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In this work, we highlight how trapped-ion quantum systems can be used to study generalized
Holstein models, and benchmark expensive numerical calculations. We study a particular spin-
Holstein model that can be implemented with arrays of ions confined by individual microtraps,
and that is closely related to the Holstein model of condensed matter physics, used to describe
electron-phonon interactions. In contrast to earlier proposals, we focus on realizing many-electron
systems and inspect the competition between charge-density wave order, fermion pairing and phase
separation. In our numerical study, we employ a combination of complementary approaches, based
on non-Gaussian variational ansatz states and matrix product states, respectively. We demonstrate
that this hybrid approach outperforms standard density-matrix renormalization group calculations.

Electron-phonon interactions lie at the heart of sev-
eral phenomena in condensed matter physics, includ-
ing Cooper pairing [I] and the formation of polarons
[2]. Generally, the low-energy excitations of electrons
in solids are modified by their coupling to lattice vibra-
tions, which alters their transport and thermodynamic
behaviour. Often simplified toy models can be employed
to study those essential properties. As a complemen-
tary approach to traditional solid-state methods, quan-
tum simulations utilize the rich toolbox of atomic physics
to provide a characterization of equilibrium and dynami-
cal properties of paradigmatic quantum many-body mod-
els.

The Holstein model is one such paradigmatic model
that features a local coupling between the electron den-
sity and optical phonons on a lattice [3]. Despite its ap-
parent simplicity, it hosts rich physics, giving rise to su-
perconducting (SC) phases, charge-density wave (CDW)
order and phase separation (PS) at strong coupling [4] 5].
Yet, notwithstanding recent progress, its numerical treat-
ment is often costly, especially when interactions become
increasingly strong or of long-range character. As a tan-
talizing prospect, trapped-ion quantum simulators may
help to gain new insights into the underlying physical
mechanisms [6] [7]. Their spin and motional degrees of
freedom can be harnessed to realize a quantum-optics
analogue of the electron-phonon system [8HIT], which en-
ables access to a variety of system observables. Moreover,
their key parameters may be tuned in-situ to explore dif-
ferent regions of the phase diagram. Currently available
setups may thus be utilized to benchmark analogue quan-
tum simulators against numerical computations.

In this Letter, we theoretically investigate such
trapped-ion systems and derive an effective model that
contains strong and highly non-local interactions be-

tween effective spins and lattice phonons. We highlight
its similarities and differences with the Holstein model
and develop a powerful numerical toolbox to thoroughly
characterize its ground-state properties. Our numerical
method combines density matrix renormalization group
(DMRG) calculations [I2] and computations based on
non-Gaussian variational ansatz states (NGS) [I3] [14].
We define spin and phonon observables motivated by the
physics of the Holstein model and study their charac-
teristics. Using these observables, we identify SC and
CDW phases and their relation to the ion-trap parame-
ters, thus demonstrating the rich Holstein-like physics of
the trapped-ion system. Finite-temperature and finite-
size calculations show that our results can be expected
to be robust against thermal excitations in state-of-the-
art setups.

Setup and model—We consider a physical system of N
ions with mass m, each confined to a harmonic microtrap.
All of the ions’ equilibrium positions are assumed to be
aligned along the Z axis and equidistantly spaced, see
Fig. (a). The vibrations of ions in a microtrap array
can be described by (A =1)

N

Hp= 3 B M paee
ph = m 9 L. Migli o
=1, 1,70
a=1,y,2
where p¢ denotes the momentum and ry =

1/v2mwa(bia + b;a) is the displacement of the
ith ion from its equilibrium position in the a (= z,y
or z) direction, with the trap frequencies w, and local
phonon ladder operators bl(-To)é. K< denotes the elasticity
matrix of the ion chain in the direction, and its
eigenvectors describe the chain’s normal modes [§].

