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This supplementary material file contains the derivations of the analytical results presented in 

the main text, as well as details on the methodology used in numerical calculations and 

complementary numerical results. In Section S.I we derive Eqs. (6,7) from the main text. In 

section S.II, we derive the selection rules for breaking selection rules presented in Table 1 of 

the main text. In section S.III we drive an analogous table for circularly polarized perturbations. 

In section S.IV we discuss the generalization of our results for fractional harmonic 

perturbations. In section V we discuss the applicability of main table 1 to multi-chromatic 

perturbations and present a complementary numerical example. In section S.VI we show that 

for the numerical examples we studied in the main text, and the numerical example we studied 

in section S.V, the same results are obtained when a spectral width around each harmonic is 

considered. 

Throughout this file we follow the notation of reference [28] in the main text for Floquet 

perturbation theory (FPT) and reference [15] in the main text for dynamical symmetries.   

 

S.I DERIVATION OF EQUATIONS (6,7) IN THE MAIN TEXT 

In this section, we derive Eqs. (4-7) in the main text. Let |ϕα(0)(t)⟩ be a Floquet state of the 

unperturbed system. When the system is perturbed by the term 𝜆𝑊̂(𝑡) this state may be 

corrected by FPT. First, one needs to lift the state {|ϕα(0)(t)⟩}t=0
t=T

 from the Hilbert space ℋ to 

the Floquet Hilbert space ℱ = ℋ⊗ℒ where ℒ is the space of bounded periodic functions (i.e. 

loop functions) over [0, T). The space ℒ is spanned by the orthonormal basis {|t)}, 0 ≤ t < T , 

where the orthonormality condition is (𝑡|𝑡′) ≡ 𝑇𝛿(𝑡 − 𝑡′). The brackets | ⋅≫, |⋅⟩, |⋅) describe 

states that live in ℱ,ℋ and ℒ, respectively.  

The state |ϕα(0)(t)⟩ is lifted to a loop in ℱ by |ϕαt ≫= |ϕα(0)(t)⟩|t). The center of the loop is 

defined as  

 
|ϕα(0)
̅̅ ̅̅ ̅̅ ̅ ≫≡ ∫ |ϕα(0)(t)⟩|t)

dt

T

T

0

 
(S 1) 

To 1st order, |ϕα(0)
̅̅ ̅̅ ̅̅ ̅ ≫ and is corrected by 

 
|ϕα
̅̅ ̅̅ ≫= |ϕα(0)

̅̅ ̅̅ ̅̅ ̅ ≫ +λ|ϕα(1)
̅̅ ̅̅ ̅̅ ̅ ≫ 

(S 2) 

 

where 

 (S 3) 
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|ϕα(1)
̅̅ ̅̅ ̅̅ ̅ ≫= ∑

≪ ϕβn(0) |Ŵ̂| ϕα(0)
̅̅ ̅̅ ̅̅ ̅ ≫

ϵα(0) − ϵβ(0) − nω
|ϕβn(0) ≫

(β,n)≠(α,0)

 

, and 

|ϕβn(0) ≫≡ ∫
dt

T

T

0

 einωt|ϕβ(0)(t)⟩|t) 
(S 4) 

𝑊̂̂ ≡  ∫
𝑑𝑡

𝑇
|𝑡)𝑊̂(𝑡|

𝑇

0

 
(S 5) 

≪ ϕβn(0) |Ŵ̂| ϕα(0)
̅̅ ̅̅ ̅̅ ̅ ≫= ∫

dt

T

T

0

 ⟨ϕβ(0)|e
−inωtŴ(t)|ϕα(0)⟩ (S 6) 

Finally, to obtain the corrected Floquet state |ϕα(t, λ)⟩ we project |ϕα
̅̅ ̅̅ ≫ back to the Hilbert 

space: 

 
|ϕα(t, λ)⟩ = (t|ϕα

̅̅ ̅̅ ≫ 
(S 7) 

 

The Ω frequency component of the dipole moment expectation value 𝛍̂(λ) is given by 

 
𝐄̃(Ω, λ) = ∫

dt

T
⟨ϕα(t, λ)|𝛍̂e

iΩt|ϕα(t, λ)⟩
T

0

=≪ ϕα
̅̅ ̅̅ |𝛍̂̂Ω|ϕα

̅̅ ̅̅ ≫  (S 8) 

where  

 
𝝁̂̂𝛺 ≡ ∫

𝑑𝑡

𝑇
|𝑡)𝝁̂𝑒𝑖𝛺𝑡(𝑡|

𝑇

0

 (S 9) 

Plugging Eq. (S 2) into Eq. (S 8) we obtain Eq.(4) in the main text: 

 𝐄̃(Ω, λ) = 𝐄̃0(Ω) + λ𝐄̃1(Ω) + λ2𝐄̃2(Ω) (S 10) 

where 

 𝐄̃0(Ω) ≡ ≪ ϕα(0)
̅̅ ̅̅ ̅̅ ̅|𝛍̂̂Ω|ϕα(0)

