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In this work, we highlight how trapped-ion quantum systems can be used to study generalized Holstein
models, and benchmark expensive numerical calculations. We study a particular spin-Holstein model that
can be implemented with arrays of ions confined by individual microtraps, and that is closely related to the
Holstein model of condensed matter physics, used to describe electron-phonon interactions. In contrast to
earlier proposals, we focus on simulating many-electron systems and inspect the competition between
charge-density wave order, fermion pairing, and phase separation. In our numerical study, we employ a
combination of complementary approaches, based on non-Gaussian variational ansatz states and matrix
product states, respectively. We demonstrate that this hybrid approach outperforms standard density-matrix
renormalization group calculations.
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Electron-phonon interactions lie at the heart of several
phenomena in condensed matter physics, including Cooper
pairing [1] and the formation of polarons [2]. Generally, the
low-energy excitations of electrons in solids are modified
by their coupling to lattice vibrations, which alters their
transport and thermodynamic behavior. Often simplified
toy models can be employed to study those essential
properties. As a complementary approach to traditional
solid-state methods, quantum simulations utilize the rich
toolbox of atomic physics to provide a characterization of
equilibrium and dynamical properties of paradigmatic
quantum many-body models.
The Holstein model is one such paradigmatic model that

features a local coupling between the electron density and
optical phonons on a lattice [3]. Despite its apparent
simplicity, it hosts rich physics, giving rise to supercon-
ducting (SC) phases, charge-density wave (CDW) order
and phase separation (PS) at strong coupling [4,5]. Yet,
notwithstanding recent progress, its numerical treatment is
often costly, especially when interactions become increas-
ingly strong or of long-range character. As a tantalizing
prospect, quantum simulators may help to gain new insights

into the underlying physical mechanisms, and potential
implementations include trapped ions [6,7], hybrid atom-
ion systems [8], cold atoms [9], and quantum dots [10]. In
trapped ions, their spin and motional degrees of freedom can
be harnessed to realize a quantum-optics analog of the
electron-phonon system [11–14], which enables access to
a variety of system observables. Moreover, their key param-
eters may be tuned in situ to explore different regions of
the phase diagram. Currently available setups may thus be
utilized to improve and benchmark analog quantum simu-
lators against state-of-the-art numerical methods. This paves
a way toward the quantum simulation of even more complex
electron-phonon models that could be implemented using
trapped-ion setups.
In this Letter, we theoretically investigate such trapped-

ion systems and derive an effective model that contains
strong and highly nonlocal interactions between effective
spins and lattice phonons. We highlight its similarities and
differences with the Holstein model and develop a powerful
numerical toolbox to thoroughly characterize its ground-
state properties. Our numerical method combines density
matrix renormalization group (DMRG) calculations
[15,16] and computations based on non-Gaussian varia-
tional ansatz states (NGS) [17,18]. This hybrid approach is
shown to particularly excel at studying the quantum many-
body system at large spin-phonon couplings and large
phonon numbers. We define spin and phonon observables
motivated by the physics of the Holstein model and study
their characteristics. Using these observables, we identify
SC and CDW phases and their relation to the ion-trap

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Open access publication funded by the Max Planck
Society.

PHYSICAL REVIEW LETTERS 128, 120404 (2022)

0031-9007=22=128(12)=120404(5) 120404-1 Published by the American Physical Society

https://orcid.org/0000-0002-7318-3018
https://orcid.org/0000-0003-3359-1743
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.128.120404&domain=pdf&date_stamp=2022-03-25
https://doi.org/10.1103/PhysRevLett.128.120404
https://doi.org/10.1103/PhysRevLett.128.120404
https://doi.org/10.1103/PhysRevLett.128.120404
https://doi.org/10.1103/PhysRevLett.128.120404
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


parameters, thus demonstrating the rich Holstein-like
physics of the trapped-ion system. Finite-temperature
and finite-size calculations show that our results can be
expected to be robust against thermal excitations in state-
of-the-art setups.
Setup and model.—We consider a physical system of N