In the setup we consider (see Fig. [1)), a laser beam
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FIG. 1. Schematic illustration of setup. (a) Trapped-ion

chain subject to three counter-propagating laser beams. The
microtraps are aligned along the Z direction at a distance do.
Tons are coupled to each other via their mutual Coulomb in-
teraction, indicated by springs. The inset shows an exemplary
level scheme with four internal states [1),|]),|e;),|er), and a
ot transition with laser parameters 0o and A,. (b) Normal-
mode frequencies 2, /w. for different values of vg. w, is fixed
while do is varied. (¢) Coupling gin for vg = 0 exemplarily
shows long-range interactions between spins and phonons.

configuration is chosen to host three standing waves along
the Z, y and Z axes. Light that is off-resonant with chosen
hyperfine-state transitions of the ions can be harnessed
to introduce a coupling between the motional and spin
degrees of freedom of the ions [8,[9]. Within the rotating-
wave approximation, we obtain an effective spin-phonon
coupling of the form

N 2

QQ
Hint = § 2Aa COS2 (kar? + ¢a> (1 + Uia) ’ (2)
=1,
a=w,y,z

where €2, denotes the Rabi frequency, A, is the qubit-
laser detuning, k. the wavenumber, ¢, the relative phase
of counterpropagating lasers and of* denotes the Pauli
matrix associated with the internal spin states |1) and |})
at site ¢ and direction «. In the Lamb-Dicke regime, char-
acterized by a small parameter 7, = k,/v/2mw, < 1,
Eq. can be linearized around the ions’ equilibrium
positions, so that the interaction Hamiltonian takes the
simplified form H;,; = —F, Zi’a r&(1+ o), with a cou-
pling strength F,, ~ Q2k,/(2A,) that can be controlled
by laser parameters.

We assume large transverse trap frequencies and elim-
inate the motional degrees of freedom along & and g via
a polaron transformation, such that two pseudospins of
distance r become effectively coupled through an effective
dipolar interaction J/73 [8]. Thus we obtain an effective

description of our system Heg = Upol(Hpn + Hint)Ugol,
which takes the form (see [I5] for more details)

J
— T a a .
Heg = Z Qnanan + Z Wlﬂ 05 + Hipe (3)
n i#],
a=z,y

where a,—1,... v are annihilation operators of the N col-
lective phonon normal modes with frequencies 2,, (see
Fig. [[{b)). In terms of the mode expansion r; =
>, gin(an +al) the interaction Hin, = —F, >, 7;(1+0%)
of spins and local longitudinal phonons becomes

Hint = _Fz Zgin(an+az)(1+af)a (4)

7,1

where g¢;, describes the non-local coupling between
phonon normal modes and spins (see Fig. [Ijc)).

Our effective model in Eq. contains several key pa-
rameters that determine its behaviour. In the following,
we set w,/J =1 for all microtraps, and focus on the rich
physics left to explore with the remaining free parame-
ters. In particular, the system can now be described by
() the spin-phonon coupling F. and (i7) the ion trap stiff-
ness 3 = e%/(mw?d3}) along the 2 direction. Throughout
this work, we will use vg = log 3. Typically, in trapped-
ion physics, the limit vg < —1 (vg 2 1) is referred to as
the stiff (soft) limit, in which the phonon dispersion is
weak (strong) (see Fig.[[{b)). The ion-trap setup there-
fore allows us to switch between the adiabatic (small
phonon frequency) and anti-adiabatic (large phonon fre-
quency) regimes of the spin-Holstein model .

Numerical approach.—In our numerical study of
Eq. , we complement DMRG simulations with numeri-
cal calculations based on NGS, |¥ngs), that can be writ-
ten in the form [I3]

|¥ncs) = Us [Yas) (5)

where Ug is a unitary operator and |¥gg) an arbitrary
Gaussian state, both of which depend on a set of varia-
tional parameters (see Eqgs. and (S17)). We derive
and solve the equations of motion for these variational pa-
rameters to obtain the many-body ground state of Heg,
see [I5] for more details. In order to treat the model
in Eq. with the NGS, we employ a Jordan-Wigner

transformation and map H.g onto a fermionic model via
; t
z __ T + _ i icc T
0f =2cle; — 1, of =T 2u<icie!, (6)

Expressing the Hamiltonian in terms of fermionic
operators by means of @ shows the similarity with the
Holstein model, as studied in condensed matter physics.
However the models are not equivalent. One key dif-
ference originates from the long-range hopping terms
x Py;/li — j|3c;rcj (with the string operator P;;, see [15]
for more details) present in our effective fermionic model,
which stems from the dipolar decay of interactions in



Eq. (3). Moreover, in contrast to the genuine Holstein
model which features a purely local coupling of electron
and Einstein phonon, the phonon described by Eq. (3) is
dispersive and its bandwidth may be tuned by means of
8.

