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This supplementary material file contains the derivations of the analytical results presented in
the main text, as well as details on the methodology used in numerical calculations and
complementary numerical results. In Section S.I we derive Egs. (6,7) from the main text. In
section S.I1, we derive the selection rules for breaking selection rules presented in Table 1 of
the main text. In section S.I11 we drive an analogous table for circularly polarized perturbations.
In section S.IV we discuss the generalization of our results for fractional harmonic
perturbations. In section V we discuss the applicability of main table 1 to multi-chromatic
perturbations and present a complementary numerical example. In section S.VI we show that
for the numerical examples we studied in the main text, and the numerical example we studied
in section S.V, the same results are obtained when a spectral width around each harmonic is
considered.

Throughout this file we follow the notation of reference [28] in the main text for Floquet
perturbation theory (FPT) and reference [15] in the main text for dynamical symmetries.

S.I DERIVATION OF EQUATIONS (6,7) IN THE MAIN TEXT
In this section, we derive Egs. (4-7) in the main text. Let |¢pqco)(t)) be a Floquet state of the

unperturbed system. When the system is perturbed by the term AW (t) this state may be
corrected by FPT. First, one needs to lift the state {|¢p(o) (t))}:Z from the Hilbert space 7 to
the Flogquet Hilbert space F = H @ L where L is the space of bounded periodic functions (i.e.
loop functions) over [0, T). The space £ is spanned by the orthonormal basis {|t)},0 <t < T,
where the orthonormality condition is (t|t") = T6(t —t"). The brackets | ->>, |-), |-) describe

states that live in F, H and L, respectively.

The state |dqo) (1)) is lifted to aloop in F by |dar >= |Pacoy (D))It). The center of the loop is
defined as

_ T dt (S1)
Bew »= | [ @O
0

To 1st order, | (o) > and is corrected by

-— — — S2

(B >= [Bao) » APy » (52)
where

(S3)



& Gpn) |W] Pacey »

[Py >= > k oy
BrsTiae) o T €po) ~Nw
, and
T
dt . (S4)
|¢Bn(0) >>Ef ? emwtlcbﬁ(o)(t))lt)
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< (I)BD(O) |W| ¢o((0) »>= f F (¢B(O)|e—lnwtw(t)|¢a(0)) (S 6)
0

Finally, to obtain the corrected Floquet state |, (t,A)) we project |, > back to the Hilbert
space:

-— S7
Bt 1)) = (el » (57
The Q frequency component of the dipole moment expectation value fi(2) is given by
_ Tdt . i
BN = | T @t DR (90620 =< Folfiale > (s8)
0
where
~ Tdt .
Ro= [ Flome™ (59)
0
Plugging Eq. (S 2) into Eqg. (S 8) we obtain Eq.(4) in the main text:
E(Q,2) = Eo(Q) +2AE;(Q) + A’E,(Q) (S 10)
where
Eo(Q) = € $u()|fla|Pa) » (S 11)
E; (Q) =< Py |fa|Pac) » +< Do) |fa|Pago) » (S 12)
E,(Q) =< $o(n|a| o) > (S 13)
For the derivations of Egs.(6,7) in the main text, we use the following mathematical identities:
— |12 |— T dt ~ ot
< Ba]0a| 5 = | F0e0] 01501 (s 14
0
K da0) |anw| bpm0) >=<K Pa(0) |6(n+m)w| bpo) >
"dt Nol(ntmo (S 15)
= f 7(%(0) (t)| Oe |Ppc0) (L))
0
K bgm(o) |anw| Da0) >= <K Pp(0) |a(n—m)w| bao) >
(S 16)

Tdt A,i(n—-mw
=f0 7(¢a(o)(t)|0€ 1980y (1))

where O is a vector operator. These identities can be verified by using definitions of |¢>a(0))

(Eq.(S 1)), [dgnco) > (Eq.(S 4)), 5nw (Eg. (S 9)), and the orthonormality condition (t|t") =
TS(t—t).



The term E,(£2) can also be written as
= = = t
E1(2) =< ¢o)|Ba| ey » +H(K o) |Bn|Pai) >) (S17)
We plug Eq.(S 3) into the first term of Eq.(S 12)
< ¢a(0)|ﬁnw|¢a(1) >

< d)ﬁm |ﬁ>| ba(o) P>K d’a(o)lﬁnwl(pﬂm > _(S18)

€a(0) ~ €p(0) — MW

(B m)#(a,0)
K bp(o) |W—m(u| Pa0) D<K Pa(o) | Bnw+me|Ppo) >

€a(0) ~ €p(0) — MW

(Bm)#(a,0)
We plug
AW () = AR{p - fie's®t} (S 19)
into (S 18) since the system is perturbed by a linearly polarized electric field of amplitude 2,
polarization p € R?, and frequency sw, where w = 21/T and s may be any integer.
< ¢a(0)|ﬁnw|¢a(1) > R N
L bp)|Pg - Bigs-myw|Pa@ »<K Pa | Amsm)w|Pso) >

