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During the last decades, neurofeedback training for emotional self-regulation has

received significant attention from scientific and clinical communities. Most studies have

investigated emotions using functional magnetic resonance imaging (fMRI), including

the real-time application in neurofeedback training. However, the electroencephalogram

(EEG) is a more suitable tool for therapeutic application. Our study aims at establishing a

method to classify discrete complex emotions (e.g., tenderness and anguish) elicited

through a near-immersive scenario that can be later used for EEG-neurofeedback.

EEG-based affective computing studies have mainly focused on emotion classification

based on dimensions, commonly using passive elicitation through single-modality

stimuli. Here, we integrated both passive and active elicitation methods. We

recorded electrophysiological data during emotion-evoking trials, combining emotional

self-induction with a multimodal virtual environment. We extracted correlational and

time-frequency features, including frontal-alpha asymmetry (FAA), using Complex

Morlet Wavelet convolution. Thinking about future real-time applications, we performed

within-subject classification using 1-s windows as samples and we applied trial-specific

cross-validation. We opted for a traditional machine-learning classifier with low

computational complexity and sufficient validation in online settings, the Support Vector

Machine. Results of individual-based cross-validation using the whole feature sets

showed considerable between-subject variability. The individual accuracies ranged from

59.2 to 92.9% using time-frequency/FAA and 62.4 to 92.4% using correlational features.

We found that features of the temporal, occipital, and left-frontal channels were the most

discriminative between the two emotions. Our results show that the suggested pipeline is

suitable for individual-based classification of discrete emotions, paving the way for future

personalized EEG-neurofeedback training.

Keywords: emotions, electroencephalography, classification, machine-learning, neuro-feedback, multimodal
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1. INTRODUCTION

“This world’s anguish is no different from the love we insist
on holding back,” wrote Aberjhani in the book “Elemental: The
Power of Illuminated Love” published in 2008 with the prize-
winner artist Luther E. Vann. A decade later, there is still much

to discover about the neurophysiology of complex emotions,
which, according to some, represent a combination of basic
emotions (Barrett et al., 2007) or primary emotive states and
cognitive components such as event-feature-emotion complexes
(Moll et al., 2005, 2008). The main novelty of this study is that we
tried to classify complex affective states, which have been rarely
explored with the EEG. We focus on tenderness as an affiliative
feeling because it is the basis for empathy and prosocial behavior

(Eslinger, 1998; Zahn et al., 2009), associated with social bonding,
care, and well-being. On the contrary, anguish reflects a negative
state of mental suffering linked to social dysfunction, withdrawal,
and poor mental health (Corbett, 2015).

Given the importance of affiliative emotions for a range

of psychosocial processes (Baumeister and Leary, 1995),
psychotherapeutic approaches have embraced the training of
such emotions as part of the therapeutic process (Gilbert and
Procter, 2006; Lutz et al., 2008; Germer and Siegel, 2012; Neff
and Germer, 2013). Real-time fMRI-Neurofeedback (NFB)
training, a type of closed-loop brain-computer interface (BCI),
has already been explored concerning the self-regulation of
complex emotional states. Recently, Lorenzetti et al. (2018)
demonstrated that the self-regulation of anguish and tenderness
is possible by targeting the septohypothalamic network, engaged
in affiliative feelings (Moll et al., 2011, 2012). In their experiment,
Lorenzetti and colleagues validated a new protocol combining
NFB with a multimodal, immersive virtual environment BCI
and musical excerpts as means to deliver feedback to participants
(Lorenzetti et al., 2018). However, the fMRI comes with several
disadvantages, such as the signal delay (Friston et al., 1994),
the high scanning cost, and an environment that can be hostile
and uncomfortable. In contrast, EEG offers a higher temporal
resolution and a direct measure of information processing. It is
cheaper and relatively simple to use, making it a more accessible
clinical environment tool. Therefore, the purpose of our work
is to validate the use of the EEG with the protocol developed in
Lorenzetti et al. (2018) to classify complex emotions.

Another novelty here is that we employed a multisensory
virtual-reality (VR) scenario with audio input to elicit complex
emotions. Music has been proven to be an effective stimulus in
evoking genuine feelings in the laboratory setting (Scherer, 2004;
Ribeiro et al., 2019). Moreover, the employment of VR has largely
increased in the last years, and its validity for BCI application
has been demonstrated (Coogan and He, 2018). For example,
the work of Johnson et al. (2018) showed the feasibility of using
VR BCI-training for motor recovery after stroke. Other studies
have shown that integrating heterogeneous sensory stimuli leads
to improved BCI performance by enhancing brain patterns
(Wang et al., 2017; Huang et al., 2019) and that using multiple
sensory modalities can improve the individuals’ engagement
and motivation in psychological and cognitive interventions
(Cho et al., 2002; Lécuyer et al., 2008; Kovacevic et al., 2015).

Furthermore, the study conducted by Baños and colleagues in
2004 has pointed out the advantage of immersion by means of
VR scenarios when eliciting emotions through simulation of real
experiences (Baños et al., 2004). To the contrary, widely used
research paradigms in affective computing and BCI have typically
employed single-modality or non-immersive stimuli to elicit
emotions, such as the international affective pictures (IAPS; Lang
et al., 1997), music, or movie clips. The ability to evoke affective
states reliably and ethically in an experimental setting remains
a critical challenge in emotion-recognition research (Kory and
D’Mello, 2015). Therefore, we also encouraged participants to use
personalized “mantras” (i.e., short emotionally loaded sentences)
to facilitate self-induced emotional states. This approach to
emotion induction can be of great advantage when using
neurofeedback as self-regulation training (Yankauer, 1999).