While NGS excel at numerical efficiency and capture
the essential physics well, DMRG yields higher numeri-
cal accuracy. However the DMRG study of Eq. faces
several technical challenges. Arguably two of the most
relevant practical obstacles are associated with (i) not
getting stuck in a local energy minimum during the al-
gorithm, and (i¢) avoiding truncation errors introduced
by working with finite local phonon Hilbert spaces. In
our numerical treatment, we find that (i) NGS can pro-
vide an excellent educated guess for the initial state fed
into the DMRG algorithm, thus lowering the chances for
getting stuck with a metastable solution. Moreover, (%)
the truncation error associated with finite local Hilbert
spaces can be significantly lowered by employing a uni-
tary displacement transformation on Eq. (see [I5]).
Note that more general approaches exist to tackle this
issue and have been applied to problems with fermion-
phonon coupling [T6H21].

Phase diagram.—Equipped with our numerical tool-
box, we study the ground-state properties of Hog and cal-
culate several spin and phonon observables. Especially,
we introduce the CDW order parameter

N
Oopw = 52 (-1 (1 + (7)), ()
n=1

and the four-point spin correlator

Osc = <0';"0';:10i_+50;1+5>, (8)

with which we identify the superconducting ground state
by calculating its decay as a function of ¢ for fixed 1.
The order parameters that we compute with the NGS
approach for the fermionic model are derived in the Sup-
plemental Material [T5].

We study the phase diagram for different filling fac-
tors v = (3,14 (07))/(2N). In Fig. [2 we show the
result for N = 48 spins at v = 1/2 (left panel) and
v = 1/4 (right panel) as a function of F, and vg. The
phase boundaries obtained with both numerical methods
quantitatively agree with each other.

At half filling (v = 1/2), and at sufficiently large spin-
phonon coupling F, 2 1, we find three distinct phases,
that display charge-density wave order, quasi-long range
superconducting order of p-wave pairing, and phase sep-
aration into two regions, in which the spins are point-
ing either up or down, respectively: (i) In the stiff limit
(vg < —1), where the harmonic trapping potential dom-
inates the Coulomb interaction, the phonons are more
localized than in the soft limit. As a result, the mediated
interactions are short-ranged, and in the regime vg < —1
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FIG. 2. Phase diagram of spin-Holstein model. vg > 1 (v3 <
—1) corresponds to the soft (stiff) limit. Left panel: At filling
factor v = 1/2, there exist three distinct phases at sufficiently
large F., in a charge-density wave (CDW), a superconducting
(SC) and a phase-separated (PS) regime. Right panel: At
v = 1/4, there exists an additional pPCDW phase (discussed
in the main text). Numerical parameters: N =48, w./J = 1.

we discover a CDW state as the preferred ground state
at moderate F,. It is characterized by an alternating
spin configuration (¢Z) « (=1)" (n = 1,...,N) and a
large order parameter Ocpw ~ 0.5. (i) In the soft
limit (vg 2 1), where the phonon modes mediate long-
range interactions between spins, we find a superconduct-
ing ground state that exhibits a slow power-law decay
Osc ~ 67, with a &~ 2. (ii1) At sufficiently large F,
the ground state displays phase separation into two re-
gions with opposite polarization, both in the stiff and in
the soft limit. The size of the domain wall between those
regions decreases, as F, is increased (see [15] for details).

At quarter filling (v = 1/4), we map out a simi-
lar phase diagram, and find an additional phase in the
stiff limit (vg < —1), which we refer to as the pCDW
phase, see Fig. It is prevalent in an intermediate
coupling-strength regime between the CDW and PS re-
gions, and it is characterized by the coexistence of phase
separation and an enhanced CDW order parameter. The
pCDW phase is characterized by half of the spin chain
being polarized and a staggered magnetization in the
other half. Representative results for the spin config-
urations of different phases at v = 1/4 are shown in
Fig.[3(e)-(h). As we increase F in the stiff limit, first the
CDW order emerges, as can be seen in Fig. g), where
vg = —2.1,F, = 1.2 and Ocpw ~ 0.14. In this case,
the structure factor S(q) ~ >_, ;(0707) exp(igli — j|) fea-
tures two pronounced peaks at ¢ = 7/2 and ¢ = 37/2
[15]. At intermediate F,, we find a pCDW ground state
as depicted in Fig. h), where vg = —2.1, F, = 1.5 and
Ocpw ~ 0.20. Again, at large F, the ground state dis-
plays phase separation into two regions of opposite polar-
ization. In all cases, we find excellent agreement between
the DMRG and NGS numerical results.

