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ABSTRACT
This paper presents Facebook’s design and operational experience

of a Hose-based backbone network planning system. This initial

adoption of the Hose model in network planning is driven by the

capacity and demand uncertainty pressure of backbone expansion.

Since the Hose model abstracts the aggregated traffic demand per

site, peak traffic flows at different times can be multiplexed to save

capacity and buffer traffic spikes. Our core design involves heuristic

algorithms to select Hose-compliant traffic matrices and cross-layer

optimization between the optical and IP networks. We evaluate the

system performance in production and share insights from years

of production experience. Hose-based network planning can save

17.4% capacity and drops 75% less traffic under fiber cuts. As the

first study of Hose in network planning, our work has the potential

to inspire follow-up research.
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1 INTRODUCTION

Global online service providers, such as Google, Facebook, and

Amazon, build wide-area backbone networks for connecting thou-

sands of Point-of-Presence (PoP) sites and hundreds of Data Cen-

ters (DCs) across continents. To keep up with the explosive traffic

growth, tremendous amounts of money and engineering effort

are constantly invested in expanding and upgrading the backbone

network. Network planning is thus the key to the backbone evolve-

ment, with the ultimate goal of devising capacity-efficient network

build plans that are resilient to unforeseen demand uncertainties from

service changes and traffic dynamics.

Facebook achieves this goal by innovatively adopting the Hose

model in backbone planning. Traditionally, backbone planning was

based on the Pipe model. As illustrated in Figure 1, the Pipe model

abstracts pairwise traffic demands between network sites [16]. To

provision sufficient capacity across demand variations, with the

Pipe model, we must plan for the peak demand between every site

pair. From the entire network’s perspective, this approach aims

at accommodating the “sum of peak” traffic regarding all the con-

nected sites. The Hose model, in contrast, abstracts the aggregated

ingress and egress traffic demands per site [9, 13]. It naturally sums

up the traffic demands across sites, so capacity planning with the

Hose model is for the “peak of sum” traffic. As the peak traffic

demands across different sites are unlikely to happen simultane-

ously, the Hose model offers multiplexing gain, which saves the

total capacity and leaves headroom for traffic uncertainties after

deployment where individual demands across sites vary but their

sum does not exceed the provisioned peak capacity.

Besides capacity saving and resilience to uncertainty, Hose-based

backbone planning goes hand in hand with the industry trend of

decoupling service logic from infrastructure design. In practice, ser-

vices are migrated from one DC to another for various reasons, e.g.,

load balancing, service scaling, latency reduction, DC maintenance,

etc. The network and server infrastructure should mark out the

service behaviors and provide flexibility for service migration. This

requirement makes accurate point-to-point traffic demand forecast

between site pairs very difficult. In addition, for an actively growing

backbone network like Facebook’s, new DCs are built yearly, so it is

almost impossible to estimate the traffic demand to/from new DCs

yet to be built. Thanks to the Hose model, we only need to specify

the aggregated traffic demand per site, without worrying about the

other end of each traffic flow. Therefore, using Hose-based plan-

ning, the network has the potential to scale up per-node basis, as

easily as storage and compute resources, in the future.
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Figure 1: Hose model for aggregated ingress and egress traffic de-
mands per site vs. Pipe model for individual traffic demands be-

tween node pairs on a 3-site network. A site can be a DC or PoP.

Pipe plans for “sum of peak” traffic, whereas Hose plans for “peak

of sum” traffic, which offers multiplexing gain as individual peak

traffic demands usually happen at different times.

However, regardless of the advantages of Hose-based network

planning, the capacity must be granted to site pairs in a point-to-

point manner like in the Pipe model. Our problem with backbone

planning is thus to convert the Hose per-site traffic into the Pipe

pairwise traffic. The Hose model, which was originally invented for

Virtual Private Network (VPN) provisioning [9] and later used for

Virtual Machine (VM) placement [4] in the cloud, has never been

applied to the network planning setting, so we cannot turn to the

literature for readily available solutions.

Our main contribution in this paper is the solution to this new

problem. The Pipe output traffic can be presented as a traffic matrix

(TM) between the site pairs. The aggregated traffic demands in

Hose map to a continuous space, which contains an infinite number

of TMs. It is computationally intractable to plan for all possible Pipe

TMs under the Hose model. Our challenge is to generate a small

subset of TMs to represent the Hose space. We propose a series of

heuristic algorithms to address this challenge (§4). We first design a

sampling scheme to generate candidate TMs uniformly in the Hose

space. From these TMs, we find critical ones that stress the current

bottleneck links, which are potential locations to deploy additional

capacity. We thus propose a sweeping algorithm to quickly find

bottleneck links in the network. Critical TMs are chosen through

optimization, and we also define “Hose coverage” as a metric to

quantify how representative these chosen TMs are.

Another contribution of this paper is to share the production

network planning process, with practical considerations in Face-

book’s network setting. Our engineering experience includes the

separation of short-term and long-term planning, the abstraction

to simplify the interaction between the optical and IP networks,

the resilience policy to protect against failures, and the optical-IP

cross-layer capacity optimization (§5). We also evaluate the perfor-

mance of our Hose-based network planning system in production

(§6). We demonstrate Hose can save 17.4% capacity compared to

Pipe and drops up to 75% less traffic under unplanned failures.

To the best of our knowledge, we are the first to study the Hose

model in the context of network planning, and this is the first time

that the end-to-end network planning procedure is introduced to

academia. We wish our work to inspire a new line of research,

where theoreticians can have a better formulation of our heuristic

algorithms and practitioners can optimize our planning system.

This work does not raise any ethical issues. We preserved user

privacy and anonymity throughout this study.

2 MOTIVATION FOR HOSE

In this section, we use production traffic to demonstrate the ad-

vantages of Hose-based backbone planning on capacity saving and

resilience to traffic uncertainties.

Experimental setup We collect production traffic between every

site pair on the Facebook North America backbone from 11/23/2020

to 12/28/2020. To eliminate the time-of-day effect, we only look at

the busy hour, when the total traffic in the backbone is the highest in

the day. In the busy hour, traffic is sampled once per minute, making

60 data points. For the Pipe model, we get the 90th percentile across

the 60 data points as the peak traffic demand for each site pair. For

the Hosemodel, we add up the ingress/egress traffic per site for each

data point across the source/destination sites it talks to. Among

the 60 data points of aggregated traffic, we use the 90th percentile

as the peak Hose traffic demand. This method gives us the “daily

peak” traffic demands for the Hose and Pipe models respectively.

In production, we usually smooth traffic demands with a moving

average. By Facebook’s standard, we take a 21-day window to

average the daily peak demands described above, and we add 3×

the standard deviation of the 21-day data to the moving average as a

buffer for sudden traffic spikes. This method produces the “average

peak” traffic demand per Hose site and per Pipe site pair.

In the following experiments, we sum up the total traffic demand

in the entire North America backbone, across sites in Hose and

across site pairs in Pipe.We look at 4 numbers per day: the total daily

peak demand and the total average peak demand in the backbone,

under the Hose and Pipe models respectively.

Traffic reduction The key difference between Hose- and Pipe-

based planning is to deploy capacity for “peak of sum” vs. “sum

of peak” traffic. If using the Hose model, the multiplexing gain

allows us to plan for less capacity, as the Pipe traffic sharing the

same source/sink are unlikely to reach the peak simultaneously.

Figure 2 shows the relative Hose traffic reduction, as the reduced

total demand in Hose against Pipe divided by the total demand

in Pipe. The “daily peak” demand of Hose (red dashed curve) is

10%-15% lower than Pipe, and the “average peak” demand (black

solid curve) is 20%-25% lower. As backbone planning is based on

traffic demands, we have good reasons to believe a considerable

proportion of capacity can be saved just by adopting the Hose

model for planning.

Tolerance to trafficdynamics Themultiplexing effect alsomeans

the Hose planning result can cover more traffic variations. Figure 3

is the CDF of the total daily peak traffic demand. For confidentiality,

we normalize the absolute traffic volume against the maximum

demand (which is from the Pipe model). As shown in the figure,

the vertical line at 𝑥 = 0.55 maps to 90% of the days in the Hose
model and 40% in Pipe. It means if we plan for 55% of the maximum

total demand, under the Hose model, the daily peak demand will

be satisfied for 90% of the days, while it will be satisfied for only

40% of the days in Pipe. The higher percentile in Hose indicates

it can tolerate more traffic uncertainties. Since the Hose model is

constrained by the aggregated traffic instead of a particular TM, it

has more headroom to absorb unexpected traffic spikes.