To date, research in emotion classification using EEG
signals mostly focused on distinguishing emotion based on
psychological models (Russell, 2003; Rubin and Talarico, 2009),
primarily employing the “circumplex model” (Lang et al., 1993),
which portrays different types of emotions in a two-dimensional
space comprising valence and arousal. Another model, the
discrete emotional model, has mainly been used to explore
basic emotions (i.e., sadness, happiness, fear, surprise, anger, and
disgust; Baumgartner et al., 2006; Balconi and Mazza, 2009; Li
and Lu, 2009). Attempts to differentiate tenderness from negative
emotions through EEG features using machine learning (ML)
algorithms have been made, as in the two studies conducted by
Zhao et al. (2018a,b). In these studies, the authors found the
frontal alpha asymmetry (FAA) and the midline theta power to
be useful features to classify such emotional states.

Recently, a growing body of research investigated emotion-
recognition with deep learning algorithms. Particularly
convolutional neural networks showed promising results,
outperforming traditional ML models in distinguishing
emotional states (Aloysius and Geetha, 2017; Li et al., 2018;
Moon et al., 2018; Yang et al., 2019; Zhang et al., 2020). However,
these models are still in their infancy and have various limitations
for EEG-based BCI classification due to the limited training data
available (Lotte et al., 2018).

Here, we conducted a proof-of-concept study to establish a
reliable method that can be later applied for EEG-based NFB on
the self-regulation of complex emotional states. Therefore, we
opted for a traditional ML algorithm, the linear Support Vector
Machine (SVM), which is characterized by high generalization
properties, low computational capacity, and sufficient validation
in real-time application. We extracted both FAA and time-
frequency, together with correlational features across the whole
scalp. We tested the model’s performance and generalization
properties by applying a trial-specific cross-validation procedure.
Furthermore, we applied a feature-ranking algorithm to
reduce our dataset’s dimensionality and to investigate which
channels and frequency bands were the most discriminative
between the two emotional states. We hypothesized that
tenderness and anguish have different electrophysiological
correlates, not reducible just to the FAA and that they can be
distinguished using an ML approach. Finally, we calculated
Spearman’s correlation coefficient between subjective ratings and
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FIGURE 1 | The virtual reality scenario, which we used to induce emotions

during the experiment. Compared to the neutral-colored scene on the left, the

color hue of the landscape turned purple (A) for anguish trials, while for all

tenderness trials, it turned into a vivid orange (B).

subject-specific classification accuracy to understand whether
the SVM performance was associated with the self-evaluation
of the emotional intensity, the mantras’ utility, the fatigue,
and concentration levels that subjects felt throughout the
experimental blocks.

2. MATERIALS AND METHODS

2.1. Participants
We recruited 14 healthy adults or young adults (7 males and 7
females) with no history of psychiatric disorder or neurological
illness for this proof of concept experiment. Before analysis, we
discarded EEG recordings from three participants (2 males and 1
female) due to the presence of excessive artifacts. The average age
of the 11 remaining participants was 27 years (SD = 7), ranging
from 19 to 46. All participants had normal or corrected-to-
normal vision and had Brazilian nationality, except one German
participant who fluently spoke Portuguese.

2.2. Emotion-Inducing Stimuli
We implemented a multimodal stimulation with a virtual
scenario, an edited version of the Unity 3D asset Autumnal
Nature Pack, accompanied by emotion-specific musical excerpts.
The virtual environment displayed the first-person view over a
landscape of hills and cornfields, differently colored according
to the emotion elicited: purple for anguish and orange for
tenderness (Figure 1).

Together with these visual stimuli, participants listened to
eight different instrumental musical excerpts of 46 s. Music
excerpts were fixed for each trial type (i.e., 4 for anguish
and 4 for tenderness) and normalized with the root mean
square feature on the software Audacity (Audacity, http://www.

TABLE 1 | Samples of mantras used according to the experimental conditions.

Tenderness Anguish Neutral

Compaixão protege

tudo

Não vou conseguir

nada

A Terra é redonda

Compassion protects

everything

I will not achieve

anything

The earth is round

Sentir o cheiro de um

bebê

Doenças afligem tudo A grama está

crescendo

The smell of a baby Diseases afflict

everything

The grass is growing

Harmonia está em toda

parte

Violência está em toda

parte

A mesa é marrom

Harmony is everywhere Violence is everywhere The table is brown

Amor está em toda

parte

O mundo está cheio de

ódio

A luz está acesa

Love is everywhere The world is full of hate The light is on

Free translation from Portuguese to English is provided below each sentence.

audacityteam.org). For all tenderness trials, we played a piece of
soft, harmonic, and gentle music. In contrast, we electronically
manipulated the anguish trials; unpleasant stimuli from the
originally pleasant tunes used for the tenderness condition. We
used four new sound-files, in which the actual melodic excerpts
were simultaneously played with two pitch-shifted versions of
the same excerpts. The pitch-shifted versions were one tone
above and a tritone below the original pitch (samples of the
stimuli are provided at http://www.stefan-koelsch.de/Music_
Emotion1), resulting in dissonant and distorted music. For the
neutral condition, the landscape was typically colored, and no
background music was presented.

