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We propose a circuit QED platform and protocol to deterministically generate microwave photonic
tensor network states. We first show that using a microwave cavity as ancilla and a transmon qubit
as emitter is a favorable platform to produce photonic matrix-product states. The ancilla cavity
combines a large controllable Hilbert space with a long coherence time, which we predict translates
into a high number of entangled photons and states with a high bond dimension. Going beyond this
paradigm, we then consider a natural generalization of this platform, in which several cavity–qubit
pairs are coupled to form a chain. The photonic states thus produced feature a two-dimensional
entanglement structure and are readily interpreted as radial plaquette projected entangled pair
states [1], which include many paradigmatic states, such as the broad class of isometric tensor
network states, graph states, string-net states.

I. INTRODUCTION

Producing large-scale entangled photonic states is cen-
tral to many quantum technologies, including comput-
ing [2], cryptography [3], networks [4], or sensing [5].
The standard method for producing multi-photon entan-
glement utilizes parametric down-conversion (PDC) [6],
which has been used to produce 12-photon entangle-
ment [7]. However, this method possesses certain limita-
tions, notably the exponential decrease of success proba-
bility with photon number. One promising way to over-
come that is to deterministically and sequentially gener-
ate a string of entangled photons using a single quantum
emitter [8–14]. The class of states that can be sequen-
tially generated coincides with the set of matrix product
states (MPS) [10], a type of tensor network states (TNS)
that widely appears in one-dimensional quantum many-
body systems [15–18]. Some of the sequential photon
generation protocols have been experimentally realized
in quantum dots [19] and circuit QED [20, 21]. Using
coupled emitters [22–26] or allowing the emitted pho-
tons to travel back and interact with the photon source
again [27–33], it is possible to produce TNS with a higher-
dimensional entanglement structure.

It has recently been shown that all higher-dimensional
photonic states thus produced belong to the class of
radial plaquette projected entangled pair states (rp-
PEPS) [1], a general class obtained through the sequen-
tial application of geometrically local unitaries in the
form of plaquettes of side length Lp. rp-PEPS con-
tain isometric tensor network states (isoTNS) as a sub-
class [34], which are PEPS [15–18] subject to an isom-
etry condition. This immediately implies that rp-PEPS
include important states like the graph states with local
connectivities [24, 35], toric code states [36, 37], all string-
net states [38–41] [42] and hypergraph states with local
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connectivities [43]. The experimental preparation of such
states in two dimensions is pursued intensely [44–46].

To date, existing platforms and proposals have al-
most exclusively explored photonic TNS of bond dimen-
sion D = 2 [8, 9, 12, 13, 19, 21], with one theoreti-
cal protocol forming an exception, which is capable of
deterministically producing MPS with higher bond di-
mension using an ordered array of Rydberg atoms [14].
This platform however does not easily extend to pro-
duce higher-dimensional TNS. The existing proposals
that produce higher-dimensional TNS are also mostly
limited to D = 2, and particularly focus on the clus-
ter state generation. One notable exception is the pro-
tocol in Ref. [28], which probabilistically produces two-
dimensional TNS with D > 2 utilizing the PDC pro-
cess in an optical loop. Thus, despite significant efforts,
there are still important theoretical challenges on how
to deterministically produce high-fidelity and high-bond-
dimension photonic TNS in one and particularly in higher
dimensions.

In this work, we propose a circuit QED platform capa-
ble of deterministically generating (microwave) photonic
rp-PEPS with the so-called source point [1] in one corner
of the lattice. We consider a cavity dispersively coupled
to a transmon qubit and show that this allows one to
generate MPS of moderately high bond dimension and a
large number of entangled photons, which is outstanding
among currently available platforms. Using current ex-
perimental parameters, our simulations indicate that this
platform has the potential to deterministically generate
a one-dimensional cluster state of with a large number of
photons using current technologies, which would improve
the experimental results in Ref. [21] severalfold. We then
show that using an array of m such MPS sources one can
efficiently generate rp-PEPS. The circuit depth in terms
of plaquette unitaries to prepare such a state on a n×m
lattice of photons asymptotically scales as [1]

T ≈ Lp · n+m. (1)

Since rp-PEPS is a large class, our platform allows one
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FIG. 1. Generating photonic matrix product states (MPS) with circuit QED. (a) We consider a cavity dispersively coupled to
a transmon, which can be controlled by driving both the cavity (εC) and the transmon (εT ). The transmon excitation can be
converted into a traveling microwave photon. By sequentially applying unitary operations followed by photon emissions Mph,
one can produce a chain of entangled photons. (b) The level diagram of the system. The levels in red are used in the protocol
for D = 2 MPS generation. The yellow (blue) arrows correspond to driving the transmon (cavity). (c) Quantum circuit of the
MPS generation protocol. Photon emission (Mph) is represented by a SWAP gate.

to create photonic states useful for applications in quan-
tum computing [35, 43], metrology [47–49], communica-
tion and networking [50], and that exhibit topological
order [36, 37, 40, 41].

The rest of the article is structured as follows. In
section II, we present our setup to generate arbitrary
MPS using a microwave cavity coupled to a transmon
qubit, discuss the imperfections during the MPS gen-
eration, and estimate the performance of the device.
In section III, we present the setup to generate pho-
tonic rp-PEPS and provide the circuits for generating the
two-dimensional cluster state, the toric code state, and
isoTNS. At last, we analyze the scaling of the state prepa-
ration fidelity. We summarize our work in section IV.

II. GENERATING MPS WITH CQED

In this section, first we introduce the setup in sec-
tion II A and the MPS generation protocol in section II B.
Then we analyze the imperfections during the protocol
in section II C, and shown in section II D that this pro-
tocol can be implemented with current technologies with
potentially outstanding performance.

A. cQED sequential photon source

We consider the setup sketched in Fig. 1(a), where a
cavity (with the Hilbert spaceHC) is dispersively coupled
to a transmon qubit (with the Hilbert space HT ), with
a Hilbert space Hsrc = HT ⊗ HC [51]. The transmon
ground (excited) state is denoted by |0〉T (|1〉T ). Defining
the transition operator σαβ = |α〉T 〈β| for the transmon,
the system Hamiltonian Hsrc(t) = H0+Hdrive(t) contains
a static part

H0 = ωTσ11 + ωCa
†a− χσ11a

†a, (2)

and time-dependent driving of transmon and cavity

Hdrive (t) = εC(t)a+ εT (t)σ01 + H.c. (3)

Here ωT (ωC) is the frequency of the transmon qubit
(cavity), and a is the lowering operator of the cav-
ity mode. The dispersive interaction strength χ sets a
timescale for cavity-transmon gates. The driving ampli-
tude of the qubit (cavity) is εT (εC). The level struc-
ture of this system is shown in Fig. 1(b). This Hamilto-
nian gives universal control of the cavity-transmon sys-
tem [52]. We assume that one can engineer the following
on-demand photon emission process Mph from the trans-
mon excitation

Mph : |i〉T → |0〉T |i〉ph, i = 0, 1. (4)

This can for example be achieved by coupling the qubit
to an additional emitter via a tunable coupler [21].

