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Abstract: Multiport interferometer meshes can be used to implement unitary transformations
on input vectors of light in both the classical and quantum domain. In practice, the phase-shifters
in a mesh photonic circuit must be calibrated to compensate for phase errors due to fabrication
variations. Calibration using photodetectors external to the mesh has been demonstrated for
triangular meshes, but not rectangular meshes. Here, we propose an algorithm for the calibration
of rectangular meshes using only external photodetectors and simulate it to evaluate its feasibility.
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1. Introduction

Multiport interferometer mesh integrated photonic circuits, consisting of 2×2 Mach-Zehnder
Interferometers (MZIs) as their “nodes”, are a promising tool for performing unitary transfor-
mations on a vector of light, or non-unitary transformations when combined with amplitude
modulation [1]. These meshes have potential applications in neural network matrix computation,
linear information processing, quantum computing, and mode division multiplexing [1,2]. Two
common categories of these meshes are the triangular “Reck” mesh [3] and the rectangular
“Clements” mesh [4]. The rectangular mesh is more compact, has less optical loss, and is
significantly more tolerant to fabrication-caused phase errors and unbalanced beamsplitter losses
[4,5], but, so far, methods to calibrate rectangular meshes have used photodetectors (PDs) in each
node, increasing the size, electrical control complexity, and optical loss of the photonic circuit.

Some mesh architectures [6], such as triangular meshes but not rectangular meshes, have been
calibrated to be a specific unitary matrix via “self-configuration,” the use of simple feedback
loops between phase control inputs and optical outputs to align the mesh with a target transfer
function [6]. Progressive algorithms that rely on a sequence of simple single-parameter power
maximizations or minimizations, instead of one global optimization, to perform self-configuration
have been proposed and demonstrated [7–12]. These algorithms tend to be more flexible with
PDs on each node, but can also be performed with only external PDs at the mesh’s output ports.
Progressive algorithms for configuring a triangular mesh to implement a unitary transformation,
for having all nodes in bar or cross states (where light goes straight through or crosses over,
respectively), and for tuning nodes’ beamsplitters to their 50:50 states are detailed in [13].

Rectangular meshes have not been shown to use self-configuration. They can be calibrated
with progressive algorithms such as “RELLIM” [2] and “PRELLIM” [14], which calibrate one
mesh layer at a time by maximizing (minimizing) the output power for an input vector that should
produce an output vector of 1’s (0’s). These algorithms require PDs on each mesh node and
accurate phase control for each input, increasing the size and electrical complexity of the photonic
circuit. Alternatively, [15] shows how to theoretically factor phase-shifts through a rectangular
mesh to calibrate it. However, each column of nodes is a large, separate, and modular unit to
enable calibration of the nodes’ splitting ratios (controlled via their "internal phase shifters").
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Calibration of MZI meshes with external PDs has been reported for MZI switching networks
[16–18]. Calibration of a 32× 32 switch with 1024 elements was experimentally demonstrated in
[18], and could be improved to complete calibration within minutes, showing promise for rapid
calibration of large scale MZI meshes for real-world applications. However, Clements meshes’
topology differs from typical switch networks, such as that of [18], and also features “external
phase-shifters” to set phase relations between nodes, which are irrelevant in switching networks.

Here, we theoretically and numerically demonstrate calibration of Clements meshes with
external PDs, calibrating nodes’ internal and external phase-shifters. We introduce a “Node
Isolation Algorithm” for Clements meshes, which—by similar ideas as [18] for rectangular
switching circuits—ensures light in a specific node is entering only one of the node’s inputs,
and that light at the external PD comes from only one output of the node. This enables us
to build on prior work [6,13] on triangular mesh self-configuration to calibrate the nodes’
internal phase-shifters and/or tunable beamsplitters. We finish the calibration with an “External
Phase-Shifter Calibration Algorithm” for calibrating nodes’ external phase-shifters based on
[6,15].

This manuscript provides a theoretical framework for calibrating mesh phase shifters. Over-
coming inaccuracies arising from, for example, optical loss, PD noise, or fixed beamsplitters, is
beyond the scope of this work. However, our algorithm can tune tunable beamsplitters, if they
are available.