2.3. Experimental Procedure
Upon arrival, all participants signed the informed consent and
filled up the State-Trait Anxiety Inventory (STAI), the Beck’s
Depression Inventory (BDI), and The Positive and Negative
Affect Schedule (PANAS). After the EEG cap setup, we instructed
participants to use mantras and personally recalled memories
to facilitate emotional self-induction during the experiment. As
guidance, we provided a list of suggested mantras (Table 1),
but they were free to choose mantras personally. Throughout
the experiment, subjects were comfortably seated in an armed
chair approximately 50 cm away from the screen, wearing
padded headphones. The experimental procedure consisted of
8 emotion-alternating blocks (4 for anguish trials and 4 for
tenderness), as represented in Figure 2. Each block included four
emotion-eliciting trials (46 s) interleaved by four short neutral
trials (12 s), which allowed for a brief rest between each emotional
induction. The auditory and visual stimuli used for each trial are
the ones described in the previous section. We recorded EEG
signals throughout the whole experiment, and we gave no break
between the blocks.

2.3.1. Subjective Ratings
At the end of each emotional block, participants had to fill a
short self-assessment questionnaire in which they had to rate on
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FIGURE 2 | Experimental design. Eight emotion-alternating blocks (orange

boxes refer to “tenderness” condition, and purple boxes to “anguish”), each

consisting of 4 emotion-inducing trials of 46 s, interleaved by 4 short neutral

trials of 12 s. At the end of each block, participants had to fill out a

self-assessment questionnaire.

a 5-point Likert scale: (i) the emotional intensity (from 1 = very
mild to 5 = highly intense), (ii) the utility of mantras (from 1
= not useful to 5 = very useful), (iii) the concentration and (iv)
the fatigue levels (from 1 = very low to 5 = very high) they felt
throughout the experimental block.

2.4. EEG Acquisition
EEG data were recorded using the Brain Vision Recorder
software. The signal was acquired from the BrainAmp amplifier
and the standard 64 channels EEG-MR Plus cap (Brainproducts,
Germany) at a sampling rate of 1,000 Hz and a bandwidth of
0.01–250 Hz. All the electrodes had sintered Ag/AgCl sensors
placed according to the standardized international 10/20 EEG
placement system, and their impedance was kept under seven k�.
We used one of the 64 channels to record the ECG signal, and we
set channel FCz as the reference electrode and channel AFz as
the ground. We programmed the entire processing pipeline on
Matlab (The Mathworks, Inc.).

2.5. EEG Preprocessing
Weperformed the offline analysis of EEG data using the EEGLAB
toolbox (Delorme and Makeig, 2004) on Matlab R2019b (The
Mathworks, Inc.). First, the preprocessing pipeline included
downsampling the signal to 250 Hz and applying a bandpass
Butterworth filter of 0.01–45 Hz. The Independent Component
Analysis (ICA) algorithm was used to correct for eyeblinks
and muscular artifacts. Components that captured artifacts were
manually pruned independently for each subject. After artifact
removal, the EEG dataset was epoched and cut into three distinct
datasets for each subject according to the experimental condition.
For each participant, we created one dataset for the 16 tenderness
trials of 46 s length each, one for all the 16 anguish trials
of 46 s length each, and one containing all 32 neutral trials
of 12 s length. Data were then visually inspected, but we did
not apply any further artifact or epoch rejection method. This
choice was based on our future goal of using a similar setup
for real-time neurofeedback studies, which will preclude the

possibility to inspect and reject bad epochs visually. Therefore, we
pursued a method allowing for effective classification despite the
presence of some residual artifacts. Finally, we applied the surface
Laplacian transform by implementing algorithms (Cohen, 2014)
inspired by the spherical spline method described by Perrin
et al. (1987a,b, 1989). This spatial filter allows reducing volume
conduction effects for connectivity analysis purposes.

2.6. Feature Extraction
2.6.1. Time-Frequency Analysis
The EEG data were transformed into the time-frequency
domain using Complex Morlet Wavelet convolution to preserve
information about the temporal dynamics. The Complex Morlet
wavelet (CMW) is a complex-valued sine wave tapered by a
Gaussian window described by the following equation:

CMW = e−t2/2s2ei2π ft (1)

Where e−t2/2s2 is the real-valued Gaussian and ei2π ft is the result
of the Euler’s formula combined with a sine wave (Cohen, 2019).
The time t is centered with regard to the wavelet by taking −2:
sampling rate:+2 to avoid phase shifts.

One of the benefits of the CMW convolution over other
methods such as Short-time Fourier Transform or the Hilbert
Transform is the Gaussian-shaped wavelet in the frequency-
domain. However, the caveat when doing convolution with a
Complex Morlet Wavelet is to accurately define the width of the
Gaussian, here defined as s, a key parameter for determining
the trade-off between temporal and spatial resolution of the
time-frequency analysis (see Cohen, 2019).

The parameter s is expressed as s = c /2π f , where c denotes
the number of cycles of the wavelet, which is dependent on
the frequency f of the same. A narrower Gaussian with fewer
cycles in the time domain leads to a high temporal resolution but
reduced spectral precision, and vice-versa with a wider Gaussian.
Therefore, we applied a variable number of cycles ranging from 3
up to 10, increasing as a function of frequency to have a balanced
trade-off between temporal and spectral resolutions. Since we
were interested in all frequency bands, we selected a range of
frequencies going from 1 up to 45 Hz. After applying CMW
convolution, we extracted the power from the coefficients, and
we applied a decibel-baseline normalization. Considering that
we were mainly interested in changes in spectral features from
a neutral mental state to the two distinct emotional ones, we
used all the neutral trials as a baseline. To increase the number
of samples, we cut the time-frequency data of each trial with a
sliding-windows approach. Each window was 1 second long with
a half-second overlap, resulting in a total of 91 windows per trial.

