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Entwurf eines Aufbaus zur flexiblen dispersionskompensierten
nichtlinearen Kompression von Femtosekunden-Laserpulsen an einem
ultravioletten Frequenzkamm

Die vorliegende Arbeit präsentiert einen konzeptionell neuen Ansatz für nichtlineare
Pulskompression in einer Multipasszelle für einen Frequenzkamm im ultravioletten
Spektralbereich, der zukünftig für Quantenlogik-Spektroskopie an hochgeladenen
Ionen verwendet werden wird. Dabei wird die Dispersion nicht wie herkömmlich
durch dispersive Spiegel kompensiert. Stattdessen wird mit einem im Spektralbereich
des Lasersystems um 1030 nm anomal dispersiven Kaliumdiphosphat-Kristall als
nichtlinearem Material die Dispersionskompensation durch Einstellen des umgebenden
Gasdrucks im Multipass-Aufbau ermöglicht. Dadurch kann die Pulskompression durch
Anzahl der Durchgänge durch die Zelle angepasst werden. Das vorliegende Konzept
wird durch numerische Simulationen der nichtlinearen und dispersiven Phänomene
validiert.
Zur Quantifizierung der Pulskompression befasst sich diese Arbeit im Weiteren mit
dem Aufbau eines Systems zur Pulscharakterisiung durch intensitätsbasierte und
interferometrische Autokorrelation sowie frequency-resolved optical gating.

Design of a setup for flexible, dispersion-compensated nonlinear
femtosecond laser-pulse compression adapted to an extreme ultraviolet
frequency comb

This work presents a novel approach for nonlinear pulse compression in a multipass
cell for an extreme ultraviolet frequency comb which will be employed for quantum
logic spectroscopy of highly charged ions. The nonlinear crystal used is potassium
pyrophosphate (KDP) which exhibits anomalous dispersion around the central wave-
length 1030 nm of the seed laser. This enables tuning of the dispersion by adjusting the
pressure of a normal dispersive gas which fills the multipass cell. Chirped mirrors are
thus not necessary and pulse compression becomes flexible by adjusting the number of
passes in the cell. This proposal is supported by numerical simulations.
For analysis of the pulse compression, a pulse characterization system for intensity-
based and interferometric autocorrelation and frequency-resolved optical gating is set
up.
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1 Introduction

This chapter motivates the bigger picture of the overall experimental setup under which
the work of this thesis was performed. The open question of variation of fundamental
constants is introduced and a method of probing these variations using highly charged
ions (HCI) and a frequency comb in the extreme ultraviolet (XUV) is presented. This
motivates the goal of this thesis, an improvement of the XUV frequency comb by pulse
compression and spectral broadening.

1.1 Variation of Fundamental Constants

The standard model of particle physics is a theory that describes the strong, weak and
electromagnetic interaction between matter with astonishing accuracy [1]. However, the
standard model falls short of an explanation for the existence of dark matter and the
matter-antimatter asymmetry. It has also not yet been unified with general relativity [2],
yielding a theory that connects the four fundamental forces. Thus, the standard model is
subject to intense research.
Extensions to the standard model with a variation in space and time of the fundamental
constant that describes the coupling between photons and charged particles, the fine
structure constant α, are motivated by the high dimensionalities of string theories [3].
The fine structure constant can be expressed via vacuum permittivity ε0, elementary
charge e, the Planck constant ~ and the speed of light c as

α =
1

4πε0

e2

~c
. (1.1)

Searching for variations in this constant over time could support this approach of varying
fundamental constants in space or time. A first experimental piece of evidence of a
dynamical fine structure constant was brought up by measurements with the Very Large
Telescope suggesting a change of α in the redshifted spectra of distant quasars [4].
The abundance of the fine structure constant in atomic physics formulae hints that a
fruitful measurement environment on α-variations lies within atomic spectroscopy. The
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1 Introduction

influence of an α-variation on the hydrogen-like energy levels En,j of a single electron
bound to an point-like nucleus with infinite mass with principle quantum numbers n and
j in the Dirac theory is given by

E(α) = E0 + q

((
α

α0

)2

− 1

)
. (1.2)

The current, constant value of the fine structure constant is α0 and q is a parametrization
for the energy level [5]. This can be connected to a variation in the transition frequency
f = ∆E/~ between two energy levels with an energy difference ∆E as

ḟ

f0
=

2q

f0

α̇

α0

= K
α̇

α0

, (1.3)

where K = 2q/f0 is a dimensionless sensitivity factor mainly depending on the relativistic
contributions in each of the two involved energy levels. Hence, the variation of α can be
detected by a measurement of frequency variations of two frequencies with differing K
without knowledge of the absolute value.
At presence, the upper limit of an α-variation is given by [6]

α̇

α0

= (−2.0± 2.0) · 10−17yr−1. (1.4)

Fig.1.1 shows the increased accuracy of precise frequency measurements over time. The
implementation of optical clocks has surpassed the accuracy of traditional Caesium clocks
in the last decade [8]. With the increased accuracy, this provides a feasible approach to
test α on temporal variations.

1.2 Highly Charged Ions

A suitable choice for spectroscopy to improve the limits on possible alpha variations
are HCIs, i.e. ions that have been stripped of many of their valence electrons, as their
sensitivity to an α-variation scales according to [9]

K ∝ 2α2Z2(Q+ 1)2, (1.5)

with the ionization charge Q. Furthermore, the high binding energy of the remaining
electrons in the ion makes HCIs less sensitive to external perturbations such as the earth
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1.3 XUV Frequency Combs

Figure 1.1: Advance of precision spectroscopy. The accuracy of optical clocks has
recently surpassed the accuracy of Cesium clocks. Taken from [7].

magnetic field. Minimization of these external perturbations is crucial for experiments
with unprecedented accuracy [9].
These ions can be produced in an electron beam ion trap (EBIT) [10]. As the electron
temperature in an EBIT is very high, the ions need to be cooled. This is achieved
by sympathetic cooling in a cryogenic Paul trap where the ions are trapped together
with beryllium ions. The ions are laser-cooled and by thermalization, the HCIs can be
employed for precision spectroscopy [11, 12].
With a coherent light source, quantum logic spectroscopy is possible with HCIs by reading
out the co-trapped ion’s state [13]. This might also enable quantum computing with long
coherence times of the qubits as the HCIs are insensitive to external perturbations. A
missing link is the availability of coherent light sources with linewidths that give access
to the strongly forbidden, very narrow transitions of HCIs in the XUV.

1.3 XUV Frequency Combs

A laser is such a coherent light source, demonstrated for the first time in 1960 [14–16]. It
has a wide range of technical applications [17]. A special kind of laser is the frequency
comb which has a fixed phase relation between emitted laser pulses [18, 19]. Special
locking electronics guarantee this phase relation, which might else smear out due to
noise. Thus, the frequencies of this laser have a comb-like discrete spacing. The lines
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1 Introduction

Figure 1.2: Planned overall experimental setup. (a) The HCI are produced in an EBIT,
(b) slowed down and injected (c) in a linear Paul trap. (d) The fiber frequency comb
which (e) is coupled into an enhancement cavity for XUV generation. These XUV pulses
are sent to the Paul trap. Figure from [25].

are separated by the repetition rate frep with an offset fCEO. The n-th frequency is then
given by

fn = fCEO + nfrep, (1.6)

allowing to operate the laser as a "frequency ruler" reference for hihg precision spectro-
scopic studies.

However, the frequency range of this system is limited by the availability of lasing sources
and their respective wavelength ranges. A frequency comb in the XUV for coherent
spectroscopy on HCIs is not readily available. Tuning to the XUV needs frequency
conversion by high-harmonic generation (HHG) [20]. This phenomenon generates light
at odd multiple integers of the original frequency when shining intense light onto a gas
target. This allows transferring the comb structure to the XUV, shown in 2005 for the
first time [21] with rapid improvements to date [22–24].

This first experiment of XUV spectroscopy on HCIs is currently being set up at the
Max-Planck-Institut für Kernphysik. An overview of the planned experimental setup is
given in Fig. 1.2. The HCIs are produced in a compact EBIT and injected into a Paul
trap where they are cooled and stored. An XUV frequency comb with a repetition rate
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1.3 XUV Frequency Combs

of 100 MHz was set up for spectroscopy of these ions [25, 26]. Laser pulses in the near
infrared (nIR) from a commercial fiber laser are amplified and compressed in a home-built
laser system . Subsequently, the pulses are sent into a passive enhancement cavity in
vacuum, which allows further resonant amplification of the pulses as the roundtrip time in
the cavity is matched to the repetition rate of the incoming pulses. Eventually, focusing
of the enhanced pulses on a gas target generates the desired high coherence XUV light.

The characterization and improvement of the seeding nIR laser pulses are subject to this
thesis. To improve the understanding of the interactions in the enhancement cavity used
for XUV generation, different pulse characterization systems are set up and evaluated.
High intensities in the XUV are neccessary to drive the strongly forbidden transitions of
HCIs in the XUV.

The efficiency of high harmonic generation can be estimated with the Keldysh parameter
γk [27]. It scales inversely proportional to the square root of the peak laser intensity Ipeak
that generates the harmonics as

γk ∝
1√
Ipeak

. (1.7)

A lower Keldysh parameter allows higher efficiency of the process. In addition, the cutoff
energy Ecutoff that determines the highest frequency producible in the high harmonic
process also increases with Ipeak.

The average power of the fiber frequency comb is already amplified from 10W to over
80W and dispersion-compensated in a home-built system; peak powers are further
increased in the passive enhancement cavities. It is therefore the second objective of
this work to compress the laser pulses from the infrared frequency comb and in this
manner increasing the laser peak intensity. Furthermore, shorter pulses increase the HHG
efficiency as less cycles of the electric field ionize the gas prior to the strongest oscillation
cycles. As dispersion is nearly compensated in a grating compressor, further temporal
compression can only be obtained by broader spectra. For this, a novel design of a flexible
continuously dispersion-compensated multipass cell for spectral broadening and nonlinear
pulse compression is presented. Multipass cells operating with bulk material for pulse
compression have recently been set up [28–31] and the presented concept expands the
concept with greater flexibility.

Nonlinear pulse compression is based on spectral broadening by nonlinear interactions
between the laser pulses and a material. The broader spectra can, on top of shorter
pulses, also be employed in an additional application of the frequency comb. A second
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1 Introduction

enhancement cavity is seeded by the same fiber frequency comb. It is in use for velocity
map imaging (VMI) [32, 33]. A prospect research topic is the spectroscopy on the
thorium isomer 229Th at the seventh harmonic of the XUV frequency comb [34–36]. As
the transition region is not known accurately, a broader spectrum allows more flexibility
in reaching this transition.
After some theoretical groundwork in Chapter 2, this thesis will present the pulse
characterization system in Chapter 3 and a novel design for pulse compression and
spectral broadening in Chapter 4, concluding with a summary of the presented work in
Chapter 5.
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2 Theoretical Background

This chapter will introduce the reader to the theoretical concepts that describe ultrashort
laser pulses. As the underlying light source of the work described in this thesis is a
frequency comb, the distinct features of pulsed laser light will be covered in more detail.
A particular focus will be put on the interaction of laser pulses with matter, such as
dispersion and nonlinear optics. With this groundwork at hand, we can then explore
the concepts of nonlinear pulse compression. An overview over different compression
schemes will be given. Furthermore, the last chapter will introduce the ABCD matrix
formalism and the propagation of Gaussian beams for the geometric design of the pulse
compression multipass cell.

2.1 Ultrashort Laser Pulses

Light follows Maxwell’s equations for classical electrodynamics [37]. This introduction
starts from the curl equation for the electric field ~E which reads

~∇× ~E = −∂
~B

∂t
, (2.1)

with a magnetic field ~B. Assuming no free currents (~j = 0), one can take the curl on
both sides and plug in the curl equation for the magnetic field

~∇× ~B =
1

c2
∂ ~E

∂t
, (2.2)

with c = 299792458 m s−1 [38] as the speed of light in vacuum as a fundamental constant.
Using vector identities, assuming no free charges (q = 0) and using the Maxwell equation

~∇ · ~E = 0, (2.3)
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2 Theoretical Background

one can deduce the wave equation for an electric field in vacuum and charge-free space
as ~E

∇2 ~E − 1

c2
∂2t ~E = 0. (2.4)

From here, the description is adapted from Diels and Rudolph [39]. A solution of this
differential equation is the plane wave

~E(~x, t) = ~E0 exp
(
i
(
~k · ~x− ωt

))
, (2.5)

which will for simplicity and without loss of generality, be restricted to one dimension z
along which the wave propagates. The wave equation then reads

E(z, t) = E0 exp(i(kz − ωt)), (2.6)

restricting the field to linearly polarized light with an amplitude of E0. Wave number k
and angular frequency ω are related by the photonic dispersion relation

k =
ω

c
. (2.7)

Such a monochromatic wave with a single frequency can, up to a certain linewidth ∆k [15],
be achieved by a continuous-wave laser in single-frequency operation. This small spectral
bandwidth, i.e. the high coherence of the laser as a light source, is attained through
stimulated emission and a gain bandwidth that is smaller than the spacing between the
resonator modes of the system [40]. Stimulated emission describes an incoming photon
that triggers emission of a photon with the same phase, direction and frequency in the
gain medium of the laser [14]. As opposed to a monochromatic continuous-wave laser, a
description of the emitted light by means of a single frequency is not sufficient for pulsed
lasers: Multiple frequency components around a central frequency given by the resonator
condition in the laser system contribute to the overall electric field as shown in the top
rows of Fig. 2.1. These different propagating frequencies can obey a fixed phase relation,
which is called mode-locking. Mode-locking can be achieved via an intensity-dependent
component, e.g. a semiconductor saturable absorption mirror (SESAM) [41] or nonlinear
polarization rotation [42].
The bottom row in Fig. 2.1 shows the electric field arising from a sum of different
underlying frequencies. Some of the contained frequencies are shown above the pulse
as an example and all the different frequency components form a wavepacket which is
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2.1 Ultrashort Laser Pulses

time (a.u.)