B. MPS generation protocol

The setup in section II A can sequentially generate
photonic matrix product states (MPS) using the generic
protocol proposed in Ref. [10], schematically shown in
Fig. 1(c). We identify the first D Fock states of the cavity
mode as our basis for the D-level ancilla, with a Hilbert
space HD. The MPS generation protocol starts from an
ancilla initial state |ϕI〉C ∈ HD with the transmon in
its ground state. In each photon generation round, the
ancilla first interacts with the transmon, described by a
unitary operation U[i]. Then, the transmon emits its ex-
citation and returns to its ground state (denoted by a
SWAP gate in Fig. 1c), generating a photonic qubit de-
fined by the presence or absence of a photon at that time.
This setup is notably different from Ref. [11], where a D-
level atom is used as the ancilla, and an optical cavity is
used to emit photons.
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In the whole protocol, the unitaries always act on the
ancilla-transmon states of form |ϕ〉C |0〉T , that is

U[i]

(
|ϕ〉C |0〉T

)
=

1∑
j=0

V j[i]|ϕ〉C |j〉T . (5)

Since U[i] is unitary, the matrices {V j[i]} satisfy the

isometry condition
∑1
j=0 V

j†
[i] V

j
[i] = ID. The quantum

state after n rounds of photon generation is |Ψ〉 =
MphU[n] . . .MphU[1] |ϕI〉C . By disentangling the ancilla
and the photonic states in the last step such that |Ψ〉 =
|ϕF 〉C ⊗ |ψMPS〉, one generates the following photonic
MPS [10]

|ψMPS〉 ∝
1∑

i1...in=0

C〈ϕF |V in[n] . . . V
i1
[1] |ϕI〉C |in . . . i1〉 . (6)

We use the quantum optimal control (QOC) approach
developed in Ref. [14] (which is based on Ref. [53]) to find
the pulse sequences that implement the desired unitary
operations for our protocol (see details in Appendix A).
As a demonstration, we show how to generate a linear
cluster state [54] that can be written as an MPS of bond
dimension D = 2, with

V 0
[i] = 1√

2

(
1 0
1 0

)
, V 1

[i] = 1√
2

(
0 1
0 −1

)
,

|ϕI〉C = 1√
2
(|0〉+ |1〉), |ϕF 〉C = |0〉.

(7)

In each round except the last, we apply the same uni-
tary U[i 6=n] followed by photon emission represented by
Mph, which adds one site to the state. In the last step,
we apply the unitary U[n] followed by Mph, which emits
the last photon and disentangles the source from the pho-
tons. The pulse sequence of the driving [Eq. (3)] for im-
plementing the two unitaries is shown in Fig. 2, and more
details are provided in Appendix A.
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(b)

FIG. 2. Optimized pulse of the cavity and transmon driving
[Eq. (3)] to implement the unitaries (a) U[i 6=n] and (b) U[n]

for the cluster state [Eq. (7)] generation.

C. Analysis of experimental imperfections

Ideally, the above protocol generates the desired pure
photonic state |ψMPS〉. However, there are various imper-
fections in this system during the unitary operation and
the photon emission process. Thus the protocol produces
a n-photon density matrix ρph, with a non-unit fidelity
FMPS = ph〈ψMPS|ρph|ψMPS〉ph. Due to the sequential
nature of the protocol, FMPS is an exponentially decay-
ing function of the emitted photon number n, that is

FMPS = e−ξ·n, (8)

where ξ is the error per photon emission. An example of
this behavior is shown in Fig. 3(a).

Decoherence processes in the cavity-transmon system
include transmon decay at a rate ΓT , cavity mode de-
cay at a rate ΓC , and transmon dephasing at a rate Γφ
[55]. These processes happen both during the unitary
operations and the photon emission process. The finite
anharmonicity α of the transmon further allows leakage
into the second excited state |2〉T in every unitary oper-
ation.

To model the imperfections due to finite anharmonic-
ity α during unitary operations, we model the trans-
mon as a truncated anharmonic oscillator with basis
{|0〉T , |1〉T , |2〉T }. After further including the decoher-
ence effects, the system density matrix ρsrc ∈ Hsrc evolves
under the master equation

ρ̇src(t) = i[H ′src(t), ρsrc(t)]

+
∑
n

(Jnρsrc(t)J†n −
1

2
{ρsrc(t), J†nJn}),

(9)

with H ′src(t) being the system Hamiltonian includ-
ing transmon double excitations with anharmonicity α.
Defining the spin operators σij = |i〉T 〈j|, the jump

operators are JT =
√

ΓT (σ01 +
√

2σ12), JC =
√

ΓCa,
Jφ =

√
Γφ(σ11 + 2σ22).

Since the current experiments generally have |α| �
|χ| � ΓC ,ΓT ,Γφ [51, 55, 56], for a gate time T ∼ 1/|χ|
we can estimate the scale of the errors on FMPS during
each unitary operation perturbatively. The total error ξ
is a sum of several parts: (i) transmon decay ξΓT , (ii)
transmon dephasing ξΓφ , (iii) cavity decay ξΓC , and (iv)
transmon nonlinearity ξα. These contributions scale as

ξΓT ∼ ΓT /|χ|, ξΓφ ∼ Γφ/|χ|,
ξΓC ∼ ΓC/|χ|, ξα ∼ |χ|2/|α|2. (10)

Imperfections also affect the photon emission process.
First, there is a finite intrinsic photon retrieval efficiency
pem associated to Mph. Second, system decoherence hap-
pens during the photon emission. We assume a finite
photon emission rate Γem, and thus a finite duration of
photon emission Tem (which we can tune). In the regime
of ΓT ,Γφ,ΓC � Γem, we can estimate scaling of error on
FMPS due to system decoherences during each emission
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process as

ξem
ΓC
∼ ΓCTem, ξem

ΓT
∼ ΓT /Γem,

ξem
Γφ
∼ Γφ/Γem, ξpem ∼ − log pem.

(11)

Notably, here ξem
ΓT

and ξem
Γφ

, which are due to transmon

decoherence, do not depend on the emission time Tem,
since the transmon excitation is emitted out during each
emission process. The expression for ξpem comes from the
fact that e−ξpemnph ∼ p

nph
em . The finite photon emission

time also results in a residual population of the transmon
first excited state pT1(Tem) = e−ΓemTem · pT1(0), which
reduces the photon retrieval efficiency pem. The whole
photon emission process including all imperfections can
be described by a process map Wph : Hsrc → Hsrc ⊗Hph

that maps ρsrc to a system-photon joint density matrix
(see the construction of Wph in Appendix C). At last,
note that we did not include the imperfections during
photon transmission, which is not a part of our setup.

Using the solution of Eq. (9) and the process map
Wph, we can use a matrix product density operator
(MPDO) approach [14] to obtain the photonic state fi-
delity FMPS and extract the overall error rate ξ (details
in Appendix B). As a demonstration, we analyze the pro-
cess of generating the one-dimensional cluster state using
the pulses in Fig. 2. From the scaling data of ξ as a func-
tion of various imperfections (details in Appendix D), in
the regime of small error (ξ � 1), we have

ξ ≈ ξunit + ξsrc
em + ξph

em, (12)

where the imperfections during unitary operation

ξunit = β0 +
βCΓC + βTΓT + βφΓφ

|χ| +
βα · |χ|2
|α|2 , (13)

the cavity-transmon decoherence during the photon emis-
sion process

ξsrc
em = βφ,emΓφ/Γem + βC,emΓCTem, (14)

and the imperfections of the photon emission

ξph
em = −βem log

(
(1− e−ΓemTem)

Γem

Γem + ΓT
pem

)
. (15)

The above overall scaling matches our qualitative pre-
diction [Eqs. (10) and (11)] very well. The non-universal
coefficients {βi} depend on the target photonic state and
the pulse shape, and are extracted from scaling data
shown in Appendix C. In our example of cluster state
generation, using the pulses shown in Fig. 2, we obtain

βC = 2.20, βT = 1.43, βφ = 0.92,
βφ,em = 0.51, βC,em = 0.47, βem = 0.47,
β0 = 2.58× 10−4, βα= 46.7.