Then, we calculated the average change in power compared
to the neutral baseline for seven frequency bands (delta 1–4 Hz,
theta 4–8 Hz, low alpha 8–10 Hz, high alpha 10–12 Hz, low
beta 13–18 Hz, high beta 18–30 Hz, and gamma 31–45 Hz).
Within each window and for all the 63 channels and the seven
frequency bands, the features extracted were the mean power, the
standard deviation of the mean, and the frontal alpha asymmetry
(FAA). The FAA coefficients were calculated for the channel
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pairs Fp1-Fp2 and F3-F4 in both low-alpha (8–10 Hz) and high-
alpha (10–12 Hz) bands. The resulting feature array consisted of
2,912 samples for both classes (1,456 for anguish and 1,456 for
tenderness) with a total of 886 features.

2.6.2. Amplitude Time-Series Correlation
After CMW, we extracted each channel’s amplitude information
for each frequency component in the range of 1-45 Hz. We
then applied the sliding-window approach again. Within each
of the 91 windows and for each of the seven frequency
bands aforementioned, we calculated the Spearman correlation
coefficient of the 63*63 channels matrix. This time-frequency
correlational analysis allows characterizing both the time-varying
and frequency-varying properties of non-stationary signals
such as electrophysiological signals. To eliminate redundant
information and reduce the feature array’s size, we only selected
all the coefficients in the upper triangle of the correlational
matrices. The resulting high-dimensional feature array consisted
of 13,671 features (pairwise channel correlation coefficients for
each frequency band) and 2,912 windows as samples for both
emotional classes.

2.7. Classification and Feature Selection
We used the MATLAB R2019b Statistics and Machine Learning
Toolbox for classification and visualization of the data. We
opted for a linear Support Vector Machine (SVM) algorithm
for high-dimensional data for binary classification of the feature
arrays. SVMs are supervised learning algorithms that define a
hyperplane as a decision boundary, such that the margin of
separation between two classes is maximized. Herewith, SVMs
provide a measure that allows scaling the certainty to which
a window sample is assigned to one of the two classes: the
sample’s distance from the separating hyperplane. Regarding
future applications in NFB, SVM allows for scaling the feedback
(e.g., gradually changing color hue) and, thus, more precise
response to emotional intensity changes.

We applied 8-fold cross-validation to train and validate the
classifier. Therefore, we assigned all windows of one trial to
the same fold. Thinking about possible future applications in
NFB studies, we chose this method to estimate event-specific
markers’ impact on classification accuracy. As the model will
be trained before the NFB session, we aimed at testing its
performance on an entirely unknown set of trials. The four trials’
windows (2 tenderness, 2 anguish) were thus kept as test sets,
while the classifier was trained with the remaining 28 trials. We
iterated the 8-fold cross-validation ten times and averaged across
classification runs.

To visualize the datasets and understand the variability in
performance across participants, we used t-Distributed Statistic
Neighbour Embedding (t-SNE) (Van der Maaten and Hinton,
2008). T-SNE aims to preserve the local and global data structure
when plotting all samples in a two-dimensional plane. The high-
dimensional data is converted into a set of pairwise similarities
and embedded in two dimensions such that similar samples
are grouped together (Van der Maaten and Hinton, 2008).
We applied t-SNE to the feature sets (time-frequency/FAA and
correlational features) of the participant with the best and the one

with the worst performance and tested whether it could succeed
in finding two global data clusters, separating the two emotions.

Due to our dataset’s high dimensionality, we performed
feature selection through a feature-ranking algorithm using
the Bioinformatics Toolbox of MATLAB 2019b. We aimed
to improve the classifier’s learning performance and identify
the most common discriminative features across participants.
Feature extraction and selection methods, besides improving
predictive power, also help lower computational complexity
and build models with better generalization properties (Liu
et al., 2005; Anthony and Ruther, 2007). Using the t-test as an
independent criterion for binary classification, we ranked the
features after their significance between the classes. MATLAB’s
built-in function determines the absolute value of the two-
sample t-test with pooled variance estimate for each feature.
Essentially, the algorithm estimates how unlikely it is for a
given feature that the difference in both emotional states’ mean
and variance occurred by chance. We set up two new feature
arrays for each participant, using only the first 100 features
selected by the feature-ranking algorithm. We classified the
emotional states with the reduced sets of features using the
abovementioned 8-fold validation method to test performance
improvements. Furthermore, we extracted the 20 highest-ranked
features for each subject to evaluate features’ re-occurrence
across participants.

2.7.1. Statistical Comparisons
We performed statistical analysis of accuracy distributions
using the Wilcoxon rank-sum method in order to understand
which type of features performed better. We also wanted to
investigate whether the SVM performances were significantly
above chance, thus we statistically compared accuracy
distributions of real-labeled data with surrogate data (i.e.,
randomly shuffled labels). Finally, we computed Spearman’s
correlation coefficients between participants’ self-assessment
questionnaire and SVM accuracy to assess whether there
was a relationship between subjective ratings and differences
in performance.

3. RESULTS

First, we investigated through ML whether the two complex
emotional states could be accurately differentiated in a subject-
wise manner using time-frequency/FAA and correlational
features extracted within 1 s windows. To ensure that
classification performance did not depend on the high
feature-to-sample ratio, we performed a feature-ranking
procedure and we repeated classification with a drastically
reduced number of features. Furthermore, we aimed at
comprehending the inter-subject variability by visually
inspecting the data distribution of individual subjects
by using the t-SNE method. Then, we investigated the
common highest-ranked features across subjects to shed
light on the spatial and spectral properties that allowed
discriminating between tenderness and anguish. Finally,
we explored whether subjective emotional experience (i.e.,
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self-ratings) showed any association with subject-dependent
classification performance.