ions with massm, each confined to a harmonic microtrap to
guarantee an equidistant spacing of ions. All of the ions’
equilibrium positions are assumed to be aligned along the ẑ
axis at a nearest-neighbor distance d0, see Fig. 1(a). In a laser
beam configuration which hosts three standing waves along
the x̂, ŷ, and ẑ axes, light that is off resonant with chosen
hyperfine-state transitions of the ions can be harnessed to
introduce a coupling between the motional and spin degrees
of freedom of all ions [11,12]. We assume large transverse
trap frequencies and eliminate the motional degrees of
freedom along x̂ and ŷ via a polaron transformation. As a
result, pseudospins at a distance r become effectively
coupled through an effective dipolar interaction J=r3 at
strength J. As outlined in more detail in Supplemental
Material [19] we obtain an effective description of our
system which takes the form

Heff ¼
X

n

Ωna
†
nan þ

X

i≠j;
α¼x;y

J
ji − jj3 σ

α
i σ

α
j þHint; ð1Þ

where an¼1;…;N are annihilation operators of theN collective
phononnormalmodeswith frequenciesΩn [see Fig. 1(b)],σαi

denotes the Pauli matrix associated with the internal spin
states j ↑i and j↓i at site i and direction α. In terms of
the mode expansion ri ¼

P
i ginðan þ a†nÞ the interaction

Hint ¼ −Fz
P

i rið1þ σzi Þ of spins and local longitudinal
phonons becomes

Hint ¼ −Fz

X

i;n

ginðan þ a†nÞð1þ σzi Þ; ð2Þ

where gin describes the nonlocal coupling between phonon
normal modes and spins [see Fig. 1(c)]. Here, we have made
the Lamb-Dicke approximation, which can be justified in
experiment if the light-induced coupling between internal
spin states andmotional states of the ions is sufficiently small.
Our effective model in Eq. (1) contains several key

parameters that determine its behavior. In the following, we
set ωz=J ¼ 1 for all microtraps, and focus on the rich
physics left to explore with the remaining free parameters.
In particular, the system can now be described by (i) the
spin-phonon coupling Fz and (ii) the ion trap stiffness β ¼
e2=ðmω2

zd30Þ along the ẑ direction. Throughout this work,
we will use ξ ¼ log β. The limit ξ≲ −1 (ξ≳ 1) is usually
referred to as the stiff (soft) limit, in which the phonon
dispersion is weak (strong) [see Fig. 1(b)]. The ion-trap
setup allows us to switch between the adiabatic (small
phonon frequency) and diabatic (large phonon frequency)
regimes of the spin-Holstein model (1).
Numerical approach.—In our numerical study of Eq. (1),

we complement DMRG simulations with calculations
based on NGS, jΨNGSi, that can be written in the form [17]

jΨNGSi ¼ USjΨGSi; ð3Þ
where US is a unitary operator and jΨGSi an arbitrary
Gaussian state, both of which depend on a set of variational
parameters [19]. We derive and solve the equations of
motion for these variational parameters to obtain the many-
body ground state ofHeff , see [19] for more details. In order
to treat the model in Eq. (1) with the NGS, we employ a
Jordan-Wigner transformation and map Heff onto a fer-
mionic model via

σzi ¼ 2c†i ci − 1; σþi ¼ eiπ
P

l<i
c†l clc†i : ð4Þ

Expressing the Hamiltonian (1) in terms of fermionic
operators by means of (4) shows the similarity with the
standard Holstein model, as studied in condensed matter
physics. In this analogy, spin-spin interactions translate
to electron hopping and spin-phonon to electron-phonon
interaction. The differences between the standard Holstein
model and our model (1) are the following: first, one key
difference originates from the long-range hopping terms
∝ Pij=ji − jj3c†i cj (with the string operator Pij, see [19] for
more details) present in our effective fermionic model,
which stems from the dipolar decay of interactions in

(a)

(b) (c)