The article is organized as follows: Section 2 describes the notation; Section 3 outlines the
overall calibration procedure; Section 3.1 describes the “Node Isolation Algorithm”; Section 3.2
describes the “External Phase-Shifter Calibration Algorithm”; and Section 4 presents numerical
simulations demonstrating the feasibility of this approach.

2. MZI mesh notation

Figure 1(b) shows the assumed mesh node MZI [19], which consists of two directional couplers,
an internal θ phase-shifter controlling splitting ratio, and an external ϕ phase-shifter controlling
output phase. “Ideal” and “actual” versions of the MZI are shown in Fig. 1(b). The ideal version
represents an MZI with no phase or beamsplitter errors, with phase-shifts of θ and ϕ. The
actual version represents an MZI with imperfect beamsplitter ratios, phase errors (caused by, for
example, waveguide width variations), and phase-shifts as functions of input voltages Vθ and
Vφ . For simplicity, we assume no optical loss; however, if the losses of the two arms of the MZI
are equal, a compensating scaling factor can be applied to the mesh outputs [4]. Incorporating
unbalanced losses, such as phase-dependent phase-shifter losses, is subject to further work.

The transfer matrix UMZI of the ideal MZI, given by the product of the transfer matrices of the
constituent components in Fig. 1(b), is given by [19]

UMZI = RφBRθB = ie
iθ
2
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eiφ sin
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2
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2
)︁ ⎤⎥⎥⎥⎥⎦ , (1)

where Rφ , B, and Rθ are defined in Fig. 1(b). Each MZI, with an extra external phase-shifter in
front, implements an arbitrary unitary transformation [19]. When the MZIs are stacked into an
N-input mesh with the “column 0” of external phase-shifters in front, as in Fig. 1(a), one achieves
an arbitrary N × N unitary transformation with the transfer function in [19]. The procedure in [4]
can translate any unitary matrix into the required phase-shifts of an ideal rectangular mesh.

The notation used to index phase-shifters, columns, inputs, and mesh outputs is shown in
Fig. 1(a). The external phase-shifters on the last column of the mesh in Fig. 1(a) are not required
if only amplitudes are measured. External phase-shifters on the bottom row of the mesh do not
correspond to MZIs and their phase-shifts should be set to zero. The mesh can be streamlined by
removing the phase-shifters on the top row, and moving the MZI external phase-shifters from
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Fig. 1. (a) Schematic of an ideal rectangular mesh node MZI. Black lines represent
waveguides in an integrated photonic chip. It has N inputs (labelled I1, I2 . . . , IN ), N output
detectors (labelled D1, D2, . . . , DN ), and M columns. (b) Schematic of the ideal and actual
MZI. The transfer matrices for constituent components are shown. θ and ϕ are respectively
the internal and external phase-shifts of an ideal MZI; θt, θb, ϕt, and ϕb are the top and
bottom phase-shifts in an actual MZI; Vθ and Vφ are the voltages input to the phase-shifters;
τ and ρ are beamsplitter through and cross transmissions; and δθ and δϕ are constant phase
errors.

the “Top Out” arms to the “Bot In” arms. However, we work with our format throughout for
consistency, and algorithms we present can be adapted to other such rectangular mesh designs.

3. Calibration procedure

Mesh calibration finds functions θ(Vθ ) and ϕ(Vφ) for each node, so an “actual” MZI operates as
an “ideal” MZI in Fig. 1(b) with phases θ and ϕ [8]. Once calibrated, the mesh is programmed by
calculating the required phase-shifts to implement the desired unitary matrix, then using the θ(Vθ )
and ϕ(Vφ) relationships to achieve those phases with voltages Vθ and Vφ . If the beamsplitter is
not 50:50, tunable beamsplitters can be used [7].

The calibration procedure has three steps: 1. Beamsplitter ratios, 2. Internal phase-shifts, and
3. External phase-shifts. Section 3.2 describes step 3. Steps 1 and 2 can use established MZI
calibration algorithms, such as “Beamsplitter 50:50 Setup Algorithm” [13] and “Co-sinusoidal
Proportional Calibration” [6,8]. However, these algorithms assume light enters only one of the
node’s inputs and that only light from one of its outputs is detected. To “isolate” a node for
calibration like this using an external PD, Section 3.1 proposes a “Node Isolation Algorithm” .