- Z (S 20)
€a(0) ~ €p0) — MW

(B m)#(a,0)
g=*1
where p, = R{p} + igI{p} and the time-independent matrix element Ff“
FY =< $po)| Moo [ $ao) » (S21)
represents the nw frequency component of the time-dependent matrix element:
(P Bl Dao) = Z Fhfeimot (S 22)
n

Rewriting Eq.(S 20) using FP*, we obtain
(pg ’ nga—m)Fr?-Em
€a(0) — €p(0) — MW (S 23)

< ¢a(0)|ﬁnw|¢a(1) =

(Bm)=(c,0)
g=+1

Plugging Eq.(S 23) into Eq.(S 17), we have
(pg ) ng(im)Fr?fm + (pg ) Fr?lﬁ—gs)ngm

B = (BrDT(@0) Ca(@) ~ €p@) T M@ (524
g=t1
This is exactly Eq.(6) of the main text. Similarly, the term E, () is given by
E,(nw) =< G |fne [Py >= (S 25)
_ 1 < o) [Py, - R-g,5)0| Prio) »< P50 |Pg, Bg,s-mw| Pa) < Pro)
4 g5t (€a(0) ~ €xco) — 1) (€ato) — €p0) — M)

(D) #(a,0)
g1.92=%1

Plugging in Eq.(S 21) into (S 25) we obtain



Bo KB
I SR O 0,
2 = _
4 (B,m)#(,0) (€a@ — &) — 10) (€ato) = €p(0) — mo) (S26)
(x,D)#(a,0)
81.82=*1

This is Eq.(7) of the main text.
S.II DERIVATION OF TABLE 1 IN THE MAIN TEXT

In this section, we derive the selection rules for breaking selection rules presented in Table 1
of the main text.

Cy y and &y y symmetry breaking

The Cy  operation is defined as Cy y; = Ry - £y Where Ry y, is a 2rM /N rotation and £y is
a T/N time translation. The eigenvalues of the Ry ,, operation are exp(+i2nM /N) and the

eigenvalues of 7 are {exp(—i 2wk /N) | k = 0, ..., N — 1}. Hence, the eigenvalues of éN,M are
. 2TM

{exp(—i%ﬂT)Uc:0,...,N—1} ={exp(—i2:]—k)|k=0,...,N—1}. If  the

unperturbed system is Cy, Symmetric, the unperturbed Floquet states |¢q0)), |#p0)) are
eigenfunctions of Cy ,, with eigenvalues e =2 a, ¢ ~2™kp regpectively.

To obtain the selection rules for Fﬁ“, we operate with Cy » on Eq.(S 22) to find

. i2n(kp—kq) .
CN,M<¢3(0)|H|¢a(0)) =e N Z Fﬁaem“’t
n

2mn Ba inwt
= e N RN,M.F‘n. e

n

(S 27)

, and
i2n(kg—kq—n) R
e N FPY =Ry, Fi° (S 28)
- 2nM
Since the eigenvalues of Ry are e~ Eq.(S 28) has a nontrivial solution (where Fﬁ“ is
nonzero) only if there exists an integer z € Z such that
n=NXz+kp—kotM (S 29)
We consider a specific g,m, g contribution to E;(nw) (Eq.(S 24)). By Eq.(S 29), this
contribution is nonzero only if there are two integers z,, z, that simultaneously fulfill
gs—m=NXz +kg—k,tM (S 30)
n+m= NXz,+k,—kgtM (S31)
By summing Eqs.(S 30)(S 31), we find that E; (nw) is only nonzero for values of n for which
there exists an integer z € Z that fulfills one of the conditions
+s+tn=Nxz+2M (S32)
tstn=NXz
Next, we consider a specific (8, m), (x,1), g4, g, contribution to E,(nw) (Eq.(526)). We

i2mkg i2mkp 21k

denote the eigenvalues of |@ac0)), |Pp0)), |Prco)) by €~ ;e ¥ ,e” v respectively. By
Eq.(S 29) , there is a nonzero contribution only if there exists three integers z4, z,, z3 € Z such
that




l=g1s=Nzy + ko —ke £t M (S 33)
g2s—m=Nz, +kg—k, £t M
n+m-—1=Nzs+k,—kg+M
By summing the three lines of Eq.(S 34), we find that E,(nw) is only nonzero for values of n
for which there exists three integers z,, z,, z; € Z that fulfill
n+(g,—9g1)s=N(z,+z,+z3) T MtM+M (S 35)
More compactly, E,(nw) is only nonzero for values of n for which there exists an integer z €
Z that fulfills
nt(1+1s=Nxz+Q2+1M (S 36)
We note that the same conditions also apply to discrete elliptical symmetries, denoted éy ,,
where the operation &y ,, is defined as &y = £y - Ly - Ry n - L1/ Where:

Ly = (é 2) (S37)

The derivation and selection rules remain the same, because the eigenvalues of &y are
identical to the eigenvalues of Cy y , and the eigenvalues of Ly, - Ry y - Ly, are identical to
the eigenvalues of Ry .