Spin-phonon correlations.—To study the correlation



L

EEE | . [ _aaar——— |
—0.002 0 0.002 0.004 —0.05 0 0.05 0.1 —0.05 0 0.025 0.05 —0.005 0 0.005 0.01
(a) ) () S @
~ 40 3T 71t st
% — 77 -
2 30 4t % H
£ / .
g 2 1 . b
o
=
o 10pm SC 1 ' CDW pCDW
(e) (f) @rerrrerres |(B) M
| | | | |
0.75+ 1t L 1t i
N
S~
—~
& 051 1t X 4t i
+
Z R R - "t
R et I DANAN AR RataPy PAPAVATL B I |
LULLLMUL GG UL
016 20 30 40 10 20 30 40 10 20 30 40 1077207 30 40

Spin index 4 Spin index @

Spin index i Spin index @

FIG. 3. Spin phonon correlator II;; and spin configuration for different ground states at quarter filling ¥ = 1/4 as obtained

with DMRG. Upper panel: Spin-phonon correlator IT as defined in Eq. @

Lower panel: Site-dependent spin expectation

value (14 (07))/2. The four columns correspond to particular choices for F, and vg (compare right panel of Fig. [2]). (a) and
(e): F. = 1.6, vz = 2.1 (SC regime). (b) and (f): F. = 0.6, vg = —2.1 (precursor of CDW regime). (c) and (g): F; = 1.2,
vg = —2.1 (CDW regime). (d) and (h): F. = 1.5, vg = —2.1 (pCDW regime). Other numerical parameters: N = 48, w,/J = 1.

between spins and phonons, we calculate the observable

Wij = (ofrs) — o) (r;)- 9)

In Figs. }|(a)-(d) we show the DMRG results at v = 1/4
which agree very well with the corresponding results ob-
tained with the NGS. In the superconducting regime,
cf. Fig. a)7 the stripe pattern of II;; demonstrates the
presence of non-local spin-phonon correlations. For a
fixed spin index 14, it displays oscillations with a period
four near the center of the chain. In contrast, the cor-
relations decay quickly in the CDW and pCDW regimes
and are symmetric about ¢ = j. In the stiff limit, at
small couplings we find a precursor of the CDW state,
where II;; decays more slowly away from ¢ = j than deep
in the CDW regime, compare Figs. b) and (c). A rep-
resentative result for Il;; for the pCDW ground state is
shown in Fig. d). As expected, the spin-phonon cor-
relations vanish in one half of the system, while in the
other they feature oscillations with a period two along
the diagonal i = j, as would be expected for a CDW
state at half filling. In the pCDW regime, the magni-
tude of the spin-phonon correlator is smaller than in the
charge-density wave phase. At even larger coupling F,
i.e. in the presence of phase separation, II;; vanishes al-
most everywhere, except for small contributions close to
the domain wall.

Experimental considerations—Trapped-ion experi-
ments benefit from well-developed readout techniques.
Tons can be excited from one spin state to another
with single-site resolution, and subsequent fluorescence
imaging allows the extraction of local expectation values

(07). Repeated measurements at different sites enable

access to spin-spin correlation functions like (070%)
and Osc. Spin-phonon correlations may be probed
with only spin measurements and additional lasers that
locally couple spins and phonons. All observables of our

numerical study may thus be probed experimentally.

While we have only shown numerical results for a sys-
tem with N = 48 ions, we also study how the phase
boundary in Fig. |2| shifts in the (F},vs) plane with re-
spect to the system size N using NGS. We choose N = 24
and N = 96 and compare the results with those obtained
for N = 48. Deep in the stiff limit (v = —3), we find
that there is no noticeable influence of the system size
on the phase boundaries both at half and quarter filling
factors. However in the soft limit, we find that the phase
boundary moves to smaller (larger) F, as N is increased
(decreased). At half filling, v = 1/2, and vg = 3, we find
the SC-to-PS transition near F, = 2.6 for N = 96 and
F, =45 for N = 48. For N = 24, the phase boundary
disappears, i.e., we do not find any critical point numeri-
cally for F, < 16. Similarly, at quarter filling and vg = 3,
we find the SC-to-PS transition near F, = 2.5 for N = 96
and F, = 5.9 for N = 48. Again, for N = 24 there is no
transition for F, < 16. To summarize, for larger systems
and in the soft limit, smaller coupling strengths are thus
sufficient to induce phase separation. A scaling analysis
of the NGS results obtained for larger systems with up to
N = 400 shows that the SC phase survives in the ther-
modynamic limit. For example, at vg = 3 the SC-to-PS
boundary moves to F, =~ 1 for N — oc.