3.1. Classification Results Using SVM
The results of all cross-validation runs for each participant
are presented in Figure 3. Corresponding average accuracies
for each subject are summarized in Table 2. Furthermore, we
compared the accuracy distributions for both types of features
or feature arrays (i.e., whole features sets and subsets of
selected features) using the Wilcoxon rank-sum test, reporting
corresponding p-values.

For the whole feature array extracted with the time-
frequency/FAA analysis, we reported accuracies ranging
from 59.2% up to 92.9% (mean = 73.28, SD = 9.27) when
applying cross-validation (Figure 3, Subplot 1A). We report
a range of accuracies from 62.4 to 92.4% (mean = 72.65, SD
= 8.81) for the entire feature set extracted with amplitude
time-series correlation analysis (Figure 3, Subplot 2A).
The SVM performance was highly above chance-level (i.e.,
compared to surrogate data) for all participants using both
time-frequency/FAA and amplitude correlation features (p <
0.0001). These results show that it is possible to discriminate
between anguish and tenderness within-participants, despite
the presence of a high inter-subject variability across both
feature sets.

Then, due to the high-dimensionality of both feature sets, we
performed a feature-ranking procedure and we repeated the 8-
fold cross-validation with the selected subsets of 100 features.
The subset of selected features significantly improved the model’s
predictive power for time-frequency/FAA features (p = 0.021;
Figure 3, Subplot 1B). The results of 8-fold cross-validation using
the 100 selected features through the feature-ranking algorithm
yielded accuracies ranging from 63.8% up to 94.1% for the
time-frequency/FAA feature set (mean = 75.97, SD = 8.72). In
contrast, the performance significantly worsened (p = < 0.0001,
Figure 3, Subplot 2B) for the selected 100 amplitude correlation
features, with accuracies ranging from 62.2 to 78.4% (mean
= 68.15, SD = 5.69). Nevertheless, the model’s performance
was highly above chance for both subsets of selected features
(p= <0.0001).

To understand the variability of performance across subjects,
we plotted with t-SNE the datasets of participant 1 and
participant 5, who had the best and one of the worst classification
accuracies, respectively. The datasets’ global geometry of subject
1 (Figure 4, Subplot 1A and 2A) can be separated into two
clusters corresponding to the emotional states. In contrast, we
could not find the same global structure for the datasets of
participant 5 (Figure 4, Subplot 1B and 2B). Notably, the datasets
resulting from the amplitude time-series correlation analysis
(Figure 4, Subplot 2A and 2B) displayed a more defined regional
pattern: samples clustering into lines. These clusters consisted
of initially temporally adjacent samples. For the participant
with the worst classification accuracy, participant 5, this
regional pattern dominated the global data structure (Figure 4,
Subplot 2B), suggesting that this phenomenon depends on
temporal properties of connectivity rather than changes in neural
correlation directly related to the emotional states.

3.2. Highest-Ranked Features Across
Participants
We extracted the twenty highest-ranked features for each subject
and each feature array in order to highlight which channels and
frequency bands were the most discriminative between the two
emotions. These main 220 features of the time-frequency/FAA
analysis are presented in Figure 5. Notably, the FAA coefficients
did not occur in this selection. Additionally, we summarized the
features separated after brain region and hemisphere, irrespective
of the frequency band, in Table 3. In the frontal site, we noticed a
strong prominence of features in the left hemisphere compared
to the corresponding right with a ratio of approximately 3:1
(35 to 11 features), when evaluating channels pairs Fp1/Fp2,
AF3/AF4, AF7/AF8, F1/F2, F3/F4, F5/F6, and F7/F8. We showed
the particular importance of channel AF7 compared to the
complementary right-hemispheric channel AF8 and the strong
dominance of gamma and high-beta bands in the highest-ranked
features. Moreover, the extracted features showed the relevance
of the occipital channels O1, O2, and Oz and both hemispheres’
temporal sites.

On the other side, the highest-ranked features extracted
from the amplitude time-series correlation analysis appeared
to be more equally distributed across the seven analyzed
frequency bands (Figure 6). In particular, theta and high-alpha
ranges showed asymmetrical distribution in correlation, with
a prominence in the left hemisphere for the former and in
the right one for the latter. Significant correlations in low-
alpha and beta, especially high-beta, appeared to be more
prominent in the posterior part than the frontal one. The
results also highlighted the importance of temporoparietal and
temporo-temporal correlations in the beta and gamma bands
(Figures 6E–G). In contrast, correlations in lower frequencies
appeared to be dominant in the frontal and occipital sites
(Figures 6A–D).

We observed that correlations involving the left frontal area
occurred with more prevalence in the highest-ranked features
across participants than correlations involving the right frontal
hemisphere. The ratio was approximately 2:1 (44 to 20 features)
when comparing channels Fp1/Fp2, AF3/AF4, AF7/AF8, F1/F2,
F3/F4, F5/F6, and F7/F8. In Figure 7, we summarized all
frequency bands and highlighted the correlations of these left and
right frontal channels in blue and red, respectively. Once more,
we report a high involvement of the left-hemispheric channel
AF7 compared to the complementary right-hemispheric channel
AF8, particularly in the high alpha band (Figures 6D, 7).