In the case where s = r/q is a rational number, the same selection rules may be used, since a
Cy m Symmetric Floguet system whose frequency is w, perturbed by an re/q perturbation can
be treated as a Z'qN,qM symmetric Floquet system whose frequency is w’ = w/q, perturbed by
an rw' perturbation.

T symmetry breaking

The time reversal operation is denoted by T. Its eigenvalues are +1. To obtain the selection
rules for F5% we operate with T on Eq.(S 22):

T(¢E(O)|ﬁ|¢a(0)> = iz Fgaeiwnt — Z F[j;?‘leiwnt (s 38)
n n

and
+Fh* = P (S 39)
where a plus (minus) sign is used when |¢40)), |®pc0)) have the same (different) eigenvalue.

Therefore, if a, B have the same (different) eigenvalue Fﬁ“ is real (imaginary). We consider a
specific B, m, g contribution to E,(nw) (Eq.(S 24)). The contribution is comprised of a
multiplication of either two real entities, or two imaginary entities, therefore it is real. Since all
contributions to Eq. (S 24) are real, E; (nw) is a real vector, i.e. it is linearly polarized and is
in an equal or opposite phase with the perturbation. Next, we consider a specific
(B,m), (k,1), g1, g contribution to E;(nw) (Eq.(S 25)). If |@gp.0)) all have the same
eigenvalue, the contribution is comprised of a multiplication of three real entities and is
therefore real. If one of |4 p.k)) has a different eigenvalue from the other two, the
contribution is comprised of a multiplication of one real entity and two imaginary entities,
hence the contribution is real. Therefore, E, (nw) is a real vector as well.

Q symmetry breaking



The operation Q is defined by Q = T - R, where T is the time reversal operation and R, isa «

rotation. Its eigenvalues are +1. To obtain the selection rules for Fﬁ“, we operate with Q on
Eq.(S 22):

0) [7i = B [ _ B .
Q<¢ﬁ(0)|”|¢a(o)) = iz Fnaelamt — _Z F_gelamt (S 40)
n n

and
FFPe = pPe (S 41)
where a minus (plus) sign is used when |¢a(0)), |¢5(0)) have the same (different) eigenvalue.

Therefore, if «, § have the same (different) eigenvalue Fﬁ“ is imaginary (real). From the same
considerations as above, E;(nw) is real and E,(nw) is imaginary.

G symmetry breaking

The operation G is defined by G = T - £, - R, where T is the time reversal operation, R, isa m
rotation and 7, is a T /2 time translation. Its eigenvalues are +1. To obtain the selection rules

for FE%, we operate with G on Eq.(S 22):

G(dpo) Al Paco)) = iz FPegiont — Z(_l)n+1F€zeiwnt 54
n n

and

FFLS = (~1)"FFS (5 43)

Table S1.
selection rules for G symmetric matrix elements.

We consider a specific 8, m, g contribution to E; (nw) (Eq.(S 24)). If s and n are of the same
parity, gs — m and n + m are of the same parity as well, and the contribution is comprised of
either a multiplication of real or two imaginary entities. Therefore, if s and n are of the same
(different) parity E; (nw) is real (imaginary). By a similar analysis, we find that E,(2mw) is
imaginary and E((2m + 1)w) is real (Table S2).

Ei(2mts)w) € R? Ei(2m+s+1)w) € iR?
E,(2mw) € iR? E,(2m+ Do) € R?

Table S2.
selection rules for E; (nw), E,(nw), given that the unperturbed system is G symmetric.



D, symmetry breaking

The operation D,, is defined by D, = T - 6, where T is the time reversal operation and 6, is a
reflection relative to y (i.e x —» —x). Its eigenvalues are +1. To obtain the selection rules for
FE®, we operate with D, on Eq.(S 22):

D FEE\ AN
B {po Blda) = £ (1, Jetont = 3" (Tha oot (s an
n n

Ba B
E —F
| )= g S 45
(Fnlifa> ( F—ﬁfg/ > ( )

where a plus (minus) sign is used when |¢q0)), |®pc0)) have the same (different) eigenvalue.
Table S3 is obtained from Eq.(S 45).

and

Table S3.
Selection rules for ﬁy symmetric matrix elements.

By Eqs.(S 24)(S26) and Table S3,
~ a i
El(n(l)) =px (Lb)-l_py (ch‘) ;aleCJd E R (S 46)

H, symmetry breaking

The operation H,, is defined by A, = T - £, - 8, where T is the time reversal operation , &, is
a reflection relative to the y axis (i.e x - —x) and %, is a T /2 time translation. Its eigenvalues
are +1. To obtain the selection rules for F2%, we operate with H, on Eq.(S 22):

_ EEY\ —FPeN
(b0 |Blda) = iZ(”x>e‘“’"t=Z<—D"< ﬁ) (5 49)
n

Ba
n Fny F- ny

Ba Ba
E —F
+ nx | _ —1)" -nx S 49
(Fé“) oy (F-"’n“y> N

where a plus (minus) sign is used when |¢40)), |®pc0)) have the same (different) eigenvalue.
Table S4 is obtained from Eq.(S 49).