We perform finite-temperature calculations using the
NGS to confirm that the predicted phases survive at
T > 0 and may actually be observed in state-of-the-



art experiments. At temperatures up to T ~ J/kg, we
find that the T = 0 ground states are robust and the
phase diagrams in Fig. 2] change only insignificantly. For
40Ca™ ions at an effective temperature 7' = 1K and with
our choice w,/J = 1, this corresponds to trap distances
do =~ 5pm deep in the soft limit (vg = 3) and larger
separations in the stiff limit. This shows that our results
are consistent with the parameters of typical trapped-ion
setups.

Conclusions.—To conclude, we have studied a general-
ized Holstein model that can be implemented in state-of-
the-art trapped-ion experiments. In our numerical study,
we have demonstrated that it can be useful to choose
a hybrid approach in which calculations based on non-
Gaussian variational ansatz states and density-matrix
renormalization group complement each other. This al-
lowed us to map out the phase diagram of the trapped-ion
spin system, which is governed solely by tunable laser
and ion trap parameters. While we have concentrated
on v = 1/2 and v = 1/4, other filling factors may be
explored in future work, and could give rise to an even
richer hierarchy of phases in the stiff limit. As a future
prospect, also more exotic models could be investigated
that include higher-order interactions between the spins
and phonons. While they would be harder to tackle with
classical methods, in a trapped-ion quantum simulator,
they may be implemented by driving higher-order side-
bands with a laser. A straightforward extension of our
work is the consideration of well-established Paul trap
setups instead of microtrap arrays, in which the ions are
not perfectly equidistantly spaced.
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Supplemental Materials: Spin-Holstein models in trapped-ion systems

This Supplemental Material is structured as follows. Sec.[SI|summarizes the derivation of the effective Hamiltonian
used in the main text. In Sec. [S2| we discuss the displacement transformation employed for the DMRG simulations.
Numerical convergence of these simulations is discussed in Sec. We discuss the fermionic model and non-Gaussian
state ansatz in Sec.[S4} In Sec. we complement the results from the main text with additional numerical data on
the structure factor S(q), phonon observables and the domain wall in the phase-separated regime.

S1. DERIVATION OF EFFECTIVE HAMILTONIAN H.g

For completeness, we sketch here the derivation of our effective model. We refer to the existing trapped-ion
literature for more details, cf. Refs. [S8| [S9]. We start from Egs. and in the main text and an additional
external magnetic-field term,

N N N N
H:Z Z %JF%Z Z Kgsrir J+Z Z 2A cos? (kqr?) 1+0?)+Z Z Byoi,  (S1)

1=1 a=z,y,z 1,j=1a=x,y,z 1=1 a=z,y,z 1=1 a=z,y,z

where the elasticity matrix is given by [S8]

, [t ifim =i
K = w? x ki (S2)
_Caﬁéi(;pa l#]v

with ¢; 4, =1 and ¢, = —2. Now we apply a unitary transformation Uy to Eq. (S1)),

Upol = exp <ZZ Z Nin(1+0of )(al, ana)>, (S3)

i=1 n=1a=z,y,z

where

— M, Z MG KEMS, = Q2 . (S4)

a
ni,n_ 0
na\/ na ij=1

Denoting with Heg = UpolH (oAl pol Our effective Hamiltonian, to first order in n;, we eliminate the transverse (a =
x,y) phonons and interactlon terms from the description, and introduce effective spin-spin interaction terms. The
Hamiltonian takes the form

N
Ho = 3 O~ S gl 140+ Y Seter £33 (B ) ot (s5)

i=1n=1 1#£j =T,y i=1 a=x,y,z

where g;p, = Min/Vv/2m8,.

The last term in Eq. shows why we introduced external magnetic fields in Eq. . The global force term
stemming from the transformation can be canceled by appropriately choosing B, along all directions. Note that in
the main text we focus on the case where B, — F2/(mw?) = 0 along all three directions.