For the internal phase calibration, after a node is isolated, the voltage to the internal phase-
shifter can be swept and its θ(Vθ ) relation is given by the following equation depending on
whether the MZI’s input port is opposite (i.e., top or bottom) from or on the same side as the
output detection port:

θ(Vθ ) = θt(Vθ ) − θb =
⎧⎪⎪⎨⎪⎪⎩

arccos
(︂

2P(Vθ )−Pmin−Pmax
Pmax−Pmin
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same side.

(2)
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In Eq. (2), Pmax and Pmin are the maximum and minimum detected powers of the voltage sweep
[6]; P(Vθ ) is the detected power as a function of the voltage; and θt(Vθ ) and θb are as shown in
Fig. 1(b). Equation 2 is independent of the PD responsivity and the beamsplitting ratios, though
beamsplitters should be near ideal for the mesh to work. The reason for the first equality in
Eq. (2) is that an MZI with a bottom phase-shift θb is mathematically equivalent to an MZI with
that phase factored from both internal arms to both output arms, where the phase is absorbed into
later calibration steps. So the “actual” MZI can be described as an “ideal” MZI with phase θ(Vθ ).

In short, the mesh calibration procedure is as follows:

1. Isolate each node in the mesh using the “Node Isolation Algorithm” in Section 3.1 . For
each isolated node, shine light into the mesh and detect output light at the input and output
ports determined by the algorithm. Then do the following in order:

(a) Adjust the MZI beamsplitters, if tunable, with “Beamsplitter 50:50 setup algorithm”.
(b) Calibrate MZI internal phase with “Co-sinusoidal proportional calibration” (Eq. (2)).

2. Perform the “External Phase-Shifter Calibration Algorithm” in Section 3.2.

3.1. Node isolation algorithm

This algorithm “isolates” each node in the rectangular mesh so light only enters a given node at
one of the node’s inputs and only light exiting one of its outputs is detected, allowing simple
power maximization calibration algorithms to be used. The algorithm is part of a family of
methods that first calibrates internal phase-shifters along the longest diagonal in the mesh, then
sets calibrated nodes into bar or cross states to isolate adjacent nodes, similar in principle to
the algorithm in [18] developed for a different circuit topology. The algorithm is described in
pseudo-code 1 for clarity and proven in Appendix A for M ≤ N. Select algorithm steps are
illustrated in Fig. 2. Its time complexity is O(NM) because each node is isolated once.

First, light is inputted into I1 and propagates down a main diagonal of uncalibrated nodes
{MZIi,i |i ∈ Z>0}, reaching a PD that isolates these nodes, enabling their calibration. Then, the
top of the mesh can be calibrated one diagonal layer at a time, starting with the layer directly
above the main diagonal. Each diagonal is calibrated, using a different PD and input I1, by
isolating and calibrating one node at a time from bottom to top. To isolate the node being
calibrated, already calibrated nodes are set to a bar state, except on the diagonal being currently
calibrated and all but one node on the main diagonal, which are set to cross state.

Then, the bottom of the mesh can be calibrated one diagonal layer at a time, starting with the
layer directly below the main diagonal and light inputted into I3; for each subsequent diagonal,
the input number increases by two. Each diagonal is calibrated by isolating and calibrating one
node at a time, from the top down, by setting already calibrated nodes to a bar state, except for
those on the current diagonal, which are set to cross state. PD DiOut isolates nodes on row iOut.

3.2. External phase-shifter calibration algorithm

This algorithm is similar to the method in the appendix of [15], which describes factoring of
external phase errors through a rectangular mesh. We based this algorithm on the triangular
mesh calibration methods in [6] and have adapted it to rectangular meshes. All phase-shifts
below are taken relative to the phase of the input light to the mesh.