R
e

(E
)

Figure 2.1: Schematic representation of mode-locking. Plane waves of different frequen-
cies, exemplified in red–yellow–green–blue, forming a wave packet with the sum of the
real part of the electric field in black. The envelope (dashed) has a stable Gaussian form
when a mode-locked laser yields a fixed phase relation of the individual frequencies.
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2 Theoretical Background

called a pulse. A description of this pulse now needs integration over all the contributing
frequencies ω. The contributing frequencies are considered with respect to a central
frequency ω0 and the overall electric field is then

E(z, t) =
1

2π

∫ ∞
−∞

A(ω − ω0) exp(ikz) exp(−iωt)dω, (2.8)

where the amplitude A(ω) of each frequency is considered individually. Time domain
and frequency domain are connected by means of the Fourier transform F . The electric
field in the frequency domain is then given by

Ẽ(z, ω) = F (E(z, t)) = A(ω − ω0) exp(ikz). (2.9)

2.2 Frequency Combs

In a mode-locked laser, pulses are emitted at a certain repetition rate frep which is given
by the roundtrip time Trep of a resonator system. For a fiber laser, it is predominantly
determined by the fiber length in the seed laser. The resulting pulse train is shown in
Fig. 2.2(a) in the time domain. The repetition rate is indicated in green as time between
two pulse envelopes (dashed green line). The electric field in this plot is shown in red.
Specific for a frequency comb is the fixed phase relation between pulses. In Fig. 2.2(a) it
is ∆ϕCE = 2π/3, experimentally administered by special locking electronics [43].

Until now, we focused on the Fourier transform of an individual pulses and their spectra.
For a pulse train of N pulses with central frequency ωc and fixed phase difference ∆ϕCE

between individual pulses, the electric field is summed over all n pulses as

Etrain(t) =
∑
n

A (t− nTrep) exp
(
i(ωct− nωcTrep + n∆ϕCE)

)
. (2.10)

The electric field in the frequency domain can be calculated via a Fourier transform as

Ẽtrain(ω) =
∑
n

exp
(
n
(
∆ϕCE−ωcTrep

)) ∫ ∞
−∞

dtA(t−nTrep) exp
(
− i(ω−ωc)t

)
. (2.11)

By integration and using trigonometric identities and applying that a Fourier transform
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2.2 Frequency Combs

time

R
e(

E
)

TCEO = 1/fCEO

Trep = 1/frep

∆ϕ

= 2π/3

∆ϕ

= 4π/3

∆ϕ

= 2π

(a)

frequency

in
te

ns
it

y

fCEO

frep

(b)

Figure 2.2: (a) Real part of the electric field (red) of a pulse train with repetition time
Trep emitted by a frequency comb with fixed phase relation ∆ϕ between pulses. (b)
Schematic spectrum of such a frequency comb with discrete frequencies. Their spacing is
determined by the repetition rate frep, the offset from zero by the carrier-envelope offset
fCEO. Only the frequencies contained in the individual pulse spectrum are realized.
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2 Theoretical Background

of a Dirac distribution yields a constant [25], this expression simplifies for N pulses to

Ẽtrain(ω) = Ã(ω − ωc)
N∑
n=0

δ
(
ωTrep + ∆φCE − 2Nπ

)
. (2.12)

This spectral distribution is plotted in Fig. 2.2(b) for lim
N→∞

(
Ẽtrain(ω)

)
where it resembles

a comb-like structure: The contained frequencies lie at discrete points and form sharp
lines. The fixed phase difference between pulses corresponds to an offset from zero in
the Fourier-transformed frequency spectrum, the carrier-envelope offset fCEO. It can be
calculated by

fCEO =
∆ϕCE

2πTrep
. (2.13)

The repetition rate corresponds to the distance between the discrete frequency lines
frep = T−1rep . Thus, the n-th frequency on the grid is given by

fn = fCEO + nfrep; n ∈ N. (2.14)

The comb frequencies have an envelope given by the determined by the spectrum of a
single pulse of the laser, indicated in the plot as colored lines on the grey frequency grid.

2.3 Dispersion

A nifty description of the bulky expression in (2.8) splits the wave-packet into an
envelope A(ω) and an oscillating part exp(iω0t). This so-called slowly varying envelope
approximation is valid for pulses with small spectral bandwidths compared to the central
frequency ω0. In other words, the maximal amplitude in the time domain, limited by the
envelope, varies slowly from one to the next optical cycle. Expanding the wavenumber k
as well yields

E(z, t) = A(z, t) exp
(
i(k0z − ω0t)

)
, (2.15)

and the description in frequency space is again given by a Fourier transform—the envelope
is then denoted by Ã(ω). A widely used approximation of the pulse shape is the Gaussian.
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2.3 Dispersion

It is given by

A(t) = E0 exp(−2 ln 2

τ 2
t2) (2.16)

in the time domain when centered around 0, where τ characterizes the full width at half
maximum (FWHM) of the intensity envelope I(t) = |E(t)|2. As the Fourier transform of
a Gaussian pulse is still a Gaussian, the expression in the frequency domain reads

Ã(ω − ω0) = E0τ

√
π

2 ln 2
exp

(
− τ 2(ω − ω0)

2

8 ln 2

)
. (2.17)

Such a Gaussian pulse is shown in Fig. 2.3.

In the following, intensity and phase are explained. They are constantly used for a
compact description of pulses throughout this thesis. The intensity is given by

I(t) = |E(t)|2. (2.18)

This corresponds to the blue envelope in Fig. 2.3(a). For an ideal pulse, the electric field
has a constant phase

ϕ(t) = arg(E(t)) = arctan

(
Im
(
E(t))

Re
(
E(t)

)) = ωt. (2.19)

Although there is an increasing part ωt, this phase is called constant because this part of
the phase is just a shift in time. Therefore, it is usually subtracted in pulse descriptions—
this gives the constant phase shown by the brown line in Fig. 2.3(b). Reconstructing this
in a measurement is difficult and can be done e.g. by means of frequency-resolved optical
gating (FROG) and will be explained in more detail in Section 2.6.

Intensity and phase are also used for describing the pulse in the frequency domain, as
depicted by Fig. 2.3(c). Resolving the intensity of each wavelength contained in the pulse
individually with a spectrometer gives the spectral intensity

Ĩ(ω) = |Ã(ω)|2, (2.20)

which is then called a spectrum and shown in Fig. 2.3(c). As this is the Fourier transform
of the complex electric field in the time domain, the electric field Ẽ(ω) is also complex
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time
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Figure 2.3: (a) A transform-limited Gaussian pulse in the time domain with real (red)
and imaginary (green) part of the electric field. (b) The equivalent depiction of this
pulse in the time domain via intensity (blue) and phase (brown). (c) The spectrum
(blue) of such a pulse in the frequency domain and the spectral phase (brown). (d) The
same spectrum and phase plotted against the wavelength. Note that the low number of
cycles shown here for better visibility does hardly justify the slowly varying envelope
approximation.
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2.3 Dispersion

and therefore has a spectral phase

φ(ω) = arg
(
Ẽ(ω)

)
= arctan

(
Im
(
Ẽ(ω)

)
Re
(
Ẽ(ω)

)) . (2.21)

Note that usually the temporal phase is written as ϕ whereas the spectral phase is
denoted by φ. However, what is actually measured in the lab is the intensity as a function
of the wavelength λ = 2πc/ω. The inverse relation between frequency and wavelength
can lead to misinterpretation of the spectrum for broadband spectra. In Fig. 2.3(d), the
plotted spectrum is not a Gaussian— however, it describes the very same spectrum as in
Fig. 2.3(c), just on an inverted abscissa.

There is a limit for the product of spectral bandwidth ∆f and temporal width τ , namely
the time-bandwidth product for Gaussian pulses [39]

τ ·∆f ≥ 0.441. (2.22)

A pulse with a given spectral bandwidth can only be as short as this limit dictates. Then,
the phase of such a transform-limited pulse (neglecting ωt) is constant as shown in Fig.
2.3.

Longer pulses are possible and commonly observed in ultrashort laser pulses. In Fig.
2.4, the frequency of the electric field varies over time. This change in frequency is
called a chirp—in analogy to the bird sound where the frequency also changes over time.
Therefore, the description of the pulse needs the incorporation of the instantaneous
frequency ωi(t), centering it around the frequency ω0 for the transform-limited pulse as

ωi = ω0 +
dϕ

dt
. (2.23)

When the frequency of the pulse increases over time as seen in Fig. 2.4(a), it is called
up-chirped. For decreasing frequency instead, it is called down-chirped as seen in Fig.
2.4(c). The colours of the plot illustrate the higher and lower frequencies as they would
appear in the visible spectrum: Red light has a higher wavelength and lower frequency
than blue light.

Starting from (2.23), it is becoming clear that varying ωi yields a frequency-dependent
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Figure 2.4: (a) The electric field of an up-chirped ultrashort laser pulse in the time
domain and (b) its representation via intensity (blue) and phase (brown). (c) Electric
field of a down-chirped pulse and (d) its intensity and phase. The rainbow colors illustrate
the respective instantaneous frequencies ωi in the visible spectrum.
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2.3 Dispersion

phase in the spectral domain. Taylor-expanding φ as

φ(ω) = φ0+
dφ

dω
(ω − ω0)+

1

2

d2φ

dω2
(ω − ω0)

2+
1

6

d3φ

dω3
(ω − ω0)

3+O(ω4)

= φ0+ φ1(ω − ω0)+GDD · (ω − ω0)
2+ TOD · (ω − ω0)

3+O(ω4)

(2.24)

introduces the group delay dispersion (GDD) and third-order dispersion (TOD) as second
and third derivative with respect to frequency, respectively. The group delay φ1 accounts
for a time delay of the pulse envelope. This already hints that there is a connection to
the dispersion when light interacts with matter. In general, dispersion means that a
property is frequency-dependent. In the context of optics this refers to the change of the
refractive index n for different frequencies, so n = n(ω). A rainbow gives an intuitive
understanding of this phenomenon—the splitting of the colours is happening exactly
due to this phenomenon of dispersion in the water droplets [44]. In a weakly dispersive
medium where the change of the refractive index over the frequency range of the pulse is
small compared to the refractive index itself (∆n(ω)� n(ω)), an initial pulse E(z = 0, t),
described by (2.15), can be written as

E(z1, t) = A
(
t− z1

c

)
exp

(
iω0

(
t− z1

v

))
, (2.25)

after propagating through the dispersive material of length z1 with the group velocity v
given by

v−1 =
d

dω

(
ωn(ω)

c0

)
. (2.26)

The group velocity itself usually depends on the frequency as well. Applying the concept
of group velocity to the pulse in Fig. 2.4 means we can understand the frequency variations
as the different frequency components in the wavepacket as illustrated in Fig. 2.1. They
travel at different group velocities, stretching the pulse as faster components are at the
front of the pulse and slower components at the back of the pulse. Quantitatively, this is
the group velocity dispersion GVD which is

GVD =
d

dω

(
v−1
)

=
d2

dω2

(
ωn(ω)

c0

)
(2.27)

and now connects to the group delay dispersion GDD, cf. (2.24), just by multiplying the
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propagation length l onto the material constant GVD as

GDD = GVD · l. (2.28)

This is the connection of refractive index and phase of a pulse. The treatment for the
third derivative, i.e. the TOD, is analogous [39]. Usually it is sufficient to look at the
GDD and TOD that a pulse acquires when propagating through a dispersive material,
neglecting higher orders. Note that the course of φ (Fig. 2.3(b), brown) is given by GDD
and TOD. The nomenclature claims positive values of GDD as normal dispersion and
negative values as anomalous dispersion. These parameters are usually given in units of
fs2 for GDD and fs3 for TOD in ultrafast optics. Consequently, a dispersive material can
convert a pulse closer to its transform-limited variant or further away. In other words, it
can change the chirp of the pulse.

