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In two-dimensional Floquet systems, many-body localized dynamics in the bulk may give rise to a
chaotic evolution at the one-dimensional edges that is characterized by a nonzero chiral topological index.
Such anomalous dynamics is qualitatively different from local-Hamiltonian evolution. Here we show how
the presence of a nonzero index affects entanglement generation and the spreading of local operators,
focusing on the coarse-grained description of generic systems. We tackle this problem by analyzing exactly
solvable models of random quantum cellular automata (QCA) that generalize random circuits. We find that
a nonzero index leads to asymmetric butterfly velocities with different diffusive broadening of the light
cones and to a modification of the order relations between the butterfly and entanglement velocities. We
propose that these results can be understood via a generalization of the recently introduced entanglement
membrane theory, by allowing for a spacetime entropy current, which in the case of a generic QCA is fixed
by the index. We work out the implications of this current on the entanglement “membrane tension” and
show that the results for random QCA are recovered by identifying the topological index with a background
velocity for the coarse-grained entanglement dynamics.
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Introduction.—In many-body quantum systems subject
to local-Hamiltonian dynamics, correlations propagate
with a finite velocity, which determines an approximate
causal cone [1]. This property, however, holds beyond
local-Hamiltonian evolution, defining a more general class
of locality-preserving (LP) unitary dynamics that are
termed quantum cellular automata (QCA) whenever the
causal cone is strict [2,3]. Models of LP evolution appear
naturally at the boundary of certain Floquet systems
displaying many-body localization (MBL) in the bulk
[4–8] (cf. Fig. 1).
In one dimension (1D), the mathematical theory of LP

dynamics is well developed [10–17]. A crucial result,
proven in Ref. [11], is that QCA are fully classified by
a genuinely dynamical topological index. This result was
recently generalized to include the more realistic case
where the causal cone is only approximate [18].
Importantly, this topological index is zero if and only if
the evolution is generated by a (quasi)local Hamiltonian. Otherwise, the dynamics is said to be anomalous. As a

natural application, this theory led to the discovery of new
dynamical topological phases in 2D Floquet MBL systems
[4–8], including the case of protecting symmetries [19–21],
which go beyond the cohomology paradigm [22–24].
Although the index was initially defined in terms of

abstract operator algebras [11], an equivalent definition,
which reflects an intuitive picture of quantum-information

FIG. 1. (a) Pictorial representation of LP evolution as the edge
dynamics of a Floquet qudit system. In the presence of a MBL
phase in the bulk [9], it is always possible to decompose the one-
period Floquet operator as [4] UF ¼ Uedgee−iHbulkT , where Hbulk
is a MBL Hamiltonian, and Uedge is an effective 1D evolution
acting on qudits within a few localization lengths from the
boundary. (b) Any LP evolution UðtÞ may be approximated by a
QCA in Margolus form, i.e., the single time-step unitary operator
U admits a bilayer representation, where the local unitaries map a
product of nearest-neighbor Hilbert spaces into another, with
possibly different individual input or output dimensions.
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flow [7,17,18], was recently put forward. In turn, this made
it possible to establish a lower bound on quantum scram-
bling in terms of the index, building a bridge between
genuinely dynamical topological invariants and quantum
chaos [17].
In this Letter, we develop a connection of a different

kind: whereas Ref. [17] derived universal relations involv-
ing the index at the microscopic level, here we reveal its
implications for the dynamics of generic systems at macro-
scopic (hydrodynamic) scales. This is done within the
framework of the entanglement membrane theory (EMT)
developed in Refs. [25–27]. Following the logic of these
works, where random unitary circuit (RUC) models played
a key role, our approach is based on the analysis of random
QCA, which we propose as minimal models for anomalous
chaotic systems.
Conventional EMT.—Let us begin by recalling the basic

aspects of the EMT [25,26]. Throughout this Letter, we
consider a 1D lattice of qudits associated with a Hilbert
space ðCdÞ⊗2L (2L: system size) and a unitary dynamics
dictated by the operator UðtÞ∶ðCdÞ⊗2L → ðCdÞ⊗2L, where
time t might be either continuous or discrete.
The main object of the EMT is the so-called membrane

tension (or line tension, in 1D), which associates an
entanglement cost with a given spacetime cut through
the unitary operator UðtÞ (cf. Fig. 2). This quantity allows
for an intuitive geometric picture for the coarse-grained
entanglement dynamics. The local tension EðvÞ is a
function of the curve velocity v ¼ dx=dt, and the cost of
a given curve is obtained by integrating EðvÞ along its
length. Then, the entanglement of a given interval A in
space at a given time is obtained by minimizing the integral
of EðvÞ over all curves that separate a spacetime region that
terminates on A on the temporal boundary. As an example,
we may consider the growth of the entanglement after a
quench, for an infinite bipartite system with open boundary
conditions: assuming homogeneous spacetime dynamics,
we obtain