Stable traffic demand We also measure the variance of Hose

and Pipe traffic across days. To make the different traffic demands

comparable, we use coefficient of variation as the metric, which is
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Figure 2: Hose traffic reduction.
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Figure 3: Total traffic distribution
of Hose vs. Pipe.
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Figure 4: Coefficient of Variation with Pipe
vs. Hose traffic.

Figure 5: Service traffic from DC regions B and C to A.

the standard deviation of the traffic demand divided by the mean.

Figure 4 shows the coefficient of variation for the total daily peak

traffic in the backbone. The relative traffic dispersion in Hose is

much smaller than Pipe, with a shorter tail as well. As a result,

the Hose model provides a more stable signal for planning and

simplifies traffic forecast. With these, it is not hard to envision the

network scaling up as easily as storage and compute resources,

where a node can have an accurate approximation of its future

growth, without worrying about the interaction with other nodes

in the network.

Adaption to service evolvement Services evolve over time in

production. Possible causes include service behavior changes, re-

labeling of Quality of Service (QoS) classes, traffic shift for load

balancing, new service launches, and many others. Figure 5 shows

an example from the user database (UDB) service at Facebook. Due

to resource and operational constraints, the UDB servers storing

user data only sit in a few regions, and UDB-less regions rely on

a caching service called Tao [2] to fetch data from UDB regions

nearby. Figure 5 plots the amount of Tao traffic flowing from UDB

regions B and C to UDB-less region A. The significant traffic change

is a result of Tao service changing the primary UDB region from B

to C, with a canary on a few shards on 03/05 and a complete policy

change on 03/09. Both incidents created several Tbps of traffic shifts,

where a Pipe model would fail. In contrast, because the total traffic

amount stayed the same, the Hose ingress traffic at region A had

little disruption. The traffic aggregation nature of Hose is naturally

more resilient to service changes, making it a future-proof solution

to network planning.

3 HOSE-BASED CAPACITY PLANNING

In this section, we give an overview of the capacity planning prob-

lem and our system design. Table 1 lists the notations throughout

the paper.

Network model Our backbone network connects a number of

DCs and PoPs together. It consists of IP routers over a Dense Wave-

length Division Multiplexing (DWDM) optical network. The back-

bone routers are connected using IP links that route over multiple

fiber segments. We represent this network as a two-layer graph: the

IP network 𝐺 = (𝑉 , 𝐸), where the vertices 𝑉 are backbone routers
and the edges E are IP links, and the optical network 𝐺 ′ = (𝑉 ′, 𝐸 ′),
where the vertices 𝑉 ′ are Optical Add-Drop Multiplexers (OADMs)

and the edges 𝐸 ′ are fiber segments.
For each IP link 𝑒 ∈ 𝐸, 𝐹𝑆 (𝑒) is the set of fiber segments that 𝑒

rides over, which form a path on the optical topology. The IP link

𝑒 consumes a portion of spectrum on each fiber segment 𝑙 ∈ 𝐸 ′

over which 𝑒 is realized. For example, a 100Gbps IP link realized
using Quadrature Phase Shift Keying (QPSK) modulation can con-

sume 50GHz of spectrum over all fiber segments in its path. The

relationship between IP capacity and optical spectrum is shown in

Section 5.1.

Failure model We consider a set of fiber failures in the backbone.

Every IP link 𝑒 ∈ 𝐸 over the failed fibers would be down. In order to
provide desired reliability to the service traffic, we pre-define a set of

failures 𝑅 referred to as planned failures. The production network
should be planned with sufficient capacity such that all service

traffic can be routed for each failure 𝑟 ∈ 𝑅. Detailed resilience
policy in capacity planning will be presented in Section 5.2.

Traffic forecast Capacity planning depends on the projected traf-

fic demand in the future. Instead of modeling the organic growth

of link-wise traffic like done in ISP networks, for content providers,

it is common practice to forecast the future traffic demand per ser-

vice based on service profiling. This is because services, as content

generators, provide a more reliable source of truth for traffic de-

mand. For inter-DC traffic, service teams calibrate server utilization,

especially CPU utilization, to devise service growth plans under

the server budget allocated by the company. They provide service

scaling factors, which are applied to the current service traffic to

form the future demands. For PoP-DC traffic, we model user growth

and cache misses at PoPs to predict the amount of content retrieval

between PoPs and different DCs. The demands can be aggregated

in different ways, e.g., per-site-pair basis for traditional Pipe-based

planning and per-site basis for Hose-based planning.
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Table 1: Notations

Symbol Definition

𝐺 = (𝑉 , 𝐸) The IP topology with backbone routers and IP links
𝐺′ = (𝑉 ′, 𝐸′) The optical topology with OADMs and fiber segments
𝐹𝑆 (𝑒) The set of fiber segments which IP link 𝑒 goes through
𝑁 The number of sites (DCs and PoPs combined) in the backbone
𝑀 A 𝑁 × 𝑁 Traffic Matrix (TM)
𝑚𝑖,𝑗 The traffic volume from site 𝑖 to site 𝑗 in𝑀
�𝑢𝑠 A 1 × 𝑁 all-ones vector to retrieve source nodes in𝑀
�𝑢′
𝑑

A 𝑁 × 1 all-ones vector to retrieve destination nodes in𝑀
�ℎ𝑠 A 1 × 𝑁 vector bounding egress traffic of source nodes in𝑀
�ℎ′
𝑑

A 𝑁 × 1 vector bounding ingress traffic of destination nodes in𝑀

𝐻 = { �ℎ𝑠 , �ℎ′𝑑 } Hose constraints for the egress and ingress traffic demands

𝛼 Edge threshold in the sweeping algorithm (§ 4.2)
𝜖 Flow slack in Dominating Traffic Matrix (DTM) selection (§ 4.3)
𝑐 ∈ 𝐶 A network cut in the cut set
𝐷 (𝑐) The set of DTMs for a network cut 𝑐 under flow slack 𝜖
𝑇 A set of candidate DTMs
𝐴𝑀 A binary 0-1 assignment variable indicating if DTM𝑀 is selected
𝑃 A convex polytope to represent the high-dimensional Hose space
𝑆 A set of sample points in the Hose space 𝑃
𝑏 ∈ 𝐵 A plane in a collection of planes in the Hose space 𝑃
𝑥 (𝑙) The cost of procuring and deploying a fiber segment 𝑙 ∈ 𝐸′

𝑦 (𝑙) The cost of turning up a dark fiber 𝑙 ∈ 𝐸′

𝑧 (𝑒) The cost of provisioning a new wavelength to add an IP link 𝑒 ∈ 𝐸
𝜑 (𝑒) The spectral efficiency of an IP link 𝑒 ∈ 𝐸
𝜆𝑒 The IP capacity of IP link 𝑒 ∈ 𝐸
𝛾 Routing overhead
𝑟𝑞 ∈ 𝑅𝑞 A failure scenario in the planned failure set for QoS class 𝑞
𝑓𝑖,𝑗 (𝑢, 𝑣) A traffic flow from source 𝑖 to destination 𝑗 via IP link {𝑢, 𝑣 } ∈ 𝐸
𝜙𝑙 The number of fibers to be lighted up on fiber segment 𝑙 ∈ 𝐸′

𝜓𝑙 The number of fibers to be deployed on fiber segment 𝑙 ∈ 𝐸′

Problem statement Network capacity is the maximum through-

put (in Gbps, Tbps, or Pbps) the IP network, and individual IP links,

can carry. The problem of Capacity Planning is to compute the de-

sired network capacity to be built in the future. Building a network

involves complex steps:

(1) Procure fibers from third-party providers

(2) Build terrestrial and submarine fiber routes

(3) Pull fibers on existing ducts

(4) Install line system to light up the fibers

(5) Secure space and power at optical amplifiers and sites

(6) Procure, deliver, install hardware (optical and IP) at sites

All these activities have high lead time, taking months or even

years to deliver. Thus, capacity planning is critical to the future

evolution and profitability of the network.