There is an empirical relation for the course of the refractive index over a wavelength
range, the Sellmaier equation [45]

n2(λ) = 1 +
∑
i

Biλ
2

λ2 − Ci
(2.29)

with the Sellmaier coefficients Bi and Ci. From this equation, one can fit the GVD and
TOD parameters. For transparent glasses, the sum can be restricted to i = 1, 2, 3 and
the equation simplifies to [46]

n2(λ) = 1 +
B1λ

2

λ2 − C1

+
B2λ

2

λ2 − C2

+
B3λ

2

λ2 − C3

. (2.30)

2.4 Nonlinear Optics

The propagation of ultrashort laser pulses in matter is not only characterized by the
different evolution of different frequency components, seen in Section 2.1, but also by the
interaction of the material with the high peak powers of these laser pulses. As opposed to
the linear model used in classical optics, a new regime of interactions between light and
matter has to be introduced, where nonlinearities need to be considered. When the laser
electric field ~E propagates through a medium with susceptibility χ, a linear relation

~P = ε0χ~E (2.31)
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for the polarization ~P is assumed in classical optics with the vacuum permittivity ε0.
This is a linear approximation that stems from the Lorentz oscillator model [47]. It
assumes that the electronic binding forces can be described linearly. The refractive index
n is connected to the susceptibility as

n =
√

1 + χ (2.32)

for weakly absorbing media. For laser field strengths comparable to the interatomic field
strengths, the situation is more complex. Comparable to a far extended spring, when the
relation between force and deflection becomes nonlinear, a Taylor expansion is necessary
for the polarization of a medium:

~P = ε0
(
χ1
~E + χ2| ~E| ~E + χ3

~E3 +O(E4)
)
. (2.33)

Different orders of this expansion are responsible for various phenomena. The second-
order term ~P2 = ε0χ2| ~E| ~E can be described in the photon picture. Two photons of
frequency ω generate one photon of frequency 2ω as

~ω + ~ω = ~(2ω), (2.34)

conserving the total energy. This process is called second-harmonic generation (SHG)—
the generated light lies at twice the initial frequency. A schematic energy diagram of this
process is shown in Fig. 2.5.

As the momentum is also conserved, the momenta of the incidental photons match the
momentum of the outgoing photon, so

~~kω + ~~kω = ~~k2ω. (2.35)

The phase of the generated second harmonic and the incidental beam are then identical.
This is a necessary condition for second-harmonic generation: The generated second
harmonic after a small propagation distance in the material is still interfering construc-
tively with the light generated at an earlier point in the crystal. The right end of Fig.
2.5 shows this constructive interference of the second harmonic for two photons, emitted
at different positions along the crystal.

Using k = nω/c, the phase matching condition

nω = n2ω (2.36)
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h̄ω

h̄ω

h̄2ω
∆ϕ

propagation direction

χ2 crystal

Figure 2.5: Schematic energy diagram of second-harmonic generation: Two incoming
photons of frequency ω (red) generate a photon with doubled frequency 2ω (green) at
two positions in the nonlinear crystal at the positions marked with green dots. ∆ϕ marks
the phase difference. For phase-matching, it needs to be at even multiple integers of π.

follows directly. The highest efficiency of the process is therefore given for matching
refractive indices, as then, constructive interference is achieved. The polarizability of a
nonlinear medium can lead to a phase mismatch so that the wave vectors do not align.
Crystals have a regular structure with symmetry axes that allow frequency conversion.

For an uniaxial crystal, distinguishing between the ordinary (o) and extraordinary (e)
crystal axis which differ in their refractive indices no and ne is necessary. The overall
refractive index is then given by

1

n2(Θ, ω)
=

cos2 Θ

n2
o(ω)

+
sin2 Θ

n2
e(ω)

, (2.37)

with the angle Θ between the wave axis and the optical axis of the crystal [47]. For
a certain angle Θ, phase matching is fulfilled and light at doubled frequency can be
generated.

For a material with negligible second-order nonlinearity, the Taylor expansion reads

~P = ε0
(
χ1 + χ3| ~E|2

)
~E

= χeff ~E.
(2.38)
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2.4 Nonlinear Optics

Replacing both prefactors with an effective polarizability χeff, the description simplifies
to

neff = n+ n2I, (2.39)

with an effective intensity-dependent refractive index neff. The nonlinear part scales
proportional to the intensity I with a prefactor of

n2 =
3χ3

4ε0cn2
, (2.40)

commonly given in cm2 W−1. Fused silica has a nonlinear index of 2.19× 10−16 cm2 W−1

[48]. This nonlinear regime is of particular interest for pulse shaping applications as peak
intensities lie on the order of 1× 1014 W cm−2 in state-of-the-art ultrafast laser systems
[49]. The nonlinear part in (2.39) is already 10−2 of the classical refractive index.

As the full description includes temporal and spatial dimensions, the nonlinearities alter
the laser light in both space and time. It is called self-phase modulation (SPM) in the
time domain and self-focusing in the spatial domain.

Self-phase modulation is a shift in the phase by

∆ϕ =
2π

λ
n2IL, (2.41)

after a propagation length L in a nonlinear medium [50]. As mentioned above, the
instantaneous frequency ωi is the derivative of the phase. Self-phase modulation generates
new frequencies, i.e. it broadens the spectrum of the pulse. It does however not change
the temporal intensity profile of the pulse. The pulse gets up-chirped as depicted in Fig.
2.6(a). A Fourier transform of this pulse shows characteristic sidebands in the spectrum,
as depicted in Fig. 2.6(b).

Self-focusing is the spatial interaction between beam and nonlinear medium. The beam
acts as a lens on itself. Fig. 2.7 shows a Gaussian beam waist in the near field, focused in
a nonlinear medium. For a spatial Gaussian profile (cf. Section 2.8), this interaction will
be described in the following. In the beam center, the intensity is higher and so are the
nonlinearities compared to the flanks of the beam where the linear interaction dominates.
Hence, the refractive index is higher in the center and the beam is focused by itself in
the spatial domain. This can lead to catastrophic self-focusing : With higher focus, the
intensity increases and so does the nonlinearity. This self-reinforcing phenomenon can
lead to destruction of the nonlinear medium for long propagation distances.
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Figure 2.6: An initially transform-limited pulse (orange) undergoing self-phase modu-
lation (SPM) (blue) with (a) unchanged temporal shape (black) and (b) characteristic
sidebands in the spectral domain.

neff =

n+ n2I

Figure 2.7: Self-focusing of a Gaussian beam (black) in a nonlinear medium (blue) with
nonlinear index n2 yields a smaller beam waist (red).

22



2.5 Extremely Nonlinear Optics: High Harmonic Generation

Including effects of the second-order nonlinearity in a single equation yields the nonlinear
Schrödinger equation [51] which reads

∂2A

∂x2
+
n2

η0
k2|A|2A = 2ik

∂A

∂z
(2.42)

for the pulse envelope A(x, z) propagating along the z direction, cf. (2.15). x is the
orthogonal distance from the optical axis and η0 = n|E|2/(2I) condenses some prefactors.
It can be derived from the paraxial Helmholtz equation assuming a slowly varying
envelope and small nonlinear effects (n2I � n). The paraxiality gives a radial symmetry
and, therefore allowing a restriction to a single coordinate x orthogonal to z.

2.5 Extremely Nonlinear Optics: High Harmonic

Generation

For even stronger laser field strengths, the interactions need a different description. Such
strong laser fields can be created in passive enhancement cavities in vacuum, where
the roundtrip time in the cavity matches the repetition rate of the laser seeding the
cavity. The circulating pulses are then resonantly enhanced, increasing the peak power
to unprecedented levels.
Laser systems directly operating in the extreme ultraviolet (XUV) regime at wavelengths
below 200 nm are not readily available. Therefore, the precision of the comb structure
is limited to the regime where stable (fiber-based) laser systems are located, i.e. the
near-infrared regime and the derived regimes accessible by second- or third-harmonic
generation.
Transferring the comb structure from the near-infrared to the XUV is possible using
high-harmonic generation (HHG) [20]. This phenomenon occurs upon shining intense
laser light in a noble gas. It produces odd multiple integers of the incidental laser
frequency. For a complete picture of the process, a quantum theory known as Lewenstein
model [52] is necessary. However, a semi-classical description sufficiently explains the
phenomena relevant for this thesis. The schematics of this simpler three-step model are
shown in Fig. 2.8(a):

1. When a laser beam hits a gas target, the oscillation of the laser electric field (red)
alters the Coulomb potential (blue) of the gas atoms. Then, the electron (green) is
able to tunnel out of the atomic potential. As a free electron, it has a harmonic
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Figure 2.8: Working principle of an XUV frequency comb: (a) HHG based on the
three-step model: 1. The laser field (red) changes the Coulomb potential (blue) of the
atom so an electron (green) can tunnel out. 2. The oscillation of the laser field then
accelerates the electron back to the atom. 3. Recollision then happens under emission
of a high-energy photon. (b) This frequency of this high-energy photon lies at odd
multiple integers (shown in green, violet, black) of the incidental laser frequency. Thus,
the near-IR frequency comb structure (red) is transferred to the XUV. Taken from [25].
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2.5 Extremely Nonlinear Optics: High Harmonic Generation

trajectory in the laser field and therefore a kinetic energy, called ponderomotive
energy

Upond =
e2Ipeak

2cε0meω2
c

, (2.43)

with the elementary charge e, peak laser intensity Ipeak, vacuum permittivity ε0
and electron mass me.

2. After half an optical cycle, the Coulomb potential is perturbed in the other direction.
This accelerates the electron back to the core. The equations of motion for position
x and velocity v in the laser electric field with amplitude E0 =

√
2Ipeak/(cε0) are

given by [53]

x(ϕ) =
eE0

meω2
c

(
cosϕi − cosϕ+ (ϕ− ϕi) sinϕi

)
,

v(ϕ) =
eE0

meωc

(
sinϕ− sinϕi

)
,

(2.44)

and therefore the motion of returning to the core ion depends on the instantaneous
phase ϕi of the laser electric field.

3. Recombination of electron and core then happens under emission of a high-energy
photon γ. Its energy is given by

Eγ = 2Upond
(

sinϕ− sinϕi
)2
. (2.45)

The suppression of even harmonics can only be explained with the quantum
mechanical model. The maximal possible kinetic energy Ecutoff is reached for
ϕi = 0.31 which can be graphically deduced [25]. It is then

Ecutoff = Uion + 3.17Upond (2.46)

and limits the frequency range of harmonics that can be produced.

For estimation of the cross-section the Keldysh parameter [27] is defined as

γk =

√
Uion

2Upond
, (2.47)

where Uion is the ionization potential of the particular gas atom. For low values of γk
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close to one, the HHG process is more efficient.
The frequency comb structure of Fig. 2.2(b) can thus be transferred to higher frequencies
as sketched in Fig. 2.8(b).A system like this can then be utilized for implementation of
optical clocks in the XUV. The laser intensity I is proportional to the ponderomotive
energy Upond according to (2.43). Hence, shorter pulses with higher peak intensities yield
a higher ponderomotive energy and are thus desirable for high harmonic generation: The
Keldysh parameter decreases and the cutoff energy increases.

2.6 Measuring Ultrashort Laser Pulses

The duration of an event is usually measured with ease. A shorter event with a well
known duration is taken as a reference. Then, the time can be quantified by counting
the occurrence of the reference event in the measured timeframe. For example, in the
time interval that Usain Bolt takes to run 100m, the big watch hand moves 9 times and
the small one another 69 times. This works fine until—inevitably—the shortest event
is encountered. So what to do when there is no shorter reference available? The best
reference available is the event itself.
Therefore, for ultrashort laser pulses, this reference is the pulse. Using a beamsplitter,
the beam can be split up. This gives two identical pulses, enabling the measurement of
the pulse with itself. There are different methods of comparing these two pulse copies.
For the work described in this thesis, autocorrelation (AC) and frequency-resolved optical
gating (FROG) are set up. As an interferometric-based as well as an intensity-based
measurement method for both AC and FROG are in use, both are explained in more
detail in this chapter.

Autocorrelation

Autocorrelation measures the intensity of a pulse over time. The general optical imple-
mentation is shown in Fig. 2.9. Propagating the laser beam through a 50:50 beamsplitter
gives rise to two identical copies of the pulse with halved intensity. One pulse propagates
along a beam path with adjustable path length. For a difference between both path
lengths d, the pulses are temporally delayed by a time τ = d/c. The beams are then
spatially overlapped in a nonlinear crystal. A lens focuses the beams in the crystal to
increase the spatial intensity, so that the nonlinear process—which is highly dependent on
the intensity—is more pronounced. With the nonlinear intensity dependence of second-
harmonic generation (SHG, cf. Section 2.4), differing delays are responsible for differing
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Figure 2.9: Optical setup of intensity autocorrelation. The beam is split up, one part
is traveling through an adjustable delay stage. Both beams are then focused into a
nonlinear crystal. The χ(2)crystal response on the delayed pulses is measured with a
photodiode.

signals. Only by delaying the pulses, one can gain information about the temporal shape
of the pulses. After the crystal, there is a small amount of light at doubled frequency
exiting the crystal and the rest of the incidental light just continues to propagate along
its beam path. The frequency-doubled signal is then detected with a photodiode or
rather the integration of the pulse shape. Plotting the recorded signal versus the delay
set in the beam path can then give information on the pulse structure.

The generated second harmonic at doubled frequency means that the wavelength is
halved. The generated electric field E(t)SHG is proportional to the product of both pulses
as [54]

E(t)SHG ∝ E(t)E(t− τ). (2.48)

As I = |E|2, the resulting intensity is

I(t)SHG ∝ I(t)I(t− τ). (2.49)

A graphic analysis of the nonlinear crystal response on varying pulse delays is shown in
Fig. 2.10. Pulse intensities of two delayed pulses with 250 fs pulse duration at FWHM
are depicted in the top row (a–c). There is a delay of 400 fs in (a), a delay of 200 fs in
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Figure 2.10: Laser pulses with decreasing delay (a–c). The integrated nonlinear response
of the SHG signal B2(τ) (d–f) gives rise to larger signals for shorter delay times.