Sðx; tÞ ¼ min
y

�
tseqE

�
x − y
t

�
þ Sðy; 0Þ

�
; ð1Þ

where Sðy; 0Þ is the entanglement of the initial state, while
seq is the entanglement density reached at equilibrium [26].
Sðx; tÞ here may indicate the von Neumann entanglement
entropy or (assuming the absence of conservation laws [28–
31]) an arbitrary Rényi entropy [32]. Holographic field
theories give elegant examples of off-lattice systems where
EðvÞ is explicitly computable [33–35].
The EMT may be equivalently formulated in terms of a

local entanglement production rate. In the bipartite setting
above, the membrane picture is equivalent to a dynamical
equation ∂S=∂t ¼ seqΓð∂S=∂xÞ, where ΓðsÞ is a local
production rate dependent on the entanglement gradient
[25,26]. Comparison with (1) reveals that ΓðsÞ and EðvÞ are
simply related by the Legendre transformation

ΓðsÞ ¼ min
v

�
EðvÞ − vs

seq

�
: ð2Þ

The line tension also encodes information about the
growth of local operators and, in general, must satisfy
some basic constraints [26]. First, internal consistency of
the coarse-grained picture requires that EðvÞ ≥ 0 and
E00ðvÞ ≥ 0. Second, one may argue that the minimization
in Eq. (2) only involves membrane velocities within a range
½−v−; vþ�, where v� coincide with the left (right) butterfly
speeds vL;R that govern the growth of local operators.
Although vL ¼ vR if spatial inversion symmetry is present,
this is not generally true otherwise, even for local-
Hamiltonian dynamics [36–38]. The minimum of EðvÞ is
the “entanglement velocity” vE, quantifying the entangle-
ment growth rate (rescaled by seq) starting from a product
state. Finally, one can show

EðvRÞ ¼ vR; Eð−vLÞ ¼ vL; ð3Þ

and E0ðvRÞ ¼ −E0ð−vLÞ ¼ 1, implying vE ≤ min fvL; vRg.
This picture is believed to hold for generic local-
Hamiltonian and quantum-circuit evolution; our goal is
to find whether and how it can be extended to anomalous
dynamics.
The Margolus form for QCA.—As mentioned, the edge

dynamics of the 2D systems in Fig. 1(a) is LP. This means
that the single time-step unitary operator U of the discrete
evolution has the following property: for any local observ-
able Oj acting on site j, the operator U†OjU is supported
on a finite neighborhood of j, up to exponentially decaying
tails [39].
Any LP dynamics may be approximated arbitrarily well

by QCA, by “chopping off” the exponential tails [18]. In
turn, it is known that any QCA may be expressed in the so-
called Margolus form [40] [cf. Fig. 1(b)], where U is
written as a two-layer product of two-site unitaries. This
does not always define a quantum circuit because the
dimensions of the local spaces associated with the “virtual”

FIG. 2. (a) Pictorial representation of a spacetime curve cutting
through the unitary evolution operator UðtÞ, in ð1þ 1ÞD. For a
given curve, the total line tension is

R
seqEðvÞdt, where vðtÞ is the

local velocity. (b) The line tension may be obtained by viewing
UðtÞ as a state, and computing the corresponding bipartite
entanglement.
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layer may differ from the physical ones: denoting by p and
q two integers such that d2 ¼ pq, we have

U ¼ ð⊗L
j¼1 v2j−1;2jÞð⊗L

j¼1 u2j;2jþ1Þ; ð4Þ
where u∶Cd⊗Cd→Cp⊗Cq and v∶Cq⊗Cp→Cd⊗Cd.
Given this representation, the topological index reads [11]

ind ¼ 1

2
ln
q
p
: ð5Þ

The unitary operation of translation by one site is a simple
example with ind ¼ ln d. Note that for finite systems
ind ≠ 0 is only possible for periodic boundary conditions
[41]. For simplicity, we will always take L → ∞, so that the
boundary conditions become irrelevant.
The Margolus representation allows us to pinpoint the