A mesh of ideal phase-shifters has no phase difference between nodes when all external phases
are set to zero. To describe an actual mesh as ideal, the phase-shifter on each input of each node
is described as ϕ=0 when the node’s inputs are in phase. This is because an MZI with the same
phase, ϵ , at both its inputs is mathematically equivalent to having ϵ on its outputs. The value of ϵ
is irrelevant once the next column of phase-shifters is also calibrated; this is shown in Fig. 3.
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(a) 3rd node, main diagonal (b) 2nd node, 1st top diagonal

(c) 2nd node, 2nd top diagonal (d) 3rd node, 1st bottom diagonal

Fig. 2. Calibration of select nodes in select diagonals via the “Node IsolationAlgorithm”.
Mesh notation is as in Fig. 1; green highlight is the path of light used to calibrate a
node; red rectangles encircle already-calibrated nodes in bar states (diamonds in cross
states); a red oval shows the node being calibrated; red numbers on nodes indicate the
order nodes are calibrated in for a given diagonal; red squares show the required input
port and output PD for a given node’s calibration; and yellow regions are where there is
an unknown irrelevant amount of light.

(a) (b) (c) (d)

Fig. 3. An explanation of external phase-shifter calibration. Notation is as in Fig. 1.
Phases are labelled at MZI inputs. n values are random phase errors. q(+) is found
such that q = 0 occurs when the next MZI’s inputs are in phase. Phase-shifters in the
top row are irrelevant in this figure. (a) First, find q(+) for external phase-shifters in
column 9 . Both input arms of the MZI8−1, 9+1 now have absolute phase n1 when q = 0.
(b) Then, describe the mesh equivalently by factoring phases across MZIs in column
9 + 1. Column 9 is now calibrated. (c) Next, find q(+) for external phase-shifters in
column 9 + 1. (d) Then, describe the mesh equivalently by factoring phases across
MZIs in column 9 + 2. Column 9 + 1 is now calibrated.

Fig. 2. Calibration of select nodes in select diagonals via the “Node Isolation Algorithm”.
Mesh notation is as in Fig. 1; green highlight is the path of light used to calibrate a node; red
rectangles encircle already-calibrated nodes in bar states (diamonds in cross states); a red
oval shows the node being calibrated; red numbers on nodes indicate the order nodes are
calibrated in for a given diagonal; red squares show the required input port and output PD
for a given node’s calibration; and yellow regions are where there is an unknown irrelevant
amount of light.

Fig. 3. An explanation of external phase-shifter calibration. Notation is as in Fig. 1. Phases
are labelled at MZI inputs. ϵ values are random phase errors. ϕ(V) is found such that
ϕ = 0 occurs when the next MZI’s inputs are in phase. Phase-shifters in the top row are
irrelevant in this figure. (a) First, find ϕ(V) for external phase-shifters in column j. Both
input arms of the MZIi−1,j+1 now have absolute phase ϵ1 when ϕ = 0. (b) Then, describe
the mesh equivalently by factoring phases across MZIs in column j + 1. Column j is now
calibrated. (c) Next, find ϕ(V) for external phase-shifters in column j + 1. (d) Then, describe
the mesh equivalently by factoring phases across MZIs in column j + 2. Column j + 1 is now
calibrated.
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The external phase-shifters are calibrated progressively from the input to the output layers of
the mesh. For each external phase-shifter ϕi,j, one finds ϕ(Vφ) such that ϕ = 0 occurs when the
inputs to the next MZInext are in phase. For ϕ ≠ 0, ϕ(Vφ) is determined by the extra phase created
by a voltage. MZInext refers to MZI(i,j+1) for odd i and j = 0; MZI(i,j+2) for i = 1 and j ≠ 0; and
MZI(i−1,j+1) otherwise (note that ϕN,0 can be considered part of ϕN,1 for odd N).

To find ϕ(Vφ), we use the external phase-shifter “Co-sinusoidal Proportional Calibration” in
[6,8]. First, all nodes are set to their bar states, θ = π, so the power at the mesh outputs equals
the power exiting the column being calibrated. Then, coherent light, not necessarily of the same
amplitude, is shone into all mesh inputs. Then, the internal phase-shifter of MZInext is set to
θ = π/2, effectively making MZInext into a 50:50 beamsplitter.

Algorithm 1: Node Isolation Algorithm
Data: A rectangular mesh Mesh with N inputs and M columns; M ≤ N
Result: The internal phase-shifters and beamsplitters of Mesh will be calibrated.