(b) and full overlap in (c). This leads to differing SHG signals (d–f). As detectors are
too slow to resolve this temporally, we can only measure the overall signal

B2(τ) =

∫ ∞
−∞

I(t)I(t− τ)dt; (2.50)

indicated by the hatched green area under the curves. The relative signal strength is also
indicated in the plot: The signal gradually gets stronger from (d) to (e) to (f). Plotting
the recorded signal, usually detected by a photodiode, versus the delay steps yields the
autocorrelation trace. The generated autocorrelation trace (Fig. 2.11 (d)) has a longer
width than the original pulse (Fig. 2.11 (a)) as it is the convolution of the two pulses.
For a perfect Gaussian, the convolution factor results in the relation

τ = 0.7071 · τAC (2.51)

between the full widths at half maximum of the pulse envelope τ and the autocorrelation
trace τAC.
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Figure 2.11: (a) A Gaussian pulse, (b) a pulse with a pre-pulse and (c) a pulse with a
post-pulse. (d) The intensity autocorrelation signal for the Gaussian, (e-f) both pre-and
post-pulse exhibit the same signal.

Autocorrelation reveals only a limited amount of information on the pulse. The autocor-
relation trace is symmetric, whilst the pulse may well not be. This is because the pulse
is measured with itself by delaying one pulse with respect to the other—so ∆τ > 0 and
∆τ < 0 yield the same signal. This becomes particularly troublesome for asymmetric
pulse shapes, for example a main pulse that is accompanied by a satellite pulse as in
Fig. 2.11: In the top row, there is a main pulse with (b) a pre- and (c) post-pulse.
The resulting autocorrelation signal for each pulse shape is shown in (e) and (f). Both
structures lead to the same signal when a Gaussian envelope is assumed.
It is also possible to use a collinear alignment of the two beams with the separated pulses
instead of crossing the beams in the nonlinear crystal. Interferometric autocorrelation
generates a nonlinear response directly resulting from the interferometry of the delayed
pulses. So instead of the setup shown in Fig. 2.9, the beams are guided onto the same
path as in Fig. 2.12.
This changes the generated signal: Only the intensity envelopes were considered in the
previous setup (cf. Fig. 2.10). Here, the actual electric field is taken into account. The
delayed pulses generate the same polarization response with respect to the crystal axes,
so we need to consider their phase. Two schematic pulses, or rather the real part of their
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Figure 2.12: Optical setup of interferometric autocorrelation. The beam is split up and
overlayed again with delayed pulses. The nonlinear crystal response on the interferometry
is measured with a photodiode.

respective electric fields are shown in Fig. 2.13 in red and orange in the top row. In (a),
where the pulses are in phase and interfere constructively, the situation is still the same
as it was before: The signal strength of the second harmonic is unchanged for zero delay.
But for a delay of half an optical cycle in (b), where the pulses are out of phase and
interfere destructively, there is almost no signal. This leads to an autocorrelation trace
with interferometric wiggles under the envelope. It is possible to extract additional phase
information from the interferometric structure with a combination of genetic algorithms
and graduated optimization algorithms [55], but the retrieval tends to be unreliable [54].
Thus, interferometric autocorrelation does also not provide a pulse characterization with
reliable phase and envelope information. It may path a way to obtain at least some
information on the pulse shape in a relative simple setup. Yet, nontrivial ambiguities
such as pre- and post-pulses can still not be identified sufficiently.

Frequency-Resolved Optical Gating

The shortcomings of autocorrelation can be overcome by measuring more information
contained in the SHG signal. By using a spectrometer instead of a photodiode, comple-
mentary information in the frequency domain can be obtained. The extraction of not
only the pulse intensity, but also the phase is then possible.
For every delay step, a full spectrum is recorded. The total information is contained
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Figure 2.13: Nonlinear SHG response of a crystal considering the electric field. (a)
Zero delay yields a strong signal while (b) a delay of half an optical cycle delivers almost
zero signal. (c) Plotting the signal strength against the delay yields an autocorrelation
trace, here for a Gaussian pulse with 150 fs FWHM centered around 1030 nm. For large
delays, the pulses do not overlap temporally and the generated signal is the sum of both
individually generated signals, i.e. at 1/8 of the signal for zero delay.
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in the trace. An ideal trace is shown in Fig. 2.14(c) for a Gaussian pulse in the time
domain (a) and the frequency domain (b). The intensity is recorded for every wavelength
(ordinate) and delay step (abscissa) and is pictured in Fig. 2.14(c,f) with a colorscale
indicating the intensity. The pulse is optically gated by itself in an autocorrelation setup
to generate a frequency-doubled delay-dependent signal, subsequently spectrally resolved
into the frequency components: This technique is therefore called frequency-resolved
optical gating (FROG).

The nonlinear crystal generates the second harmonic of the measured pulse. Therefore,
the spectrogram, usually given in the wavelength domain, has its axis centered around
half the wavelength of the measured pulse. For a pulse after self-phase modulation,
shown in (b) and (d), the trace in (f) looks fundamentally different. First guesses of the
intensity profile, and even the phase, is possible from looking at the trace.

Frequency-resolving the signal from an interferometric autocorrelation setup yields the
interferometric FROG (iFROG) trace. The interference pattern is clearly visible in the
iFROG-trace in Fig. 2.15 (a) and (b). Both FROG and iFROG traces can be used for
retrieval of the pulse shape. For both autocorrelation and frequency-resolved optical
gating, the interferometric setup is easier to align as the beams are already overlapped
before the crystal. Scanning each optical cycle with sufficient resolution makes the
recording of the interferometric signal slower compared to the intensity-based method.

The full recorded trace of an ultrashort laser pulse system delivers sufficient information
to determine the complex electric field of the pulse as it contains measurements in the
frequency domain and measurements in the time domain [56]. A phase-retrieval algorithm
can then transfer the FROG trace to a full retrieval of intensity and phase of the pulse.
FROG algorithms have an iterative working principle which is schematically shown in
Fig. 2.16. An initial reasonable guess for the electric field E0 is used to generate the
signal field Esig(t). With a Fourier transformation F one arrives at the signal field in the
frequency domain Ẽsig(ω). Subsequently, the algorithm compares the measured trace and
the signal field and concludes an improved expression for the signal field Ẽ ′sig(ω). This
is now back-transformed into an improved signal field E ′sig(t) with the inverse Fourier
transform F−1 . With this, a new guess for the input field can be taken and the algorithm
starts the process again. The algorithm may be run several times to yield a satisfying
result.

Retrieval of pulse shapes from iFROG traces is also possible with commercially available
implementations of retrieval algorithms.
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Figure 2.14: A Gaussian laser pulse (a) in the time domain and (b) the spectral domain.
(c) The FROG trace of this pulse. (d) After self-phase modulation of this pulse the
temporal shape is unchanged. (e) However, the spectral form has changed. (f) This is
clearly visible in the trace.
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Figure 2.15: (a) iFROG trace of the pulse in Fig. 2.14(a–c). (b) iFROG trace of the
pulse in Fig. 2.14(d–f). The zoom boxes, marked in green, show the interference fringes.
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Ẽsig(ω)Ẽ ′sig(ω)
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F−1 F

E0

trace

Figure 2.16: Working principle of the iterative FROG algorithm: An initial guess for
the electric field E0 is used to generate an artificial trace from the signal field Esig with a
Fourier transform F . By comparison with the measured trace and inverse transformation
F−1, the guess is improved and the process starts again.
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2.7 Pulse Shaping Techniques

Self-phase modulation and chirp manipulation are useful for handling ultrashort laser
pulses. Employing the material properties of dispersion and nonlinearities, they can be
tailored to fit a specific application. Chirped pulse amplification [57] is widely used to
generate pulses even in the multi-kW average power regime [58, 59]. By propagation in a
material such as a fiber or by reflections at multiple gratings, the pulse acquires a chirp
and is stretched in time [60, 61]. The peak power is then reduced and can be increased
in a laser gain material without destroying said material by too high peak powers. By
removing the chirp with a grating, a prism or the combined grism compressor[62, 63],
the peak intensity increases again, to even higher values compared to the start.

Instead of pulse amplification, this section will focus on nonlinear pulse compression by
spectral broadening, i.e. narrowing of the pulse in the time domain. Temporal compression
of ultrashort laser pulses by chirp removal is only possible as long as they have not
reached their transform limit yet. For further temporal compression, the spectrum needs
to be broadened. A broader spectrum in the frequency domain enables shorter pulses
in the time domain. The most prominent effect for such broadening, namely self-phase
modulation, was already explained in Section 2.4. By propagation in a nonlinear material,
the pulse will also acquire a chirp through the group velocity dispersion of the material,
depending on the length according to (2.28). For transform-limited pulses, which are the
shortest possible pulses for a given spectral distribution, this chirp needs to be removed.

Most materials exhibit a positive GVD in the near infrared where the central wavelength
of this experiment lies, e.g. fused silica [64] or yttrium aluminium garnet (YAG) [65].
There are also materials that have anomalous dispersion such as Potassium Dihydrogen
Phosphate (german Kaliumdiphosphat, KDP) [66]. The course of the refractive index of
these materials is shown in Fig. 2.17(a). The group velocity dispersion corresponds to
the curvature of the refractive index n(ω), i.e. the second derivative, which is plotted
in 2.17(b). While YAG and fused silica have normal dispersion, the curvature of KDP
changes at around 800 nm, exhibiting anomalous dispersion already in the near-infrared.

The compression factor strongly depends on the magnitude of the self-phase modulation
ϕ in the nonlinear material. According to (2.41), it scales proportional to the nonlinear
index n2 and the intensity I. High intensities are therefore beneficial for pulse compression
and can be achieved in a fiber. There are different types of fibers available. Commercially
available passive fibers, made of fused silica have core diameters of up to 40 µm. For
handling large input powers, this might not be sufficient. Even small misalignment or
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Figure 2.17: (a) Refractive index of KDP, YAG and fused silica as function of the
wavelength. The beginning negative curvature of the KDP refractive index around
1000 nm hints at the anomalous dispersion. (b) GVD of these materials can be obtained
by calculation of the second derivative. KDP has anomalous dispersion from 984 nm
onwards. Data from [64–66].
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2.7 Pulse Shaping Techniques

dn

λn

Figure 2.18: Working principle of a chirped mirror: The thickness of the layers increases
in the mirror. Longer (red) wavelengths are reflected after a longer travel distance where
the wavelength matches the layer thickness by dn = λn/4, yielding anomalous dispersion.

dust on the fiber end lead to destruction of the fiber. Therefore, larger core diameters
which incorporate photonic crystal structures were shown to deliver stable performance
in pulse compression [67]. Gas can also be employed as nonlinear medium in fibers by
using hollow cores. Delicate structures guide the light in the gas-filled core and nonlinear
interaction with the gas broadens the spectrum [68]. The dispersion in hollow-core fibers
can be tuned by the choice of different gases and gas pressures [69].

Compression is also possible in bulk material. For this, it is convenient to use a multipass
cell which allows several propagation steps in the material. The multipass cell setup
consists of curved mirrors on both sides and a bulk nonlinear material in the middle [30].
Curved mirrors ensure alignment stability on a Herriott-cell like beam path and focus
the beam in the nonlinear material to reach higher intensities[70]. Multiple propagation
steps instead of a propagation in one bulk crystal are necessary due to self-focusing,
which would lead to destruction of the material after some propagation. In a setup with
curved mirrors the beam instead widens up again. With small scraper mirrors, the beam
can be coupled in and out of the cell.

The dispersion gained in a nonlinear material can be removed with a chirped mirror.
The principle of such a device is shown in Fig. 2.18. Each wavelength is reflected at a
multilayer. The thickness of the respective layers dn where a certain wavelength is reflected
matches the wavelengths λn/4 of the incidental pulse [71]. The longer wavelengths are
reflected after a longer propagation distance in the material. This enables the removal of
chirp acquired by propagation in a material with normal dispersion.

For multipass cells, the chirp removal can be done either inside the cell with a chirped
curved mirror, with a set of chirped mirrors after the cell or a combination of both.
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2 Theoretical Background

2.8 Gaussian Beam Propagation

For the analysis of the nonlinear interaction strengths and the multipass cell design,
the spatial description of the laser beam needs further evaluation. For this, we start by
formulating the principles of Gaussian beam propagation and will then continue to use
the ABCD matrix formalism to simplify the description [72].