and




B = B :
Fypq X ER Fynsp X €IR
Fhniy - € IR Fhri1-¥ ER
Table S4.
Selection rules for ﬁy symmetric matrix elements
By Egs. (S 24)(S26) and Table S4, E; (nw) scales as:
~ a [
E{(Cm+s)w) = py (ib)+py (ﬁ) ;a,b,c,d ER (S 50)
~ j c
El((Zmis+1)w)=px(l;l)+py(id) ;a,b,c,d € R (S51)
and E,(nw) scales as
E,(2mw) = (ipZa + ipZb + pypyc) ( ) sa,b,c,d, e €R (S 52)
E,(Cm+ 1)a)) = (ipZa + ipyb + pxpyc)( ) ;a,b,c,d,e €R (S 53)

Z, symmetry breaking

The operation Zy is defined by Zy = 1, - 6,, where &, is a reflection relative to the y axis (i.e.
x —» —x) and 7, isa T /2 time translation. Its eigenvalues are +1. To obtain the selection rules
for EF®, we operate with Z, on Eq.(S 22)'

Ba
= + iont _ —1)" _an iwnt
Zy(bpo) |2l Pao) = [;a e D™ sa |e (S 54)
By - Ey

Ba Ba

F —F
+ nx | _ 1) nx S 55
(F%“) ( )<Fn’i“> &)

where a plus (minus) sign is used when |¢(0)), |#p(0)) have the same (different) eigenvalue.
Table S5 is obtained from Eq.(S 55).

and

< bpo|Xenw|Pa > =0 < bpo)|Remw|Pa@ > # 0
< g |Vemo|Pa) >* 0 < Gp|Iznyw|Paoy > =0

& a0 |X2n+1)w|Patoy > # 0 < Gp)|R2n+nw|Pa) > =0

K Ppo) | an+nw|Pay »>=10 & Ppo) | an+nw|Pa) > # 0

Table S5.
Selection rules for Zy symmetric matrix elements

By Egs. (S 24)(S26) and Table S5, E, scales as:



E;(2mts)w) = (5;2) ;a,b €C (S 56)

- pbya
E 2mis+1w=( );a,bE(C
1( ) pxb (S 57)
and E, scales as
E,mw) = (2% Yiabcec
2( ma))_(p;%b'i‘p)Z,-C) ; a, ;CE (858)
2 2
E,(2m+ 1) = (pxa M pyb) ;a,b,c€C (S 59)
bxPya

S.III DERIVATION OF TABLE 1 IN CIRCULARLY POLARIZED BASIS

In this section we derive selection rules for breaking selection rules induced by circularly
polarized perturbations. That is, we consider perturbations whose polarization vector can be
written in a cartesian basis as

. Pr , PL .
p(cartesmn) — ﬁ a,-i)+ ﬁ (1,1 (S 60)

where pg, p;. € R are the amplitudes of the right-handed and left-handed circular polarization
components of the perturbation. In circularly polarized basis (CP), p is written as

P = (pr,p1) (S61)
Notably, Egs. (S 24)(S26) are basis independent. Therefore, in this section, we write vector
quantities in the CP basis, for example E(nw) = (EIR(nw),ElL(nw)),ﬁz(nw) =
(EZR(nw),EZL(nw)), Ffe = (FS,(;' ng) etc. The results of this section are summarized in
Table S6.



RCP perturbation: LCP perturbation:

Eir(ngw) » ng = Ng + s — 2M ElR(nR(‘)) —ng=Nqzxs
EjL(nw) »n, =Ngts E;L(n,w) > n, = Nqts+2M
Exr(ngw) »ng =Nq+ (1+1)s — | Eap(ngw) >ng =Ng+ (1+ s+
3M M

Ey(mpw) >, =Ng+ 1+ Ds— | Ex(npw) >ny =Ng+ (1+Ds+
M 3M

E; (nw) and E, (nw) are real vectors in R? when represented in the circularly
polarized basis

E;(nw) € R? ; E,(nw) € iR? (when represented in the circularly polarized
basis)

= +p.b
E =(pRa L_); ,bEC
1(ne) Prb +pLa ¢

- za + prpLb + pf
Ez(nw):(pRa PrPLD+PICY.

DAC + prpLb + pEa

'E"v (nw) — ( _ pRa + pr
! p b (=)™ + p a(=1)™*s

2 2

= PRa + prPLb + piC

E = — sa,b,c €C
2(ne) ((—1)”“@%6 + prpLb + pf@) e

E;((2m ts)w) € R?; Eq((2m + 1 + s)w) € iR? when represented in the
circularly polarized basis.

E,(2mw) € iR? ; E;((2m + 1)w) € R? when represented in the circularly
polarized basis

);a,bE(C

- _ pra +pLb
a0 = (b1 4 pra-1ye

2 2
E‘Z(nw)=< pRa + prpLb + pic );a,b,cE(C

);a,bE(C

(—D™(pgc + prpLb + pia)

Table S6.
Selection rules for E; (nw) and E, (nw) written in circularly polarized basis.