In the network planning problem, the objective is to dimension

the network for the forecast traffic under the planned failure set 𝑅
by minimizing the total cost of solution. The cost of the network

is calculated based on a weighted function of equipment (fibers

and other optical and IP hardware) procurement, deployment, and

maintenance to realize the network plan. The specific cost model is

introduced in Section 5.1.

Planning schemes At Facebook, we categorize capacity planning

into two sub-problems: short-term planning and long-term plan-

ning. Short-term planning outputs the exact IP topology, i.e., the

IP links and the capacity on each link, while long-term planning

only determines the fibers and hardware to procure. This design

decision is based on the fact that network building is an iterative

process and long-term planning only serves as a reference most

Figure 6: System Architecture

times. For example, the fiber procurement plan may change at de-

ployment time according to availability of fiber resources on the

market. Short-term planning is conducted only after fiber and hard-

ware are secured and in place, because turning up capacity can

happen at a short notice.

Planning pipeline Figure 6 illustrates the planning process. Back-

bone network planning starts from traffic forecast. As aforemen-

tioned, our traffic forecast is service-based and independent of the

planning method, i.e., Pipe- and Hose-based planning alike. For

Hose-based planning, we aggregate the service demands with re-

spective to each backbone site to generate the ingress and egress

Hose constraints. As motivated in the introduction, the key to Hose-

based network planning is converting the Hose constraints into

Pipe TMs. Thus, as will be shown in Section 4, the planner takes

judicious steps to narrow down the infinite number of possible

Pipe TMs to a small set of representative ones. Short-term and long-

term planning are then applied to the reference TMs with different

optimization formulations, considering various failure scenarios

under the resilience policy. The optimization procedure is detailed

in Section 5.

The output of planning is Plan Of Record (POR), in the format

of capacity between site pairs. The POR from short-term planning

is handed to the capacity engineering team for capacity turn-up,

and the POR from long-term planning is given to the fiber sourcing

team for fiber procurement and to the optical design and IP design

teams for deployment of fibers and optical line systems. The focus

of this paper is on the design of Capacity Planner.

4 TRAFFIC MATRIX GENERATION
In this section, we introduce specific steps of converting Hose con-

straints into reference TMs for planning, which includes heuristic

algorithms, optimization, and performance metrics.

4.1 Traffic Matrix Sampling
A Traffic Matrix (TM) for a 𝑁 -node network topology is a 𝑁 × 𝑁
matrix𝑀 , where each coefficient𝑚𝑖, 𝑗 represents the traffic demand

of a flow (typically in Gbps in practice) from the source node 𝑖 to the
destination node 𝑗 . The flow traffic demand must be non-negative,
and a node does not generate traffic to itself. Hence, the coefficients

are in R+ and all diagonal coefficients are zero.

A valid TM must satisfy the following Hose constraints, where

�𝑢𝑠 and �𝑢 ′
𝑑
are the 1×𝑁 and 𝑁 × 1 all-ones column and row vectors,

and the corresponding demand vectors �ℎ𝑠 and �ℎ′
𝑑
bound the total

egress and ingress traffic amount at the source and destination

nodes. These constraints form a convex polytope in the 𝑁 2 − 𝑁
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Figure 7: A 3D example of the Hose polytope space.

dimension space, where each non-zero coefficient in the TM is a

variable. Figure 7 illustrates a highly simplified 3D example with

variables𝑚1,2,𝑚1,3, and𝑚1,4 only. Each valid TM is a point in the
polytope space, and there are an infinite number of valid TMs in

this continuous space.

Hose constraints:
�𝑢𝑠 ·𝑀 � �ℎ𝑠

𝑀 · �𝑢 ′
𝑑
� �ℎ′

𝑑

(1)

To generate TMs that satisfy the Hose constraints, our first step

is to sample the polytope space uniformly. Algorithm 1 shows our

two-phase algorithm for generating one sample TM. We randomly

create a valid TM in the polytope space in Phase 1 (lines 1-7 ) and

stretch it to the polytope surfaces in Phase 2 (lines 8-13), under the

intuition that TMs on the surfaces have higher traffic demands and

translate to higher capacity requirements for network planning.

In Phase 1, we initialize the TM to a zero matrix (line 1) and

assign traffic to the TM entries one by one in a random order (line

2). For every entry𝑚𝑖, 𝑗 , the maximal allowed traffic amount is the

lesser of the two Hose constraints for source 𝑖 and destination 𝑗 .
We give it a uniformly random scaling factor between 0 and 1 (line

3) and assign the product to the entry (line 4). For bookkeeping,

the consumed traffic amount is deducted from the Hose constraints

(lines 5-6). In Phase 2, we add residual traffic to the TM to exhaust

as many Hose constraints as possible. Similar to Phase 1, we iterate

through the entries in a random order (line 8) and add the maximal

allowed traffic amount to each entry (lines 9-12). Because we iterate

through all the entries and always consume the maximal traffic, our

Phase 2 guarantees to exhaust the most Hose constraints from the

Phase 1 result. It also guarantees we cannot have egress and ingress

hose constraints simultaneously unsatisfied (remaining constraints

must be all egress or all ingress), because if that were the case, the

algorithm would simply increase the associated source-destination

flows until either ingress or egress constraints are exhausted.

This sampling algorithm is highly effective regardless of the sim-

plicity. As will be shown in Figure 9a, over 97% of the Hose polytope

space is covered with 105 sample TMs. The effectiveness comes

from the high randomness: (1) we apply different permutations

of the TM entries (line 2 and line 8) in each run to distribute the

Hose traffic budget in different ways; (2) we use a scaling factor

(line 3) to adjust the assignable traffic randomly according to the

uniform distribution. Our two-phase sample-then-stretch approach

is proven to be critical. In a former solution, we directly sample

the polytope surfaces uniformly, but the coverage is 20%-30% lower

with the same number of samples.

Algorithm 1 𝑠𝑎𝑚𝑝𝑙𝑒𝑇𝑀 ( )

Input: network size 𝑁 , Hose constraints 𝐻 = { �ℎ𝑠 , �ℎ′𝑑 } in Formula (1)
Output: a random 𝑁 × 𝑁 traffic matrix𝑀 satisfying 𝐻
1: 𝑀 = 0𝑁×𝑁
2: for every𝑚𝑖,𝑗 in𝑀 in random order do
3: ℎ = 𝑀𝑖𝑛 (ℎ𝑖 , ℎ

′
𝑗 ) × 𝑟𝑎𝑛𝑑𝑜𝑚.𝑢𝑛𝑖 𝑓 𝑜𝑟𝑚 (0, 1)

4: 𝑚𝑖,𝑗 = ℎ
5: ℎ𝑖 = ℎ𝑖 − ℎ
6: ℎ′𝑗 = ℎ′𝑗 − ℎ

7: end for
8: for every𝑚𝑖,𝑗 in𝑀 in random order do
9: ℎ = 𝑀𝑖𝑛 (ℎ𝑖 , ℎ

′
𝑗 )

10: 𝑚𝑖,𝑗 =𝑚𝑖,𝑗 + ℎ
11: ℎ𝑖 = ℎ𝑖 − ℎ
12: ℎ′𝑗 = ℎ′𝑗 − ℎ

13: end for

4.2 Bottleneck Links Sweeping
It is computationally infeasible to consider the enormous number

of TM samples. Fortunately, TMs have different importance for net-

work planning. As the goal of network planning is to add capacity

to “bottleneck links” in the network, TMs with high traffic demands

over the bottleneck links play a dominating role. We call such TMs

Dominating Traffic Matrices (DTMs), and we aim to find a small

number of DTMs such that designing the network explicitly for

them has a high probability to satisfy the remaining TMs as well.

From the graph theory’s perspective, bottleneck links are cap-

tured by the network cuts that partition the nodes into two disjoint

subsets. However, the number of network cuts is exponential to the

network size. A production backbone network has tens to a few

hundred nodes, thus enumerating all the cuts is intractable. Even if

a backbone network is not a densely connected graph, the number

of possible cuts is still 𝑂 (2𝑚𝑖𝑛 ( |𝑉 |, |𝐸 |) ), where |𝑉 | and |𝐸 | are the
number of nodes and edges respectively. We propose a sweeping

algorithm to quickly sample the network cuts, and the sweeping

process is illustrated in Figure 8.