In order to obtain the effective model (??) from the main text, we use that J;; = J& = J; ~ 1/]i —j|®. In general,
the interaction can be derived from the elasticity matrix,

F2

ij m

[ (S6)

ij

Since we have assumed large transverse trap frequencies to adiabatically eliminate transverse phonons, the transverse
traps are operated in the stiff limit. In this case, the dipolar scaling J;; = 1/|i — j|> follows directly from (S6)). Fig.
demonstrates the scaling for decreasing 3, , in the stiff limit.
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FIG. S1. Scaling J;; ~ 1/|i — j|* in the stiff limit. Result shown for chain of length N = 48 and distance from central spin at
site ¢ = 24.

S2. DISPLACEMENT TRANSFORMATION

In our numerical simulations, it is often more convenient to remove the phononic displacement term ~
F. >, gin(an + al)) from the description at the cost of a spin-dependent shift. It renders the DMRG calculations
more efficient, especially at strong coupling F,. To this aim, we introduce the displaced phonon operators

~ ~ Min ~
Qp = ay, — F, ———5 =Gy — Cp. (S7)
zi: V4 ZmQE’/ 2
As the displacement transformation only affects the phonons, we denote the spin Hamiltonian by Hy =), o Jijoiod

and rewrite Eq. (?7?) as
— T Mzn f .
Heg = ZQ"ana" - I Z \/ﬁ(an +al)(1+4+07)+ H,
= Z Qo a, + Z Quen(an +al) + Z Qnc?
B NoTom b - ——— $oi — — 2 - oo z
P2 (o ow) = P G )t =28 ) Gt =28 ) e £ 4.

=Y Qualan — F. Y ginlan +a})oi + H, + Hg, (S8)

,n

with the residual phonon-independent contribution

2
1 Min

i,n J

S3. CONVERGENCE ANALYSIS

We benchmark our numerical calculations against each other and compare the ground state energies obtained with
DMRG and the NGS method outlined in Sec. Most importantly, we make sure that the ground state energies are
close to each other, see Fig. Typically the energies obtained with DMRG are slightly lower. However, the runtime
of the simulation is decreased significantly if we first perform the NGS calculation and then feed a good initial seed
into the DMRG simulation.

In the derivation of the phase diagram (see Fig. [2) we explore the ground states in (F}, 3) space using an adaptive
grid with a higher resolution closer to the phase boundary. Slight deviations between the NGS and DMRG results can
partially be explained by the fact that the maximal resolution used within the NGS calculations can be as small as
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FIG. S2. Ground-state energies obtained with DMRG and NGS methods. (a) 8 = —3.0 (stiff) and (b) 8 = 3.0 (soft). Other
numerical parameters: N =48, w./J = 1.

AF, ~ 107, while in the DMRG simulations we limit ourselves to AF, ~ 1072, Similarly, with DMRG we discretize
the possible values for the stiffness parameter and choose a resolution Avg = 0.3. In our numerical calculations based
on non-Gaussian ansatz states we choose Avg = 0.1 instead, as they are less costly.

S4. NON GAUSSIAN STATES AND EQUATIONS OF MOTION

In this section, we study the ground state and thermal properties of a 1D array of ions with the lattice spacing d
and mass m, which is described by the 1D spin-Holstein model

Z Jijaf‘cr? + g Zcrf
1

i#£j,a=w,y
p;

+
2o

The long-range interaction J;; = Jaa/ |i — j|3 between ions at sites ¢ and j is induced by the transverse phonon modes,
where the exchange interaction strength Jgq = Fge?/(2m2wid?®) is determined by the ion charge e, the frequency wp
of the microtrap and the force Fy generated by the laser along the transverse directions o = x,y. The longitudinal
mode is described by

H= (S10)

ijTiTj — ZFzri(l + O'zz)

de chid (

j — ——ad (S11)
\—ll =P

—w+2

l#1

— 85,

where wqq = y/2e2/(md?3). The laser along the longitudinal direction induces the local Holstein interaction between
the internal state and the longitudinal mode with strength F,.
Via the Jordan-Wigner transformation

z _ ot
o; =2¢;c; — 1,

(S12)

. T
O-i+ e i< G Clcj’
we rewrite the Hamiltonian

(S13)

