points correspond to a least-squares fit of the quadratic relation (38) with
(a) t1 = −2.952, t2 = 5.395, t3 = −0.0446 with RMSE 0.1005 and (b) t1 = −3.223, t2 = 5.924, t3 = −0.0971 with RMSE
0.09854.

This expression is well-defined except when μ = 1
2 , but this point corresponds to the maximum value

of H and so is not relevant for monotonicity arguments. Thus, monotonicity of Δ with respect to H
can be proven by demonstrating monotonicity on the intervals 0 < μ < 1

2 and 1
2 < μ < 1, which can

be proven by demonstrating monotonicity of the integrand as described in the previous point.

The above two points imply that we can prove the monotonicity of channel discord as a function of
channel entropy by showing that the state discord is a monotonically increasing (decreasing) function of μ
for 0 < μ < 1

2 ( 1
2 < μ < 1). We prove that this is so in section 4.4.

4. Results

In this section we present our results, which are numerical in nature. We choose tractable message-size
values, namely MB ∈ {6, 7}, to study the relation between average discord Δ̃A;B(E) and average distortion
D̃A;B(E). Specifically, we plot Δ̃A;B(E) vs D̃A;B(E) for many generated channels as described in section 3.3.3
averaged over randomly generated states. We plots for two cases: randomly generated joint distributions in
section 4.1 and randomly generated cp states in section 4.2. Then we explain our best-fit quadratic relation
between Δ̃A;B(E) and D̃A;B(E) in section 4.3. Our methods for generating these plots are described in
section 3.3.

4.1. Plots for randomly generated joint states
In figure 1, we have plotted estimated average discord Δ̃A;B(E) (27) and estimated average distortion
D̃A;B(E) (30) for two cases of total message length M ∈ {6, 7} as discussed in section 3.3.4. This scatter plot
represents 6001 instances of randomly chosen channels for Bob and randomly chosen initial states by
Charlie, and the points are colour-coded by the Shannon entropy of the weight vector representing the
channel (20).

The origin of the plot corresponds to zero average discord and zero average distortion and arises for
Bob’s measurement being noiseless, i.e. for a zero-entropy weight vector ℘. We observe a monotonic trend
of increasing average discord with respect to increasing average distortion. This monotonicity inference is
reinforced in section 4.3 where we explain the best-fit curve, which is certainly monotonic. Furthermore,
based on the colour-coded heat map in figure 1, we see monotonically increasing of all three: average
discord, average distortion and channel entropy.

The scatter plot shows more features. The highest point of the curve has the maximum allowed entropy
log MB! (20) for the channel. For the two chosen messages sizes, the maximum entropies are

log 6! = 9.492, log 7! = 12.299, (37)

respectively. Also the scatter plot is narrow for low- and high-entropy cases of channels and wide for
medium-low choices of channel entropy.

We have provided figures 1(a) and (b) showing scatter plots for MB = 6 and MB = 7, respectively. The
two scatter plots are similar. The differences are that the maximum entropy for the second scatter plot is

11
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Figure 2. Scatter plot of average discord Δ̃A;B(E) vs average distortion D̃A;B(E) for Bob’s random noisy measurements
represented by 6001 randomly chosen doubly stochastic channels {E}. Each instance of E is evaluated for 100 random initial cp
states {pAB

cp }, described in section 3.3.1, with sizes being (a) MA = MB = 6 and (b) MA = MB = 7. The representative
weight-vector (℘) entropy for each E is colour-coded in the heat map ranging from zero to (a) log 6! and (b) log 7! following the
method described in section 4.1. The black points correspond to a least-squares fit of the quadratic relation (38) with
(a) t1 = −2.658, t2 = 5.119, t3 = −0.052 and RMSE 0.1041 and t1 = −2.85, t2 = 5.548, t3 = −0.0778 and RMSE 0.1019.

higher due to the larger message size, with the increase in maximum entropy given by the ratio of the
numbers in (37). Both estimated average discord and estimated average distortion are increased slightly for
increased message size.