FIG. 1. Schematic illustration of setup. (a) Trapped-ion chain
subject to three counterpropagating laser beams. The microtraps
are aligned along the ẑ direction at a distance d0. Ions are coupled
to each other via their mutual Coulomb interaction, indicated by
springs. The inset shows an exemplary level scheme with four
internal states j ↑i; j↓i; je↓i; je↑i, and a σþ transition with laser
parameters Ωα and Δα. (b) Normal-mode frequencies Ωn=ωz for
different values of ξ. ωz is fixed while d0 is varied. (c) Coupling
gin for ξ ¼ 0 exemplarily shows long-range interactions between
spins and phonons.
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Eq. (1). Second, in contrast to the genuine Holstein model
which features a purely local coupling of electron and
Einstein phonon, i.e., gin ¼ δin in Eq. (2), the phonon
described by Eq. (1) is dispersive and its bandwidth may be
tuned by means of ξ.
While NGS excel at numerical efficiency and capture the

essential physics well, DMRG yields higher numerical
accuracy. However, theDMRG study of Eq. (1) faces several
technical challenges. Arguably two of the most relevant
practical obstacles are associated with (i) not getting stuck in
a local energyminimum during the algorithm, and (ii) avoid-
ing truncation errors introduced by working with finite local
phonon Hilbert spaces. In our numerical treatment, we find
that (i) NGS can provide an excellent educated guess for the
initial state fed into the DMRG algorithm, thus lowering the
chances for getting stuck with a metastable solution.
Moreover, (ii) the truncation error associated with finite
local Hilbert spaces can be significantly lowered by employ-
ing a unitary displacement transformation on Eq. (1)
(see [19]). Note that more general approaches exist to tackle
this issue and have been applied to problems with fermion-
phonon coupling [20–25].
Phase diagram.—As the spin-spin couplings and spin-

phonon interactions compete, the many-body ground state
displays several distinct phases as a function of phonon
parameter ξ and spin-phononcoupling strengthFz. Equipped
with our numerical toolbox, we study the ground-state
properties of Heff and calculate several spin and phonon
observables. Especially, we introduce the CDW order
parameter

OCDW ¼ 1

2N

XN

n¼1

ð−1Þnð1þ hσzniÞ; ð5Þ

and the four-point spin correlator

OSC ¼ hσþi σþiþ1σ
−
iþδσ

−
iþ1þδi; ð6Þ

with which we identify the superconducting ground state by
calculating its decay as a function of δ for fixed i. The order
parameters that we compute with the NGS approach for the
fermionic model are derived in Supplemental Material [19].
We study the phase diagram for different filling factors

ν ¼ ðPi 1þ hσzi iÞ=ð2NÞ. In Fig. 2, we show the result for
N ¼ 48 spins at ν ¼ 1=2 (left panel) and ν ¼ 1=4 (right
panel) as a function of Fz and ξ. The phase boundaries
obtained with both numerical methods quantitatively agree
with each other. Note that we focus here on the regime
where Fz ≥ 1 since there exists only a trivial Luttinger-
liquid phase at small couplings.
At half filling (ν ¼ 1=2), and at sufficiently large spin-

phonon coupling Fz ≳ 1, we find three distinct phases, that
display charge-density wave order, quasi–long range super-
conducting order of p-wave pairing, and phase separation
into two regions, in which the spins are pointing either up
or down, respectively: (i) in the stiff limit (ξ≲ −1), where

the harmonic trapping potential dominates the Coulomb
interaction, the phonons are more localized than in the soft
limit. As a result, the phonon fluctuations around the ions’
equilibrium position are suppressed, and in the regime ξ≲
−1we discover a CDW state as the preferred ground state at
moderate Fz. At half filling, the latter is characterized by an
alternating spin configuration hσzni ∝ ð−1Þn (n ¼ 1;…; N)
and a large order parameter OCDW ∼ 0.5. (ii) In the soft
limit (ξ≳ 1), where the virtual phonon fluctuations are
large and responsible for inducing attractive pairing inter-
actions, we find a superconducting ground state that
exhibits a slow power-law decay OSC ∼ δ−α, with α ≈ 2.
(iii) There exists a competition between SC and CDW
order, respectively, and phase separation. At sufficiently
large coupling Fz, the spin-Holstein model displays an
instability toward phase separation into two regions with
opposite polarization, both in the stiff and in the soft limit.
At quarter filling (ν ¼ 1=4), we map out a similar phase