For an electromagnetic wave that propagates in z-direction the electric field is

E(x, y, z) = u(x, y, z) exp(−ik), (2.52)

where the spatial dependence of the scalar amplitude u ∈ C is considered explicitly on
the coordinates x, y and z. Substituting this into the wave equation (2.4) and assuming
∆u(z)� u, i.e. the amplitude varies slowly along the propagation axis, the wave equation
can be re-written as the paraxial Helmholtz equation

∇2
⊥u(x, y, z)− 2ik

∂u(x, y, z)

∂z
= 0, (2.53)

where paraxial means that we consider a wave close to the optical axis. The transverse
Laplace operator ∇2

⊥ = ∂2/∂x2 + ∂2/∂y2 simplifies this equation. This is valid for
divergence angles Θ ≤ 30◦. A solution of this differential equation is the Gaussian beam
that reads

u(r, z) =
u0√

1 + (z/zR)2
exp

[
− r2

ω(z)2
− ik

(
z +

r2

2R(z)

)
+ i arctan

(
z

zR

)]
. (2.54)

The symmetry of the problem was used to simplify the notation by writing r2 = x2 + y2

for the transverse radial coordinate and

zR = i
w2

0

λ
(2.55)

as the Rayleigh length, i.e. the distance from the focus where the beam waist reaches√
2w0.

Fig. 2.19 shows the beam around the focus. The beam waist w(z), where the intensity
reaches 1/e2 of its maximum value, evolves according to

w(z) = w0

√(
z

zR

)
+ 1, (2.56)
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2.8 Gaussian Beam Propagation

R(z)
2Θ0

w0
zR

w(z)

Figure 2.19: Focus of a Gaussian beam, where the characteristic parameters waist w0,
Rayleigh length zR, divergence angle Θ0 and wavefronts R(z) are indicated. z measures
the horizontal distance from the focal plane.

along the propagation length z. w0 is the minimal beam waist. The orange area indicates
the distances smaller than the Rayleigh length. The red-dotted wavefronts R(z) have a
curvature according to

R(z) = z

(
1 +

(zR
z

)2)
. (2.57)

For z = 0, the wavefront is in a plane orthogonal to z.

By defining the complex beam parameter q as

q(z)−1 = R(z)−1 − i λ

πw(z)2
, (2.58)

(2.54) simplifies to

u(r, z) =
q0

w0q(z)
exp

(
− ikz − ik r2

2q(z)

)
, (2.59)

with q0 = iπw2
0/λ = izR. All relevant spatial information on the beam is contained in

the q parameter. Physical effects on the beam profile can also be incorporated and the
calculations are simplified. For example, the propagation in free space over a distance z
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optical element ABCD matrix

vacuum
(

1 z
0 1

)

medium with refractive index n
(

1 z/n
0 1

)

curved mirror, tangential plane
(

1 0
−2/(R cos Θ) 1

)

curved mirror, sagittal plane
(

1 0
−2 cos Θ/R 1

)
Table 2.1: Ray matrices for the optical components used in this thesis with R as radius
of curvature of the curved mirrors and an angle of incidence Θ on the curved mirror with
respect to the optical axis. z refers to the propagation distance.

changes the q parameter by

q(z) = q0 + z. (2.60)

For more complex elements, the ABCD formalism offers a simple method to propagate
the q parameter through various optical elements. The formalism of ray transfer matrices
from classical optics is adopted. After an optical element with ray transfer matrix M
and entries A, B, C and D as

M =

(
A B

C D

)
, (2.61)

the beam parameter q′ is

q′ =
Aq +B

Cq +D
. (2.62)

The matrices in use for this thesis are shown in Table 2.1.

The beam parameters can then be recovered from the q parameter via the relations

R(z) =
1

Re
(
q(z)−1

) , (2.63)
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2.8 Gaussian Beam Propagation

for the wavefronts of the beam and

w(z) =

√
Im
(
q(z)

)λ
π
, (2.64)

for the beam waist size.
With these concepts at hand, the multipass cell design is explained in more detail
in Chapter 4. Nonlinear interactions and dispersion are evaluated for the setup of a
compression scheme, whereas the evaluation of spatial beam properties determine the
geometric design of the cell.
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3 Experimental Setup

The experimental setup relevant for the scope of this thesis is described in this chapter.
An introduction of the laser system seeding the enhancement cavities is followed by a
description of the pulse characterization instrumentation built for this thesis. A more
detailed description on the passive enhancement cavity can be found in [25].

3.1 Oscillator, Amplifier and Compressor

A graphical overview of the laser system before the pulse characterization setup is shown
in Fig. 3.1.
The laser system is seeded by a commercially available frequency comb FC1000-250
from Menlo Systems GmbH. This oscillator is a Yb:glass fiber laser which is specified
to a central frequency of 1039 nm with a spectral width of 7 nm. For the high precision
necessary in the experiment, the fiber comb has a repetition rate of 100 MHz. The light
is then coupled out of the fiber oscillator and propagated through 60 m of passive fiber
(XP980-PM, Nufern) to stretch the pulses to 24 ps. The beam can then either be sent
through a grism compressor to achieve an overall average power of 12 W and a pulse
length of 170 fs or it is directly outcoupled to have 15 W of average power with the
stretched 24 ps pulses [25]. However, more than the readily available 15 W power are
necessary for the generation of high harmonics and a further amplification stage was
built.
The beam is coupled into a 80 cm long Yb-doped rod-type photonic crystal fiber am-
plifier (aeroGAIN-ROD-MODULE-2.0 PM85, NKT photonics) pumped with 250 W of
continuous-wave light at 976 nm from a fiber diode (D4F2S22-976.3-250C-IS58.1, DI-
LAS Diodenlaser GmbH). Coupling of the pump light into the fiber is done with an
off-axis parabolic mirror (OAP). Back-reflections into the fiber comb are prevented by
a Faraday isolator (PAVOS-Ultra-0-I-1015-1065, Soliton). A beam dump with a hole
in the center followed by a collimation lens and a dichroic mirror separates the pump
light from the seed. Afterwards, the amplified pulses are compressed via a home-built
grating compressor. It consists of a transmission grating with a line density of 1000 mm−1
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cw-pump diode

rod-type 
fiber amplifier

OAP

grating compressor

to pulse 
diagnostics

1035 nm
100 MHz

15 W
24 ps

80 W

comb laser

isolator

incoupling
lens

collimation
lens

to cavityPBS

HWP

Figure 3.1: Overview of the laser system before the enhancement cavity incoupling. The
24 ps pulses at 10 W average power from the fiber comb are amplified in a diode-pumped
active fiber to 80W and then compressed to about 200 fs in a grating compressor. OAP:
off-axis parabolic mirror, PBS: polarizing beamsplitter, HWP: half-wave plate. Adapted
from [25].
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3.2 Pulse Characterization

(1158_28x18_6.35_H, Gitterwerk GmbH) and two retroreflectors which transmit the
beam through the grating four consecutive times. These beams are subsequently coupled
into the cavity.
Before sending pulses in the XUV cavity, a pulse characterization setup is implemented
to measure the amplified, compressed pulses.

3.2 Pulse Characterization

A rotatable waveplate is followed by a polarizing beamsplitter in the path of the laser
system just before the cavity. This enables simultaneously measuring the pulses with
a small fraction of the overall power while operating the cavity. The measurement of
the pulses is done via autocorrelation and frequency-resolved optical gating (FROG, cf.
2.6). A FROG system consists of an autocorrelation system followed by a spectrometer,
hence both subsystems are described in detail. The pulse characterization system can
be operated using an interferometric technique or an intensity-based setup. Thus, both
systems and their respective performance are evaluated.

3.2.1 Autocorrelation

The autocorrelation setup consists of a delay stage to split the beam and delay the pulses
with respect to each other and a subsequent stage for second-harmonic generation in a
nonlinear beta barium borate (BBO) crystal.

Intensity Autocorrelation

The delay stage utilizes an existing setup used in the cavity experiment, originally
intended to send counter-propagating pulses into the cavity with adjustable delay. This
setup is also used for autocorrelation, as the movable stage offers a fast and precise
adjustable delay with absolute reference. The schematics of the beam path are shown in
Fig. 3.2(a). A picture of the delay stage operated as intensity autocorrelator is presented
in (b).
A high passive stability of the setup is reached because the optical components are
mounted on a separate box clamped onto the optical table. Especially the interferometric
technique in the next section needs reliable and constant delay of pulses. Hence, the
box walls and base plate are made of 5mm stainless steel which minimizes distortion
and vibration. The beam enters the box through a rotatable half-wave plate (HWP1) in
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piezo delay stage

HWP2
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HWP1 PBS

M6

to SHG stage

M1

M2 M3

M5

M4

(a)

incoming
beam

E(t-  )

E(t)

Figure 3.2: (a) Delay stage for intensity autocorrelation with indicated beam path in
red. The incoming beam is split with a polarizing beam splitter (PBS). The power in
each arm can be adjusted with the first half-wave plate (HWP1) and the polarization is
re-paralleled with half-wave plates in each arm (HWP2, HWP3). One pulse travels on a
fixed path length along the mirrors M2, M3 and the prism-mirror M6. The other pulse
has a variable delay through a retro-reflector consisting of two mirrors (M4,M5) mounted
on a piezo delay stage. Both beams are coupled out via the mirror M1. (b) Photograph
of the setup with overlayed optical beam path in red and component numbers according
to (a).
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3.2 Pulse Characterization

the sidewall. Afterwards, a polarizing beamsplitter divides the beam in two (PBS). The
power in each arm can be adjusted by turning the first waveplate. Additional rotatable
half-wave plates in each beamsplitter arm (HWP2, HWP3) allow the re-parallelization
of the polarization. This is necessary to prevent unwanted polarization effects in the
generation of the second harmonic later on. One half of the beam is subsequently guided
onto a retroreflector, consisting of two mirrors (M4, M5, BBSQ1-E03, Thorlabs Inc.).
The retroreflector is mounted on a movable stage (Q-545 Q-Motion® Precision Linear
Stage, Physik Instrumente (PI) GmbH & Co. KG.) with a maximal movement range of
dmax = 20 mm and a minimal step size of ∆dmin = 10 nm. The time delay τ of the pulse
for a movement d of the stage is then adjustable via

τ =
2d

c
, (3.1)

as the pulse travels to the retroreflector and back. The minimal time delay step is
therefore τmin = 0.067 fs and the delay range is τmax = 33.3 ps. This resolution allows
sampling of one optical cycle of the light in this setup (3.45 fs) with over 50 data points.

In order to align the second beam parallel to the beam from the retroreflector, it is led
on a path of fixed length with with two mirrors (M2, M3) and a prism-shaped mirror
M6. The prism-shaped mirror is clamped on a home-built stage which is mounted on
two dowel pins in the base plate of the box. This allows faster re-alignment, as the setup
is usually operated with different optical components to send counter-propagating pulses
into the cavity. The stage can be adjusted with M2 screws and the prism-shaped mirror
is mounted on the stage with a home-built clamp.

Both beams are parallel when the second beam passes the prism-shaped mirror on the
upper end. Another mirror (M1) guides the beams out of the delay box. A home-built
mount with two individual mirrors for each beam outside of the box ensures parallel
beams.

Subsequently, the beams are sent onto the stage for frequency conversion via a beam
path of over 2 m and various mirrors, enabling precise angular adjustments of the beams
due to the long optical path length. A home-built tube shields the laser light which is
subsequently sent on a periscope to adjust the height from the delay stage to the height
of the optical table.

In the following, a SHG stage (Fig. 3.3) is used for signal generation. The stage is placed
on an aluminum breadboard (MB1545/M, Thorlabs Inc.) with 150 x 450 mm2 footprint.
Anodized aluminium plates are bolted on 30mm item-profiles around the breadboard
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Figure 3.3: (a) Schematic optical setup and beam path of the SHG stage for intensity
autocorrelation. (b) SHG stage with housing on a breadboard: (A) incoupling mirror,
(B) f = 100 mm focusing lens, (C) f = 50 mm collimation lens, (D) dichroic mirror, (E)
guiding mirror.
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as an enclosure for laser safety as well as protection from dust. The laser light enters
the box through a small hole in the enclosure. With a mirror (A), the beam is then
guided on a lens (B, f = 100 mm) which focuses it on the BBO crystal. In this rotatable
crystal (thickness dBBO = 50 µm), the second harmonic is generated. A further lens
(C, f = 50 mm) collimates the beam. An iris aides the re-alignment of the setup and
blocks the second-harmonic beams generated by the individual uncorrelated pulses. A
dichroic mirror ensures that only the second harmonic is evaluated, whereas the remaining
infrared light hits a beam dump. Via another mirror (E) the beam hits a curved mirror
(R = 200 mm which focuses the beam on the responsive area of a photodiode. A magnetic
mount allows the curved mirror to be removed and the light is then directly coupled into
a fiber for the FROG measurements in the following sections.
Results from intensity autocorrelation are shown in Fig. 3.4. Autocorrelation traces were
recorded for different pump currents from 2A to 7A (a–e) of the pre-amplifier in the
fiber frequency comb, corresponding approximately to output powers of 2W to 7W.
The autocorrelation traces exhibit a main pulse with clear side lobes ranging over 1000 fs.
For a first estimate of the pulse length, a single Gaussian was fitted. The time range
considered for this fit is highlighted in orange, as is the result of the fit. The pulse
duration is directly written in the plot. The side lobes suggest a more delicate pulse
shape than a single Gaussian. With Fig. 2.11 in mind, fitting a double pulse structure
yields a more accurate intensity profile, plotted in green. The values of the side pulse
length and distance from the main pulse result in a very long side pulse. Still, the fit
does not cover the side lobes in a accurate manner either.