4.2. Plots for randomly generated conditionally pure states
In this subsection we obtain scatter plots of estimated average discord vs estimated average discord for the
case that Charlie generates random cp states (8) instead of random joint states (1) as was done in
section 4.1. Other than using cp states here, we follow exactly the same procedure used to obtain figure 1.
The purpose of this subsection is to verify or refute that the two cases of initial random joint distributions
vs initial random cp states show the same or different features.

The scatter plot for estimated average discord vs estimated average distortion is shown in figure 2 for
initial cp states. Similarly to figure 1, the scatter shows monotonically increasing average discord with
respect to average distortion, monotonicity of both with respect to channel entropy represented by the heat
map, and wider scatter for medium entropy compared to narrow scatter width for low and high entropy.
The differences are only with respect to randomness of generated channels in the plots, suggesting that
figures 1 and 2 are identical up to random-sampling variability.

4.3. Quadratic best fit to the plots
Now we explain how we fit a curve to the scatter plots of figures 1 and 2. Our numerical results fit well with
a quadratic curve

Δ̃A;B(E) = t1

(
D̃A;B(E)

)2
+ t2D̃A;B(E) + t3 (38)

with {tı} chosen differently for each plot to minimize root-mean-square error (RMSE). In all four cases,
RMSE ∼ 0.1, which indicates a good fit as the RMSE is much smaller than the range of Δ̃A;B(E).

4.4. Monotonicity of two-bit channel discord as function of channel entropy
Now we show that the discord of a two-bit noise channel varies monotonically with the entropy of that
channel. As we explain in section 3.3.5, it suffices to show that the state discord Δ for an arbitrary two-bit
state (31) varies monotonically in the parameter μ that specifies the channel (32). This monotonicity
relation can in turn be proven by showing dΔ

dμ ≶ 0 for μ ≷ 1
2 by exploiting equation (36). For ease of

calculation, we substitute μ �→ 1+α
2 . Thus, we accomplish our aim of proving dΔ

dμ ≶ 0 when μ ≷ 1
2 by

instead proving that

sgn

(
dΔ

dα

)
= − sgn (α) (39)

for −1 < α < 1.
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First we derive an expression for dΔ
dα . A tedious-but-straightforward calculation starting from

equation (35) reveals that

dΔ

dα
=
(
p00 − p01 + p10 − p11

)
log

(
1 + α

(
p00 − p01 + p10 − p11

)
1 − α

(
p00 − p01 + p10 − p11

))

−
(
p00 − p01

)
log

⎛
⎝1 + α

(
p00−p01
p00+p01

)
1 − α

(
p00−p01
p00+p01

)
⎞
⎠−

(
p10 − p11

)
log

⎛
⎝1 + α

(
p10−p11
p10+p11

)
1 − α

(
p10−p11
p10+p11

)
⎞
⎠ . (40)

If we assign

γ0 ←
p00 − p01

p00 + p01
,

γ1 ←
p10 − p11

p10 + p11
,

w0 ← p00 + p01,

w1 ← p10 + p11,

fα(x) ← x log

(
1 + αx

1 − αx

)
,

(41)

we can rewrite equation (40) as

dΔ

dα
= fα (w0γ0 + w1γ1) − w0fα(γ0) − w1fα(γ1). (42)

Noting that −1 < γ0,1 < 1 and 0 < w0,1 < 1 when none of p00, p01, p10, p11 are equal to zero, we have dΔ
dα is

positive/negative/zero when fα is concave/convex/linear on the interval (−1, 1). If one or more of
p00, p01, p10, p11 are zero, we can have the logarithm argument become of the 0/0 type, in which case we
apply l’Hôpital’s rule to obtain the limit.