diagram, and find an additional phase in the stiff limit
(ξ≲ −1), whichwe refer to as the PCDWphase as shorthand
notation for a phase that displays both phase separation and
CDWorder, seeFig. 2. It is prevalent at intermediate coupling
strength, and it is characterized by the coexistence of phase
separation and an enhanced CDWorder parameter, with half
of the spin chain being polarized and a staggered magneti-
zation in the other half. Representative results for the spin
configurations of different phases at ν ¼ 1=4 are shown in
Figs. 3(e)–3(h). In all cases, we find excellent agreement
between the DMRG and NGS numerical results.
Spin-phonon correlations.—To study the correlation

between spins and phonons, we calculate the observable

Πij ¼ hσzi rji − hσzi ihrji: ð7Þ

In Figs. 3(a)–3(d) we show the DMRG results at ν ¼ 1=4
which agree very well with the corresponding results

ν = 1/2 ν = 1/4

CDW

SC

PS

νν == 11//22

CDW

SC

PS

CDW pCDW

PS

SC

ξ

FIG. 2. Phase diagram of spin-Holstein model. ξ≳ 1 (ξ ≲ −1)
corresponds to the soft (stiff) limit. Left panel: at filling factor
ν ¼ 1=2, there exist three distinct phases at sufficiently large Fz,
in a charge-density wave (CDW), a superconducting (SC), and a
phase-separated (PS) regime. Right panel: at ν ¼ 1=4, there exists
an additional PCDW phase (discussed in the main text). Numeri-
cal parameters: N ¼ 48, ωz=J ¼ 1.
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obtained with the NGS. In the superconducting regime,
cf. Fig. 3(a), the stripe pattern of Πij demonstrates the
presence of nonlocal spin-phonon correlations. For a fixed
spin index i, it displays oscillations with a period four near
the center of the chain. In contrast, the correlations decay
quickly in the CDWand PCDW regimes and are symmetric
about i ¼ j. In the stiff limit, at small couplings we find a
precursor of the CDW state, where Πij decays more slowly
away from i ¼ j than deep in the CDW regime, compare
Figs. 3(b) and 3(c). A representative result for Πij for the
PCDW ground state is shown in Fig. 3(d). As expected, the
spin-phonon correlations vanish in one half of the system,
while in the other they feature oscillations with a period two
along the diagonal i ¼ j, as would be expected for a CDW
state at half filling. In the PCDW regime, the magnitude of
the spin-phonon correlator is smaller than in the charge-
density wave phase. At even larger Fz (phase separation),
Πij vanishes almost everywhere, except for small contri-
butions close to the domain wall.
Phonon numbers.—To characterize the phonon excita-

tions, we decompose the phonon excitation number into the
density of coherent phonons nc and quantum fluctuations
of the phonon density ns:

nc ¼
1

N

X

k

jhakij2; ns ¼
1

N

X

k

ha†kaki − nc: ð8Þ

For Fig. 3, the average phonon numbers are (a) nc ¼ 0.64
and ns ¼ 0.51, (b) nc ¼ 0.093 and ns ¼ 0.52, (c) nc ¼ 0.65
andns ¼ 0.75, (d)nc ¼ 2.06 andns ¼ 0.5.When the system
is in the SC phase, the virtual phonon fluctuations induce
attractive interactions necessary for pairing, as familiar from