1 iIn, iOut← 1, minimum(N, M + 1);
2 for row = iOut − 1 downTo 1 do // isolate main diagonal nodes (downTo includes 1)
3 isolateMZI (row, row, iIn, iOut);

4 if M == N then iOut← iOut − 1 ;
5 else iOut← iOut − 2 ;
6 while iOut>1 do // iterate through each top diagonal
7 col← M;
8 set all θi,j where i = j to 0, and set all other θ to π;
9 for row = iOut − 1 downTo 1 do // isolate each node on the current diagonal

10 set θrow+1,row+1 to π;
11 isolateMZI (row, col, iIn, iOut);
12 set θrow,col and θrow+1,row+1 to 0;
13 col← col − 1;

14 iOut← iOut − 2;

15 iIn, row← 3, 3;
16 while iIn<N do // iterate through each bottom diagonal
17 col← 1;
18 set all θ to π;
19 while row < N and col ≤ M do // isolate each node on the current diagonal
20 iOut← row;
21 isolateMZI (row, col, iIn, iOut);
22 set θrow,col to 0;
23 row, col← row + 1, col + 1;

24 iIn, row← iIn + 2, iIn + 2;

// isolate a node to calibrate its internal phase and beamsplitters
25 Function isolateMZI (row, column, iIn, iOut) is
26 if MZIrow,column has adjustable beamsplitters then
27 Adjust the beamsplitters of MZIrow,column using the “Beamsplitter 50:50 setup algorithm” in Section 3.

Light is shone into IiIn and detected at DiOut;

28 Calibrate internal phase-shifter θrow,column using the “Co-sinusoidal proportional calibration” in Section 3.
Light is shone into IiIn and detected at DiOut;

29 Set MZIrow,column to its cross state (θ = 0);

Now, one derives ∆α, the difference between the top and bottom input phases of MZInext (αt
and αb), as a function of voltage, by sweeping the phase ϕi,j and monitoring power in the PD on
the top output row of MZInext. The formula for this is derived in [6], with the P optical power
variables with subscripts as in Eq. (2):

∆α(Vφ) = arccos
(︃2P(Vφ) − Pmax − Pmin

Pmax − Pmin

)︃
. (3)
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If ϕi,j leads to the bottom of MZInext, then ϕ(Vφ) = αb(Vφ) − αt = −∆α(Vφ). If it is on the top,
then the phase relation is ϕ(Vφ) = αt(Vφ) − αb = ∆α(Vφ). The constants are phase errors on the
arm with no phase-shifter. ϕ(Vφ) describes “actual” MZIi,j’s mathematically equivalent “ideal”
MZI by factoring out the constant phase errors to the end of MZInext, where they are absorbed
into the next column’s calibration. Since ϕ phase-shifters have range [0, 2π) but arccos outputs
[0, π], two voltage sweeps are needed for each external phase-shifter [6].

In short, the summary of external phase calibration, as shown in Fig. 4, is:

(1) After calibrating the internal phase-shifters, set all internal phase-shifts to bar state (θ = π).
Shine coherent light into each mesh input, not necessarily identical amplitudes or phases.

(2) For each column j = 1 through M:

(a) Set all internal phase-shifts in column j to θ = π/2.
(b) For each row i = 1 through N, find ϕ(Vφ), as described above, for the phase-shifter

on the bottom input of MZI(i,j), if such MZI and phase-shifter exist. Use PD Di.
(c) Set all the phase-shifters calibrated in Step 2b to ϕ = 0.
(d) For each row i = 1 through N, find ϕ(Vφ), as described above, for the phase-shifter

on the top input of MZI(i,j), if such MZI and phase-shifter exist. Use PD Di.
(e) Set all the phase-shifters calibrated in Step 2d to ϕ = 0.
(f) Reset all internal phase-shifts to bar state (θ = π).

Fig. 4. The first external phase calibration steps: (a) is step 2b for column 1, (b) is step 2d
for column 1, (c) is step 2b for column 2, (d) is step 2b for column 3, and (e) is step 2d for
column 3. Notation is as in Fig. 1. Green highlight shows the light path and red squares
encircle external phase-shifters being calibrated.