We now show that fα is concave/linear/convex depending on whether sgnα = −1, 0, 1. It is easy to see
that f0 ≡ 0, which is a linear function, so we focus instead on the case α �= 0. In that case, the identity

log
(

1+y
1−y

)
= arctanh y shows fα(x) = 1

2α × g(αx), where g(y) = y arctanh y. Hence we need only show that

g(y) is convex for −1 < y < 1. This convexity can be seen directly from the Maclaurin series for arctanh,

g(y) =
∞∑

k=1

y2k+2

2k + 1
, (43)

which is a sum of convex functions and hence is convex. Thus, fα is convex/concave depending on the sign
of α. Hence, dΔ

dα has the appropriate sign; hence, dΔ
dH is monotonic as required.

5. Discussion

We have developed a full classical (i.e. non-quantum) theory for channel discord, which establishes the
meaning of nonzero discord in the context of stochastic information theory. Although classical discord and
stochastic information theory were introduced in 2015 [8], key notions were sketched rather than fully
developed. Here we have given a detailed theory of non-quantum discord all the way from the context of a
three-party protocol with noisy measurement to building in Hadamard notation for making expressions
clear and elegant to the unprecedented connection between average channel discord, average channel
distortion and entropy of the noisy measurement (noisy channel), including monotonic relations between
them, which thereby show that channel discord, in a classical setting, is a form of channel distortion arising
due to one party’s noisy measurement.

Scatter plots for average discord vs average distortion in figures 1 and 2 show this monotonic relation
between average discord and average distortion and, through the heat maps, also the monotonicity between
average distortion and channel entropy. These results are purely numerical but show a simple quadratic
relationship for two choices of message sizes. A general mathematical relation connecting average discord to
average distortion is beyond the scope of this work but we derive mathematical relations for the two-bit case
both to illustrate how analytical results can be obtained and also to lend support to our conjectures based
on numerical analysis; our analysis has focused on developing the protocol, making clear the problem,
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defining appropriate quantities and tackling numerically. Mathematically proving the general case is
challenging so we instead solve the special two-bit case, i.e. the case that each of Alice and Bob hold one bit
and Bob’s measurement is noisy, and there we prove that channel discord is a monotonic function of
channel entropy. Thus, the numerical results are backed up by a closed-expression analysis, and,
furthermore, this analysis points the way to general proofs, likely using the Hadamard calculus elaborated in
appendix A.

The plots in section 4 display a high level of scatter for medium-entropy cases and much less scatter for
low- and high-entropy cases. Although the spread is large, monotonicity and quadratic scaling is clearly
evident in these plots and the root-mean-squared error (RMSE) of each plot hovering around 0.1 is
testament to the quality of the quadratic fit and hence the inference of monotonicity.

Our analysis has focused only on noise represented by doubly stochastic maps, which correspond to
permutahedrons. In other words, we have concentrated on noise that would arise from random
permutations of classical message measurements correspondingly measuring some messages as different
messages incorrectly. In the spirit of quantum discord, our average discord and average distortion
calculations are built on minimizing over all such permutations. Future work should involve generalization
from doubly stochastic to stochastic maps; in the quantum context, this generalization would be akin to
extending from completely positive trace-preserving mappings to completely positive mappings.

6. Conclusions

Discord has emerged as one of the most significant quantum resources [7] but not without controversy [8,
21]. Separating quantum and non-quantum aspects of discord is vital to determine quantum
resourcefulness and otherwise for discord. The connection between state discord and entanglement is
known, but discord for channels has been unexplored under the treatment of noisy measurement as being
manifested by a noisy channel. Here we establish and elucidate connections between classical channel
discord and channel distortion and entropy. To this end, we have developed a protocol, mathematical
framework and numerical analysis of average channel discord, with averaging being over random shared
message states (for random initial joint distributions and, to check consistency, over cp states) and over
random doubly stochastic channels representing noisy measurement by one party. Note that we have
defined classical channel discord to quantify channel ‘fluctuations’ (i.e. ‘noise’), in contrast to earlier work
on classical discord, which quantifies fluctuations for a state [8]. Our notion of classical channel discord
then leads to our numerical demonstration of monotonicity between classical (channel) discord and
channel distortion. Thus, our results show numerically that average discord, in the non-quantum setting, is
equivalent to average distortion of a channel with channel distortion based on total-variation distance.
Furthermore, we show numerically that this distortion measure is monotonic in channel entropy, which
builds confidence that total-variation distance is a reasonable way to quantify distortion.