essential feature of anomalous dynamics that we have to
take into account in order to generalize the conventional
EMT. First, we note that the QCA in Fig. 1(b) can be
viewed as a unitary tensor network (TN) and that, although
the dimensions associated with given bonds may vary in
space and time, unitarity requires that the input and output
dimensions of each tensor must match. This gives rise to a
nontrivial local conservation law, not accounted for in
conventional EMT.
Physically, we can understand such local conservation

law as a continuity equation of the form ∂μJμ ¼ 0, in terms
of a coarse-grained spacetime entropy current Jμ. For a
unitary TN dynamics locally equilibrating to infinite
temperature, Jμ has an explicit microscopic definition:
Regarding the TN as a graph whose nodes are the unitaries
and edges are the bonds, we orient the latter in the direction
of increasing time; then, along each bond we define the
entropy current as a vector in the direction of its orientation,
whose magnitude is equal to ln di, where di ia the
associated local Hilbert-space dimension.
The coarse-grained spacetime entropy current is more

general than the model above, where it can be introduced
by “counting” microscopic bonds. For instance, it can be
defined even when the equilibrium state is nontrivial and
determined by the slow modes [42]. In any case, it has
important consequences on the properties of the membrane
tension. In the following, we show how the EMT has to be
modified in the presence of a nontrivial spacetime entropy
current. The resulting generalized EMT turns out to
correctly capture the coarse-grained features of anomalous
dynamics, finally revealing the hydrodynamic implications
of the index.
Generalized EMT.—As a starting point to generalize the

EMT, we assume there is a well-defined line tension EðvÞ
satisfying EðvÞ, E00ðvÞ ≥ 0 (as required for consistency of
the hydrodynamic picture). We also postulate that there
exists a spacetime entropy current Jμðx; tÞ ¼ ðJx; JtÞ that
governs the growth and transport of thermodynamic
entropy. In particular, the density s of thermodynamic
entropy (we assume local equilibrium) is equal to Jt.

Let us consider a stationary regime, focusing, for
instance, on a finite interval A at large times after a quench.
Stationarity requires ∂μJμ ¼ 0 and also implies that the
thermodynamic entropy equals the von Neumann entropy,
SAðtÞ, i.e.,

SAðtÞ ¼
Z
A
dxJtðxÞ: ð6Þ

Using the divergence theorem, the integral over A may be
obtained by integrating the current over any closed perim-
eter containing A (cf. Fig. 3). In order to make contact with
the EMT, we choose the perimeter to be a triangle whose
bottom sides have slopes given by the butterfly velocities
−vL and vR. A simple computation then yields SAðtÞ ¼
ðJxΔtþ JtaÞ þ ð−JxΔtþ JtbÞ, where Δt, a, and b are as
in Fig. 3. On the other hand, the sides of triangle minimize
the line tension for the region A, as one can show by
generalizing the arguments of [26]. As a consequence,
SAðtÞ ¼ seq½Eð−vLÞΔtþ EðvRÞΔt�. Identifying the indi-
vidual terms coming from the two bottom sides of the
triangle, and using a=Δt ¼ vL and b=Δt ¼ vR, we find
Jt¼½seq=ðvLþvRÞ�½Eð−vLÞþEðvRÞ� and Jx ¼ ½seq=ðvLþ
vRÞ�½vREð−vLÞ − vLEðvRÞ�. Defining now the “back-
ground entropy velocity" v� ¼ Jx=Jt and using SAðtÞ ¼
seqðaþ bÞ (which follows from stationarity), we finally
obtain

EðvRÞ ¼ vR − v�; Eð−vLÞ ¼ vL þ v�: ð7Þ
This equation deviates from the conventional EMT, cf. (3),
and has important ramifications. In particular, combined
with convexity, it implies EðvÞ ≥ jv − v�j and so vE ≤
min fvR − v�; vL þ v�g.
Using (7), one can also argue that the relation between

ΓðsÞ and EðvÞ must be modified. Indeed, plugging (7)
directly into (2), we see that ΓðsÞ < 0 for some values of s.
This is clearly an inconsistency, since ΓðsÞ is the rate of
entanglement growth. In order to guarantee positivity, one
is led to the natural generalization

ΓðsÞ ¼ min
v

�
EðvÞ − vs

seq

�
þ v�

s
seq

: ð8Þ

FIG. 3. In the stationary regime, the divergence of the entropy
current is vanishing, and the flux through any closed surface is
zero. In order to compute the integral (6), we choose a surface
containing the optimal membranes and exploit the prescriptions
of the EMT.
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From elementary properties of the Legendre transforma-
tion, we have the basic constraints −seqΓ0ðseqÞ ¼ vR − v�,
seqΓ0ð−seqÞ ¼ vL þ v�. Note that by construction Γð0Þ ¼
vE. Finally, differentiating (1) with respect to t, we obtain