The sweeping algorithm has a hyperparameter edge threshold 𝛼
chosen in the [0, 1] interval. The network nodes are represented
by their latitude and longitude coordinates. We draw the smallest

rectangle inscribing all the nodes and radar-sweep the graph cen-

tering at points on the rectangle sides. There are 𝑘 equal-interval
points per side and the sweeping is performed at discrete orienta-

tion angles of interval 𝛽 . We typically choose 𝑘 = 1000 and 𝛽 = 1◦.
The algorithm draws a reference cut line at each sweeping step,

which splits the nodes into the following three mutually exclusive

categories.

• Edge nodes, whose distance to the cut line over the distance of

the farthest node in the network to the cut line is smaller than 𝛼 .
• Above nodes, which are above the cut line but are not in the edge

nodes group.

• Below nodes, which are below the cut line but are not in the edge

nodes group.

Network cuts are all possible bipartite splits of the edge nodes

combined with the above and below nodes respectively. In this

algorithm, parameters 𝑘 and 𝛽 define the sampling granularity, and
the edge threshold 𝛼 regulates the number of cuts considered per
sampling step. As 𝛼 increases, we are able to generate an increas-
ingly large number of network cuts. In particular, setting 𝛼 to 1
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Figure 8: An example of the sweeping algorithm. The sweeping
centers around 𝑘 points per rectangle side and moves in 𝛽◦ steps.
The reference cut (blue solid line) sweeping step creates 2 edge

nodes (yellow dots), whose permutations form 4 cuts.

guarantees that we enumerate all partitions of the network. The

relationship between 𝛼 and network cuts is shown in Figure 9b.

4.3 Selection of Dominating Traffic Matrices
The formal definition of DTM with respect to network cuts is as

below. Intuitively, with the TMs sampled in Section 4.1 and network

cuts generated in Section 4.2, we want to find the TM that produces

the most traffic for every network cut.

Definition 4.1 (Dominating Traffic Matrix - Strict Version). The

dominating traffic matrix of a network cut is the traffic matrix in

all the sampled traffic matrices that has the highest traffic amount

across the cut.

This definition yields as many DTMs as there are network cuts.

To further reduce the number of TMs involved in our planning

computation, we get inspiration from the minimum set cover prob-

lem [12]: if we slack the DTM definition from the most traffic-heavy

TM per network cut to a set of relatively traffic-heavy TMs within

a bound to the maximum, the sets of DTMs for different cuts are

likely to overlap and the cuts may be represented by a smaller num-

ber of overlapping DTMs. We thus introduce the flow slack 𝜖 and
define the slack version of DTM as below. For the rest of the paper,

all DTMs refer to this slack definition.

Definition 4.2 (Dominating Traffic Matrix - Slack Version). A dom-

inating traffic matrix of a network cut with flow slack 𝜖 is a traffic
matrix from the sampled traffic matrices whose traffic amount

across the cut is no smaller than 1 − 𝜖 of the maximum among all
the sampled traffic matrices, where 𝜖 is a small value in [0, 1].

In our formulation of the minimum set cover problem, the uni-

verse is the ensemble of network cuts 𝐶 . For every cut 𝑐 ∈ 𝐶 , we
get the set of DTMs 𝐷 (𝑐) under the given flow slack 𝜖 according
to Definition 4.2. Combining them, we have a collection 𝑇 = {𝑀}

of all the candidate DTMs, where each DTM belongs to a subset

of cuts in 𝐶 . For example, a DTM𝑀 may be generated by multiple
cuts {𝑐𝑖 , 𝑐 𝑗 , 𝑐𝑘 } at the same time. Our goal is to find the minimal
number of DTMs to cover all the cuts in 𝐶 .
We solve this minimum set cover problem by Integer Linear

Programming (ILP). As shown below, we define a binary assignment

variable 𝐴𝑀 , which is set to 1 if a candidate DTM 𝑀 is selected

in the end and set to 0 otherwise. The assignment variables must

guarantee each network cut is represented by at least one of its

candidate DTMs, and we minimize the number of selected DTMs

by minimizing the sum of the assignment variables.

min
∑

𝑀 ∈𝑇

𝐴𝑀

s.t.
∑

𝑀 ∈𝐷 (𝑐)

𝐴𝑀 ≥ 1,∀𝑐 ∈ 𝐶

𝐴𝑀 ∈ {0, 1},∀𝑀 ∈ 𝑇

(2)

We achieve a low DTM count with the commercial ILP solver

FICO Xpress [1]. As will be shown in Figure 9c, a flow slack of

approximately 1% can reduce the number of DTMs by over 75%, a

substantial gain in the computation needed for capacity planning.

A further increase in the flow slack results in even more impressive

results, though at the price of a lower Hose coverage, as we will

see in the next section.

4.4 Hose Coverage
Aswe performHose-compliant capacity planning, we need to define

a metric to evaluate the degree to which our generated reference

TMs cover the entire Hose space. In particular, since we use a

two-stage process, where we sample the Hose space using a large

number of TMs and further down-sample them to reach a smaller

number of DTMs, it is desirable to measure the Hose coverage for

each stage of the process.

Recall that the Hose is represented by a convex polytope 𝑃 in
a high-dimensional vector space, a natural way to measure the

coverage of a set of samples 𝑆 would be by volume, namely the
volume of the convex hull containing all the samples divided by

the volume of the Hose space as follows. This metric is illustrated

in Figure 7 in three dimensions.

Coverage(𝑆, 𝑃) =
Volume(ConvexHull(𝑆))

Volume(𝑃)
(3)

When applying to practical instances of network planning, how-

ever, this metric is intractable. The complexity of computing a

convex hull for 𝑉 points in a 𝐿-dimensional space is approximately

𝑂 (𝑉
𝐿
2 ) [6]. In our case, 𝑉 = 𝑁 2 − 𝑁 where 𝑁 is the node count

in the network, which can be a few hundred, and the sample size

𝑉 = |𝑆 | can be 105.
Instead, we define the planar coverage of the Hose space 𝑃 by a

set of samples 𝑆 on a plane 𝑏 as follows, where Π(𝑆, 𝑏) marks the
projection of the samples in 𝑆 on the plane 𝑏, and Π(𝑃,𝑏) is the
projection of the Hose polytope 𝑃 on 𝑏.

PlanarCoverage(𝑆, 𝑃, 𝑏) =
Area(Π(𝑆, 𝑏))

Area(Π(𝑃,𝑏))
(4)

For a collection of planes 𝐵, we define the coverage of the Hose
space 𝑃 by a set of samples 𝑆 to be the mean planar coverage of 𝑃
by 𝑆 across all the planes in 𝐵.

Coverage(𝑆, 𝑃) =
1

𝑛

𝑛∑

𝑖=1

PlanarCoverage(𝑆, 𝑃, 𝑏𝑖 ) (5)



The choice of these planes is critical for picturing the high-

dimensional Hose space truthfully. These planes should charac-

terize all the variables in the Hose constraints, and the variables

should contribute equally to shaping the planes. Conveniently, we

construct planes with all the pairwise combinations of the variables

in the Hose constraints. Recall from Formula (1) that each variable is

an off-diagonal coefficient of a valid TM𝑀 , or a source-destination
pair in the network. In the Figure 7 example, the chosen planes are

𝐵 = {Plane(𝑚1,2,𝑚1,3), Plane(𝑚1,2,𝑚1,4), Plane(𝑚1,3,𝑚1,4)}.

5 CROSS-LAYER OPTIMIZATION
Capacity planning requires cross-layer optimization of the optical

network and the IP network. The optimization inputs include the

DTMs, the IP topology 𝐺 = (𝑉 , 𝐸) with backbone routers 𝑉 and
IP links 𝐸, and the optical topology 𝐺 ′ = (𝑉 ′, 𝐸 ′) involving the
OADMs𝑉 ′ and fiber segments 𝐸 ′. The outputs are the target IP and
optical topologies𝐺+Δ𝐺 = (𝑉 , 𝐸+Δ𝐸) and𝐺 ′+Δ𝐺 ′ = (𝑉 ′, 𝐸 ′+Δ𝐸 ′)
with the same sites but more links or greater capacity. This section

presents the optimization process in detail.

5.1 Cost Model
Although planning is not a time-critical mission, given the size of

our network, we want the optimization to at least finish, hopefully

in hours. To simplify the optimization, we devise a cost model to

abstract complications in the optical and routing systems as simple

cost factors multiplied to the decision variables. The five essential

cost factors are:

Fiber procurement and deployment cost This is the entire cost

of purchasing and installing a new fiber before it becomes usable.