Akin to quantum discord, we have incorporated minimization of average discord and average distortion
over all permutations, which permutations referring to permuting messages. The identity permutation
corresponds to reading each message correctly and other permutations cause some messages to be read as
other messages. Given that the noisy measurement is modelled as a doubly stochastic channel, which is a
permutahedron, the idea of minimizing over all permutations is to identify which permutation minimizes
channel discord and minimizes channel distortion averaged over all states. This minimization is key to
connecting our notion of classical distortion to the quantum version.

We have created a full framework for studying the connection between average discord and average
distortion for a noisy channel and have shown numerically a monotonic relation between the two. This
monotonic relation is satisfying as we can now regard discord, in the classical setting, as an alternative
measure of channel distortion, manifested as noisy readout by one party. We augment our numerical
analysis of channel discord vs channel distortion by studying the two-bit example analytically and provide
results for discord corresponding to certain special but important two-bit states. We can see that analytic
methods are challenging, even in the two-bit case, but our analytical study shows a path forward for general
analytical work, which benefits from using the Hadamard calculus we discuss in appendix A.
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Appendix A. Hadamard calculus

We review the convenient Hadamard notation [22], and introduce what we call Hadamard calculus, which
is novel but useful for studying stochastic information. Specifically, we explain the Hadamard product and
summing over elements of a Hadamard product, the Hadamard logarithm and the entropy in this notation.
Also we introduce vector calculus based on Hadamard notation principles.

The Hadamard product between two rank-t tensors

a =
(
aı1ı2 ...ıt

)
, b =

(
bı1ı2 ...ıt

)
(A1)

is
a ◦ b :=

(
aı1ı2...ıt bı1ı2 ...ıt

)
, (A2)

which is simply the rank-t tensor comprising element-wise products of the elements of each of the two
rank-t tensors in the product. For t = 1, a and b are vectors, and ◦ is just the vector obtained by
element-wise products of the corresponding vector elements. We define the sum over all elements in the
Hadamard product (A2) by

a � b :=
∑

ı1ı2 ...ıt

(a ◦ b)ı1ı2...ıt =
∑

ı1ı2...ıt

aı1ı2 ...ıt bı1ı2...ıt . (A3)

Typically, in the literature, ◦ and � are both employed to refer to our ◦, but here we use ◦ and � as distinct
operations as we have explained here. The norm of a vector, matrix or tensor is

norm a =
√

a � a, (A4)

which is nonnegative.
For a (A1) restricted by

0 < aı1...ıt � 1, (A5)

and introducing J := (1) as the tensor with every entry being 1 (in contrast to I being the matrix such that
only diagonals are 1 and off-diagonal elements are all 0) of equal size to tensor a, the element-wise
logarithm is

log a := −
∞∑
�=1

1

�(1 − a)◦� =
(
log aı1 ...ıt

)
. (A6)

Here we use the notation •◦� to refer to the �-fold element-wise product of the tensor • with itself.
For constructing conditional states, we employ Hadamard division 
 [23]. Hadamard division for two

same-dimensional tensors (including vectors and matrices) is simply their element-wise division. Another
definition of Hadamard division applies for a matrix divided by a vector, where the length of the vector
equals the number of rows (or columns) of the matrix; in this case Hadamard division of the matrix by the
vector corresponds to division of the row (or column) vectors of the matrix by the elements of a vector.