(16)

Here β0 corresponds to the imperfect synthesis of the op-
timal control pulse, and can typically be made negligible.
All other {βi} are of order O(1), except βα which corre-
spond to the effect of transmon double excitations, which

is particularly large because it scales with the maximum
driving amplitude of the transmon, which can be several
times larger than |χ| [c.f. Fig. 2]. Note that, the decoher-
ence due to transmon double excitations [c.f. Eq. (13)] is
still relatively small, thanks to the strong anharmonicity
|α| that suppress the transmon double excitations.

D. Performance estimation of protocol

We estimate the performance of this sequential photon
source with current state-of-the-art experimental param-
eters. Specifically, the cavity and transmon parameters
are ΓC = 0.37 kHz, ΓT = 5.88 kHz, Γφ = 23.26 kHz,
α = 2π×−236 MHz, χ = 2π×−2.194 MHz [55], and the
photon emission parameters are Γem = 2π × 1.95 MHz,
pem = 1 [21]. We also choose an optimal duration of pho-
ton emission as T opt

em = log(1+βemΓem/βC,emΓC)/Γem to
minimize ξ [c.f. Eq. (12)], under the assumption of a fixed
photon emission rate Γem. For the one-dimensional clus-
ter state generated using the pulse sequence in Fig. 2,
the MPDO evolution of the fidelity FMPS with this set of
parameters is shown in Fig. 3(a). Defining the entangle-
ment length Nph = log 2/ξ (recall ξ defined in Eq. (8)),
which is the photon number that the fidelity drops down
to FMPS = 1/2. For Fig. 3(a) we obtain Nph ≈ 123,
which would mean over an eightfold increase compared to
the experimentally demonstrated Nph ≈ 15 in Ref. [21].
This improvement partly comes from the fact that we
exploit the long transmon lifetime reported in Ref. [55].
If we use the transmon properties reported in [21], our
protocol gives Nph ≈ 47 (see Appendix D), which is still
a substantial improvement.
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FIG. 3. (a) The state fidelity versus the number of photons for
the cluster state generated using the pulse sequence in Fig. 2,
with the state-of-the-art parameters listed in section II D. The
horizontal line denotes FMPS = 1/2, with the corresponding
photon number Nph defined as the entanglement length of the
photon string. (b) Evolution of the transmon excited popula-
tion pT1 during one sequence of cluster state generation. The
pT1 shows a transient evolution during the unitary operation
driven by the pulse in Fig. 2(a), and exponentially decays
during the photon emission process.

To illustrate this point, we plot the population pT1 of
the transmon excited state |1〉T during one photon gen-
eration round in Fig. 3(b). We see that |1〉T is only tran-
siently populated during the unitary operation (driven by
the pulse in Fig. 2a), compared to the protocol in Ref. [21]
where one always has pT1 = 1/2 during the cluster state
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generation. This leads to a substantial improvement of
the entanglement length obtained in our protocol.

At last, we estimate the scaling of Nph with the bond
dimension D of the desired MPS as (see Appendix D 3)

Nph ∝ D−2, (17)

and this scaling mainly comes from the time TDMPS =
O(D2) [57] to implement each unitary that acts on the
system of dimension dimHsrc = 2D [c.f. section II B].
This scaling indicates that our system can create MPS of
moderately high bond dimensions. This already finds
many applications and can capture the ground states
of one-dimensional local gapped Hamiltonians [58–61].
Even for one-dimensional spin models at a critical point,
a moderately high D is suitable to capture the ground
state of the chain with moderate system size, as the main
deviation to the thermodynamic limit comes from the fi-
nite size effect, instead of a finite-entanglement effect due
to the limited D [62].

III. GENERATING RP-PEPS WITH CQED

The previous section shows that this cavity-transmon
system has the capacity to produce high-fidelity one-
dimensional photonic MPS. In this section, we demon-
strate how to extend the cavity-transmon system to im-
plement the high-dimensional photonic state generation
protocol introduced in Ref. [1]. First, in section III A we
introduce the array of coupled sequential photon sources
and prove the universality of the Hamiltonian for this
system, which allows this system to implement arbitrary
local unitary transformations. Then we show in sec-
tion III B that, using this setup, one can generate radial
plaquette PEPS (rp-PEPS), whose source point [c.f. sec-
tion III B] sits on a corner of the lattice. After that,
in section III C we demonstrate this protocol by dis-
cussing the preparation of two-dimensional cluster state,
the toric code state, and the isometric tensor network
states (isoTNS). At last, we analyze the scaling of the
state preparation fidelity for this protocol in section III D.
Here we mainly focus on generating two-dimensional pho-
tonic states, however, this protocol readily extends to
higher dimensions [1].

A. Setup: array of sequential photon sources

Let us consider a natural generalization of the setup in
section II A, which we have a quasi-one-dimensional ar-
ray consisting of Lc ×m cavity-transmon pairs, and use
each D′ Fock states of each cavity. Here we use the Lc
cavities in each row to form an ancilla A of dimension
D = D′Lc , which will be needed for the photon gener-
ation protocol in section III B. Both the Lc and D′ can
be chosen at will, and we will comment on the choice of
them in section III D. Moreover, among all Lc×m trans-
mons, there are m transmon emitters {Tj}j=1,...,m (one

in each row, see Fig. 4a) that can emit photons, while
other transmons are used to provide universal control to
the corresponding cavities [63].

ancilla

coupler

emitter

⎫⎬ ⎪⎪⎭ ⎪⎪
FIG. 4. (a) The setup to generate photonic radial plaque-
tte PEPS (rp-PEPS), which consist a quasi-one-dimensional
array of cavity-transmon pairs (the notations follow that in
Fig. 1a). In each row there is a transmon emitter that can
emit photons. The neighboring cavities are connected by Y-
shape couplers (the green boxes). (b) rp-PEPS with open
boundary conditions are produced by sequential applying uni-
taries on overlapping regions. Here the source point [1] of the
state is denoted by the red dot.

We couple each neighboring pair of cQED sequential
photon sources by a coupler that interacts with both cav-
ities [64] (shown as green boxes in Fig. 4a). By driving
the coupler with two-tone pumps, the four-wave mixing
process of the coupler reduces to the following bilinear
interaction [65]

Hij
int(t) = gij(t)(e

iϕij(t)a†iaj + H.c.). (18)

Here a†i denote the creation operator of the cavity for i-th
cQED sequential photon source. The coupling strength
gij(t) and phase ϕij(t) can be controlled by the drivings
of the coupler. Let us denote the set of vertices of the
square lattice of sources in Fig. 4(a) as V, where each ver-
tex vij connects the cavities of the i-th and j-th source.
One can thus write down the Hamiltonian of this system
as

Harray(t) =

Lc×m∑
i=1

Hi
src(t) +

∑
vij∈V

Hij
int(t), (19)

where Hi
src is the Hamiltonian for the i-th cQED se-

quential photon source, containing the terms in Eqs. (2)
and (3). Equipped with the universal control of each
cQED sequential photon source and the bilinear cou-
plings, we prove in Appendix F that Harray can univer-
sally control the whole array of cQED sequential photon
sources. Given this, we can assume that one can imple-
ment arbitrary local unitary operations one this system.