Interferometric Autocorrelation

Therefore, a better estimate of the pulse shape and more information on the phase of the
pulse is desirable. The phase may be retrieved with interferometric autocorrelation. For
an interferometric autocorrelator we use a slightly different setup presented in Fig. 3.5,
because the beams of the delayed pulses have to be collinear to interfere. The beam path
scheme is drawn in (a), whereas (b) displays a photograph of the actual setup. Apart
from replacing the prism-shaped mirror M6 by a second polarizing beamsplitter (PBS2),
the setup is identical to the one depicted in Fig. 3.2. As a result, the two beam paths are
collinear with two delayed pulses instead of two parallel beams with delayed pulses. This
allows to measure the correlation of the electric field with itself instead of the intensity.
The dashed beam part in Fig. 3.5 leads to the passive enhancement cavity. Adjusting
HWP2 and HWP3 enables switiching of the beam path between enhancement cavity and
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Figure 3.4: Intensity autocorrelation traces in blue with different fit methods: A single
Gaussian pulse (orange) and an accompanying satellite pulse in green. The shaded areas
correspond to the values considered for the fits. Traces are recorded at pre-amplifier
currents of 2A(a), 3A(b), 4A(c), 6A(d), 7A(e).
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second-harmonic generation stage.
The beam is directed along the same path length of over 2m to enter the SHG stage.
This length allows for a good angular and positional adjustment of the beams. The setup
for second-harmonic generation is shown in Fig. 3.6. The optical components are the
same as implemented for intensity-based autocorrelation in Fig. 3.3. However, instead of
two parallel beams, only a single beam containing both delayed pulses enters the stage.
Therefore, the dichroic mirror in this case filters a substantial part of the infrared light
out of the signal. The infrared light passes the dichroic mirror unchanged and hits a
small beam block, while the green light is reflected at the mirror surface. The green light
can again be detected with a photodiode or coupled into a fiber with a fiber coupler.
Fig. 3.7(a) shows an interferometric autocorrelation trace recorded with the described
setup. Due to the interferometric oscillation, the plot appears is spaced very densely.
Three cycles around zero pulse delay are indicated with all recorded data points in the
inset of (a) to make these oscillations visible in detail.
A simple Gaussian fit that considers only the peaks of each cycle results in a pulse width
of 208 fs and is plotted in orange. The time area considered for the fit is highlighted in
orange.
Again, the trace exhibits side lobes which were already noticeable in the autocorrelation
of the intensity, hinting at a pulse that is not described accurately with a simple Gaussian.
The structure resembles known signals for pulses with a high third-order dispersion. For
comparison, a pulse of 208 fs FWHM with third-order dispersion of 120 fs3 is plotted in
Fig. 3.7(b) for visual comparison to the trace recorded in (a).

51



3 Experimental Setup

piezo delay stage

HWP2

HWP3

HWP1 PBS1

PBS2

to SHG stage
to cavity

M1

M2 M3

M5

M4

(a)

incoming
beam

E(t-  ) + E(t)

Figure 3.5: (a) Delay stage for interferometric autocorrelation with indicated beam
path in red. The beams are aligned collinear instead of parallel compared to Fig. 3.2.
The incoming beam is split with a polarizing beam splitter (PBS). The power in each arm
can be adjusted with the first half-wave plate (HWP1) and is re-paralleled with half-wave
plates in each arm (HWP2,HWP3). One pulse travels on a fixed path length along the
mirrors M2, M3. The other pulse has a variable delay through a retro-reflector consisting
of two mirrors (M4,M5) mounted on a piezo delay stage. Both beams are overlapped in
another polarizing beam splitter and coupled out via the mirror M1 to the SHG stage.
(b) Picture of the setup, the beam path is overlayed in red. The enhancement cavity exit
is laid out dashed.
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Figure 3.6: (a) Schematic optical setup and beam path of the SHG stage for interfero-
metric autocorrelation. Only a single beam is focused in the BBO crystal for generation
of the nonlinear crystal response compared to Fig. 3.3. (b) SHG stage with inhousing
on a breadboard: (A) incoupling mirror (B) f = 100 mm focusing lens (C) f = 100 mm
collimation lens (D) dichroic mirror (E) guiding mirror
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Figure 3.7: (a) Interferometric autocorrelation, recorded at at 7A pre-amplifier current
with a Gaussian fit (orange) on the main pulse. The orange-shaded area marks the area
considered for the fit. The inset shows three oscillation cycles around zero delay. (b)
Theoretical trace of a pulse with 208 fs FWHM and 120 fs3 for comparison.
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3.2 Pulse Characterization

3.2.2 Spectrometer

More information on the pulse than in an autocorrelation setup can be obtained by
spectrally resolving the generated second harmonic. Therefore, the laser light is ana-
lyzed in a home-built Czerner-Turny-Spectrometer to enable frequency-resolved optical
gating. Within the scope of this thesis, a new spectrometer was designed, assembled
and commissioned. The spectrometer is located inside a 650x125x500mm3 box of alu-
minium. The beam path along the optical elements can be seen in Fig. 3.8(a). A
three-dimensional drawing of the device is shown in (b), whereas (c) shows an actual
picture of the spectrometer in the laboratory.

The light is coupled into the spectrometer via a single-mode fiber (P2-460B-PCSMA-
1) with 4.2 µm mode diameter. A prism mirror (MRA20-E02, Thorlabs Inc.) guides
it through a bandpass filter for green wavelengths (central wavelength λc = 520 nm,
bandwidth ∆λ = 40 nm, FBH520-40, Thorlabs Inc.). As the light exits the fiber end
divergently (numerical aperture NA = 0.13), a curved mirror (092-0125R-600, EKSMA
Optics) collimates the beam. The mirror diameter was chosen to be larger than the
beam at the respective position to collect most of the light. The beam diameter b can be
calculated by

b = NA · l. (3.2)

A propagation length of l = 300 mm, equalling the focal length f of the mirror, gives
a maximum beam waist of w = 39 mm at the collimation mirror. The focal length is
connected to the radius of curvature ROC of a curved mirror as

f =
ROC

2
. (3.3)

This beam is spectrally resolved at an echelle grating with a line density of 92 mm−1,
splitting the beam in its respective wavelengths [73]. The echelle grating is operated
at an angle of incidence of about 45°. The diverging color components are collimated
by a curved mirror (CM750-500-P01, Thorlabs Inc.) with a focal length of f = 500 mm

matching the distance between grating and mirror. This mirror focuses each color on a
line camera (LC100, Thorlabs Inc.) with 2048 pixels. The camera records a spectrally
resolved intensity distribution, i.e. the spectrum, and is controlled via a home-written
python library.

Calibration of the lamp is done with a Iron-Neon calibration lamp (P826, Photron Pty Ltd.).
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Figure 3.8: (a) Optical setup scheme of the spectrometer. After the incoupling fiber,
the beam is guided by a prism mirror (PM) onto a curved mirror (CM1, ROC = 500 mm)
for collimation. The wavelengths are separated at the echelle grating, the second curved
mirror (CM2, R = 600 mm) collimates the beam on the line camera where the spectrum
is recorded.
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Figure 3.9: Spectrum of a FeNe-Lamp (violet) with indicated iron transitions used for
calibration (black). The remaining peaks correspond to neon transitions.

Fig. 3.9 shows the recorded calibration spectrum. Four FeI-transitions at 516.749 nm,
517.16 nm, 522.719 nm and 526.954 nm are identified for the calibration, indicated by
black lines in Fig. 3.9. The remaining lines correspond to neon transitions. Due to the
bandpass filter, higher order diffraction lines do not need to be taken into account. The
remaining peaks correspond to Neon transition lines. The wavelength λ for a given pixel
number px is calculated with a second-order calibration function given as

λ = −1.909× 10−7 nm2 · px−2 + 8.352× 10−3 nm · px−1 + 513.7 nm. (3.4)

With a different bandpass filter, the spectrometer can easily be operated in the near-
infrared regime. This offers a flexible method to measure spectral broadening after the
multipass cell directly. The spectrometer offers the ability for higher spectral resolutions
when the grating is operated at a higher angle of incidence. For broader spectra, expected
from the multipass setup, a broader bandwidth is also recordable by operating the grating
at lower angles.

3.2.3 Frequency-Resolved Optical Gating

Combining the aforementioned components, autocorrelator and spectrometer, enables us
to fully characterize the pulse by means of frequency-resolved optical gating (FROG) [54,
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56, 74]. Light from both autocorrelation setups can be coupled into the spectrometer
and a FROG trace is then recorded by saving a spectrum for every delay step.

Intensity Frequency-Resolved Optical Gating

Fig. 3.10 shows intensity-based FROG traces of the pulse in the laser system described
in Section 3.1. The colorscale indicates the intensity. Data acquisition time of a trace
with a width of 1200 fs with and a step size of 0.33 fs is below 90 s. The temporal system
performance is thus improved by a factor of over 20 with respect to a previous home-built
setup [75]. FROG traces were recorded for different currents of the amplifier from 2A to
7A.
The FROG trace at 7A is evaluated as in Fig. 3.11 with an adapted version of an
open-source FROG retrieval algorithm from S. Kleinert [76]. The script implements an
improved version of the ’classical’ FROG algorithm, the principal component generalized
projects algorithm (PCGPA) [77]. It is based on the same principle as the FROG
algorithm described in Section 2.6 with use of an outer product in between the steps.
For pulse retrieval, the raw measured trace needs some corrections for a converging
solution of the algorithm. The script subtracts noisy pixels and sets values below a
certain threshold to zero. The trace is then centered around the maximum value and
symmetrized with respect to the delay to correct asymmetries arising from misalignment.
For the algorithm, the trace is then transferred from the wavelength to the frequency
domain. The central wavelength λc, the spacing between pixels ∆λ and the delay step
width ∆τ need to be entered manually. The spectrum recorded at zero delay is, by a
Fourier transform to the time domain with zero phase, the intial guess for the retrieval
algorithm.
Fig. 3.11(a) shows the retrieved spectrum (blue) and spectral phase (brown). The
bandwidth of the spectrum is in line with the manufacturer-specified bandwidth of 7 nm
centered around 1039 nm. However, the spectral phase does not confirm the supposition
from interferometric autocorrelation of a substantial third-order dispersion. Fig. 3.11(b)
shows the retrieved intensity profile (blue) and phase (brown). The FWHM length is
103 fs and thus lower compared to the expectations from previous measurements by a
factor of two.
The trace and the retrieved theoretical trace is displayed in (c) and (d), respectively.
The experimental trace appears different compared to Fig. 3.10(e) as the intensity is
plotted on a logarithmic colorscale. The agreement between experimental and retrieved
trace is rather low. Therefore, a conclusion on the pulse shape is not yet possible with
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3.2 Pulse Characterization

Figure 3.10: Intensity-FROG traces, recorded at different operating currents of the
amplifier from 2A to 7A.
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this approach. The traces are not symmetric with respect to zero delay, as they should
inherently be, making it difficult for the algorithm to deliver a reasonable result. A
limiting factor in the experimental setup was parallel alignment of the beams, an improved
optomechanical setup for adjustment of the prism mirror (M6, Fig. 3.2) is already being
worked on.

Interferometric Frequency-Resolved Optical Gating

The interferometric autocorrelation signal is also spectrally resolved for an interferometric
frequency-resolved optical gating (iFROG) setup [78]. The recorded trace is shown in
Fig. 3.12(a) with a colorscale indicating the intensity. The white frame is plotted in more
detail in (b) to show the interferometric structure. The trace appears more symmetric
with respect to delay than the intensity-FROG traces.
Evaluation of the iFROG trace could yield a more reliable retrieval of the pulse shape, as
already the interferometric autocorrelation revealed a third-order dispersion in the pulse.
This could, e.g., be done with an adapted version of the common pulse retrieval algorithm
(COPRA) [79]. This was not considered before as we under-estimated the accuracy of
this measurement method based on the results from interferometric autocorrelation.
Further improvement of the setup could be achieved by the use of a 50:50 beamsplitter
instead of a polarizing beamsplitter as small changes in the alignment of the waveplates
had substantial effect on the recorded traces. Furthermore, movement of the delay
stage changes the pointing of the beam, yielding unwanted geometrical effects on the
recorded traces. The recorded traces in the interferometric setup appear to be more
promising, although recording of interferometric traces takes longer (about 30min) as
the interferometric structure needs to be sampled with enough detail.
The intensity autocorrelation gave a first estimate of the pulse shape. The pulse cannot
be described as a simple unchirped Gaussian. Yet, an estimate of the pulse duration of
about 220 fs can be extracted. Intensity-based FROG did not lead to a satisfying retrieval
of the pulse shape with the adapted version of a publicly available retrieval algorithm
due to asymmetry of the—inherently symmetric—traces. An improved optomechanical
alignment is subject to a consecutive thesis. The interferometric FROG traces could
prove a valid candidate for a reliable pulse shape retrieval with a algorithm capable of
retrieving the pulse shape from such a trace at full available laser power.
An improved optomechanical setup will enable characterization of the pulses after the
fiber amplifier in full operational mode of the enhancement cavity at over 80W as well
as measurements of pulse compression and spectral broadening after the multipass cell.
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Figure 3.11: Pulse retrieval result for the FROG trace recorded at 7A amplifier current.
(a) Spectrum (blue) and spectral phase (brown) (b) Temporal Intensity (blue) and
temporal phase (brown). (c) Symmetrized, background-corrected recorded trace. (d)
Retrieved trace.
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Figure 3.12: (a) Interferometric FROG trace at 7A current at the amplifier. The white
box marks the detail shown in (b) for better visibility of the interferometric structure.
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4 Nonlinear Pulse Compression Multipass
Cell

For a higher yield of HHG generation, better temporal resolution in general and a broader
frequency range in the XUV, it is beneficial to compress the pulses of the frequency
comb temporally by broadening them spectrally and compensating the dispersion. The
laser system described in Section 3.1 yields constraints on the design of such a setup.
The average power is over 75 W at full amplification and the repetition rate of the fiber
comb is 100 MHz. This results in an energy of 0.75 µJ per pulse. For an estimated pulse
duration of 220 fs, this accumulates to a peak pulse power of 3 MW.