∂S
∂t þ v�

∂S
∂x ¼ seqΓ

�∂S
∂x

�
: ð9Þ

We see that the fundamental equation from the EMT,
governing the coarse-grained entanglement dynamics, is
modified by a constant velocity term. Importantly, v� is
now left as a free parameter, and the conventional EMT
is recovered for v� ¼ 0. Note that without entropy pro-
duction, i.e., Γð∂S=∂xÞ ¼ 0, Eq. (9) still predicts a nonzero
entropy change, which is qualitatively different from
normal dynamics.
Models of random QCA.—In order to test the generalized

EMTand identify the entropy-current velocity v�, we study
concrete models of chaotic anomalous dynamics. We
consider QCA of the form (4) where u and v at different
spacetime positions are drawn independently from the Haar
random ensemble. Generalizing from the special case of
RUCs, we expect the model also to capture universal
aspects of random Floquet evolutions [43–49] and trans-
lationally invariant homogeneous systems [25–27,50] if we
restrict to the leading dynamics at large scales. We note that
it is easy to construct explicit 2D models with trivial bulk
dynamics that display the random edge evolution consid-
ered here. This construction is detailed in the Supplemental
Material, where we also define even simpler random 1D
QCA that appear naturally in this context [51].
As a first step, we analyze how the support of a localized

traceless operator O0 grows under the dynamics, which
allows us to extract the butterfly velocities. We focus
on the out-of-time-order correlator (OTOC) Cðx; tÞ ¼
trf½O0; O0

2xðtÞ�†½O0; O0
2xðtÞ�g=2 [57–61]. Here O0

2xðtÞ ¼
UðtÞ†O0

2xUðtÞ and O0
2x is a traceless operator supported

at site 2x. Given the brickwork structure of the random
QCA, the disorder-averaged OTOC Cðx; tÞ may be com-
puted using the approach developed for RUCs, mapping the
problem to the partition function of an Ising-like model
[62,63], see also [64–69]. Additional technical complica-
tions arise due to the “staggered” structure of the dynamics,
alternating physical and virtual Hilbert spaces [cf. Fig. 1(b)].
Nevertheless, a fully analytic expression may be obtained
[51], and in the hydrodynamic limit of large spacetime
scales, it simply reads Cðx; tÞ ≃Φ(ðvLtþ xÞ=σL)Φ(ðvRt−
xÞ=σR). Here ΦðyÞ ¼ ð2πÞ−1=2 R y

−∞ e−x
2=2dx and

vL ¼ p2q2 − qðpþ qÞ þ 1

p2q2 − 1
;

σL ¼
ffiffi
t

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q½p3q2 þ p2qðq2 − 3Þ þ p − q3 þ q�

p
p2q2 − 1

; ð10Þ

while vR and σR are obtained by exchangingp ↔ q. We see
that the coarse-grained OTOC has the same form as RUCs

[62,63], being characterized by two propagating fronts
insidewhich Cðx; tÞ ≃ 1; i.e., information is fully scrambled.
However, the fronts propagate with asymmetric butterfly
velocities and widths, with the faster front being the
narrowest one (in contrast to the quantum-circuit models
constructed in Ref. [37]). Note that, when ind ¼ 0, i.e.,
p ¼ q, we recover the result for RUCs [62,63]. In the other
limit, where ind ¼ ln d, i.e., p ¼ 1 and q ¼ d2, the random
QCA consists of a two-step evolution in which a right
translation is followed by a layer of random unitary gates.
Since the shift does not increase the operator support, σL;R in
(10) are then simply those of a RUC evolved up to a
time t0 ¼ t=2.
Entanglement dynamics.—Next, we move on to compute

the line tension, cf. Fig. 2. Formally, we introduce a
doubled Hilbert space H ¼ ðCdÞ⊗2L ⊗ ðCdÞ⊗2L along
with the maximally entangled state jIi ¼ jϕþi⊗2L, where
jϕþi≡P