In sum, this system can be represented by a one-
dimensional array of D′LC -level ancillas (labeled by
{Aj}j=1,...,m) coupled to transmon emitters (labeled by
{Tj}j=1,...,m), illustrated in Fig. 5. Note that one can let
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more transmons in each row to emit photons, which effec-
tively increase the dimension of the transmon emitters.
At last, in the next sections we will treat each ancilla
effectively as Lp − 1 qubits by choosing D′ and Lc such
that D′LC ≥ 2Lp−1.

B. Preparation of rp-PEPS

Ref. [1] introduces a generic protocol to produce rp-
PEPS on flying qubits. rp-PEPS are states prepared
by sequentially applying unitaries on plaquettes of size
Lp × Lp (Lp � n,m) in a radial fashion, where one ex-
ample is illustrated in Fig. 4(b). They possess long-range
correlations and area-law entanglement, and photonic rp-
PEPS can be efficiently prepared with the circuit depth
Eq. (1).

end⎫⎬ ⎪⎪⎭ ⎪⎪

repeated

transmon ancilla photon

FIG. 5. The preparation of photonic rp-PEPS. In the prepa-
ration of the (i, j)-th site, we apply a unitary Û[i,j] followed
by a photon emission of the transmon Tj . After the initial
steps (1) and (2), steps (3) and (4) will be repeated. At the
end of the protocol, we swap the excitations on the ancillas
to the emitters and then convert them to photons, denoted as
S.

The generation procedure of rp-PEPS is shown in
Fig. 5. We start from an initial state where all the
ancillas and the transmons are in their ground state
|ϕ0〉 = |0{Aj}〉 ⊗ |0{Tj}〉, and apply unitaries {Û[i,j]} at
each step, which acts on ancillas {Aj , ..., Aj+Lp−1} and
transmons {Tj , ..., Tj+Lp−1}. This is equivalent to acting
on a plaquette of qubits of size Lp × Lp. After each uni-
tary, we trigger the photon emission from the transmon
Tj (denoted as isometry M j

ph [cf. Eq. (4)]). Note that
after the last unitary per column, the last emission pro-

cess per column M
m−Lp+1
ph (see step 4 of Fig. 5c) convert

excitations of transmons {Tm−Lp+1, ..., Tm} to multiple
photonic qubits at the same time. Repeatedly apply-
ing this procedure following the order shown in Fig. 5
(also see the below Eq. (20)), and in the end emitting
the remaining excitations in the ancillas (an operation
collectively denoted by as S), we generate the desired
two-dimensional photonic state [1]

|ψrp〉 = 〈ϕ0|S
n−Lp+1∏
i=1

m−Lp+1∏
j=1

(M j
phÛ[i,j])|ϕ0〉. (20)

Given the universal control of Eq. (19), this protocol

can produce arbitrary states of form Eq. (20) (schemat-
ically shown in Fig. 4b), which are two-dimensional rp-
PEPS of plaquette size Lp with open boundary condition,
with its source point located at the first photon being
created [1] [66]. Also note that, in the above protocol,
the photon emissions reset the transmons. This allows
one to efficiently reuse them, which allows one to paral-
lelize the preparation procedure (shown in steps 3 and
4 of Fig. 5c), such that the circuit depth for preparing
rp-PEPS of plaquette length Lp on a n×m lattice asymp-
totically scales as Eq. (1) [1]. This system further allows
increasing the plaquette size by increasing the number of
cavity-transmon pairs LC and using more modes D′ in
the cavity.

Finally we note that by replacing the photon emissions
with qubit measurements, this state generation protocol
naturally becomes a qubit-efficient quantum variational
scheme [67, 68].

C. Examples

1. Two-dimensional cluster state

Consider a two-dimensional square lattice, with the
position vector of each site denoted as ~a ≡ (i, j). The
two-dimensional cluster state |Cl〉2D can be defined in a
constructively way, by first preparing all qubits in the
state |+〉 =

(
|0〉+ |1〉

)
/
√

2, denoted as ⊗
{~a}
|+〉. Then

one apply control-Z (CZ) gates between each nearest-
neighbouring paris of qubits, which lead to [54]

|Cl〉2D =
∏

~b adjacent ~a

CZ~a~b

⊗
{~a}

|+〉 . (21)

This state is an rp-PEPS of plaquette size Lp = 2,
thus it can be prepared by the protocol in section III B,
where each ancilla consists of a qubit. The preparation
procedure is shown in Fig. 6, where the corresponding
plaquette unitaries {U[i,j]} in Eq. (20) are formed by CZ,
SWAP, and Hadamard gates to create the desired graph
state geometry needed for |Cl〉2D.

One can easily extend the size of the state shown along
the horizontal direction by repeatedly applying the steps
5.1-8 in Fig. 6, and along the vertical direction by putting
more ancilla-transmon pairs and applying unitaries that
are similar to step 7. Moreover, by omitting some photon
emissions, one can create arbitrary graph states of local
connectivities in this way [24].

The depth for this circuit in terms of plaquette uni-
taries to prepare |Cl〉2D of size n × m is T ≈ 2n + m
[c.f. Eq. (1)]. We also point out that this can be further
improved to Tcl ≈ 2n, since the CZ gates commute with
each other. As an example, steps 1-4 in Fig. 6 can be
combined such that we parallelly apply CZ gates on all
adjacent pairs in the ancilla-transmon array (which can
be contained in two layers of plaquette unitaries), then
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emit emit SWAP+H

SWAP+Hemit emit

H

H

H

FIG. 6. Preparing two-dimensional cluster state |Cl〉2D fol-
lowing the rp-PEPS preparation protocol [c.f. Fig. 5, and we
keep the same notation as there]. Here both the ancillas and
transmons are qubits, and they are initialized in the state
|+〉. The connecting lines between two qubits mean that they
have been acted by a control-Z (CZ) gate, with the red color
denotes that the CZ gates are being acted in that step. The
steps from 1 to 4 prepare the first column of photons. Then in
creating the next column of photons, in each unitary we first
swap certain ancilla states their corresponding transmons (il-
lustrated by green arrows) and apply Hadamard gates to set
the ancilla states to |+〉 (see 5.1 and 7.1) before applying CZ
gates, which eventually prepare the second column (see step
8). By repeating the step 5.1 to 8, we can prepare |Cl〉2D of
arbitrary size.

emit one column of photons. The CZ gates between two
cavities can be realized by combining single-qubit rota-
tions and a CNOT gate, which has been experimentally
implemented in Ref. [69].

The above further parallization of the circuit show
a generic feature of photonic rp-PEPS [Eq. (20)]: in

cases where the sequential product of unitaries Û icol =∏m−Lp+1
j=1 Û[i,j] for preparing each column of photons can

be parallelized as a circuit of depth O(1), it could be ben-

efitial to directly implement Û icol followed by the photon

emission of all transmon emitters ⊗
j
M j

ph to prepare the i-

th column of the rp-PEPS. This also applies to the below
protocol for the generation of the toric-code state.