BCS theory of superconductivity. In contrast, as the system
enters the PCDW phase, the coherent phonon displacement
becomes dominant. In the normal phase, the displacement is
very small.
Experimental considerations.—Trapped-ion experiments

benefit fromwell-developed readout techniques. Ions can be
excited from one spin state to another with single-site
resolution, and subsequent fluorescence imaging allows
the extraction of local expectation values hσzi i. Repeated
measurements at different sites enable access to spin-spin
correlation functions like hσziσzji and OSC. Spin-phonon
correlations may be probed with only spin measurements
and additional lasers that locally couple spins and phonons.
All observables of our numerical study may thus be probed
experimentally.Many recent experiments have demonstrated
that trapped-ion quantum simulations of spin models are
feasible, with system sizes comparable to those considered
here [26,27].
While we have only shown numerical results for a system

with N ¼ 48 ions, we also study how the phase boundary in
Fig. 2 shifts in the ðFz; ξÞ plane with respect to the system
size N using NGS. Deep in the stiff limit (ξ ¼ −3), we find
that there is no noticeable influence of the system size on the
phase boundaries both at half and quarter filling factors.
However, in the soft limit, we find that the phase boundary
moves to smaller (larger) Fz as N is increased (decreased).
For example, at ν ¼ 1=2 and ξ ¼ 3, we find the SC-to-PS
transition near Fz ¼ 2.6 for N ¼ 96 and Fz ¼ 4.5 for
N ¼ 48, while for N ¼ 24, the phase boundary disappears,
i.e., we do not find any critical point numerically forFz ≤ 16.
For larger systems and in the soft limit, smaller coupling
strengths are thus sufficient to induce phase separation.
A scaling analysis of the NGS results obtained for systems

FIG. 3. Spin phonon correlator Πij and spin configuration for different ground states at quarter filling ν ¼ 1=4 as obtained with
DMRG. Upper panel: spin-phonon correlator Π as defined in Eq. (7). Lower panel: site-dependent spin expectation value ð1þ hσzi iÞ=2.
The four columns correspond to particular choices for Fz and ξ (compare right panel of Fig. 2). (a) and (e): Fz ¼ 1.6, ξ ¼ 2.1
(SC regime). (b) and (f): Fz ¼ 0.6, ξ ¼ −2.1 (precursor of CDW regime). (c) and (g): Fz ¼ 1.2, ξ ¼ −2.1 (CDW regime). (d) and (h):
Fz ¼ 1.5, ξ ¼ −2.1 (PCDW regime). Other numerical parameters: N ¼ 48, ωz=J ¼ 1.

PHYSICAL REVIEW LETTERS 128, 120404 (2022)

120404-4



with up to N ¼ 400 shows that the SC phase survives in the
thermodynamic limit. For example, at ξ ¼ 3 the SC-to-PS
boundary moves to Fz ≈ 1 for N → ∞.
We perform finite-temperature calculations using the

NGS to confirm that the predicted phases survive at T > 0
and may actually be observed in state-of-the-art experi-
ments. At temperatures up to T ∼ J=kB, we find that the
T ¼ 0 ground states are robust and the phase diagrams in
Fig. 2 change only insignificantly. For 40Caþ ions at an
effective temperature T ¼ 1 μK and with our choice
ωz=J ¼ 1, this corresponds to trap distances d0 ≈ 5 μm
deep in the soft limit (ξ ¼ 3) and larger separations in the
stiff limit. This shows that our results are consistent with
the parameters of typical trapped-ion setups.
Conclusions.—To conclude, we have studied a general-

ized Holstein model that can be implemented in state-of-
the-art trapped-ion experiments. In our numerical study, we
have demonstrated that it can be useful to choose a hybrid
approach in which calculations based on non-Gaussian
variational ansatz states and density-matrix renormalization
group complement each other. This allowed us to map out
the phase diagram of the trapped-ion spin system, which is
governed solely by tunable laser and ion trap parameters.
While we have concentrated on ν ¼ 1=2 and ν ¼ 1=4, other
filling factors may be explored in future work, and could
give rise to an even richer hierarchy of phases in the stiff
limit. As a future prospect, also more exotic models could
be investigated that include higher-order interactions
between phonons and spins. While they would be harder
to tackle with classical methods, in a trapped-ion quantum
simulator, they may be implemented by driving higher-
order sidebands with a laser. In that way, the quantum
simulator may possibly be operated in two regimes, one
which is also accessible with classical calculations, and
another that may go beyond what is achievable with state-
of-the-art numerics. A straightforward extension of our
work is the consideration of well-established Paul trap
setups instead of microtrap arrays, in which the ions are not
perfectly equidistantly spaced.
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