If we own the fiber, it includes the equipment cost of procuring the

fiber, optical amplifiers, Configurable Optical Add/Drop Multiplex-

ers (COADMs), Wavelength Selective Switches (WSSes), IP router

chassis, as well as the labor cost of cleaning the fiber, deploying

the amplifiers along the fiber path and deploying COADMs, WSSes,

and router chassis at the terminal sites. If we lease the fiber, it cov-

ers all the usage, operational, and maintenance cost in the leasing

contract. This cost varies fiber to fiber depending on the vendor,

fiber length, fiber type (terrestrial, submarine, or aerial), etc., and

we model it based on these features. We denote this cost as 𝑥 (𝑙) for
fiber segment 𝑙 on the optical topology 𝐺 ′.

Fiber turn-up cost This is the cost of turning up a dark fiber that

is already installed. It includes the cost of purchasing extra equip-

ment such as transponders and line cards and the manual effort of

configuring devices. We estimate this cost based on historical data.

It is denoted as 𝑦 (𝑙) for fiber segment 𝑙 on 𝐺 ′.

Capacity addition cost This is the cost of provisioning a new

wavelength on a turned-up fiber. It adds one unit of bandwidth

capacity, i.e., 100Gbps, on the IP layer. This cost involves the labor

work of wavelength provisioning and router port configuration. It

is a flat cost, denoted as 𝑧 (𝑒) for IP link 𝑒 on the IP topology 𝐺 .

Spectral efficiency This factor captures the proportion of optical

spectrum a unit of IP capacity consumes over all fiber segments on

its path, which depends on the modulation required to get error-free

transmission on the circuit. We denote the spectral efficiency of an

IP link 𝑒 as 𝜑 (𝑒) and delegate the sophisticated optical link engi-
neering calculations to an optical link simulator similar to [21]. The

following spectral conservation constraint regulates the spectral

consumption per fiber segment 𝑙 ∈ 𝐸 ′. Assume 𝑙 has 𝜙𝑙 lighted-up
fibers, each having a maximum allowable spectrum 𝑀𝑎𝑥𝑆𝑝𝑒𝑐 (𝑙).
For an IP link 𝑒 ∈ 𝐸, the required spectrum is the IP capacity 𝜆𝑒
multiplied by its spectral efficiency 𝜑 (𝑒). Thus, the total spectrum
consumed over fiber segment 𝑙 must be greater than or at least equal
to the sum of spectrum required by each IP link 𝑒 riding over this
fiber segment, specified by the IP-optical mapping function 𝐹𝑆 (𝑒).
To account for the loss of usable spectrum due to the spectrum

continuity constraint [3], we reserve a percentage of𝑀𝑎𝑥𝑆𝑝𝑒𝑐 (𝑙)
as a planning buffer while turning up fibers. This abstraction of

wavelength contention saves the effort of accurate wavelength

allocation and works well in practice.

𝑆𝑝𝑒𝑐𝐶𝑜𝑛𝑠𝑒𝑟𝑣 (𝐺,𝐺 ′):∑

𝑒∈𝐸, 𝑙 ∈𝐹𝑆 (𝑒),

𝜑 (𝑒) × 𝜆𝑒 ≤ 𝑀𝑎𝑥𝑆𝑝𝑒𝑐 (𝑙) × 𝜙𝑙 ,∀𝑙 ∈ 𝐸 ′ (6)

Routing overhead This is the loss of bandwidth capacity due to

imperfection of routing algorithms. We formulate capacity plan-

ning as a multi-commodity flow problem [11] on the IP layer. In

practice, backbone routers only allow for a small number of paral-

lel paths per flow, such as in Equal-Cost Multi-Path (ECMP) and

K-shortest path routing, which makes the problem NP-hard. To

solve it in polynomial time, we switch to fractional flows, i.e., every

flow being infinitely splittable, and we capture the difference from

the actual routing algorithm by routing overhead. For a particular

routing algorithm, the routing overhead 𝛾 is a [1, +∞) factor multi-

plied to the original traffic demand to give headroom for routing

inefficiency.

5.2 Resilience Policy
Our services are categorized into several QoS classes for different

performance guarantees. Different QoS classes have different re-

silience policies. Higher QoS classes (usually denoted by smaller

class numbers) can tolerate more failures, through more robust

routing algorithms and greater protection capacity in backup paths.

Based on the resilience policy, each QoS class has a pre-defined set

of failure scenarios to protect against. A failure scenario presents

the physical-layer fiber cuts and the loss of IP links on these fibers.

With Hose-based capacity planning, we need to fully satisfy the

traffic demand of each QoS class under the protected failures. As

Equation (7) shows below, for QoS class 𝑞, we have a set of post-
failure residual IP topologies 𝐺𝑞 , whose elements are formed by

removing the failed IP links of a particular failure scenario 𝑟𝑞 in
the scenario set 𝑅𝑞 .

𝐺𝑞 =
⋃

𝑟𝑞 ∈𝑅𝑞

(𝐺0 − 𝑟𝑞) (7)

As described in Section 3, we forecast traffic for individual service

types. Aggregating across services, we have a Hose model 𝐻𝑞 per

QoS class 𝑞 ∈ {𝑄𝑜𝑆}. We design resilience policies in such a way
that traffic from one QoS class is protected against failure scenarios

from its own class and all other classes lower than it. Hence, the

residual topology 𝐺𝑞 must carry traffic of its own class and all

higher classes. Per Section 5.1, each QoS class may use a different

routing scheme, thus having a different routing overhead. Like

shown in the equation below, the reference DTMs of a QoS class 𝑞
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is derived from the TM generation in Section 4 over all the protected

traffic, as the union of the Hose constraints in classes 1 to 𝑞, with
the routing overhead applied.

𝑇𝑞 = 𝐷𝑇𝑀 (

𝑞⋃

𝑖=1

𝛾 (𝑖) × 𝐻𝑖 ) (8)

For each QoS class 𝑞, given the DTMs 𝑇𝑞 and post-failure IP
topologies 𝐺𝑞 , the traffic flows in each reference TM𝑀 ∈ 𝑇𝑞 must
satisfy the conservation constraints on every topology 𝐺 ∈ 𝐺𝑞 , as

shown below. That is, for every flow in a TM𝑀 , the source and sink
of the flow have the required traffic amount, all intermediate nodes

of the flow have zero traffic in sum, and the flows over an IP link

cannot exceed the bandwidth capacity 𝜆. Here we simply assume
all flows are infinitely splittable, because the difference from the

actual routing algorithms is accounted for by the routing overhead.

𝐹𝑙𝑜𝑤𝐶𝑜𝑛𝑠𝑒𝑟𝑣 (𝑀,𝐺) for𝑀 ∈ 𝑇𝑞,𝐺 ∈ 𝐺𝑞 :∑

{𝑖,𝑢 }∈𝐸

𝑓𝑖, 𝑗 (𝑖, 𝑢) −
∑

{𝑖,𝑢 }∈𝐸

𝑓𝑖, 𝑗 (𝑢, 𝑖) =𝑚𝑖, 𝑗

∑

{ 𝑗,𝑢 }∈𝐸

𝑓𝑖, 𝑗 (𝑢, 𝑗) −
∑

{ 𝑗,𝑢 }∈𝐸

𝑓𝑖, 𝑗 ( 𝑗, 𝑢) =𝑚𝑖, 𝑗

∑

{𝑢,𝑣 }∈𝐸,
𝑢≠𝑖,𝑣≠𝑗

𝑓𝑖, 𝑗 (𝑢, 𝑣) −
∑

{𝑢,𝑣 }∈𝐸,
𝑢≠𝑖,𝑣≠𝑗

𝑓𝑖, 𝑗 (𝑣,𝑢) = 0

∑

{𝑢,𝑣 }∈𝐸

𝑓𝑖, 𝑗 (𝑢, 𝑣) ≤ 𝜆𝑢,𝑣 ∀𝑚𝑖, 𝑗 ∈ 𝑀

(9)

5.3 Short-Term Planning
Short-term network planning is for the next 6 months to 2 years.

In this period, we rely on the existing optical infrastructure. Thus,

we assume the IP topology stays the same, yet the capacity of

IP links can be increased. The physical-layer topology formed by

active fiber segments can be expanded under the limit of deployed

(maybe inactive) fiber resources. Our goal is to minimize cost while

admitting the future traffic derived from Hose-based traffic forecast.