2. Toric code state

The toric code state [70, 71] is a paradigm example
of string-net states, and finds important applications for
quantum error correction. The toric code Hamiltonian
on a square lattice is

HTC = −
∑
s

As −
∑
p

Bp, (22)

where As =
∏
i∈s Zi is a product of Pauli Z opera-

tors that acts on a star of the lattice (a green box in
Fig. 7a), and the Bp =

∏
j∈pXj is a product of Pauli

X operators that acts on a plaquette of the lattice (a
red box in Fig. 7a). For the open boundary condi-
tion shown in Fig. 7(a), HTC has a ground state |TC〉,

which have +1 eigenvalue on all {As} and
{
Bp
}

, that
As|TC〉 = Bp|TC〉 = +1|TC〉. It can be written as an
equal superposition of all plaquette configurations as

|TC〉 ∝
∏
p

(
I +Bp

)⊗
{~a}

|0〉 . (23)

The toric code state has recently been prepared on a
stationary lattice, with the following procedure [45]:

1. Initialize the whole lattice in the state
⊗
{~a}
|0〉, where

all 〈As〉 = 1 and 〈Bp〉 = 0.

2. Choosing a qubit for each plaquette as the repre-
sentative qubit (an example choice is denoted by
purple dots in Fig. 7a), and apply Hadamard gate
on it.

3. Within each plaquette, sequentially apply CNOTs
with the representative qubit as the control and
other qubits as targets, with an ordering such that
the representative qubits are not changed until the
CNOTs in their plaquette have been applied.

Inspired by this procedure, one can prepare |TC〉 as a
photonic rp-PEPS of Lp = 2 using the protocol in sec-
tion III B, with each ancilla consisting of a single qubit.
To ease the notation, in Fig. 7(b) we group the gates in
steps 2-3 of the above procedures that act on each pla-
quette as V̂ , and the swap gates used to put the ancilla
states to transmons as Ŝu and Ŝud.

The preparation circuit is shown in Fig. 7(c), where the

plaquette unitaries are alternatively formed by V̂ or the
identity gate I, and their product with swap gates (Ŝu
or Ŝud). The V̂ implement desired operations for each
toric code plaquette region, while the photon emission
and swap gates will ‘push’ the qubits toward. After all
operations in Fig. 7(c), one obtains |TC〉 of size 4× 4 on
three columns of photonic qubits and the ancilla qubits,
shown in Fig. 7(d). By further repeating the steps from
4-9 in Fig. 7(c) and using more ancilla-transmon pairs,
one can generate |TC〉 of arbitrary size. We also point
out that, one can apply the same procedure as described
in the two-dimensional cluster state generation protocol
[c.f. section III C 1] to obtain a circuit depth TTC ≈ 2n in
terms of plaquette unitaries for generating |TC〉 of size
n×m.

The schemes presented here for cluster state genera-
tion and toric code state generation are directly derived
from their circuit generation on stationary lattices, and
we use the coupling between ancilla-transmon pairs to
realize coupling between photons along the horizontal di-
rection. This idea generally allows one to obtain photonic
state generation circuits by utilizing existing circuits on
stationary lattices. For example, one can generate string-
net states by extending the protocol in section III C 2,
using similar circuits as that in Ref. [72].



8

H

FIG. 7. Preparation of photonic toric code state |TC〉
[c.f. Eq. (23)]. Throughout this figure, we keep the same
notation as that in Fig. 5. The support of the star opera-
tors As (plaquette operators Bp) are denoted by the green
(red) shades. (a) We consider two-dimensional square lattice
of open boundary condition. In this case, |TC〉 is the unique
ground state of the Hamiltonian HTC [c.f. Eq. (22)], which
has +1 eigenvalue for all As and Bp. Each plaquette has a
‘representative qubit’, denoted by a purple dot. (b) We group

the gates that will be applied to each plaquette as V̂ . The
SWAP gates are denoted as Ŝu and Ŝud. (c) The preparation
procedure inspired by Ref. [45]. Different steps are separated

by dashed grey lines. In each step, we alternatively apply V̂
or identity gate I followed by a photon emission (for example,
from steps 1 to 3). Also after each photon emission, one needs
to swap the corresponding ancilla state to the transmon, thus
in steps 4-9 the unitaries are generally the product of swap
gates (Ŝu or Ŝud) with V̂ or I. (d) After step 9 of the panel (c),
one obtains |TC〉 of size 4×4 with the same geometry as that
in panel (a), consisting of three columns of photonic qubits
and the column of ancilla qubits. By further repeating the
steps from 4-9 in panel (c) and using more ancilla-transmon
pairs, one can generate |TC〉 of arbitrary size.

3. Isometric tensor network states

The rp-PEPS contain the isometric tensor network
states [34] (isoTNS) as a subclass [1]. An isoTNS is
parametrized by its bond dimension D [34] that bound
the entanglement entropy of the state, and its physical
dimension d that denote the Hilbert space dimension of
each site.

As the protocol in section III B can prepare rp-PEPS
with the source point in the corner of the lattice, one can
prepare the subclass of isoTNS whose orthogonality cen-
ter (see details in Appendix E) is in this corner. To do so,
one has to require the unitaries to have an ‘L’-shape [1],
as shown in Fig. 8 for the case of D = 2 and d = 2. Here
each unitary B̂[i,j] acts on the ancilla Aj and transmons
{Tj , ..., Tj+Lp−1} to produce isoTNS of bond dimension

D ≤ 2Lp−1. Increasing isoTNS bond dimension corre-
sponds to increasing the arm length of the ‘L’-shaped

⎫⎬ ⎪⎪⎭ ⎪⎪
repeated

transmon ancilla photon

FIG. 8. Preparation of isoTNS with bond dimension D = 2
and physical dimenison d = 2. In the preparation of the (i, j)-

th site, we apply a unitary B̂[i,j] connecting the cavity Cj and
the transmons Tj , Tj+1, followed by a photon emission of the
transmon Tj . After the initial steps (1 and 2), steps 3 and 4
will be repeated to build up the desired 2D isoTNS. The red
dot denotes the orthogonality center of the isoTNS.

unitary. In the end of the protocol, we can disentangle
the ancilla from the photonic state being produced [1].
We provide more details on isoTNS in Appendix E.

The subclass of isoTNS whose orthogonality cen-
ter is in the corner of the lattice already contains all
graph states of local connectivities [24] and all string-
net states [41], thus the two-dimensional cluster state
and toric code state discussed previously can be also
created in this way. However, we point out that, the
circuits we presented in sections III C 1 and III C 2 are
potentially more efficient than the circuit derived from
its isoTNS counterpart. For example, the isoTNS repre-
sentation of arbitrary Zλ toric code state [73] is shown
in Appendix E 1, where the physical dimension of the
tensor is λ4. Thus for the qubit toric code state (the
same as that in section III C 2), this isoTNS genera-
tion scheme requires each transmon emitter to be 16-
dimensional, for which we need to couple multiple trans-
mons to the same ancilla. The existence of isoTNS rep-
resentation of Zλ toric code state for arbitrary λ also
implies that our scheme can create photonic qudit toric
code state, and such states show certain advantages as
quantum error-correcting codes compared to the qubit
toric code state [74, 75].

At last, isoTNS is a class of state that can be efficiently
prepared as shown here (also see Ref. [1]), and serve as an
ansatz for classical variational algorithms [34]. Combin-
ing these two features may allow one to implement inter-
esting protocols like variational quantum metrology [47–
49].

D. Scaling of rp-PEPS generation fidelity

Under imperfections, the rp-PEPS generation proto-
col [c.f. section III B] will produce a density matrix of
photons ρrp. Here we provide a qualitative estimation of
the fidelity Frp = 〈ψrp|ρph|ψrp〉 of the parallelized ver-
sion of the rp-PEPS generation protocol. Moreover, one
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can calculate the fidelity exactly by extending the MPDO
approach in Appendix B.