+- Z ZICUTJJ — 2ZF rlc Ci,



where to = 4.J4q is chosen as the unit, F, = F./v/2m, and

/2
= \/%’I‘i,ﬁi = E i (814)

LT f . .
satisfy the canonical commutation relation [;, p;] = 2i. The operator P;; = '™ Z1esi; I ig defined on the string S;;

connecting sites ¢ and j (without points ¢ and j).
We employ the variational ansatz

|¥nGs) = Us [Yas) , (S15)
pPNGS = USPGSUg'v (S16)

combining the generalized Lang-Firsov transformation
US — ei an )\lnplcjlcn (Sl?)

and the Gaussian states
‘\I/GS> —e ~3iRTo VAR —ig iRT¢,R zICTEfC |O>, (818)
1 oY 1 1 y 1

pas = €7§RT AR Zb e*QbeéRTU ARzifeiQf (819)

to study the ground state and the thermal state, where the partition functions Z, = tre=S%.s. The Gaussian state
|Wqs) and pgs is completely characterized by the covariance matrices I'y = (CCT) (equivalently, m = 1(WyL'y W}f —1)
in the Majorana basis A = W;C) and I', = ({R, RT}) /2 defined in the basis C' = (¢;,c DT and R = (7, ;)" where

11
Wi = (—i i )
For the imaginary time evolution, the projections of

07 [¥nas) = —P(H — (H)) [¥xes) s (S20)
0r |W,) = =P(F — f)[¥,), (S21)

on the tangential space result in the EOM of variational parameters A;,, Ag, and I'f 3, which in the limit 7 — oo give
rise to the ground state and thermal state, respectively. Here, |¥,) = Us ® I |pgg) is determined by the purification
lpas) = /pas ® I|¢T) of the Gaussian state pgs via the maximal entangled state [¢") between the physical space
and the fiducial space, and the free energy f is the average value of the free energy operator F' = H + T'ln pgs.

The flow equations of variational parameters are

0Dy = =Ty )ope o (KA, =2 " Gin (chien)) + 2> 0 M (chien) (S22)
0:.Ty = 0¥Q0Y — [,O0, (S23)
0Ty ={F; Ty} — 2T FsTy, (S24)
and
A= wlnme zwflmr o = (Pumcliem ) Dk = (T3 4G (825)
oz —m|’ ’

with D,,,, = <cncln> <chm> + <c;flcjn> (¢men) and G, = 2F, 01, + (KA)py, where for phonons the effective mean-field
matrix

. K 0 " Tyot' +1
is determined by
26_%w2nzrpwnmr
Q,=1- Z —————— (Pumclem) wamwl,, (S27)
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. [n — m)|



and Wy pnm = Al — Aim, while for fermions the effective mean-field matrix

mIpWnm K
Eur AF ) 1

+ +Tln(=— — 1) (S28)
< A; _SPTIF Ly

is determined by
_ 1 i T i
SHF - [B + ivnn + Z V;Ln’ <Cnlcn’> - (Az G)n]anm - Vnm <cmcn> 5
Ar = Vi (€men) s Vam = 2[(AT KX ) nm + 2F: A + Amn)]- (S29)
The average value
t 1 ) 1
(Pamchem) = 1 (Pam) [(1,4) S© i Jmn (S30)

of the string operator on the Gaussian state is determined by

r
(Pum) = (=1)VsPI(),
I'r=+v1-0I,,V1-6 —ic?(1+0),
8 = (i0YTyy — )T, Ty = i(WT ;W] — 1),

1
=171 (1 —0)(io¥Ty, — 1)
@ = IQ ® 6 s (Mgsnm = Ov-A[lGSnm = 1), (831)

where s; = (—1)"/2 and (—1)(N=Y/2 for the system with even and odd modes, respectively. The functional derivatives
are

r
0 Pf(—L) = ——Pf( )(ﬂ_@ \/1 0)ij, (S32)
i 2
and
i (Pumchc >:J<P che >(\/1f@i\/1f@)--
6Fm,ij nmbtnptm 2 nmbtnpbtm FF 1]

43 Pan) 176 (1 )5l T (533)

The free energy

e 2 nmr Wnm

_ 1 17 t
f=4tr(KTye +Thp) + 7 ATKA, + 7;1 . Pumchen)
1
- Z[B + 5 Van = (A2G) Z Vi (chyem)] (chen)