The ILP formulation is as follows. The optimization takes in

the current IP topology 𝐺 and the expandable optical topology
𝐺 ′ + Δ𝐺 ′, where Δ𝐺 ′ is the expansion budget offered by the dark

fibers. 𝜙𝑙 is the number of fibers on fiber segment 𝑙 ∈ 𝐸 ′ + Δ𝐸 ′ that
will be lighted in the end, and 𝜆𝑒 is the target capacity on IP link
𝑒 ∈ 𝐸. Multiplying them with the respective cost as described in
Section 5.1, i.e., per-fiber turn-up cost 𝑦 (𝑙) and per-unit-bandwidth
capacity addition cost 𝑧 (𝑒), we get the optimization objective of
minimizing the total cost of building the final network.

min
∑

𝑙 ∈𝐸′+Δ𝐸′

𝑦 (𝑙) × 𝜙𝑙 +
∑

𝑒∈𝐸

𝑧 (𝑒) × 𝜆𝑒

s.t. 𝑆𝑝𝑒𝑐𝐶𝑜𝑛𝑠𝑒𝑟𝑣 (𝐺,𝐺 ′ + Δ𝐺 ′)⋃

𝑀 ∈𝑇𝑞 ,𝐺 ∈𝐺𝑞

𝐹𝑙𝑜𝑤𝐶𝑜𝑛𝑠𝑒𝑟𝑣 (𝑀,𝐺),∀𝑞 ∈ 𝑄𝑜𝑆

𝜆𝑒 ≥ Λ𝑒 ,∀𝑒 ∈ 𝐸
𝜙𝑙 ≥ Φ𝑙 ,∀𝑙 ∈ 𝐸 ′ + Δ𝐸 ′

(10)

This objective is intrinsically equivalent to minimizing the addi-

tional cost of network expansion, because the sunk cost of building

the existing network has been paid for, but it simplifies the con-

straints. For example, the spectral conservation constraint described

in Section 5.1 is regarding the total IP capacity and total fiber counts.

The flow conservation constraint in Section 5.2 should also be sat-

isfied. Note that we need to consider this constraint for every QoS

class. Besides, we have additional constraints that 𝜆𝑒 and 𝜙𝑙 must be
greater than or equal to the current values Λ𝑒 and Φ𝑙 in the existing
network, based on the fact that a network keeps growing: we do

not reduce IP capacity or disable optical fibers once a network has

been built.

5.4 Long-Term Planning
Long-term network planning targets at 2 to 5 years in the future.

The purpose of long-term planning is to estimate the worst-case

hardware requirements and make sure sufficient equipment is pro-

cured ahead of time. An important difference from short-term plan-

ning is long-term planning considers installation of new fibers. The

large scale of our backbone network makes it infeasible to perform

global search for all possible fiber installation locations. A practical

solution is to narrow down to a small number of candidate locations

based on fiber availability on the market and our operational expe-

rience. We sketch an optical topology𝐺 ′ + Δ𝐺 ′, with the candidate

fibers in Δ𝐺 ′, and we map these fibers to possible IP links to form

the IP topology𝐺 +Δ𝐺 , where the potential IP links are in Δ𝐺 with
zero initial capacity.

In this way, we convert the long-term planning problem to a

similar formulation as the short-term planning problem. As shown

below, the optimization objective is still minimizing the total cost,

yet with one more term for the fiber procurement and deployment

cost. On the candidate optical topology Δ𝐺 ′, 𝜓𝑙 is the number of
fibers to deploy on the fiber segment 𝑙 and 𝑥 (𝑙) is the per-fiber
procurement and deployment cost defined in Section 5.1. The fiber

turn-up cost and capacity addition cost are similar to short-term

planning, but need to be considered on topologies 𝐺 ′ + Δ𝐺 ′ and

𝐺 + Δ𝐺 respectively with candidate fibers and IP links.

min
∑

𝑙 ∈Δ𝐸′

𝑥 (𝑙) ×𝜓𝑙 +
∑

𝑙 ∈𝐸′+Δ𝐸′

𝑦 (𝑙) × 𝜙𝑙 +
∑

𝑒∈𝐸+Δ𝐸

𝑧 (𝑒) × 𝜆𝑒

s.t. 𝑆𝑝𝑒𝑐𝐶𝑜𝑛𝑠𝑒𝑟𝑣 (𝐺 + Δ𝐺,𝐺 ′ + Δ𝐺 ′)⋃

𝑀 ∈𝑇𝑞 ,𝐺 ∈𝐺𝑞+Δ𝐺𝑞

𝐹𝑙𝑜𝑤𝐶𝑜𝑛𝑠𝑒𝑟𝑣 (𝑀,𝐺),∀𝑞 ∈ 𝑄𝑜𝑆

𝜆𝑒 ≥ Λ𝑒 ,∀𝑒 ∈ 𝐸 + Δ𝐸
𝜙𝑙 ≥ Φ𝑙 ,∀𝑙 ∈ 𝐸 ′ + Δ𝐸 ′

𝜓𝑙 ≥ 0,∀𝑙 ∈ Δ𝐸 ′

(11)

Likewise, the spectral conservation constraint and flow conser-

vation constraint also apply to the potential topologies 𝐺 ′ + Δ𝐺 ′

and 𝐺 + Δ𝐺 . Although our approach results in a large number of
possible IP links over the new fibers, the spectral conservation con-

straint guarantees to select a subset whose capacity can be fully

accommodated by the fibers. Similar to short-term planning, the

variables 𝜆𝑒 , 𝜙𝑙 , and 𝜓𝑙 must increase relative to the base values,
namely existing capacity numbers in the current network and zero

for the candidate topologies. Since the fiber procurement and de-

ployment cost is orders of magnitude higher than the fiber turn-up

cost and capacity addition cost, our formulation naturally favors

exhausting existing fiber resources first. In case the optimization

fails to produce feasible solutions, we enlarge the pool of candidate

fibers and rerun the optimization.
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(a) (b) (c)

Figure 9: (a) Distribution of planar Hose coverage by different numbers of sampled TMs, (b) Network cuts generated under different edge
threshold 𝛼 , and (c) The number of DTMs as a function of flow slack 𝜖 , for various edge threshold 𝛼 values.

Figure 10: AverageHose coverage of DTMs as a function of the flow
slack 𝜖 , for various edge threshold 𝛼 values.

6 EVALUATION
Our Hose-based capacity planning system has been running in

production for several years. Its core component is an optimization

engine implemented on top of the Xpress solver [1] with a max-

flow-based route simulator. It is a production-grade software with

substantial engineering efforts put into scaling up the optimization.

In this section, we first evaluate the Hose conformance of the TM

generation process in Section 4 to give guidelines for parameter tun-

ing in our system, then we compare the end-to-end planning results

with Pipe-based planning to show the performance advantages.

All experiments are on Facebook’s latest North America produc-

tion topology, which contains hundreds of nodes and thousands

of IP links over hundreds of optical fibers. We plan for 500 fail-

ure scenarios based on historical data, including 300 single-fiber

failures and 200 multi-fiber failures. We predict future traffic with

our production traffic forecast system, and our experiments strictly

follow the two-step planning procedure in production: deciding the

hardware infrastructure with long-term planning and feeding the

result into short-term planning for the final IP network build plan.

Traffic forecast and capacity planning for the Pipe model are based

on our legacy systems before Hose was adopted.

6.1 Hose Conformance

Hose coverage of TM sampling The effectiveness of our TM

sampling algorithm is shown in Figure 9a. Here, we present the

CDF distribution of planar coverage, as defined in Section 4.4, for

different sample sizes. With 105 TM samples, among all the projec-

tion planes for the Hose polytope, even the worst plane reaches

over 97% coverage, and the mean coverage is over 99%. This result

indicates that the Hose space can be represented by 105 sample

TMs with negligible loss of accuracy.

Figure 11: Mean number of DTMs 𝜃 -similar to each other with an
increasing angle of 𝜃

Comparing different curves, intuitively, more TM samples result

in higher Hose coverage. Yet, the increase of coverage slows down

as the number of samples grows. For example, the mean coverage

of 104 samples is 10% higher than 103 samples, while the increase

from 104 to 105 samples is only 3%. This trend shows a rewarding

tradeoff: we can reduce a large number of sample TMs at minimal

degradation of Hose coverage. However, recall that our TM sam-

pling algorithm (Algorithm 1) has 𝑂 (𝑁 2) complexity with regard
to the network size 𝑁 , sampling 105 TMs takes only 200 seconds
in practice. In our production, we choose 105 samples for highly

accurate planning results.