Let us consider the array shown in Fig. 5(b) with m
rows, where each row consists of LC cavity-transmon
pairs, with each cavity and transmon have the deco-
herence channels that described in section II C. As here
we use the first D′ Fock states of the cavity, we take
the worst-case estimation of the cavity decay rate as
Γ′C = (D′ − 1)ΓC .

To prepare a generic rp-PEPS of size n ×m and pla-
quette length Lp(Lp � n,m), when preparing each pho-
ton we need to apply a unitary acting on L2

p qubits, thus

dim Û[i,j] ≈ 2L
2
p . Thus we estimate the time Trp of imple-

menting a generic unitary using optimal control methods

as Trp ∼ (dim Û[i,j])
2 = O(4L

2
p) [57]. Since the initial

state and the final state of the sources in our protocol

are both the ground state |ϕ0〉 [c.f. Eq. (20)], in the par-
allelized preparation procedure [c.f. Fig. 5], each source
remain excited for a time LpnTrp. Moreover, there are
in total around nm photon emissions. Thus by applying
the same argument as in the MPS generation protocol
[c.f. section II C], one can estimate the scaling of the fi-
delity as

Frp ∼ exp
[
−ξ′D

′

unit ·mLc · LpnTrp − (ξ′
src,D′

em + ξ′
ph
em) · nm

]
,

(24)

with ξ′
D′

unit, ξ
′src,D′

em and ξ′
ph
em of the same form as that in

Eqs. (13) to (15), but with cavity decay rate ΓC replaced
by Γ′C and different non-universal constants {β′i}.

Given Lp, the number of cavities in each ancilla LC
is LC =

⌈
(Lp − 1)/log2D

⌉
. We can thus write overall

scaling [Eq. (24)] as Frp ∼ exp(−ξLp,D
′

rp · nm), with the

error rate of generating each photon ξ
Lp,D

′

rp as

ξLp,D
′

rp ≈ 4L
2
p(Lp − 1)Lp · ξ′D

′

unit/log2D
′ + ξ′

src,D′

em + ξ′
ph
em. (25)

From the above analysis, we see that using more cav-
ities Lc where each one has a small number of mode D′

can reduce the cavity decay rate Γ′C = (D′−1)ΓC . How-
ever, the fidelity of the inter-cavity connection is gen-
erally lower than the single cavity operation [65]. So
depending on the desired plaquette length Lp of the rp-
PEPS, one needs to choose appropriate Lc and D′ to get
the highest possible fidelity.

IV. CONCLUSION

In conclusion, we propose a physical platform and
a protocol to sequentially generate microwave photonic
tensor network states with moderately high bond dimen-
sions based on a dispersively coupled cavity-transmon
system. The good coherence properties of microwave cav-
ities lead to favorable scaling of the photon number for
the MPS, in particular, we show this platform can poten-
tially create a one-dimensional cluster state of over a hun-
dred photons deterministically with current technology.
The good connectivity makes this platform a promising
candidate for generating a large class of high-dimensional
rp-PEPS, and we show how to create a two-dimensional
cluster state, the toric code state, and isoTNS as exam-
ples. Our work thus serves as systematic guidance for
sequential photon generation experiments in cQED plat-
forms, and can naturally be applied to other dispersively
coupled qubit-oscillator systems.

Our work can be extended in many ways. First, there
are plenty of ideas to further reduce the imperfections
during the protocol by applying error-correction tech-
niques [76, 77], applying error-transparent gates or path-

independent gates [78] on the bosonic modes, or applying
open system optimal control techniques [53, 79, 80]. Sec-
ond, the ability to generate strongly correlated photonic
tensor network states opens the door of developing quan-
tum information processing protocols that go beyond the
MPS [47–49]. One can further simultaneously using cou-
pled arrays of emitters and non-Markovian feedback ap-
proaches [27–33] to reduce the component overhead of the
system and possibly generate a larger class of photonic
states.
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Appendix A: MPS generation with cQED using
Quantum Optimal Control Approach

In this section, we introduce our quantum optimal con-
trol (QOC) approach (similar to that used in [14]) to
implement unitaries on this setup.

We aim to find the driving amplitude εC(t), εT (t) for
the controlHdrive(t) [Eq. (3)] that implements the desired
unitary operations U[i] [Eq. (5)] in HD ⊗HT .
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Given the target MPS to be prepared [Eq. (6)], one

can construct a series of isometries {Â[i]} that needs to
be implemented on the system [10]. For generating the n-
photon cluster state [Eq. (7)], this construction gives two

kinds of isometries Â[i 6=n] and Â[n], as well as the ancilla
initial state |ϕI〉C needed in the protocol [c.f. Eq. (6)]:

Â[i 6=n] =

(
V 0

[i]

V 1
[i]

)
= 1√

2


1 0
1 0
0 1
0 −1

 , Â[n] =


1 0
0 0
0 1
0 0

 ,

|ϕI〉C = 1√
2
(|0〉C + |1〉C).

(A1)

Note here that Â[n] is different from all other Â[i6=n], as
it contains an additional operation that disentangle the
cavity from the photonic MPS, and lead to the final cav-
ity state |ϕF 〉C in Eq. (7).

We can embed above {Â[i]} into U[i] to realize Eq. (5).
In numerical calculations we keep the first NC > D Fock
states in HC . Thus dimHC = NC in our numerical cal-
culation. One can then write U[i] as

U[i] =

(
Â[i] B1

O B2

)
, (A2)

with its basis vector permuted as

Base(U[i]) ≡ [Base(HD ⊗HT ), others]. (A3)

The O is a zero matrix, which physically means that U[i]

does not cause the population to leak out of HD ⊗ HT .
The parts B1 and B2 are arbitrary, as long as U[i] is a uni-
tary of dimension 2NC . One needs two kinds of unitaries
U[i 6=n] and U[n] to generate the above cluster state [14]

since we get different Â[i 6=n] and Â[n] in Eq. (A1). Each
application of U[i 6=n] followed by the photon emission
adds one site to the cluster state. The last unitary U[n]

followed by a photon emission disentangles the source
from the photonic MPS.

For the quantum optimal control (QOC) with our
cQED platform with Hamiltonian Hsrc [Eqs. (2) and (3)],
we go to the rotating frame to remove energy terms of
the transmon and the cavity mode in Hsrc, getting

H ′src(t) = χσ11a
†a+ [εC(t)a+ εT (t)σ01 + H.c.], (A4)

and readily apply the QOC algorithm in Ref. [14] with
the control Hamiltonian H ′src(t) to find the pulse se-
quences to implement desired U[i]. The pulse sequence to
implement U[i 6=n] and U[n] for the cluster state generation
are shown in Fig. 2, where we choose NC = 5.