Cnu and &y y symmetry breaking

RCP perturbation: We assume that the perturbation is right-handed circularly polarized, i.e.
p can be written in a circularly polarized basis as p = (pg, 0) where pz € R. Plugging inp =
(pr, 0), Egs.(S 24)(S26) read in the CP basis:

(pR Fl[‘\g’?gs—m)F:fm + (pRFgfn_gS)Fffm

El(nw) - Eq(o) - EB(O) — mw (S 62)

(Bm)#(a,0)
g=%1
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(pR ) Fg,]f—gls)(pR : Flg,oézs—m)F:Em—l (563)

4 (Bm)#(a,0) (Ea(o) ~ &) T lw)(ea(o) — €g(0) — mw)
(kD #(a,0)
g1,82=%1

E;(nw) =

To obtain the selection rules for E; (nw), E, (nw), we first need to obtain the selection rules for

F%, FP% They can be derived from Eq. (S 28),

. L B B 2nM g
ew FRna — ﬁNM ) FRna _ e .N FRna (S 64)
Fa) 0 \ER) \ e wgpe
Pa i
FR\Lng,, 18 Only nonzero for

where a minus (plus) sign is used for Fﬁik (Fi‘fu). We consider a specific 8, m, g contribution
to E;r(nw) (Eq.(S 62)). This contribution is nonzero only if there are two integers z,, z, that
simultaneously fulfill
gs—m=NXz +kg—k,—M (S 66)
ng+m= NXz,+k,—kg—M

That is, for an RCP perturbation, E;g(ngw) is nonzero only for np = N x z + s — 2M.
Similarly, E;; (n, ) is only nonzero for n, = Nz + s.
Next, we consider a specific (8, m), (x,1), g4, g, contribution to E,(nw) (Eq.(S 63)). We

i2mk i2mk g i2mky
denote the eigenvalues of | P (o)), |dco)), [ b)) by e ~ ,e W ,e” n respectively. By
Eq.(S 65) , there is a nonzero contribution only if there exists three integers z,, z,, z3 € Z such
that

l—g;s=Nzy+ky,—k,—M (S67)
g2s—m =Nz, + kg —k, — M
gy +m—1=Nzz+k.—kg+M

For an RCP perturbation, £,z (ngw), E; (n,w) are nonzero only for values of ng, ;, for which
there exists an integer z € Z that fulfills

ng=Nxz+(1+1)s—-3M (S 68)

n=Nxzt+t(1+1)s-M
LCP perturbation: By similar arguments, when the perturbation is LCP, E;g (npw) is nonzero
only for n=Nxz+s and E; (n,w)is only nonzero for n,=Nz+s+2M. ,

E,r(npw), E5; (n, w) are only nonzero for
ng=Nxz+(1+1s+M (S 69)

n,=NXxz+(1+1)s+3M

T, Q, G symmetry breaking

For T, Q and G symmetries, the same derivations as Table 1 of the main text hold, with the only
difference being that they are carried out in the CP basis. Therefore, the structure of the results
is unchanged. For example, if we obtained that for a linearly polarized perturbation E; (nw) is
a real vector in the cartesian basis, for a CP perturbation, E, (nw) is a real vector in the CP
basis.

11



T symmetry breaking

In the CP basis, E; (nw), E,(nw) are real vectors.

Q symmetry breaking

In the CP basis, E; (nw) is real and E, (nw) is imaginary.

G symmetry breaking

In the CP basis, E;((2m +s)w) € R? ; E;((2m + 1 £ s)w) € iR? and E,2mw) € iR? ;
E;((2m+ Do) € R2.

D, symmetry breaking

To obtain the selection rules for E2, F5% we operate with D, on Eq. (S 22):

nR ' ‘nL
—~ Fﬁa ) _Fﬁa '
D)’(¢ﬁ(0)|ﬁ|¢a(0)) = iz né?a elont — Z TBT(le elont (S 70)
n Fa n —Fr
Thus
Fix = FFLL = %6 (S 71)

where a minus (plus) sign is used when |4 0)), | p(0y) have the same (different) eigenvalue.
Consider the RCP and LCP components of E; (nw):

E1R(nw)
Ba Ba af Y «B Bt
_ (pRFR,gs—m + PLFL,gs—m)FR,n+m + (pRFR,m_gS + pLFL’m_gS)FR’n_m 72
(B.m)=(t,0) €a(0) ~ €p(0) — MW
E; (nw) (S73)
Ba Ba ap ap B Bt
_ (pRFR,gS—m + pLFL,gs—m)FR,n+m + (pRFR,m—gs + pLFL,m—gs)FR,n—m
(B,m)=(a,0) €a(0) — €p(0) — MW
g=+1 3
By Egs.((S 71(S72(S73), E; (nw) can be written as
™ a + pr
Ei(nw) = (pR _) ;a,b €C (S74)
! prb +pLa

Consider the RCP and LCP components of E,(nw):
<p%¥ g,}f—glngzzs—m + pRpLFg,}lc—glsFLB,EZS—m +> FKB