3.3. Subjective Ratings and Correlation
With SVM Performance
We assessed emotional intensity, the usefulness of mantras,
fatigue, and concentration levels at the end of each block.
An overview of subjective ratings is presented in Figure 8.
On average, the emotional intensity was rated “moderate” to
“high” for the first and the last blocks, with a slight increase
for the second and the fourth blocks. Figure 8A suggests that
participants felt both tenderness and anguish with the same
intensity. Concentration levels show minor differences across
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FIGURE 3 | Classification results for the features extracted with the time-frequency/FAA analysis (1A,1B) and amplitude time-series correlation analysis (2A,2B). The

classification was performed with all available features (1A,2A) and exclusively with the 100 selected features (1B,2B) for each feature extraction method. We

performed eight-fold cross-validation ten times, such that the boxplots depict the results of 10 classification runs for each participant.

conditions and blocks, with the highest concentration level
reported during the first block for both emotions. As expected,
fatigue ratings showed a slightly increasing trend throughout the
experiment, with a “very low” and “low” level for the first blocks
and up to “moderate” levels for the last blocks. Average responses
across participants with regards to mantras usefulness showed
higher variance compared to the other self-rated measures across
blocks and conditions, as shown in Figure 8D. Correlation
analysis between subjective ratings and classifier performances
using both feature sets was not significant for any of the four
measures (p > 0.05).

4. DISCUSSION

Our study demonstrated the feasibility of using EEG and ML
tools to distinguish complex emotional states using a near-
immersive emotion-elicitation paradigm. We selected stimuli,

such as VR with music, that potentially serve as BCI for NFB
experiments. We showed that, despite low spatial resolution and
the inability to infer activity in subcortical structures, EEG is a
suitable tool for classifying discrete emotions, such as tenderness
and anguish. We performed cross-validation using SVM and we
reached moderate to high accuracy using time-frequency/FAA
and correlational features calculated in short time-windows.
Furthermore, we were interested in identifying the most relevant
features for classification that were shared among participants.
To do so, we performed a feature-selection procedure and we
repeated cross-validation using a subset of 100 selected features.
We found that the most discriminative features belonged
to channels of the frontal left hemisphere, of the temporal,
and the occipital lobes. The feature-selection procedure also
highlighted the importance of high-beta and gamma bands to
distinguish between anguish and tenderness trials. Finally, we
calculated the Pearson correlation coefficient between subjective
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TABLE 2 | Classification accuracy in percent for each participant, feature extraction method, and the number of features.

Participant Time-frequency analysis and FAA Amplitude time-series correlation analysis

All features (886) Selected features (100) All features (13,671) Selected features (100)

1 92.9 94.1 92.4 78.4

2 66.9 66.7 66.3 62.3

3 73.9 74.2 72.9 63.0

4 76.9 76.8 67.7 62.2

5 59.2 63.8 68.3 65.7

6 77.9 82.5 82.4 76.9

7 74.4 72.5 75.1 68.0

8 75.4 81.5 69 69.3

9 62.7 66.6 62.4 66.4

10 79.5 80.6 77.7 73.0

11 66.4 76.3 65.0 64.4

Average accuracy 73.28 ± 9.27 75.97 ± 8.72 72.65 ± 8.81 68.15 ± 5.69

As we performed eight-fold cross-validation ten times, each result in the table represents a mean of the cross-validation runs. All accuracy distributions were significantly above chance

level (p < 0.0001).

FIGURE 4 | T-SNE visualization for the feature sets of subjects 1 and 5, with the best performance (1A,2A) and one of the worst classification performances (1B,2B),

respectively. Samples of the classes “Anguish” and “Tenderness” are plotted in violet and orange, respectively. The upper two plots (1A,1B) depict the time-frequency

analysis datasets. The two plots at the bottom (2A,2B) display the two participants’ amplitude time-series correlation features.

ratings (i.e., the intensity of emotion, the utility of mantras,
fatigue, and concentration levels) and classification performance
across participants to investigate the relationship between
the self-reported ratings and inter-subject variability in SVM

performance. We reported no significant association between
self-assessment measures and accuracy distributions.

One crucial challenge of neuroimaging studies on affective
processes has usually concerned participants’ difficulty
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FIGURE 5 | Extraction of the highest-ranked features for classification from the time-frequency analysis. The analysis was carried out across participants, with 220

features in total (20 per participant). The size of the channel-specific pie plot reflects how often the respective channel occurred in the main features. The pie plots’

distribution indicates the relative amount of features from each frequency band,ranging from delta (dark violet) to gamma (yellow). Channels marked with a black slash

did not occur in the main features.

TABLE 3 | Extraction of the highest-ranked features for classification from the time-frequency analysis across participants separated after brain region and left/right

hemisphere.

Brain region Left hemisphere Total number of features Right hemisphere Total number of features

Channel labels Channel labels

Frontal Fp1, AF3, AF7, F1, F3, F5, F7 35 Fp2, AF4, AF8, F2, F4, F6, F8 11

Temporal FT7, FT9, T7, TP7, TP9 32 FT8, FT10, T8, TP8, TP10 36

Central - Parietal FC1, FC3, FC5, C1, C3, C5, 39 FC2, FC4, FC6, C2, C4, C6, 20

CP1, CP3, CP5, P1, P3, P5, P7 CP2, CP4, CP6, P2, P4, P6, P8

Occipital PO3, PO7, O1 19 PO4, PO8, O2 15

Midline (FPz, Fz, Cz, CPz, POz, Oz) 13

in engaging and sustaining valid emotional states in an
experimental setting, especially when trying to elicit complex
emotions. Here, the use of a multimodal realistic virtual
environment (VR) may have eased and encouraged the
participants’ involvement in the experiment by providing an
engaging setup, as proven by previous studies (Cho et al.,
2002; Lécuyer et al., 2008; Kim et al., 2014; Kovacevic et al.,
2015). Moreover, musical excerpts’ accompaniment may have
facilitated emotion-elicitation, given that music is a powerful
tool for inducing strong emotional experience (Brown et al.,
2004; Trost et al., 2012; Koelsch, 2014). Lastly, the self-induction
of emotional states through personalized mantras may have
influenced the good outcome of discrete emotion classification,
since we combined external elicitation with an internal locus