Appendix B: The Matrix-Product Density Operator
(MPDO) approach to compute state fidelity

In this section we recall the MPDO approach [14] to
compute the fidelity FMPS of the photonic state. We can
rewrite the master equation Eq. (9) in a vectorized form

d~ρsrc(t)

dt
= L(t)~ρsrc(t), ~ρsrc =

Nh∑
a,b=1

ρab|a⊗ b̄〉, (B1)

Here L(t) is the Liouville operator, |a〉 is a basis element
in Hsrc and |ā〉 represent its complex conjugate. The
solution of Eq. (B1) is

~ρsrc(T ) = T {e
∫ T
0
L(t)dt}~ρsrc(0) = WL~ρsrc(0). (B2)

The photon emission process can be described by a pro-
cess map

Wph =

1∑
i,j=0

Nh∑
a,b,c,d=1

W ij
P,abcd|c, d̄, i, j̄〉|a, b̄〉, (B3)

which maps ~ρsrc with vectorized basis |a, b̄〉 to a
system-photon joint density matrix with vectorized basis
|c, d̄, i, j̄〉 = |c, d̄〉 ⊗ |i, j̄〉ph. Thus each photon genera-
tion round results in a map from the joint density matrix
~ρ[k−1] of k − 1 photons and system to the joint density
matrix ~ρ[k] of k photons and system:

~ρ[k] =

d−1∑
ik,jk=0

N ik,jk
[k] ~ρ[k−1], with N ik,jk

[k] = W ikjk
ph WL[k]

.

(B4)

The fidelity FMPS can be efficiently evaluated as [14]

FMPS =
1∑

{ik,jk}=0

Tr[N in,jn
[n] ...N i1,j1

[1] B̃]× Tr[(Ajn[n] ⊗ Ā
in
[n])...(A

j1
[1] ⊗ Ā

i1
[1])(B ⊗B)], (B5)

where we denote B̃ ≡
Nh∑
α=1
|ϕ′I〉〈α| ⊗ |ϕ′I〉〈α|, B ≡

|ϕI〉〈ϕF |, and Ā as the complex conjugate of a matrix A.
For higher-dimensional rp-PEPS, the Frp can be com-

puted in the same way by viewing the high-dimensional
rp-PEPS as an MPS with bond dimension and physical
dimension scale exponentially with the number of sequen-
tial photon sources m.
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Appendix C: Construction of process map Wph

The decoherence effects and the finite photon retrieval
efficiency pem during the photon emission will modify
Wph from its ideal form Wph = Mph ⊗ M̄ph with Mph

of the form Eq. (4). A good way to construct Wph is to
include environmental photon modes which capture the
erroneous jump events. When there is a finite photon
retrieval efficiency pem, we can include an environmental
photon mode εT , and the Mph : HT → HT ⊗Hph ⊗HεT

becomes

Mph :
|1〉T → |0〉T (

√
pem|1〉ph|0〉εT +

√
1− pem|0〉ph|1〉εT ),

|0〉T → |0〉T |0〉ph|0〉εT .
(C1)

Here the label ph marks the desired photon mode, and
εT is an environmental mode that marks the erro-
neously emitted photon. We construct Wph by Wph =
TrεT [Mph ⊗ M̄ph], in which we trace out the εT mode.

The effect of a transmon decay ΓT similarly leads to a
branching of the emission, that Mph : HT → HT ⊗Hph⊗
HεT becomes

Mph :
|1〉T → |0〉T

(√
Γem

Γem + ΓT
|1〉ph|0〉εT +

√
ΓT

Γem + ΓT
|0〉ph|1〉εT

)
|0〉T → |0〉T |0〉ph|0〉εT .

(C2)

The transmon dephasing leads to an exponential decay
of the density matrix elements that are off-diagonal on
the transmon basis with rate Γφ/2. In the regime of
Γφ � Γem the probability accumulates as

∫ Tem

0

Γφ
2
〈σeg(t)〉dt ≈

∫ ∞
0

Γφ
2
e−Γemt/2dt = Γφ/Γem.

(C3)

Thus, the mapping will lead to

W 10
ph →

(
1− Γφ

Γem

)
W 10

ph , W 01
ph →

(
1− Γφ

Γem

)
W 01

ph .

(C4)
in Eq. (B3).

The cavity decay will explicitly depend on the photon
emission time Tem. Since ΓC � Γem, we can solve the
dynamics analytically using the quantum trajectory ap-
proach [81] and include up to one jump process of the
cavity photon. During the emission process, the decay
probability for the Fock state |n〉 of the cavity mode is
approximately nΓCTem. By including a cavity decay en-
vironmental mode εC , we can write Mph : HC ⊗ HT →
HC ⊗HT ⊗Hph ⊗HεC as

Mph :
|n〉C |1〉T →

√
1− nΓCTem|n〉C |0〉T |1〉ph|0〉εC +

√
nΓCTem|n− 1〉C |0〉T |1〉ph|1〉εC ,

|n〉C |0〉T →
√

1− nΓCTem|n〉C |0〉T |0〉ph|0〉εC +
√
nΓCTem|n− 1〉C |0〉T |0〉ph|1〉εC .

(C5)

Similarly, we obtain Wph by Wph = TrεC [Mph ⊗M†ph].
A finite photon emission time also lead to a residue pop-
ulation on pT1(Tem) = e−ΓemTempT1(0) on the state |1〉T .
This can be modeled by a further reduction factor on pem

that pem → (1− e−ΓemTem)pem.
With the above analysis, we can write down the Mph :
HC ⊗HT → HC ⊗HT ⊗Hph⊗HεT ⊗HεC that includes
all the above effects as

|n〉C |1〉T →
√

1− nΓCTem|n〉C |0〉T ·

 √ (1− e−ΓemTem)Γempem

Γem + ΓT
|1〉ph|0〉εT |0〉εC+

√
1− (1− e−ΓemTem)Γempem

Γem + ΓT
|0〉ph|1〉εT |0〉εC


+
√
nΓCTem|n− 1〉C |0〉T ·

 √ (1− e−ΓemTem)Γempem

Γem + ΓT
|1〉ph|0〉εT |1〉εC+

√
1− (1− e−ΓemTem)Γempem

Γem + ΓT
|0〉ph|1〉εT |1〉εC

 ,

|n〉C |0〉T →
√

1− nΓCTem|n〉C |0〉T |0〉ph|0〉εT |0〉εC +
√
nΓCTem|n− 1〉C |0〉T |0〉ph|0〉εT |1〉εC .

(C6)
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And further trace out the environmental modes to get
Wph = TrεT ,εC [Mph ⊗ M̄ph]. After that, we include the
transmon dephasing by applying Eq. (C4), to finish the
construction of Wph.

Appendix D: Additional scaling data for MPS
preparation fidelity

1. Scaling of the error rate χ

As shown in the main text, we can compute the scaling
of the coefficient ξ of the exponentially decaying fidelity
FMPS = e−ξ·n with the slope (error rate) ξ as a func-
tion of various imperfections. This scaling is numerically
shown here in Fig. 9(a-g), where each data point is ex-
tracted from a MPDO calculation of the relation between
FMPS and the photon number n (an example is shown
in Fig. 3a), with only the specific decoherence channel
turned on. For example, in Fig. 9(a) only the transmon
decay ΓT is turned on. From Fig. 9(a-g) we obtain all
individual terms in Eq. (12), with non-universal coeffi-
cients in Eq. (16) for the cluster state generation with
the pulse sequence in Fig. 2. In the regime where the
error per photon generation is small, we can estimate the
total error ξ by simply adding these individual terms,
thus obtaining Eq. (12).

2. Fidelity versus photon number for transmon
parameters in Ref. [21]

In Fig. 3(a) we showed the fidelity versus the clus-
ter state photon number for the state-of-the-art experi-
mental parameters shown in section II D. To better com-
pare it with the experimentally demonstrated result [21],
here we compute the same relation with the transmon
properties reported there, while other parameters stays
the same as that in section II D. Specifically, we choose
ΓT = 47.62 kHz, Γφ = 58.82 kHz, α = 2π × −303 MHz,
and χ = 2π × −5 MHz [21]. The result is shown in
Fig. 9(h), from which we get Nph ≈ 47.