R,n+m-1
Er(nw) = ! +prRFﬁ]f"glng’oézs—m + p%Fg]f—glst,gzs—m
2R =
(B.m)#(a,0) (eato) = €xo) — 10) (€ao) — €p(0) — MW)
(kD= (a,0)
g1,.82=%1
(S 75) B B
a fod
(p%Fg}f—&SFR,gzs—m + pRpLFg,}lc—glsFL'gzs_m +> KB
Ln+m-1
B, (o) = +PLDRFE g sFhasom + PIFE g sFha som
2L =
(B.m)#(a,0) (Ea(O) — €(0) — 1‘*’) (Ea(o) — €g(0) — mu))
(kD)= (a,0)
81.82=%1
(S 76)

By Eq.((S73), we can write E,(nw) as

12



- za+ b + p?
Ey(nw) = <p§‘f PRPL2TPLE) abc e (S77)
PrC + prpLb +pra

H, symmetry breaking
To obtain the selection rules for F, F5% we operate with A, on Eq. (S 22):

Hy(pp0) |l Pac) = +Z<F/3“> font = 2( 1)"( _nL> famt (S78)

—nR

Ba Ba
E; E
+ (- 1)n+1 nL S79
(a&“) Fik o

where a plus (minus) sign is used when |¢q0)), |®pc0)) have the same (different) eigenvalue.
By Eqs.(S72(S73(S79)

and

+p, b
pra T py ) (S80)

B0 = (51 1 prac- iy

Similarly, by Egs.((S 75(S 76(S79)

2 2
~ pra + prpLb + pic
£, (new) = < ) ) (s81)
X 2 (=)™ (p3c + prp.b + pia)

Z, symmetry breaking

To obtain the selection rules for E2%, FA% we operate with Z, on Eq.(S 22):

nR ' "nL !
B
+ Z ( i ) iont — Z(_l)n6y (Fn;a> plont
a a
FE n p FnL
a
— Z(_l)n+1 (FHL )eiwnt (582)
n FnﬁRa
That is
tFpy = (~D)™IE (583)
By EQqs.((S72(S73,(S83)
~ _ pra + pb >
Bimo) = (o o i | oy (584)
By Eqs.((S 75(S 76,(S83)

2 2
= PRa + PrPLb + piC
E = S85

) ((—1)”“(19;%6 + prpLb + pfd)) (589
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S.IV GENERALIZATION FOR FRACTIONAL HARMONIC
PERTURBATIONS

In this section, we discuss the generalization of previous section derivations to account for
fractional Floquet harmonic perturbations. Generally, the selection rules for all DS can be
applied in their present form for rational values of s, by reformulating the problem in terms of
an appropriate fundamental Floquet frequency. Alternatively, they may be explicitly derived,
using the guidelines presented here.

To illustrate the first point, we show in the next paragraph how the predictions for Cy
symmetry breaking can be applied for fractional harmonic perturbations of frequency s = r/q
(where r,q are integers) without an additional derivation. A T-periodic, CAN,M symmetric,
Floquet system, perturbed by an sw = rw/q perturbation, is equivalent to qT periodic, CAqN,qM
symmetric Floquet system perturbed by an rw’ = rw/q perturbation. Therefore, the selection
rules for E;(n'w’),E,(n'w’) are obtained by substituting N - qN,M = qM ,n > n’ =
qn,s — gqs = r into the selection rules that have been derived in the previous section. Notably,
the selection rules are invariant under this substitution. A similar reformulation may be carried
out for other DSs.

Alternatively, the selection rules may be explicitly derived using the following perturbation
term :

AW () = 2R{p - pe'r*¥/a} (S 86)
and modified versions of Eqgs. (S 24)(S26). We denote the fundamental frequency of the

perturbed system by w’ = w/q, and the frequency of the perturbation by rw’ where r is an
integer.

The n’w’ frequency component of the linear contribution E; (n’w") is calculated by a modified
version of Eq.(S 20):

< ¢a(0)|ﬁn’w/q|¢a(1) >= (S 87)

<L Pp)|P * Bigxr—mwsq|Pato) > < Pao) |ﬁ(n'+m)w/q| bpo) >

€a(0) ~ €p(0) — MW

(B.m)#(a,0)
g=t1

The n’w’ = n'w/q frequency component of the quadratic contribution E,(n’w") is calculated
by a modified version of Eq.(S 25):

Ez(n,w,) = ¢a(1)|ﬁn’w/q|¢a(1) »= (S 88)
X <K Pa0) [PRU=g1m0| Prto) < Pp0) |PRGsr-m)o | Pao) DK Preo) | Bn’ 4m-1)o | Ppo) >
1 a q -
4 prbTten (€at0) = €x(0) — l@)(€ato) — €0y — M)
(x,D)#(a,0)
91.92=%1