of emotional induction. However, this may also have played a
role in the substantial inter-subject variability in classification
accuracy, given that self-reported ratings showed high variance in
participants’ responses to the mantras’ usefulness. Nonetheless,
it has to be noted that we did not find any significant correlation
between any self-ratings measures and model’s performance,
suggesting that subjecting ratings were not associated with
higher/lower performance.

Using time-frequency and FAA features, we reported
accuracies ranging from 59.2% up to 92.9% when testing the
model on unseen data. Similarly, features extracted from the
amplitude time-series correlation analysis showed a comparable
model performance when tested on unknown data, with the
lowest accuracy being 62.4% and the highest 92.4%. The
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FIGURE 6 | Features with the highest significance in distinguishing the emotional states from the amplitude time-series correlation analysis. The analysis was carried

out across participants, with 220 features in total (20 per participant). The graph plots are separated into the seven extracted frequency bands, from delta (dark violet)

to gamma (yellow). The connection’s width reflects how often the correlation occurred in the main features across participants, with the thicker line representing higher

occurrence across subjects. (A) Delta. (B) Theta. (C) Low alpha. (D) High alpha. (E) Low beta. (F) High beta. (G) Gamma.

non-ergodicity in human subjects studies can explain the high
interindividual variability we found in these results (Fisher et al.,
2018). Several studies have observed individual differences in
emotional processing (Canli, 2004; Aftanas et al., 2006; Kuppens
et al., 2009; Molenaar and Campbell, 2009), stressing the
importance of analyzing data at the individual level. Moreover,
we assume that different amounts of noise in the datasets may
have contributed to the inter-subject variability of classification
results. As stated in the section 2, we decided not to apply any
artifact removal or epoch rejection going beyond ICA to remove
eyeblink and muscular artifacts. We wanted to test the classifier’s
performance as close as possible to the practical NFB scenario,
in which epochs cannot be rejected during online analysis. We
prioritized our model’s utility in real-world application and
aimed for a robust classification, despite the inclusion of noisy
window-samples and a conservative validation with samples
from unseen trials. Notwithstanding, reducing the datasets’
dimensionality through a feature selection procedure led to
lower performance variability across subjects, especially for
correlational features.

Analysis of the highest-ranked features across participants
did not show the importance of FAA features, as found
in previous classification studies involving tenderness (Zhao
et al., 2018b). However, as shown in Figure 5, the left frontal
electrodes, especially channel AF7, appeared to be particularly
discriminative for the two emotions. The relevance of the
electrode AF7 is in line with previous studies using MUSE EEG
headband comprising four channels (TP9, AF7, AF8, TP10) for
emotion classification purposes, highlighting the importance of

channel AF7 to accurately distinguish between mental states
(Bird et al., 2019; Raheel et al., 2019). Interesting to notice
is that channels from the right frontal hemisphere did not
appear to be as discriminative as their left-sided counterparts,
both for time-frequency and correlational features, as shown in
Table 3 and Figure 7, respectively. The most common features
across participants and both feature sets also revealed the
relevance of temporal and occipital sites to discriminate between
tenderness and anguish. We are not the first to report the
importance of the temporal lobes for distinguishing between
emotions. Zheng and colleagues conducted a study aimed
at finding stable electrophysiological patterns across subjects
and sessions of emotion recognition (Zheng et al., 2017).
The authors found a stronger activation of lateral temporal
areas for positive compared to negative emotions, both in the
beta and gamma bands. Subject-independent features stemmed
mostly from those brain areas and frequency bands (Zheng
et al., 2017). Similarly, Jatupaiboon et al. (2013) found that
the temporal lobe was particularly useful for classifying happy
from unhappy emotions. Moreover, activation of sensory areas,
such as temporal and occipital lobes, has been linked to
emotional processing, regardless of the stimulus type. For
example, in several neurological and psychiatric disorders,
the temporal cortex’s abnormal structure and function have
been linked to emotion processing difficulties. Patients with
temporal lobe epilepsy show deficits in emotion recognition,
particularly fear and other negative emotions (Monti andMeletti,
2015). In schizophrenic patients, Goghari et al. (2011) found
a correlation between reduced temporal lobe gray matter and
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FIGURE 7 | Highest-ranked amplitude time-series correlation features from all

frequency bands. When separating correlations involving left frontal channels

(in blue, Fp1, AF3, AF7, F1, F3, F5, F7) and right frontal channels (in red, Fp2,

AF4, AF8, F2, F4, F6, F8), we observe a high prevalence of the left frontal

cortex compared to the right. The analysis was carried out across participants,

with 220 features in total (20 per participant). Again, the connection’s width

reflects how often the correlation occurred in the main features across

participants, with the thicker line representing higher occurrence across

subjects. The correlation between AF7 and F4 is plotted in violet and counted

as both left- and right-hemispheric frontal correlation.