In our mesh architecture, external phase-shifters on row N (except in column 0) are set to ϕ = 0
after calibration. Once calibrated, the unitary transformation of the mesh can be programmed, up
to unknown output phases. If output phases are important, features would have to be added to the
circuit to enable their measurement and calibration. The algorithm time complexity is O(NM) if
calibrating phase-shifters sequentially or O(M) if calibrating each row of a column in parallel.
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4. Simulations

Simulations are performed to demonstrate application of this calibration approach using only
external PDs. The open-source mesh simulation Python module Neurophox [19] is used, with our
modified version available in [20]. Simulations in Fig. 5 show a 10 × 10 mesh being calibrated.
The mesh has phases initialized in a Haar-random manner [19], implementing a target matrix, T;
then, uniform random constant phase errors in [0, 2π) are added to all external waveguides and
internal phase-shifters. Then the calibration is simulated to find “correction constants” that are
added to the phase-shifter phases to correct for the phase errors.

When phase errors and calibrated correction constants are added to the original Haar-random
phases, the resulting mesh transfer matrix is U. The relative error metric for a given row and
column x, y of the transfer matrix is

ξx,y =

|︁|︁|︁|︁Tx,y − Ux,y

Tx,y

|︁|︁|︁|︁ . (4)

To account for the phase-shifts at the mesh outputs, the rows of U are normalized before
calculating error by multiplying each element of row x by exp

(︁
i(arg[Tx,1] − arg[Ux,1])

)︁
, where x

is any row.
For simplicity, the simulations assume ideal beamsplitters and consider constant phase errors

instead of nonlinear phase-voltage relationships. Instead of using the co-sinusoidal proportional
calibration, a simple single-parameter gradient ascent of light amplitude (with respect to phase) is
used to find the optimal constant phase correction at each step of the calibration. Finally, column
0 phase errors are not considered, but adding them is trivial and like any other column.

We find that after one iteration of the loop calibrating internal phase-shifters of the main
diagonal nodes {MZIi,i |i ∈ Z>0}, the phases do not always converge. This occurs when phase
errors start close to a bar state, lowering PD power and slowing the gradient ascent.

We overcome this using two methods, enabling calibration of extreme initial internal phase
errors like π in all nodes. First, if the PD power is below a low threshold, we do a coarse gradient
ascent over all phase-shifts on the main diagonal for a few iterations until enough power is
detected in the PD. This threshold is rarely reached, and does not have a tangible impact on the
calibration speed. Second, we calibrate the main diagonal three times. This ensures the diagonal
is well calibrated, which is important for later calibration steps dependent on the main diagonal.

For a mesh with N = M = 10, 300 iterations per internal phase-shifter gradient ascent (directly
adding the gradient to the phase during each iteration) works well. The external phase calibration
achieves good convergence with 600 iterations per phase-shifter gradient ascent. After calibration,
the average percent relative error across all elements of the calibrated matrix U is quite low at
0.38%±0.02% (where uncertainty is the standard error) averaged over 20 independent simulations
with the same Haar-random target matrix but different uniform random initial phase errors.
Figure 5 shows a simulation with average error of 0.39%. Figure 6 demonstrates light propagation
in the mesh during calibration.

Additional simulations varying the mesh sizes and initial mesh state were also carried out to
verify the algorithm. All code, data, and simulations are available at [20]. We tested simulations
for meshes with different permutations of even and odd for M and N, for M and N up to 32, all of
which converged well. We also tested a very suboptimal initialization with all internal phase
shifters having maximal π phase errors. With gradient ascent iterations and the target matrix
kept constant, this initialization barely increased percent error to 0.43%± 0.02% for N = M = 10
(over 20 simulations). For N = M = 32, such initialization increased percent error just slightly
from 1.3% ± 0.2% to 1.6% ± 0.1% (over 4 simulations). These results indicate that the algorithm
is robust against large errors and scales to large meshes.