We note that since |, g «(0))) are all eigenfunctions of an w = qw’ periodic Floquet system,
the numerators of Eq.(S 87) can only be nonzero if
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dz, €EZ:gXr—m=q X2z (S 89)

dz, EZn'+m=q Xz, (S 90)
, and the numerators of Eq.(S 88) can only be nonzero if
dz, €EZ:l— gy Xr=q Xz (591)
dz, EZL: g, Xr —m =q X 2z, (592)
Jz; €EZL:n' +m—1=q Xz (S93)
, regardless of the DS of the unperturbed system. Therefore E; (n'w") can only be nonzero if
dzeZ:n" +r= qz (S94)
That is, E; (nw) can only be nonzero if
dzeZl:nts=z (S95)
E,(n'w") can only be nonzero if
dzeZ:n"+ 1+ Dr=qz (S96)
That is, E, (nw) can only be nonzero if
dzeZnt(1+x1s=z (S97)

One immediate conclusion is that to 1st order, only the +s = + r/q harmonic sidebands are
affected by the perturbation. The selection rules for E;((n+r/qw) Ex((n+ (1%
1) r/q)w) (where n is an integer) may be derived using Egs. (S 87)(S 88), similarly to the
derivations for integer values of s.

S.V APPLICATION OF MAIN TABLE 1 TO BI-CHROMATIC
PERTURBATIONS

In this section, we discuss the applicability of Table 1 in the main text to symmetry breaking
induced by multi-chromatic perturbing electric fields with a general polarization. Such a field
can always be divided to a coherent sum of linearly polarized, monochromatic components.
Thus, the multichromatic field induces a perturbation term W in the Hamiltonian that can be
written as a sum of perturbations described in table 1, i.e. A;W; + A, W, + ---, where A, is the
amplitude of the i’th component. Hence, E(Q,2) is of the form

E(QN) =Eo(Q) + 7\1E11(9) + Aiﬁzl(ﬂ) + 7\2E12 Q) + )\%EZZ Q)

+ M AEL(Q) + -

Where Ell,ﬁlz are the linear contributions induced by W;, W,, respectively, Ezl,ﬁzz are the
quadratic contributions induced by W;, W, , respectively, and A, A, E;, (Q) is a contribution that
is induced by the interference of W, W,. Note that the selection rules for
E;, (), E, (), E;, (Q),E,, (Q) are still given in Table 1 in the main text, since they arise
purely from a linearly polarized monochromatic field, whereas the selection rules for the cross
contribution E;, () are not covered by Table 1 in the main text. Thus, Table 1 in the main text
can be used to completely describe the linear-orders selection rules, and partially the quadratic
orders, without additional derivations. With this in mind, we consider a numerical example of
a bi-chromatic perturbative field. Consider the w — 2w cross-linear driving field, E(t) =
sin(2wt) X + cos(wt) y. This field exhibits Z, = T, - 6, symmetry and therefore only y (%)
polarized 2m + 1 (2m) harmonics are allowed. The ellipticity of the cross linear drivers can
be modified from zero to some finite value A, by adding an additional bi-chromatic cross linear

(S 98)

15



field, that breaks the Z, symmetry and its associated polarization restrictions. The perturbed
field, known as a bi-elliptical field, is given by E(t) = (Asin(wt) + sin(Rwt))X +
(cos(wt) + Acos(2wt))y (Lissajous curves in Figure S1). Since the perturbing field is not
linearly polarized or monochromatic, we split the perturbation into two separate terms - W, =
Ax sin(wt) and W, = Ay cos(2wt). By plugging (Wy: py = 1,py, = 0,s = 1) and (Wy: py =
0,py =1,s=2)intothe Z prediction of table 1 in the main text (and keeping in mind that the
symmetry of the unperturbed system is Z, and not Zy), we find that
E, Cmw) -§=E; 2mw)-x=0 (S 99)
E, (Cm+1Dow) x=E,_ (Cm+ Dw)-§=0 (S 100)

Hence, for spectral regions where E;,(Q) may be neglected, £ () polarized odd (even)
harmonics are predicted to scale linearly in A, whereas x () polarized even (odd) harmonics
are predicted to scale quadratically in A. All these selection rules are numerically observed in

the TDSE calculation, in the spectral region between harmonics 28 to 43 with an average
R?>0.95.

S.VI. VALIDITY OF THE THEORY FOR INTEGRATED HARMONIC
INTENSITIES

When an ultrashort driver is used for HHG, the spectrum may display spectral shifts such that
the peaks are not centered around an integer harmonic nw. In those scenarios, it is
experimentally useful to integrate the intensity of the emitted radiation around each integer
harmonic, and to use the result as a measure for the harmonic intensity.

In this section, we numerically demonstrate that our analytical results also hold when the
spectral width around each harmonic is considered. Instead of considering the scaling of
|E‘()l,!2) — E‘(O,Q)| with A, we consider the scaling of the integrated harmonics amplitudes
(i.e., square root of the integrated harmonic intensities) with A. Explicitly, we show that for the
numerical examples we studied in the main text, the following quantity consistently follows
the predictions of Table 1 in the main text

A=+w/2 A=+w/2
dAIE(L,Q+ A)|? — f dA|E(0,Q + A)|? (S101)
A=-w/2 A=-w/2

Cs 3 Symmetry broken by a 5w linearly polarized field

In Figure 1 of the main text, we numerically demonstrated that when a Cs 3 DS is broken by a
Sw linearly polarized laser, |E(A,5mw) — E(0,5mw)| <A and |E(A, (5m +2)w) —
E(0,(5m £ 2)w)| « A2, in agreement with the analytical prediction E;((5m + 2)w) =
E,(5mw) = 0. In Figure S2, we show that the same predictions hold for the integrated
harmonic amplitudes (Eq.(S 101)). For quadratically scaling harmonics, some of the harmonics
display small deviations from the analytical prediction due to the inclusion of the linearly
scaling background radiation in the computation.