4.1 General Setup

There are several methods in use for nonlinear pulse compression. For a more detailed
discussion see Chapter 2.7. As the nonlinear phase shift scales proportional to the
nonlinear index n2 of the material and the intensity I, it is crucial to have a highly
nonlinear material and a high intensity. A feasible way of reaching high intensities
lies in confinement of the light into a waveguide. This reduces the mode area of the
beam, increasing the intensity. Such a waveguide may be a hollow-core photonic crystal
fiber (HC-PCF), which can handle high input powers [80] as found in this experiment.
Nonlinear effects can be accumulated by a gas filling of the hollow core [81]. However,
the costs of these fibers are rather high.
Conventional fibers with fused silica (FS) as nonlinear material enable high intensities
and even higher nonlinearites. However, the handling of fibers is difficult at common
output powers of the frequency comb laser. It is already highly problematic to couple
more than 50 W into a fiber since minor misalignment or contaminated end facets lead
to burning and destruction of the system. Even with endcaps, delicate larger structures
spliced on the fiber end that guide the light in the fiber, this is still unreliable to operate.
Long-term stability and reliability is a key aspect for the operation of the enhancement
cavities to enable continuous and extensive measurements. The implementation of very
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Figure 4.1: Optical setup of a multipass cell for nonlinear pulse compression. The laser
beam is coupled in with an incoupling and a scraper mirror and advances between the
curved mirrors. The beam is focused in the middle of the cell after reflection on a curved
mirror. The nonlinear material is placed in the focus of the mirrors. The beam is coupled
out with another scraper and an outcoupling mirror.

large mode area fibers (> 100 µm mode diameter) is over and above that hindered by
their non-commercialization [82].

Spectral broadening was recently demonstrated in a multipass cell with a setup as
depicted by Fig. 4.1. The beam is reflected back and forth between two curved mirrors
and the nonlinear phase shift is generated in a bulk material placed in the focus [28].

4.2 Geometric Considerations

A free parameter in the design of a multipass cell is the focal length f of the curved
mirrors with radius of curvature R on both ends. It determines the distance between the
two mirrors l as

l ≥ 2R = 4f. (4.1)

As the curved mirror focuses the beam, it also affects the size of the beam waist at the
nonlinear element site in the middle of the cell. Typical values for the radius of curvature
R in current research span from R = 200 mm to R = 300 mm [29, 30]. Mirrors with lower
focal length are more prone to instabilities as the optical path length is decreased, making
correct alignment of the beam path difficult. A compromise of alignment simplicity and
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Figure 4.2: Pattern of the beam spots (red) on the mirror of a Herriott cell for 22 passes.
The spots lie on a circle (blue). The numbers indicate the number of passes in the cell
that have already taken place. An angular advance α between each pass gives 3π total
angular advance.

footprint reduction in the space-restricted portable XUV comb lab are curved mirrors
with a curvature of R = 250 mm (025-8025, EKSMA Optics).

Multipass cells are usually designed as Herriott-type cells where the propagation of the
beam between the mirrors lies on a hyperboloid. The spot pattern on the mirrors of such
a cell is displayed in Fig. 4.2. With each propagation the beam advances an angle α and
has in total n reflections. After a total angular advance of mπ, the beam is coupled out
again. One can show that the q-parameter of the beam is conserved for

nα = mπ; m,n ∈ N, (4.2)

i.e. when the beam is coupled out after a multiple integer of π [70].

The beam waist is minimal at the nonlinear element. An estimation of this beam waist
size is possible with Gaussian beam propagation. Fig. 4.3 shows the beam profile of the
experiment at the position of the proposed laser setup measured with a beam profiler
(BP209-VIS/M, Thorlabs Inc.). The values for an 1/e2 decrease of the beam size are
recorded in Table 4.1. The beam has a beam quality factor M2 lower than 1.2. In the
calculation, the beam diameter is thus averaged to an uni-axial diameter of 2 mm. The
calculation is performed with the open-source software GaussianBeam [83]. The minimal
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x

y

Figure 4.3: Beam profile measurement be-
fore entering the cavity. White-red-green-
blue-black marks higher-to-lower intensity.

axis diameter (µm)
x 1943.9
y 2168.3

Table 4.1: Beam widths
of Fig. 4.3 at 1/e2 of the
maximal intensity.

beam waist for a wavelength λ = 1039 nm is w0 = 20.7 µm and the Rayleigh length is
zr = 1.3 mm.

4.3 Simulation Results

The scheme of the implemented algorithm for the simulation of light-matter interaction
in the multipass cell is shown in Fig. 4.4. The algorithm propagates any initial pulse
shape through the cell in iterative steps. In (a), one back- and forth reflection between
the mirrors (grey) is displayed which is referred to as one pass in the following. The
number of passes can be chosen freely. The algorithm starts by propagating the pulse
shape through the nonlinear material. After that, dispersion from the propagation in
air—or any gas—and by reflection on the mirrors is added to the pulse by multiplying the
electric field in the frequency domain with the phase factor eiφ. The phase is calculated
as

φ(ω) =
1

2
Rβ2,air(ω − ω0)

2 +
1

3
Rβ3,air(ω − ω0)

3 + GDDmirror, (4.3)

where the β coefficients are the values for group velocity dispersion. GDDmirror is the
possible group delay induced by a chirped mirror. Dispersion values for air are taken
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parameter symbol value
central wavelength λ0 1039 nm
pulse length τ 220 fs
pulse energy Ep 0.7 µJ
beam size w0 80 µm

Table 4.2: Simulation parameters for optical multipass cell design.

from [84]. Nonlinearities in air are neglected as they are two orders of magnitude smaller
compared to the crystal nonlinearity [85]. Furthermore, the beam is only focused in the
center of the cell. This results in even smaller nonlinearities in air due to the wider beam
diameter. For the back-reflection, the pulse is again propagated through the nonlinear
material and then dispersion from the air and the mirrors is added. The output fields in
time and frequency domain of each pass are stored in a .sim-file.
The propagation in the nonlinear material is based on the publicly available repository
’gnlse’ [86]. The code incorporates a solver for the generalized nonlinear Schrödinger
equation (GNLSE). This equation is an extension of the nonlinear schrödinger equation
for short few-cycle laser pulses [87]. Effects such as Raman scattering and self-steepening
are included in this ordinary differential equation that is solvable with tools from the
scipy-library. The python algorithm is based on the MATLAB script described by Dudley
et al.[88] which uses the split-step Fourier method.
The split-step Fourier method can be understood as follows: The propagation distance is
split up in small increments dz (Fig. 4.4(b)). In each increment, effects in the frequency
domain (dispersion) and in the time domain (nonlinearities) are considered consecutively.
The Fourier transform ensures consistency in the time and frequency domain in each
step as the effects are modeled in both domains (see Fig. 4.4(c)).
As the simulation was originally intended for use in optical fibers, spatial alterations of
the beam due to self-focusing is not taken into account. This approximation is justified
as the thickness of the nonlinear material (< 3 mm) in the cell is comparable to the
Rayleigh range. Thus, variation of the beam profile over one propagation is negligible.
Pure spectral broadening in bulk KDP was simulated to estimate the validity of the
simulation results. Qualitative measurements of the spectral change by propagating
the laser beam of the experiment in bulk KDP verified the simulation results. These
measurements have shown that the beam waist size is under-estimated. Hence, the beam
waist size has been adapted to 80 µm in the simulation. The parameters used in the cell
simulation are recorded in Table 4.2.
The pulse shape considered in the simulation is Gaussian, the pulse length τ refers to the
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4 Nonlinear Pulse Compression Multipass Cell

Figure 4.4: Working principle of the multipass cell simulation: (a) The pulse is propa-
gated through a pair of curved mirrors with a nonlinear material and gas in between.
Dispersion is added at each reflection on the mirrors and for propagation in gas. Nonlin-
earities are only considered in the crystal in the following manner: (b) The crystal length
is split up into small increments. (c) In each increment, the nonlinearities in the time
domain and dispersion in the frequency domain are added consecutively. The Fourier
transform connects time and frequency domain.
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Gaussian FWHM. The pulse energy Ep = 0.7 µJ (corresponding to 70W average power)
was estimated with a margin to the maximum pulse energy of 0.8 µJ (corresponding to
80W average power) to ensure compression even if the average power of the system is
decreased.

Different materials are evaluated for pulse compression. The material used in bulk
nonlinear pulse compression multipass cells is, to the best of our knowledge, exclusively
fused silica. However, the self-focusing threshold for fused silica lies above 4MW [28, 30].
It can be calculated by [89]

Pcrit =
0.148λ2

nn2

. (4.4)

As the peak power in the system lies below 3MW, an approach with fused silica is not
feasible. This was also verified in the simulations.

Hence, the use of different materials is necessary to achieve sufficient nonlinearities for
spectral broadening. (4.4) suggests the choice of a material with a higher nonlinear index.
Yttrium aluminium garnet (YAG) has a nonlinear index of n2 = 6.13× 10−20 m2 W−1,
resulting in a self-focusing threshold of Pcrit = 1.41 MW. The peak power in the system
exceeds the threshold and nonlinearities can broaden the spectrum and shorten the pulse.

However, YAG has a substantial normal group velocity dispersion around 1030 nm of
β2,YAG = 66.675 fs2 mm−1. Hence, a multipass cell with YAG needs chirp removal inside
the cell. Otherwise, the dispersion broadens the pulse in the time domain stronger than
the nonlinearities compress it and the peak power might even fall below the self-focusing
threshold. A configuration of chirped mirrors with 90 fs3 GDD for a crystal thickness of
2mm has delivered the best theoretical compression results. For a low number of passes,
the chirp could be removed after the propagation in the cell. The number of passes
without immediate chirp removal is limited by the propagation step at which dispersion
has lowered the peak power below the self-focusing threshold.

The result of this setup is presented in Fig. 4.5. The time domain is shown in (a) with
the incoming Gaussian pulse in orange and the outgoing pulse in blue. The compression
is clearly visible and the peak power is increased from under 3MW to over 5MW. The
spectral broadening is depicted in (b), where the input spectrum (orange) is broadened
to a spectral range of over 150 nm. The bottom row (c,d) shows the evolution over
the number of passes. Fig. 4.5(c) shows that the dispersion compensations through
the chirped mirrors allow compressed pulses in each pass whereas in (d) the increasing
spectral broadening over the number of passes is depicted.
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Figure 4.5: Simulation result of a multipass cell with 13 passes through 2mm YAG as
nonlinear material and chirped mirrors of 90 fs2 on each side. (a) The incoming pulse
(orange) is shortened from 220 fs FWHM to 49.8 fs pulse length (blue). (b) The incoming
Gaussian spectrum is broadened from 7nm FWHM to over 150 nm bandwidth. (c) The
continuous compression of the pulse over the number of passes, because dispersion is
compensated in every step by chirped mirrors. (d) Spectral broadening over the number
of passes plotted on a logarithmic power spectral density (PSD) colorscale.
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The systems are evaluated with respect to the compression factor η = τin/τout, which
compares the length of the outgoing pulse τout with the incoming pulse length τin.

As the dispersion is nearly compensated in every step, the setup with YAG and chirped
mirrors allows a compression factor of ηYAG = 4.4. The use of chirped mirrors in such a
setup is however difficult as they are expensive and tedious to handle.

A different approach is the use of potassium dihydrogenphosphate (KDP) as nonlinear
material. It has a nonlinear index of 6.54× 10−20 m2 W−1 [90], resulting in a self-
focusing threshold of Pcrit = 1.61 MW. A valuable property of KDP is the anomalous
dispersion it exhibits already around 1039 nm with a group velocity dispersion of β2,KDP =

−7.5745 fs2 mm−1 [66]. Dispersion compensation can therefore be achieved by simple
propagation through a material of normal dispersion. The obvious choice in the multipass
setup is the implementation of air for dispersion compensation. As the propagation
length is fixed by the choice of the mirrors, the free parameter is the crystal thickness.
The optimal combination is a crystal thickness of 3mm and 22 passes in the multipass
cell.