Appendix B. Probability vector and entropy

We introduce stochastic information, which is essentially already known [11], but we employ the elegant
notation of appendix A in a novel way to convey the concepts with simple, easy-to-grasp expressions once
Hadamard arithmetic [23] is clear. Below we explain the concept of a stochastic-information state. Then we
have set the stage for the subsequent discussion on bipartite stochastic-information states.

Our stochastic-information construct is a distribution of messages, with each message labelled by
integer

m ∈ [M] := {1, 2, . . . , M} ⊂ Z+ (B1)
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so the distribution of such messages is

p :=
(
pm;m ∈ [M]

)
∈ RL, pm � 0∀ m,

M∑
m=1

pm = 1 (B2)

represented here as a probability vector [24]. The probability vector can be permuted in the sense of
rearranging the probabilities of various messages.

A given permutation is represented by some σ ∈ SM, for SM the permutation (or symmetry) group over
all M messages. The cardinality of SM is M!, and the permutation group can be ordered in various ways, and
we adopt reverse lexicographical ordering [25]. A permutation of the probability vector is represented by
permutation matrix Πσ for permutation σ ∈ MM

(
{0, 1}

)
(i.e. M × M matrices whose entries are only 0 or

1) given by [26]
Πσp =

(
pσ(b)

)
∀ p (B3)

so Πσ contains exactly one entry of 1 in each row or column and the rest of the entries are 0. We represent
the sequence of all permutation matrices by the vector

Π := (Πσ;σ ∈ SM) (B4)

with the sequence of σ drawn from the permutation group in reverse lexicographical order.
A specific message of interest is a versor, which is a vector whose entries all zero except one element

whose entry is one [27]. Any permutation of a versor corresponds to just replacing a given message by a
new message so a permutation of a versor is just another versor. A versor is equivalent to a
stochastic-information state pm = δmm̌ for m̌ the given message. We write this versor, corresponding to
specific message m̌, as δm̌. Versors form a basis for stochastic-information states, which we call the message
basis. A permutation matrix (B3) is actually a tensor product of a versor and a coversor, with a coversor
defined to be a covector version of a versor.

The Cartesian product of versors forms a basis for bipartite stochastic-information states, from which a
joint distribution can be constructed. Suppose the two parties, Alice and Bob, each hold an information
state δA

m̌ and δB
m̌′ , respectively, where we use superscripts A and B to denote who owns which of the vector

spaces in the tensor product. Alice’s and Bob’s joint state is the bipartite versor

δAB
mm′ := δA

mδ
B
m′ ∈ MMA×MB

(
{0, 1}

)
, (B5)

which is pure over the Cartesian product. For MA = MB, the state represented by the MA × MB identity
matrix 𝟙/

√
M, for M :=MAMB, corresponds to all messages to Alice and Bob being identical but all

message instances are equally likely. Thus, the conditional entropy of this mixture of states is zero whereas
the entropy of this set of messages pairs is maximum; i.e. the maximum entropy is log MA.

Appendix C. Quantum discord

We now explain quantum discord at a high level instead of delving into a full mathematical description of
quantum discord, which requires Hilbert space. We begin with a brief discussion of the history of quantum
discord, both theoretical and experimental, and typical interpretations of what quantum discord means
such as quantum correlations and resources.

The concept of quantum discord was proposed to separate total correlations of a bipartite quantum state
into purely quantum and classical parts [1, 2]. Quantum discord per se is the difference between two
classically identical expressions for mutual information but adapted for a quantum system and was
described as a measure of quantumness of correlations. Discord appeared to be a more general way of
quantifying quantum correlations [21, 28–30] compared to entanglement as vanishing entanglement does
not ensure vanishing discord, and the absence of entanglement does not imply classicality. Operationally,
quantum discord has been interpreted in the context of quantum state merging, if pertinent prior
information is discarded [31, 32], the quantum–classical separation associated with discord has been cast in
terms of negative conditional entropy [8]. The value of discord as a quantum resource has been debated
vigorously, sometimes as a powerful quantum resource [7] but also critically, for example that pure states of
nonzero discord have zero measure [21] and that nonzero discord is classically explainable iff entanglement
is not present, as discussed in remark 4 of reference [8]. Discord has been generalised for different types of
quantum measurements [33], for Rényi entropy [34, 35] and for higher dimension [36].