Effect of edge threshold on cut generation Figure 9b looks into

the performance of the sweeping algorithm in Section 4.2. It plots

the number of generated network cuts with the variance of the

edge threshold parameter 𝛼 . Recall from the algorithm illustration
in Figure 8 that 𝛼 determines the number of edge nodes that are
permuted to form different cuts, thus a larger 𝛼 results in more
network cuts and 𝛼 = 1 guarantees to find all cuts in the network.
In practice, however, we do not need to set 𝛼 = 1 to get all the cuts.
According to Figure 9b, the number of cuts reaches the maximum

when 𝛼 ≥ 0.095. The curve has a sharp increase for 𝛼 between 0.065
and 0.07, indicating the algorithm can be sensitive with 𝛼 . Based
on these observations, we conclude a sufficiently large 𝛼 should be
chosen, otherwise a significant number of cuts may be ignored.

Effect of flow slack on DTM selection Figure 9c quantifies the

relationship between the number of DTMs and the flow slack factor

𝜖 as of the DTM selection process in Section 4.3. According to
Definition 4.2, a sample TM can be a candidate DTM if its traffic

across a network cut is at least 1 − 𝜖 of the maximum traffic across
the cut. So, a bigger 𝜖 will cause more TMs to be qualified as DTMs,
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Figure 12: Traffic drop on Hose and Pipe network plans: (a) CDF of
daily drop, (b) drop per day.

among which a smaller subset can represent all the network cuts.

Figure 9c is consistent with this expectation: the minimum DTM

count to cover all network cuts reduces with the increase of 𝜖 ,
sharply in the beginning and slowing down as 𝜖 grows. A smaller
number of DTMsmeans less computation for planning optimization,

yet the Hose coverage may be compromised. We discuss the details

in Figure 10.

It also shows the effect of edge threshold 𝛼 on the number of
DTMs. Interestingly, comparing to Figure 9b, the effective 𝛼 value
can be further reduced with DTM selection in place. Specifically,

the top curves where 𝛼 is 8%, 9%, and 10% show little difference in
terms of the number of DTMs, although 𝛼 = 8% finds 25% fewer
network cuts than 𝛼 = 10% in Figure 9b. This result proves the
robustness of our DTM selection process: with a reasonable 𝛼 , even
if some network cuts are not explicitly considered, the resulted

difference in the number of DTMs is small.

Hose coverage of DTMs Figure 10 combines the above factors

and shows their joint effect on DTM selection. The curves have

similar trends as those in Figure 9c. However, for 𝛼 values 8%, 9%,
and 10%, their Hose coverage almost overlap completely. Thus,

we claim the edge threshold 𝛼 = 8% is sufficient for our network,
as the slightly lower number of DTMs can cover the Hose space

equally well. Compared to Figure 9c, Hose coverage shows a more

smooth, near-linear reduction with the increasing flow slack 𝜖 ,
which confirms the design purpose of our DTM selection process:

a small set of well-chosen DTMs can reach high Hose coverage. We

set 𝛼 = 8% and 𝜖 = 0.1% in production and reach a relatively high
Hose coverage of 83%.

DTM Similarity From another angle to examine the coverage, we

also analyze the similarity of DTMs. A diverse set of DTMs implies

tolerance to traffic uncertainty. We define similarity between two

DTMs𝑀1 and𝑀2 as follows:

Similarity(𝑀1, 𝑀2) =
< 𝑀1 ·𝑀2 >

‖𝑀1‖2 ‖𝑀2‖2
(12)

where ‖.‖2 denotes the L2-norm of a matrix and < · > denotes
the dot product of the vectors obtained from unrolling the matri-

ces. The similarity can be expressed as the cosine of the angle of

alignment between the two matrices w.r.t. the origin. For exam-

ple, Similarity(𝑀1, 𝑀2) = 1 if 𝑀2 is a multiple of 𝑀1 by a strictly
positive scalar. We then define the two matrices𝑀1 and𝑀2 to be
𝜃 -similar iff Similarity(𝑀1, 𝑀2) ≥ cos𝜃 .
We evaluate the similarity of the DTMs used in production,

where 𝛼 = 8% and 𝜖 = 0.1%. For each DTM, we compute the number

Figure 13: Traffic drop under random fiber failures.

of DTMs (including itself) that are 𝜃 -similar to it. We then average
the numbers across all DTMs to get the mean DTM 𝜃 -similarity.
Figure 11 shows this metric with the increase of 𝜃 . When DTMs
are all isolated, the mean number of DTMs similar to each other

should be 1, i.e., a DTM is only similar to itself. As 𝜃 increases,
DTMs further away are 𝜃 -similar, and the mean DTM similarity
would increase. We see here that the mean DTM similarity remains

close to 1, even for values of 𝜃 in excess of 20◦, indicating that the
DTMs are each well-isolated in the Hose space of TMs, and that

applying additional clustering would not yield many benefits.

6.2 Performance Comparison with Pipe

Planning result vs. actual traffic We evaluate the planning accu-

racy by seeing whether the planned capacity can satisfy the actual

traffic. To do so, we take the June 2020 network as our baseline

topology and perform demand forecast of the next 6 months with

both Hose and Pipe models to generate the capacity plans. Note that

these plans are not the production topology in December 2020, but

rather what the network hypothetically asked for 6 months ago in

history. We evaluate how good these plans are by replaying 28 days

of actual traffic in December 2020 on them. The difference between

the actual traffic and the forecast traffic is the main reason for either

under-provisioning causing dropped demand or over-provisioning

causing wasted capacity.

Traffic drop is especially harmful to service performance. Fig-

ure 12 compares the dropped traffic volume on the Hose and Pipe

plans under the steady state, i.e., no failures in the network. In

subfigure (a), we observe from the CDF distribution that the daily

dropped demand in the Hose model is much lower than Pipe, and

for 80% of the days, the difference in dropped demand is almost

50%. In the day-to-day view of subfigure (b), for almost all days,

the dropped demand for Pipe is higher than Hose, and the differ-

ence can be as high as several Tbps on some days like 12/08 and

12/13. Both results confirm our initial hypothesis in Section 2 that

Hose-based planning is more resilient to traffic dynamics and can

provide better overall performance.

Resilience to unplanned failures We further compare the traf-

fic drop with Hose and Pipe plans under unplanned failures in

Figure 13. It uses the same setting as Figure 12 with 10 randomly

selected fiber cuts. We observe that Hose consistently drops less

traffic than Pipe in all scenarios by 50%-75%. Compared to steady

state in Figure 13, the benefit of Hose dropping less traffic is even

more profound.

Yearly capacity growth Figure 14a shows Hose and Pipe’s yearly

capacity growth as a percentage of the baseline capacity in the next
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Figure 14: (a) Yearly capacity growth of Hose and Pipe, (b) 2021
capacity decrease with clean-slate planning.

Figure 15: Cost benefit of Hose measured by fiber consumption.

5 years. The projected traffic demand from our production traffic

forecaster roughly doubles every two years. Hose-based capacity

planning is more capacity-efficient in the long run. First, the relative

capacity gain of Hose is greater year by year. By 2025, it can save

17.4% capacity compared to Pipe. Second, while both Pipe and Hose

capacity scale faster than traffic growth (more capacity is needed

to account for failure scenarios), the Hose capacity increases at a

lower rate. The capacity saving of the Hose model comes from the

multiplexing gain of traffic aggregation, as discussed in Section 2.

The advantage is not obvious in the near future because the

Hose model has been in use for only a few years. Our current

topology is mostly built with Pipe-based planning, and it takes time

to become Hose-compliant. In Figure 14b, we remove this factor

by planning the network from scratch, and we show the capacity

decrease against the 2021 Pipe result in Figure 14a. In this case, Hose

can save almost 7% more capacity than Pipe. These observations

suggest evolving a network with the Hose model can reach a more

optimized network topology than evolving with the Pipe model.