Although there is no limit to how finely one can characterize each MZI, we terminate the
gradient ascent with these accuracy levels because the remaining phase errors are on the order of
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Fig. 5. (a) The target transfer matrix T (amplitude in arbitrary units). Then, matrix and
percent relative error (from Eq. (4)) (b) before calibration, (c) after internal phase calibration,
and (d) after external phase calibration. Phases are normalized as in Section 4., and x and y
are as described in that section.
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Fig. 6. Calibrating internal phase-shifter θ3,7. (a) shows the light propagation amplitudes
(left) and phase errors (right) before calibration. (b) shows these data after calibration.
Amplitudes (in arbitrary units) are measured at the output of the given column on the given
row. Phase errors are differences between the corrected θ and the desired θ (i.e., cross state
where θ = 0, 2π,etc.). After calibration, θ3,7’s phase error is near 0 and light is maximized
at output port 7. Other images can be found with the rest of our simulation code.

10−3 rad, which would have little impact on the accuracy of a neural network running on the
mesh [5]. Furthermore, these percent errors are less than what would be expected from other
inaccurate circuit components like beamsplitters [21], and are less than percent errors calculated
from final error magnitudes in the mesh-optimizing simulations of [19].

5. Discussion

We have shown how to calibrate meshes with M ≤ N, which can perform N × N unitary
transformations; however, if M>N, one can add a column of PDs every N columns of the mesh
to calibrate N columns at a time. Multi-mesh circuits like the universal linear network in [1],
which implements general non-unitary matrices, can have PDs after each section for calibration.
To ensure nodes are well isolated, the inputs can also be monitored so that light only enters a
single input port for a given calibration step.

In simulations, two challenges we find with the algorithm are (1) the detected light levels at the
PDs during calibration of the main diagonal can be low if the uncalibrated nodes are not close
enough to the cross state, and (2) the calibration of nodes is dependent on how well earlier nodes
were calibrated.

Point (1) is a bigger concern if gradient ascent is used instead of “co-proportional sinusoidal
calibration,” because low detected optical powers slow convergence. As described in Section 4.,
we overcome this by doing a coarse gradient ascent over the entire main diagonal to increase PD
power before calibrating the nodes, and by calibrating the main diagonal more than once. Even if
MZI characterization algorithms other than gradient ascent are used, the coarse gradient ascent
and repeating the calibration may generally improve the algorithm robustness. Point (1) is usually
not an issue on other diagonals, where the transmission depends on already characterized nodes.

In our simulations, Point (2) limits the calibration accuracy, as we only run a finite number of
gradient ascent steps. In a real mesh, when “co-proportional sinusoidal calibration” is used, the
step size in the power sweep should be minimized to characterize the MZI as well as possible.
Inaccurate beamsplitter ratios also limit how well MZIs can achieve perfect cross states [19]; thus,
tunable beamsplitters could be used if accurate beamsplitters cannot be manufactured. Other
error sources, such as PD noise and analog-digital conversion limitations, can also impact MZI
characterization accuracy. Finally, error caused by phase-dependent phase-shifter losses can be
minimized by using phase-shifters with less loss, such as MEMS, heaters, or novel designs [1].
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Algorithms similar to the Node Isolation Algorithm have successfully calibrated large 32 × 32
switching meshes [18], showing that our procedure has the promise to overcome these challenges
and scale up to large Clements meshes. Further analyzing and minimizing the effects of the above
error sources is a focus of future research. For example, having PDs at intermediate columns of
very large meshes, or at nodes along the main diagonal, could improve algorithm robustness by
making the isolation of a given node less dependent on poorly calibrated nodes.

6. Conclusion

We have presented a method to calibrate rectangular Clements meshes with MZIs as nodes using
only O(N) external photodetectors and without precise phase control of input light. First, nodes’
splitting ratios (set by MZIs’ internal phase-shifters) are progressively calibrated by creating
paths through the mesh that isolate nodes such that light only enters the node at one of its inputs
and only light exiting one of the node’s outputs is detected. Then, phase relations between nodes
(set by MZIs’ external phase-shifters) are calibrated by sequentially forming interferometers
within the mesh. The work here enables practical control of the compact rectangular Clements
mesh using minimal peripheral hardware, making large-scale MZI meshes more viable.