7*ZVnm C mCn <C Cm>+ Zvnm Cm n CnCm>
;J’d?jl+sz:1n(leBd;)zj: Mf TZlnlJre pd]) (S34)

monotonlcally decreases in the imaginary time evolution, where db and df are the positive eigenvalues of To¥ In & ””z ﬂ

and =T In(3- T — 1), respectively.
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FIG. S3. Spin phonon correlator II;; and spin configuration for different ground states at quarter filling v = 1/4 as obtained
with NGS. Upper panel: Spin-phonon correlator II as defined in Eq. . Lower panel: Site-dependent density (CZC~L> The
grey dots indicate the DMRG result. The four columns correspond to particular choices for F, and vg = log 8 (compare right
panel of Fig.[2). (a) and (e): F. = 1.6, vg = 2.1 (SC regime). (b) and (f): F. = 0.6, vg = —2.1 (precursor of CDW regime). (c)
and (g): F. = 1.2, vg = —2.1 (CDW regime). (d) and (h): F. = 1.5, v3 = —2.1 (pCDW regime). Other numerical parameters:
equivalent to Fig.[3|in the main text.

To characterize the SC, CDW, and PS phases, we calculate the displacement

(r) = Day =2 Ain (chen) (S35)
of phonons, and the order parameters

1
Ocow = + zn:(—l)n (chen) s

Osc = <O';7,O';> . (836)
The SC order parameter

—T
n

Lo @nm (P coe) sgn(m —n), (S37)

_1
2

OSC:€

is determined by the phonon dressing factor w; nm = Ain + A1, and the average value

(PamComCn) = —i (P} [(1, )8 ( ! )]nm. (S38)

The connected correlation function II;, = <Fchcn> — () <chn> <7"lclcn>c between the spin at the site n and the

phonon at the site [ reads

In Fig. we show the numerical results obtained with the NGS ansatz for the same numerical parameters used
to obtain Fig. [3| in the main text. We find that the results agree well, both qualitatively and quantitatively. The
only quantitatively different result concerns the SC regime. Here we find that the NGS ansatz overestimates the
spin-phonon correlation, cf. Fig. a). The stripe pattern from Fig. a) is still present, but less pronounced.

S5. OTHER OBSERVABLES

Here we discuss additional observables that are not shown in the main text.



A. Structure factor

We study the structure factor via the spin-spin correlations as
1 o
S() = 5 Yoloiopei=a, (540)
i

and show results for the CDW state in Fig. [S4] that correspond to the cases studied in the main text. At half
filling (v = 1/2), the structure factor displays a peak at ¢ = 7 as expected, and shows two additional peaks nearby.
Figs.[S4(b) and (c) show the structure factor in the stiff limit (8 < 1) at quarter filling v = 1/4. At a comparatively
small coupling F, = 0.6 (compare Figs. b) and (f) from the main text), two peaks start to evolve at ¢ = 7/2 and
g = 3m/2. Only when F, is increased, S(q) features two prominent peaks at ¢ = 7/2 and ¢ = 37 /2, and another peak
at ¢ = w. The latter is related to the non-vanishing background of the CDW state with period 4 shown in Fig. g).

B. Phonon observables

We study the staggered phonon parameter

1 N
Mg = 3 D (=1)" (b + ). (S41)

In the soft limit (8 > 1), we find that m,), suddenly increases from zero to a finite value at the phase transition from
SC to PS. This is a contribution from the domain wall in the phase-separated regime and approaches a constant finite
value as F), is increased and the width of the domain wall tends to zero.

C. Width of domain wall

In the case of phase separation, the domain wall separating the two phases shrinks as F, increases. We calculate
the width of the domain wall and define

N 2
We= 3 B (o) 1), (542)

where z, denotes the nth ion position and z. is the center of the domain wall. An exemplary result is shown in

Fig.
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FIG. S4. Structure factor S(g). (a) Half filling v = 1/2, 8 = —2.4, F, = 2.1, (b) quarter filling v = 1/4, 8 = —2.1, F. = 0.6,
(¢) quarter filling v = 1/4, 8 = —2.1, F, = 1.2. Other numerical parameters: N =48, w./J = 1.
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FIG. S5. Width of domain wall W, in the case of phase separation. (a) Sketch of domain wall and width W, at half filling
v=1/2. (b) Width W, as a function of coupling F. in soft limit at v = 3 and at v = 1/2.
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