The simulation result is plotted in Fig. 4.6 in a similar manner to the result in Fig.
4.5. The temporal compression of the 220 fs input pulse (orange) down to an output
pulse of 32.6 fs (blue) is shown in (a). This yields a compression factor of ηKDP = 6.7,
exceeding the compression factors achieved by conventional fused silica multipass cells
of ηFS,1 = 5.8, reported by Weitenberg et al. and ηFS,2 = 5, reported by Schulte et al.
The spectral change in (b) enables a broadening of the incidental spectrum (orange) to a
spectral range of over 200 nm (blue). Fig. 4.6(c) shows the evolution of the compression
over the multiple passes. As the dispersion is in equilibrium in each pass, out-coupling
could also be performed at a sooner stage. The same evolution in the spectral domain is
presented in (d) over a logarithmic scale.

The simulation has shortcomings because the spatial domain is not considered. This
could be improved by approximating the Gaussian beam waist in steps and simulating
the behaviour in each step separately [91]. For a good match of theoretical predictions
and future experimental results, the dispersion added by the scraper, incoupling mirrors
and glass windows for beam incoupling need to be considered. The groundwork for a
better estimation of the pulse shape by frequency-resolved gating was set up in this thesis.
A follow-up thesis is aiming at an even more reliable pulse shape retrieval.

The peak power of the outgoing pulses in the proposed setup is significantly higher.
Moreover, further compression is possible with a simpler setup. A consecutive multipass
cell with fused silica and a chirped mirror pair can be set up. Consecutive multipass cell
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Figure 4.6: Simulation result of a multipass cell with 22 passes through 3mm KDP,
where the air compensates the dispersion of KDP. (a) The incoming pulse (orange) is
shortened from 220 fs FWHM to 32.6 fs pulse length (blue). (b) The incoming Gaussian
spectrum is broadened to over 200 nm bandwidth. (c) The continuous compression of
the pulse over the number of passes, as dispersion is compensated in every step by
propagation in air. (d) Spectral broadening over the number of passes plotted on a
logarithmic power spectral density (PSD) colorscale.
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Figure 4.7: (a) Measured dispersion tuning of the group velocity dispersion of different
gases by pressure adjustment from 0.01 bar to 5 bar around 800 nm. Data from [94]. (b)
Adaption of this dispersion tuning to 1039 nm for the proposed multipass setup. The
GDD is already calculated according to the dimensions of the setup for one pass in the
cell. This enables dispersion compensation and fine-tuning by pressure adjustment. The
lines for N2 and air overlap. Data for air from [84], for N2 from [95], for Xe, Kr from [94]
and for He from [96].

arrangements deliver excellent compression results [29, 31]. The pulses recovered from the
simulations exhibit a strong bottom pedestal which could be removed by implementation
of a nonlinear polarization rotation stage. Such a setup has an intensity-dependent
transmission, isolating the main pulse [92]. A drawback of this method may be the loss
in pulse energy (39% loss reported by Seidel et al. [92]). To minimize spatial beam
distortions, the performance could be further improved by splitting up the nonlinear
crystal in two or more crystal plates in the center of the cell [93].

Further dispersion tunability is achievable by implementing a gas pressurized system.
Dispersion tuning in gas-filled hollow-core photonic crystal fibers (HC-PCF) is already
a well-known technique [69]. This is now adapted for a bulk multipass setup. As the
dispersion of a gas scales linearly with pressure, fine tuning of the system can be realized
by adjusting the pressure [94]. The principle behind this is shown in Fig. 4.7 where (a)
shows measured pressure dependence of the dispersion at 800 nm. An adaption for the
proposed length of 500mm between two propagations in the nonlinear crystal and the
available pressures in the cell that range from vacuum to 5.5 bar is depicted in Fig. 4.7(b).
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Broad dispersion ranges from 0 to 200 fs2 can be realized in this system. For a more
sophisticated setup, gas mixtures can also be used.
In the bulk multipass setups presented to this date, the chirp removal is performed after
the compression stage or with a combination of chirp removal in the cell and afterwards.
The proposed setup is adaptive for different number of passes because the dispersion is
compensated in every step. Furthermore, the maxima of the broadened spectrum (cf.
Fig. 4.6) can be tuned to different wavelength ranges by adjusting the number of passes
to access certain transitions. The compressed pulses with broader spectra are then sent
into an enhancement cavity for XUV generation. Broader incoming spectra therefore
yield broader XUV spectra. This is giving access to a wider range of transitions for
frequency meteorology measurements on HCIs.

4.4 Mechanical Design of a Pressure Cell

Thus, a pressure cell was designed for this work to enable dispersion tuning by adjusting
gas pressure. A further advantage of an enclosed system is reduction of accidental
misalignment and long term stability. This is crucial for reliable operation of the
enhancement cavity. In addition, KDP is a hygroscopic material and needs to be in a
controlled atmosphere of reduced humidity.
The pressure cell is drawn in Fig. 4.8. All parts are made of stainless steel unless stated
otherwise to ensure stability of the setup and to reduce vibrations and misalignment.
The cell consists of a main clamp which is mounted on the optical table with six M6
screws. Two steel tubes of 130mm diameter are mounted on the sides of the clamp. End
flanges with o-rings are mounted on the ends of the steel tubes. The main clamp has a
inner lining on the bottom for water cooling. Due to the high average power at which
the system is operated, cooling is necessary as thermal expansion of the elements can
lead to misalignment or even destruction of parts.
Two gas plugs can be used to pump and flush the cell with different gases. A high-pressure
gas system is already set up in the XUV frequency comb laboratory, which simplifies
operation with various gases. Two windows where the laser beam enters and exits the
cell are mounted in the main clamp. Two further blind flanges are inserted for possible
further adjustments and ports in the cell such as steering mechanisms or electronics.
Two maintenance windows are necessary to see through the cell in case of a malfunction.
They are placed exactly over two mirrors in the cell. In this way, it is possible to see
the whole cell without opening it. Monitoring of the system without having to open the
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Figure 4.8: Pressure cell containing the multipass setup. The main clamp is mounted
on the optical table and is the mount for the steel tubes. The tubes and end flanges
enclose the pressure cell. The pressure can be adjusted with gas plugs. The laser beam
is coupled into the cell by the laser windows. Additional windows for monitoring of the
cell and blind flanges for future components are installed.
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pressure cell is thus possible. The "crystal window" in one of the end flanges is a small
fused silica flange placed at an angle to the central axis such that the nonlinear crystal
in the cell center can be seen. Damage on the crystal is then directly visible.

With this setup, the Druckgeräterichtlinie allows a maximum operating pressure of 5.5 bar

[97]. This enables a broad dispersion tuning range.

Fig. 4.9 shows the inside of the cell with the laser beam propagating through the cell.
The laser beam enters the cell through a first 5mm thick fused silica window. A first
mirror with a diameter of 0.5” (adjustable via a side optic retention mount) guides the
beam towards a first scraper mirror that couples the beam on the hyperboloid structure
between the two curved mirrors. The beam reflection pattern in use has 22 passes
between the mirrors and advances a total angle of 3π, as previously displayed in Fig.
4.2 and determined by the simulation result in Fig. 4.6. A second scraper mirror guides
the beam onto the outcoupling mirror. The beam leaves the cell through a second fused
silica window.

The nonlinear crystal is mounted on a copper holder. It is connected to a copper cooling
plate which is mounted on the side of the main clamp. Heat from the crystal is then
distributed over the whole setup and can be transported away by a pre-installed water
cooling system in the bottom of the main clamp.

A more detailed view of the optical components is shown in Fig. 4.10 where the outer
pressure cell components are suppressed for a better view of the optical setup. All optical
components are mounted on a base plate of stainless steel. The plate has an u-shaped
profile for enhanced stability. The base plate is screwed into the main clamp and fixed
by guide rails.

The left side of Fig. 4.10 shows the incoupling process of the beam into the Herriott
pattern in greater detail. The scraper mirror has a diameter of 6.35 mm. It is as small
as possible to prevent clipping of the beam in further passes while still collecting the
whole laser beam. The scraper is glued onto an aluminium adapter. The adapter is
mounted into a 1/2” mirror mount for adjustment. The scraper is in front of the first
curved mirror which is of 2” diameter and can be adjusted by a 2-axis mirror mount.

The mirror sits on a precision linear stage which allows lateral adjustment in a range
of 6mm. The stage itself can be mounted on the base plate at three different positions,
expanding the movement range to 18mm. The scraper for outcoupling of the beam sits
on the right side of the curved mirror. It is adjustable in the same way as the scraper for
the incoming beam by means of an adapter and a mirror mount.

Fig. 4.10 also allows a more detailed view of the copper crystal mount. The crystal
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Figure 4.9: Cut through the pressure cell with visible beam path. The beam is coupled
in via a mirror, advances between two curved mirrors through the crystal and is then
coupled out. A copper cooling plate transfers heat from the crystal to the whole cell.
The cut also shows the end flange mounting mechanism via rubber sealing and screws.
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mount can be adapted to incorporate crystal material thicknesses from 1mm to 4mm as
the cell is designed to offer an adaptable scheme of spectral broadening and thus, varying
propagation lengths in the nonlinear material. The nonlinear crystal is mounted with an
steel clamp for improved thermal stability in the outer crystal mount. The crystal end
plate fixes the steel clamp in the outer holder. The screws of the crystal end plate are
fixing copper strands onto the crystal mount. These strands guide the heat towards the
cooling plate connection which is mounted into the copper cooling plate shown in Fig.
4.9.
The main crystal mount is bolted onto another linear precision stage with a movement
range of 6mm. The range is again extended to 18mm as the stage can be mounted at
different positions of the base plate. The second curved mirror is also mounted on a
movable post, albeit not on a linear precision stage. Fine tuning of the setup is done
with the linear precision stages of the other curved mirror and the crystal mount.
In front of the crystal mount is a maintenance mirror. It can be seen from above by
looking into the maintenance window in Fig. 4.8. It lies at an angle of 45 degrees such
that the second curved mirror is visible. The same arrangement is placed on the other
side of the crystal mount to allow a view of all optical components in the multipass cell.
The setup drawn in Fig. 4.8, Fig. 4.9 and Fig. 4.10 is currently being produced. The
installed FROG system allows measurement of the pulse compression and spectral
broadening that are planned with this system.
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Figure 4.10: Inner part of the multipass cell. The optical components are mounted on
a stainless steel base plate. Two scraper mirrors for coupling the beam in and out of the
Herriott-type multipass are mounted on aluminium holders which can be adjusted via
mirror mounts. The curved mirror and crystal mount are mounted on movable precision
stages. The crystal is mounted in a copper mount which is thermalized by copper cooling
strands. The maintenance mirror enables seeing the whole cell through the maintenance
window in Fig. 4.8.
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5 Conclusion

This work in the framework of a frequency comb in the XUV has presented a pulse
characterization system for the driving pulses that generate the XUV light. Moreover, a
novel design for temporal compression of these ultrashort laser pulses was developed.

The pulse characterization system implemented two versions of autocorrelation and the
more advanced FROG. Intensity-based autocorrelation gave a first estimate of the pulse
length of about 220 fs. The setup for intensity-based FROG allowed fast recording of
traces, decreasing the recording time by a factor of over 20 compared to a previous setup.
The optomechanical alignment possibilities of the setup, especially parallel alignment of
the beams that generate the SHG signal, can be further improved for a more reliable
pulse shape retrieval. This will be subject to a consecutive thesis.

Measurements with the setup for interferometric autocorrelation suggests that the pulse
has a substantial amount of third-order dispersion of 120 fs3. The agreement between a
theoretically predicted trace and the experimental result is good. The interferometric
FROG trace has a promising symmetry and is thus a good candidate for further evaluation
by implementation of a retrieval algorithm that is able to retrieve pulse shapes from
interferometric FROG traces, such as the COPRA algorithm. Continuous operation of
the enhancement cavity with simultaneous measurement of the pulses without changing
the optical setup is possible in this setup.

The design of a novel nonlinear pulse compression scheme in a multipass cell by spectral
broadening with a KDP crystal with anomalous dispersion was presented in the second
part of this thesis. The optical components of the multipass cell are incorporated in a
newly designed pressure cell. Compensating the anomalous dispersion of KDP around
the central wavelength of 1030 nm with normal dispersion of air or other gases with
adjustable pressure in the cell enables a novel scheme for pulse compression. As each
pass in the multipass cell is dispersion-compensated, the beam can be coupled out after
an arbitrary number of passes. Pressure variation in the cell allows fine-tuning of the
dispersion via gas pressure, eliminating the need for chirped mirrors or adjustment of
optical components, which further enhances the flexibility of the setup. In this way, the
pulse compression factor and the spectral range can be chosen with a certain freedom,

81



5 Conclusion

which is—to the best of our knowledge—not possible with conventional multipass cell
setups to this date. Numerical simulations support this proposal.
In this manner, the peak power can be increased and the pulse duration can be shortened
while the spectral range can be increased. These pulses are then sent into enhancement
cavities for XUV generation and velocity map imaging. Shorter pulses increase the effi-
ciency of the XUV generation, therefore increasing the power of the generated harmonics.
Moreover, shorter pulses with higher peak powers enable harmonics of higher order than
produced in this setup to date because the cutoff energy is increased. The accompanying
broader spectra, transferred from the nIR to the XUV, allow access to a wider range
of transitions on HCIs and other transitions. Especially the broader range of the 7th

harmonic is necessary for spectroscopy on thorium. This widens the application range of
the XUV frequency comb for quantum logic spectroscopy on HCIs and paths the way to
spectroscopy on the 229Th isomer.
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