Z,, DS broken by a 5w linearly polarized field

In Figure 2 of the main text, we numerically demonstrated that when a Zy DS is broken by a
5w linearly polarized laser (polarized along ), 2m harmonics scale linearly (quadratically)
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with A if polarized along x (9), and 2m + 1 harmonics scale linearly (quadtatically) with A if
polarized along y (). This is consistent with the analytical prediction E,,(2mw) =
Eiy(2mw) = E;y((2m + Dw) = E;x((2m + 1)w) = 0. In Figure S3, we show the same
predictions hold for the integrated harmonic amplitudes (Eq.(S 101)).

Z, DS broken by a bi-chromatic perturbation

In Figure S1, we numerically demonstrated that when an w — 2w cross linear driver with a DS
7, becomes a cross-elliptical driver with ellipticity A, there exists a spectral region where 2m +
1 harmonics scale linearly (quadratically) with A if polarized along X (¥), and 2m harmonics
scale linearly (quadtatically) with A if polarized along y (X). In Figure S4, we show the same
predictions hold for the integrated harmonic amplitudes (Eq.(S 101)).
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E(t) = (sin(2wt) + Asin(wt))X + (Cos(a)t) + Acos(Zwt))?

(a) 28 Harmonic order 42 (b) 28 Harmonic order 42
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Fig. S1.

Numerical demonstration of selection rules for breaking Z, = %, - 6, selection rules in HHG
by multi-chromatic, cross linear perturbative field. For A = 0, y polarized 2m harmonics and
X polarized 2m+1 harmonics are forbidden. For 2 > 0 , the ellipticity breaks the DS and
induces (a,d) quadratic scaling of £(9) polarized even (odd) harmonics (b,c) linear scaling of
y(x) polarized even (odd) harmonics.The scaling of the harmonic amplitudes with perturbation
strengths are presented in color, , and the individual R? values are marked with the
corresponding color above each subfigure. The harmonic amplitudes are multiplied by a factor
to appear on the same graph.
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E(t) = (cos(3wt) + cos(2wt) + A cos(5wt))X + (sin(3wt) — sin(2wt))y

A=+1/2 A=+1/2 a=+1/2 a=+1/2
f da|E((5q + D, 2)[* - j aa|E((5q + Mw, 0)[* « £y f dA|E((5q + 2 + Dw,)|* - f dA|E((5q + 2 + D)w,0)|” & E,2
a1/ a=t172 a=t12

Harm
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Fig. S2.

Numerical demonstration of selection rules for breaking Cs3 = %5 - R53 selection rules in
HHG by an x-polarized perturbative electric field (the same driving field and perturbation as
Figure 1 in the main text). The scaling of integrated harmonic amplitudes (Eq.(S 101)) is linear
for 5m harmonics and quadratic for 5m + 2 harmonics, in accordance with the analytical
predictions of Table 1 in the main text. The scaling of the harmonic amplitudes with
perturbation strengths are presented in color, and the individual R? values are marked with the
corresponding color above each subfigure. Each harmonic amplitude is multiplied by a factor
such that all the harmonics fit to the graph.
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E(t) = sin(wt) X + (sinQwt + ©/5) + Asin(5wt)) y
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Fig. S3.

Numerical demonstration of selection rules for breaking Zy = 1, - 6, selection rules in HHG
by an y-polarized perturbative electric field (the same driving field and perturbation as Figure
2 in the main text). The scaling of integrated harmonic amplitudes (Eq.(S 101)) is linear for
odd (even) harmonics polarized along the y(X) axis, and quadratic for even (odd) harmonics
polarized along the y(X) axis. The scaling of the harmonic amplitudes with perturbation
strengths are presented in color, and the individual R? values are marked with the
corresponding color above each subfigure. Each harmonic amplitude is multiplied by a factor

such that all the harmonics fit to the graph.
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E(t) = (sin(Rwt) + Asin(wt))x + (cos(wt) + Acos(Zwt))?
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Numerical demonstration of selection rules for breaking Z, = %, - @, selection rules in HHG
by a bi-chromatic perturbation (the same driving field and perturbation as Figure 3 in the main
text). The scaling of integrated harmonic amplitudes (Eg.(S 101)) is linear for even (odd)
harmonics polarized along the y(X) axis, and quadratic for odd (even) harmonics polarized
along the y(x) axis. The scaling of the harmonic amplitudes with perturbation strengths are
presented in color, and the individual R? values are marked with the corresponding color above
each subfigure. Each harmonic amplitude is multiplied by a factor such that all the harmonics
fit to the graph.
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