Appendix A: proof of node isolation algorithm

Here we prove the Node Isolation Algorithm works with external PDs for M ≤ N.
First, we define an MZI to be “isolated” when light can only enter one of its ports (Condition 1)

and the detector being used only measures light coming out of one of its ports (Condition 2).
We define diagonals as follows: diagonal 0 refers to {MZIq,q} (the main diagonal), diagonal x

refers to {MZIq,q+2x} (top diagonals), and diagonal −x refers to {MZIq+2x,q} (bottom diagonals),
for x, q ∈ Z>0. q = 1 for the first MZI in a diagonal.

We now show that every MZI in each diagonal of the mesh, and thus every MZI, is calibrated:
MAIN DIAGONAL: Every MZI on diagonal 0 can be isolated and internal phase-shifts can
be calibrated. Condition 1 is met since light from I1 only reaches the top input ports of the
diagonal’s MZIs. Condition 2 is met since light reaching PD Dminimum(N,M+1), connected to the
diagonal’s last MZI (since M ≤ N), must go through the bottom output port of each MZI in the
diagonal.
TOP DIAGONALS: Loop invariant proof based on the first while loop in pseudo-code 1, which
iterates through all top diagonals x starting from diagonal 1:
Loop Invariant: At the start of the loop, all MZIs of all diagonals from 0 through x − 1 have
internal phase-shifts calibrated.
Initialization: Diagonal 0 internal phase-shifts are calibrated before the first loop iteration.
Maintenance: In each iteration, one loops through from the last through the first MZIs in
diagonal x, and calibrates them all. This is shown by the following loop invariant proof:

Loop invariant: MZIs in diagonal x with q>qA have calibrated internal phase-
shifters, where qA is the value of q for MZIA, the MZI being calibrated in a given
step of the loop.
Initialization: There are no MZIs with q>qA when MZIA is the last MZI of diagonal
x.
Maintenance: MZIA can be isolated and its internal phase-shifter calibrated, so
the loop invariant holds for the next iteration. Condition 1 is met by shining light
into input I1 and programming diagonals 0 through x − 1 into bar and cross states
to guide all light into one input of MZIA. Condition 2 is met by setting MZIs on
diagonal x with q>qA to cross state, so light reaching the PD at the end of diagonal x
comes from the bottom of MZIA.
Termination: The last iteration is with q = 1. By the maintenance property, all
MZIs (q ≥1) thus get calibrated internal phase-shifters.



Research Article Vol. 4, No. 11 / 15 Nov 2021 / OSA Continuum 2903

Termination: The loop terminates after the topmost top diagonal is calibrated. All MZIs in each
diagonal have calibrated internal phase-shifts, as per the maintenance property.
BOTTOM DIAGONALS: Loop invariant proof based on the second while loop in pseudo-code
1, which iterates through all bottom diagonals −x starting from diagonal −1:
Loop Invariant: At the start of the loop, all MZIs of all diagonals greater than −x have internal
phase-shifts calibrated.
Initialization: Internal phase-shifts of diagonals > −1 are calibrated before the first loop iteration.
Maintenance: In each iteration, one loops through from the first through the last MZIs in
diagonal −x, and calibrates them all. This is shown by the following loop invariant proof:

Loop invariant: MZIs in diagonal x with q<qA have calibrated internal phase-
shifters, where qA is the value of q for MZIA, the MZI being calibrated in a given
step of the loop.
Initialization: There are no MZIs with q<qA when MZIA is the first MZI of diagonal
x.
Maintenance: MZIA can be isolated and its internal phase-shifter calibrated, so the
loop invariant holds for the next iteration. Condition 1 is met by setting MZIs on
diagonal −x with q<qA to cross state, so light put in the top of diagonal −x goes into
MZIA’s top input. Condition 2 is met by programming already calibrated diagonals
greater than −x into bar states so light at a certain PD comes from only MZIA’s top
output.
Termination: The last iteration has qA = z, where z is the number of MZIs in
diagonal −x. By the maintenance property, all MZIs (q ≤ z) thus get calibrated
internal phase-shifters.

Termination: The loop terminates after the lowest bottom diagonal is calibrated, and all MZIs
in each diagonal have calibrated internal phase-shifts, as per the maintenance property.
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