d
n¼1 jni ⊗ jni= ffiffiffi

d
p

and n runs over a basis of Cd.
This allows us to vectorize the evolution operator as
jUðtÞi ¼ ½UðtÞ ⊗ 1�jIi ∈ H, with the two Hilbert spaces
associated with its input and output degrees of freedom.
Considering a bipartition of the systemwith boundary at site
x and y in the input and output, respectively, we define the
operator entanglement [70–73] SðoÞðy − x; tÞ as the asso-
ciated entanglement entropy of jUðtÞi. The line tension may
then be computed via [26] EðvÞ ¼ limt→∞SðoÞðvt; tÞ=ðseqtÞ,
for v in the range ð−v−; vþÞ. Our random QCA has no
conserved quantity and our unit length increment dx ¼ 1 is
defined to contain two sites, so that seq ¼ ln d2 ¼ lnðpqÞ.
vðoÞ ¼ Eð0Þ is the operator-entanglement velocity.
Averaged Rényi-n entropies are hard to compute, but the

mapping to an Ising partition function gives access to the

averaged purity and its logarithm − ln e−S
ðoÞ
2
ðx;tÞ. Since this

average is taken “inside the logarithm,” it differs from the

averaged Rényi-2 entropy SðoÞ2 . However, the former is
sufficient to see the key relationships obeyed by E. The line

tension for SðoÞ2 can be understood as a perturbatively

“dressed” version of that for − ln e−S
ðoÞ
2
ðx;tÞ [27]: the differ-

ence between the two vanishes as d → ∞ and, in fact, is
numerically small even for finite d [74]. So we approximate

t−1SðoÞ2 ðx; tÞ ≃ −t−1 ln e−S
ðoÞ
2
ðx;tÞ, yielding [51]

E2ðvÞ ¼ logd2
ðpqþ 1Þ2ðpq − 1Þ

pq
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp2 − 1Þðq2 − 1Þ

p

− vlogd2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − rpÞ2v2 þ 4rp

q
− ð1þ rpÞv

2ð1þ vÞ

− logd2
1þ rp þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − rpÞ2v2 þ 4rp

q
ð1 − v2Þ ffiffiffiffiffirpp ; ð11Þ
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where rp ¼ pðq2 − 1Þ=½qðp2 − 1Þ�. As a main difference
from the case of RUCs, the minimum is at a nonzero
velocity vm ¼ ðrp − 1Þ=½2ðrp þ 1Þ� [cf. Fig. 4(a)]. The
value E2ðvmÞ yields the entanglement speed vE ¼
logd2fðpqþ 1Þ2=½2 ffiffiffiffiffiffi

pq
p ðpþ qÞ�g, as confirmed by direc-

tly computing the growth of state Rényi-2 entropy follow-
ing a quench from a product state [51]. We stress that vL;R
and vE do not depend on ind in a universal way. This could
be expected from the study of RUCs, where asymmetric
butterfly velocities might be realized by specific arrange-
ments of the local unitaries [37].
Crucially, we see that E0

2ð�v�Þ ¼ �1, where v� ¼ vR;L,
and that Eq. (7) is satisfied, after the identification

v� ¼ ind
seq

: ð12Þ

This is our final main result: it states that the index, a
microscopic dynamical topological invariant, appears at the
hydrodynamic level as a constant background velocity for
the coarse-grained entanglement dynamics. Based on this
identification, the index also determines the qualitative
features of the rate ΓðsÞ, which is shown in Fig. 4. Further
details on the random QCA, including a computation of the
so-called tripartite mutual information [75] and its relation
to the index, are reported in the Supplemental Material [51].
Outlook.—Our results open up several possibilities for

future research. First, when viewing anomalous 1D dynam-
ics as boundaries of 2D Floquet systems, it would be
interesting to investigate the corrections to our theory when
the assumption of ideal localization in the bulk is relaxed.
In this case, we expect subleading effects emerging, due to
a slow entropy flow from the boundary to the bulk and vice
versa. It would also be natural to apply our picture based on
spacetime entropy currents to more general situations with
inhomogeneous backgrounds, as models with genuinely
spacetime-dependent entropy currents may be constructed
by introducing additional structure. Next, it would be
interesting to explore how chaotic anomalous dynamics

is modified by local conservation laws, such as U(1)
charges as done for RUCs [64,65]. Studies along this
direction could reveal an intriguing effect of the index on
the otherwise purely diffusive behavior of the charge.
Finally, two natural generalizations of our study include
adding randomized measurements [76–83] and higher
dimensions, where the theory of QCA is much more
open [84–87].
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(b) ð�seq; 0Þ. The blue dashed line in (b) corresponds to ΓðsÞ−
ðind=seqÞðs=seqÞ, whose maximum gives vðoÞE .
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