poor facial emotion recognition (Goghari et al., 2011). Similarly,
in frontotemporal dementia, a core problem is the impaired
processing of emotional signals (Marshall et al., 2019). A different
neuronal response has been observed in the occipital cortex
in response to stimuli eliciting distinct emotions. Kragel et al.
(2019) succeeded in predicting 11 specific emotion categories
with convolutional neural networks, solely based on the occipital
cortex’s activity. Mattavelli et al. (2016) hypothesize that the
frontal cortex exerts an early influence on the occipital cortex
for discriminating emotions when a subject is presented with
emotionally loaded visual stimuli. Regarding the contribution of
the different frequency bands, high-beta and gamma bands had
the highest impact on discrimination between emotional states
across subjects. This result is also consistent with the literature
providing evidence of these bands’ importance for distinguishing
different emotional states (Glauser and Scherer, 2008; Li and Lu,
2009; Daly et al., 2014; Li et al., 2019). However, it has to be noted
that the feature-ranking algorithm does not allow us to infer
which of the two classes showed increased or decreased spectral
power or amplitude-related coherence patterns.

Although conducted in an offline manner, we would like
to emphasize that the present study is a proof of concept
addressing the crucial aspect of the classification of discrete
complex emotions in short time-windows using EEG signals.
Here we did not aim at maximizing classification accuracy at
the expense of applicability in real-time. Deep learning methods

FIGURE 8 | Participants’ subjective ratings were assessed at the end of each

of the eight blocks (four for each emotion). Orange refers to the “tenderness”

condition, while purple refers to “anguish.” The y-axis represents the 5-point

Likert scale, going from “very mild” to “very intense” for (A), from “very low” up

to “very high” for (B,C), and from “not useful” to “very useful” for (D).

such as CNNs are to date unsuitable for an individual-based real-
time EEG experiment, where training data is limited and EEG
feature sets are high-dimensional and sparse. As a rule of thumb,
these networks are recommended to be given 10x the number of
samples as compared to parameters in the network (Miotto et al.,
2018). Moreover, parameter tuning for large networks trough
trial and error is both time consuming and impractical, and
online re-training of deep learning algorithms still remains under
research (Aloysius and Geetha, 2017). Therefore, we chose the
SVM as aML algorithmwith a low computational cost and online
re-training ability, requiring both little training data and time
when compared to the above-mentioned methods. Moreover, we
provided appropriate validation techniques given the methods
usually employed in an online setting.

Affiliative emotions, such as tenderness, have been proven to
play a central role in a range of psychological and social processes.
Mental training of such emotions has been increasingly applied in
clinical settings. For example, there is evidence that Compassion-
focused Therapy (CFT) is helpful for a broad range of mental
health and neurological issues (Gilbert and Procter, 2006; Germer
and Siegel, 2012). Loving-kindness meditation training has also
shown positive effects on psychological well-being for both
clinical and non-clinical populations (Lutz et al., 2008; Neff
and Germer, 2013). With the EEG being the preferred tool
in the clinical environment, the findings of this work are
significant because they contribute to advances in the field
of biofeedback and non-invasive neuroimaging approaches.
Our proof-of-concept study promotes the development of
personalized EEG-based NFB training on the regulation of
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such complex emotions, which may have therapeutic potential
in restoring balanced neural activity for those suffering from
emotional disturbances.

However, this study presents some pitfalls. Most importantly,
the small sample size and the non-randomization of trials
across participants, together with the presence of repetitive
stimuli. The usage of the same stimulus presentation with no
variety between trials (i.e., the naturalistic landscape) may have
influenced sensory processing and classification results. At the
same time, using identical musical tracks for all subjects may
have influenced participants’ emotional elicitation differently
due to variances in individual taste in music. For future
work on emotion elicitation, choosing personalized musical
tracks could improve individuals’ induction of emotional states.
Another interesting future perspective would be to evaluate
whether the combination of visual and auditory stimuli is more
efficacious in inducing the desired emotions than either one
sensory modality alone. Moreover, the dominance of a sensory
domain at evoking emotions could be investigated by exposing
participants to either only visual or auditory or mismatched
stimuli. Another limitation of our study, as already stressed
above, is the high inter-subject variability we found in the two
affective states’ classification. Although we assessed emotional
intensity at the end of each block, we do not have any fine-
grained assessment of the duration of the emotional experience
throughout the experiment. Since emotions, both at experiential
and neurophysiological levels, cannot be reduced to constant
patterns across individuals (Barrett et al., 2007; Kuppens et al.,
2009), future studies should involve a bigger sample size in order
to shed light both on the individual differences and the common
characteristics of emotional dynamics. Future directions would
be to test this experimental protocol and SVM model on the
training of such emotions through EEG-based NFB, which can
represent another tool for exploring these affective states and
contribute to the development of personalized interventions.

5. CONCLUSIONS

This proof of concept study showed that a multimodal near-
immersive emotion-eliciting scenario is a feasible approach
to evoke complex emotions, such as anguish and tenderness,
in a laboratory setting. We proposed a pipeline that may
be applicable for EEG-based BCI and NFB applications that
require real-time data processing. Our findings indicate that the

SVM classification of discrete emotions using EEG signals is
achievable in a subject-wise manner, using short time-windows
as in an online experimental setting. We identified features
from the temporal, occipital, and left frontal sites as the most
discriminative between the two emotions. Remarkably, we found
a different involvement of left frontal and right frontal features,
particularly in channel AF7 compared to channel AF8. The high-
beta and gamma frequency bands appeared to have a substantial
role in differentiating between anguish and tenderness. Together
our results suggest that the EEG is a suitable tool for classifying
discrete emotions, and that the proposed pipeline may be
implemented in real-time to enable EEG-based NFB.
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