Cost saving While we cannot share the proprietary cost values,

we approximate the cost benefit of Hose using the fiber pair con-

sumption. Figure 15 shows the additional percentage of fiber usage

normalized by the baseline. We observe a similar trend as the capac-

ity growth. The cost advantagemanifests as the years of deployment

increase, with as high as 20% saving in four to five years.

Optimization time vs. accuracy Table 2 further investigates the

Figure 14b results with varying Hose coverage. We see even a rel-

atively low coverage of 40% achieves a large capacity saving of

8.62%. At a high coverage of 83%, the overall computation time is

an affordable 1063 minutes, or 17.7 hours. Because the DTMs are

consumed by the optimization procedure iteratively in batches, the

DTMs in later batches may already be satisfied by earlier batches.

Thus, the computation time per DTM is only a few minutes, and

further reduces given more DTMs, thanks to the batching effect.

This result highlights that our solution is scalable and insensitive to

Hose # Reduced Time Time
cove- DTMs capa- in per
rage city % mins DTM

40% 21 8.62 48 2.28

52% 64 8.28 312 4.87

58% 89 10.52 342 3.84

67% 154 9.31 412 2.67

83% 628 8.45 1063 1.69

Table 2: Capacity saving with different Hose coverage

Figure 16: Capacity saving of Hose over Pipe: per-link capacity dif-
ference relative to the 83% coverage plan.

Figure 17: CDF of the capacity variance of IP links per site.

the DTM selection when the coverage is sufficient. Figure 16 com-

pares the planned capacity per IP link for different Hose coverage

values against the 83% coverage baseline. The planning difference

is remarkable, though shrinking, as the Hose coverage improves.

Considering the good time scalability of our system, we suggest

choosing a high Hose coverage in practice, so as to avoid under-

provisioning from overly high capacity reduction such as achieved

by coverage values of 58% and 67%. The capacity saving has little

change when the coverage value is above 83%.

Capacity Distribution Figure 17 shows the standard deviation of

capacity across all the IP links at each site for Year 1 planning (2021

result in Figure 14). Capacity is distributed more uniformly in Hose.

For the Hose model, almost 70% of sites have capacity variance

less than 5Tbps, while the number is only 50% for Pipe. At 80%,

Pipe has a variance 1.5× larger than Hose. The tail of variance for
Pipe is also larger than Hose. More uniform capacity distribution

is desirable for resilience against unplanned failures and future

scaling, because more TMs can fit into even link capacities at a site.

Hose-based planning adds capacity more uniformly across links

thanks to the variant TMs it has considered.

7 OPERATIONAL EXPERIENCE
We have learned important operational lessons throughout years of

running Hose-based network planning in production. This section

reveals unexpected use cases, system adjustments, and directions

for future improvements.
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7.1 Disaster Recovery Buffer
The concept of "disaster readiness" has been built into every aspect

of Facebook’s infrastructure [22]. Disaster refers to any catastrophic

failure that takes a long time to recover, such as hurricane, major

fire event in a DC, etc. Facebook conducts disaster recovery (DR)

exercises to test its capability under actual disasters. These DR tests

migrate requests originally sent to potentially failing DCs to other

healthier DCs. This process explores the inter-service dependencies

and dynamic resource constraints (such as compute and storage

resources) to identify the mitigation plan for each service in real

time. Each candidate mitigation plan will create a drastic shift to the

original TM. For a network planned with Pipe, it requires careful

evaluation of every TM (one for every candidate migration plan)

to certify if the current production backbone can accommodate

this changed TM. By moving to Hose-based network planning, a

planner is able to provide an upper bound on the total ingress and

egress traffic supported per DC. By looking at the current traffic

utilization, one could quantify additional traffic that can be added

to the DC without overloading the region, i.e., a planner is able to

provide deterministic DR buffers that can be used by operational

teams performing the DR exercise.

7.2 Partial Hose
Our Hose model is based on the general assumption that a service

would send traffic to any destination region. However, we find a

service may only need to communicate with a small subset of the

regions, as the service placement is limited to these regions. For

example, we have a data warehouse service that utilizes a special-

ized server type, which is only available in 4 regions. The data

warehouse traffic accounts for 75% of the total inter-region traffic

between these 4 regions. Taking service placement into considera-

tion can help us estimate DTMs more accurately. Thus, in this case,

we can create a smaller Hose, consisting of only these 4 regions,

and a larger Hose consisting of the remaining traffic to all desti-

nations. This partial Hose model gives us additional information

of the application communication patterns. However, considering

the large number of services at Facebook, we only use partial Hose

under two conditions: (1) if the traffic volume of the service is sig-

nificantly large; (2) if the service placement is inherently limited

by the hardware resource such that it is impossible to move the

service to other regions easily.

7.3 A/B Testing
Testing network plans using demand forecast andmodeling assump-

tions for production network is non-trivial. The actual performance

only becomes clear several months or even years after the plan is

deployed. In practice, we rely on extensive A/B testing and man-

ual verification by experts across teams, typically from network

planning, sourcing, and deployment teams, to verify our designs.

We set up A/B testing for different network build plans. For ex-

ample, given two sets of input demands, or two different policies,

two versions of PORs will be generated. We compare key metrics

quantitatively, such as IP topology, optical fiber count, cost, flow

availability, latency, failures unsatisfied, etc. The experts then check

these multiple designs for any anomalies. Right now, our testing

strategy is largely based on engineering tribe knowledge. We en-

courage more research in this area to enable scientific A/B testing

for network build plans.

7.4 Stability of Parameter Setting

In production deployment, we find the choice of parameters, e.g.,

Hose coverage, to be stable over time. The fundamental reason is

the relative stability of traffic demand variations. The backbone

traffic is dominated by machine-to-machine traffic between DCs,

which fundamentally reflects the service placement. In production,

the service placement is relatively stable to accommodate various

infrastructure constraints pertaining to server availability, fault

tolerance requirements, and disaster recovery planning. Thus, we

observed that complete demand shifts are rare but moderate shifts

of 30-50% traffic between different regions are still common under

different failures. This leads to our engineering choice of 83% Hose

coverage, as demonstrated earlier in Section 6.

8 RELATEDWORK

Hose model in Virtual Private Network (VPN) The seminal

work by Duffield et al. [9] proposes the Hose model for resource

management in VPNs. It allocates bandwidth to satisfyHose-conformant

worst-case traffic distribution. Several follow-up work have been

developed to improve the dynamic bandwidth resizing [7, 10, 20].

Their problem formulation is fundamentally different from ours

as they allocate existing bandwidth resources to best guarantee

the Hose requirement, whereas our work designs the underlying

network to satisfy all possible traffic splits under a Hose. Our work

is more closely related to [15] which designs a tree topology to

satisfy Hose, while our solution works with general graphs.

Hose model in cloud resource sharing Hose is also used to

model demands in DCs [4] and the cloud environment [4, 8, 14, 17–

19]. These work use the Hose model for per-VM traffic demand and

use a big virtual switch to abstract the network fabric. For instance,

Oktopus [4] proposes a VM placement algorithm based on the Hose

constraints of any two sets of VMs. The demand between the two

VM sets is determined by the sum of all VMs’ Hose demands in

each set. This model essentially adds up all the worst-case TMs

and results in significant over-provisioning. Our approach is more

efficient because we use an operationally effective slack factor

(Section 4.3) to choose hard-enough TMs, but not the worst-case

TMs, and the resulting multiplexing gain has been demonstrated in

production (Section 6.2).

Network planning Scenario-based planning copes with traffic

uncertainty by using forecast results for a few given network sce-

narios, and each scenario emphasizes on a set of TMs [23]. Our

selection of TMs is more general, not limited by any pre-defined

scenarios. Zhang et al. proposes to find critical TMs by clustering

for general network analysis applications [24]. However, their work

is not tailored for network planning. We are interested in applying

their algorithm to network planning and comparing the efficacy

against our DTM selection algorithm. Little has been revealed about

production network planning except for a brief introduction in [5].

To the best of our knowledge, we are the first to describe real-world

network planning in detail.
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9 CONCLUSION
Network planning plays an important role in long-term network

evolvement and service growth. In this paper, we demonstrate the

effectiveness of using the Hose model for network planning by

leveraging its multiplexing gain to simultaneously save capacity

and absorb traffic uncertainty. We share the experience of planning

a production backbone over several years. Our work sheds light on

the potential of Hose in a new problem domain, network planning,

in the hope of stimulating more research in this area.
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