Quantum discord has been experimentally studied in optical systems in which quantum discord was
shown to be a resource for quantum remote-state preparation, specifically showing that separable states
with non-zero quantum discord can outperform entangled states [37]. In continuous-variable Gaussian
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optics, the experimental Gaussian quantum discord has been studied for a two-mode squeezed thermal
state [38]. Experimentally encoding information within the discordant correlations of two separable
Gaussian states shows that bipartite discord can be consumed to encode information that is only accessible
by coherent quantum interactions [39]. A flexible two-photon setup has realized a three-qubit system with
programmable degrees of initial correlations, measurement interaction, and characterization processes,
thereby yielding the demonstration that local observation in an activation protocol for converting discord
into distillable entanglement [40]. A trapped-ion experiment has shown that quantum discord inference of
open-system dynamics detects system-environment quantum correlations without accessing the
environment [41].

In contrast to stochastic information states, which are probability distributions (B2) or joint
distributions for the bipartite case (1), the quantum state is a trace-class bounded completely positive
operator ρ on Hilbert space H , or on the tensor product H ⊗ H for the bipartite case [9]. The quantum
state’s entropy is H(ρ) = −tr

(
ρ log ρ

)
for tr the trace operation. In quantum information theory,

measurement is described by positive operator-valued measures [9], but, for quantum discord, only
projective-valued measures {P} [9], which are self-adjoint projections on H , are considered. Each
projective-valued measure P comprises a set of projective operators Pı with PıPj = Pıδıj. Measurement of a
state yields a real-valued outcome, and the state is subsequently described by the jth projection Pjρ
corresponding to that outcome. This projection is expressed as a conjugation of ρ in the literature [2], but
this way of expressing is superfluous for our purposes and hence not employed.

The conditional quantum state, first defined by Cerf and Adami [42], is now typically defined as [2]

ρ
A|B
j :=

(
𝟙⊗ Pj

)
ρAB(𝟙⊗Pj)/pj, pj := tr

((
𝟙⊗ Pj

)
ρAB(𝟙⊗Pj)

)
(C1)

with pj the probability of Bob obtaining jth outcome after he has applied projection-valued measures
(PVM) P. The conditional quantum entropy [42] is

HA|B =
∑

j

pjH
A|B
j , HA|B

j

(
ρAB

)
:=H

(
ρ

A|B
j

)
, (C2)

which is a probability-weighted average of conditional entropy.
Mutual information IA;B(ρAB) is the same as for equation (9) except that H now corresponds to the

quantum entropy, and the last term is replaced by HA:B �→ H
(
ρAB

)
. The alternative mutual information is

JA;B = HA − sup
PB

HA|B, HA :=H
(
ρA

)
, ρA = trBρ

AB, (C3)

which is the supremum over all Bob’s PVMs. Quantum discord, analogous to classical discord (11), which
was actually defined later than quantum discord [8], is

ΔA;B
(
ρAB

)
:= IA;B

(
ρAB

)
− JA;B

(
ρAB

)
, (C4)

which quantifies the difference between the two mutual information quantities for quantum discord.
Quantum discord is interpreted as correlations that remain after classical correlations are subtracted

from total correlation and recognised to quantify the non-classical correlations in a quantum system,
including entanglement and therefore identified as a quantum resource [30]. The primary feature
encapsulated by its quantum property is how a state is affected by local measurements and seen as a form of
classical correlation aided with quantum coherence (superpositions) at the level of individual subsystems
[21, 28, 43]. The presence of discord in quantum computing protocols [5, 6], motivates the assertion that
discord is a quantum resource, operationalized by state merging [4], which can deliver the quantum
advantage.
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