3. Achievable entanglement length Nph with MPS
bond dimension D

The entanglement length Nph = log 2/ξ is determined
by the error rate per photon ξ [Eq. (12)].To produce an
MPS with bond dimension D, we need to implement uni-
taries on 2D-dimensional Hilbert space. As numerical ev-
idence suggesting that [82] the time cost of implementing
a general unitary in N -dimensional Hilbert space using
the quantum optimal control approach scales as O(N2),
it takes TDMPS = O(D2) to implement above unitaries.
This lead to increased decoherence as the coefficients
βC , βT , βφ, βα in Eq. (8) are proportional to TDMPS. In
the regime of pem ≈ 1 and β0 ≈ 0 (typical for current

experimental platforms [21, 55]), one can thus estimate
the scaling of ξ as

ξ ≈ TDMPSξunit + ξsrc
em + ξph

em ∼ O(D2). (D1)

Thus the dominant part lead to a qualitative scaling
of Nph ∼ D−2.

Appendix E: isometric tensor network states

In this section, we provide more details on the defini-
tion of isometric tensor network states (isoTNS) [34].

To start, first we recall the definition of the pro-
jected entangled pair states (PEPS) [83], which are de-
fined through a network of tensors that are connected
with each other, with one tensor at each lattice site (see
Fig. 10a). The wavefunction of PEPS is obtained by con-
tracting the connected (virtual) legs of the tensors, as

|ΨPEPS〉 =

d−1∑
{k}=0

F2D({Bk[i,j]lurb})|{k}〉, (E1)

where the Bk[i,j]lurd is a rank-5 tensor on the site (i, j),

which has virtual indices l.u, r, b of bond dimension D
and physical index k of physical dimension d. And the
symbol F2D denote the contraction of the connected vir-
tual indices. PEPS serve as a natural extension of MPS in
higher dimensions, and has wide applications in describ-
ing higher-dimensional many body systems [17, 18, 84].

IsoTNS is a subclass of PEPS, where the tensors sat-
isfy certain isometry conditions. The isometry condition
means that, when the incoming legs (denoted by the ar-
rows in Fig. 10b) and the physical legs of a tensor are
contracted with corresponding legs of the complex con-
jugate of this tensor, the remaining legs yield an identity.
For example, the tensor in the dashed box in Fig. 10(b)
obeys ∑

k,ur

Bk[i,j]lurb(B
k
[i,j]l′urb′

)
∗

= δbb′δll′ , (E2)

which is shown graphically in Fig. 10(c). Moreover, the
two red shaded lines in Fig. 10(b) only have incoming ar-
rows, which are termed the orthogonality hypersurface of
isoTNS, and their intersection is the orthogonality center
of the isoTNS [34].

As shown in Ref. [1], one can convert an isoTNS ten-
sor Bk[i,j]lurb of the bond dimension D into a ‘L’-shaped

unitary of the form

B̂[i,j] =
∑
lurb,k

Bk[i,j]lurb|u, k, r〉〈0, b, l|, (E3)

where the indices are identified in Fig. 10(d) for the
case of bond dimension D = d. Here the rank-5 ten-
sor Bk[i,j]lurb

also satisfy the same isometry condition
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FIG. 9. Scaling of the error rate ξ in FMPS for creating the cluster state [Eq. (7)] using pulse sequence in Fig. 2 as a function
of: the transmon decay during unitary operation (a), transmon dephasing during unitary operation (b), cavity decay during
unitary operation (c), transmon anharmonicity during unitary operation (d), transmon dephasing during photon emission (e),
cavity decay during photon emission (f), and the photon retrieval efficiency (g). The panel (h) show the MPDO calculation
of FMPS versus the cluster state photon number n, with transmon parameters in Appendix D 2. The horizontal line denotes
FMPS = 1/2.
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FIG. 10. The projected entangled pair states (PEPS) and iso-
metric tensor network states (isoTNS). (a) PEPS are states
represented by a network of tensors, where the tensor at each
site is of physical dimension d, and is connected to that of
the neighboring sites with virtual bonds of dimension D. (b)
IsoTNS are a subclass of PEPS, where the tensors satisfy
isometry conditions denoted by the arrows. The red shaded
lines denote the orthogonality hypersurface of isoTNS, and
their crossing point (the red dot) denote the orthogonality
center of isoTNS. (c) The isometry condition for the tensor
inside the dashed box in panel (b). Here the incoming vir-
tual legs and the physical legs of the tensor are contracted
with the corresponding legs of the complex conjugate of the
tensor, yield identity on the outgoing legs. This is also math-
ematically shown in Eq. (E2). (d) One can map a three-qubit
‘L’-shaped quantum gate (see Fig. 8) to an isoTNS tensor of
bond dimension D = d.

Eq. (E2). This show that the gates in the photon gener-
ation scheme shown in Fig. 8 can be identified as isoTNS
tensors. Increasing isoTNS bond dimension corresponds
to increasing the arm length of the ‘L’-shaped unitary.

In this way, one can generate isoTNS by sequentially
applying overlapping ‘L’-shape unitaries, which lead to
the photonic isoTNS generation protocol discussed in sec-
tion III C 3. This fact further implies that isoTNS is a
subclass of rp-PEPS [1] since we can cover the ‘L’-shape
unitaries by plaquette unitaries.

1. IsoTNS representation of the toric code

In general, the Zλ toric code can be written as an
isoTNS with the translational-invariant tensor at each
site as [37]

Bi1i2i3i4lurd =
1

λ
δi1l−uδ

i2
u−rδ

i3
r−bδ

i4
b−l, (E4)

where

δab =

{
1, a = b mod λ
0, otherwise.

(E5)

This is a tensor of bond dimension λ and physical dimen-
sion λ4, and satisfies the isometry condition Eq. (E2).

Appendix F: Control universality of Harray(t)

Here we show the Hamiltonian Harray(t) [Eq. (19)]
can universally control the Hilbert space HLC×marray =

(Hsrc)⊗LC×m. Let us consider case of two cQED sequen-
tial photon sources coupled to each other (LC = 1 and
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m = 2), that the whole Hilbert space is

H1×2
array = HT ⊗HC ⊗HC ⊗HT . (F1)

We know the Hamiltonian for each sequential pho-
ton source can control one Hsrc universally. This means
one can create arbitrary Hamiltonians that act on each
Hilbert space HC of the cavity mode (see Eq. (F2)

below). Together with the bilinear interaction Hij
int

[Eq. (18)] between two cavities, one can apply an analo-
gous argument in Ref. [85], that by arithmetic operation
and taking commutators between the bilinear coupling

H12
int [c.f. Eq. (18)] and single cavity Hamiltonians

H1 = poly(a1, a
†
1), H2 = poly(a2, a

†
2), (F2)

we can generate arbitrary polynomial form of Hamilto-
nian

H12 = poly(a1, a
†
1, a2, a

†
2) ∈ HC ⊗HC . (F3)

This immediately implies that we can universally con-
trol the Hilbert space of two cavities [85]. Together with
universal control on each sequential photon source, we
can use Lemma 5.5 of Ref. [86] to combine the univer-
sality of two Hsrc and HC ⊗ HC to the whole H1×2

array,

which shows that we can universally control H1×2
array with

Harray(t) (here LC = 1 and m = 2). By repeatedly ap-
plying Lemma 5.5 of Ref. [86], one can show Harray(t) is
further able to control HLC×marray .
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