̅̅ ̅̅ ̅̅ ̅ ≫ (S 11) 

 𝐄̃1(Ω) ≡≪ ϕα(0)
̅̅ ̅̅ ̅̅ ̅|𝛍̂̂Ω|ϕα(1)

̅̅ ̅̅ ̅̅ ̅ ≫ +≪ ϕα(1)
̅̅ ̅̅ ̅̅ ̅|𝛍̂̂Ω|ϕα(0)

̅̅ ̅̅ ̅̅ ̅ ≫ (S 12) 

 𝐄̃2(Ω) ≡≪ ϕα(1)
̅̅ ̅̅ ̅̅ ̅|𝛍̂̂Ω|ϕα(1)

̅̅ ̅̅ ̅̅ ̅ ≫ (S 13) 

For the derivations of Eqs.(6,7) in the main text, we use the following mathematical identities: 

≪ 𝜙𝛼
̅̅ ̅̅ |𝑶̂̂𝛺| 𝜙𝛽

̅̅ ̅̅ ≫= ∫
𝑑𝑡

𝑇
⟨𝜙𝛼(𝑡)|

𝑇

0

𝑶̂𝑒𝑖𝛺𝑡|𝜙𝛽(𝑡)⟩ (S 14) 

≪ 𝜙𝛼(0)
̅̅ ̅̅ ̅̅ ̅ |𝑶̂̂𝑛𝜔| 𝜙𝛽𝑚(0) ≫=≪ 𝜙𝛼(0)

̅̅ ̅̅ ̅̅ ̅ |𝑶̂̂(𝑛+𝑚)𝜔| 𝜙𝛽(0)
̅̅ ̅̅ ̅̅ ̅ ≫

= ∫
𝑑𝑡

𝑇
⟨𝜙𝛼(0)(𝑡)|

𝑇

0

𝑶̂𝑒𝑖(𝑛+𝑚)𝜔|𝜙𝛽(0)(𝑡)⟩ 
(S 15) 

≪ 𝜙𝛽𝑚(0) |𝑶̂̂𝑛𝜔| 𝜙𝛼(0)
̅̅ ̅̅ ̅̅ ̅ ≫= ≪ 𝜙𝛽(0)

̅̅ ̅̅ ̅̅ ̅ |𝑶̂̂(𝑛−𝑚)𝜔| 𝜙𝛼(0)
̅̅ ̅̅ ̅̅ ̅ ≫

= ∫
𝑑𝑡

𝑇
⟨𝜙𝛼(0)(𝑡)|

𝑇

0

𝑶̂𝑒𝑖(𝑛−𝑚)𝜔|𝜙𝛽(0)(𝑡)⟩ 
(S 16) 

where 𝑶̂ is a vector operator. These identities can be verified by using definitions of |𝜙𝛼(0)
̅̅ ̅̅ ̅̅ ̅⟩ 

(Eq.(S 1)) , |ϕβn(0) ≫ (Eq.(S 4)), 𝑶̂̂𝑛𝜔 (Eq. (S 𝟗)), and the orthonormality condition (𝑡|𝑡′) ≡

𝑇𝛿(𝑡 − 𝑡′). 
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The term 𝑬̃𝟏(𝜴) can also be written as 

 𝑬̃1(𝛺) =≪ 𝜙𝛼(0)
̅̅ ̅̅ ̅̅ ̅|𝝁̂̂𝛺|𝜙𝛼(1)

̅̅ ̅̅ ̅̅ ̅ ≫ +(≪ 𝜙𝛼(0)
̅̅ ̅̅ ̅̅ ̅|𝝁̂̂−𝛺|𝜙𝛼(1)

̅̅ ̅̅ ̅̅ ̅ ≫)
†
 (S 17) 

We plug Eq.(S 3) into the first term of Eq.(S 12)  

 

≪ 𝜙𝛼(0)
̅̅ ̅̅ ̅̅ ̅|𝝁 ̂̂𝑛𝜔|𝜙𝛼(1)

̅̅ ̅̅ ̅̅ ̅ ≫

= ∑
≪ 𝜙𝛽𝑚 |𝑊̂̂| 𝜙𝛼(0)

̅̅ ̅̅ ̅̅ ̅ ≫≪ 𝜙𝛼(0)
̅̅ ̅̅ ̅̅ ̅|𝝁 ̂̂𝑛𝜔|𝜙𝛽𝑚 ≫

𝜖𝛼(0) − 𝜖𝛽(0) −𝑚𝜔
(𝛽,𝑚)≠(𝛼,0)

= 
(S 18) 

 = ∑
≪ 𝜙𝛽(0)

̅̅ ̅̅ ̅̅ ̅ |𝑊̂̂−𝑚𝜔| 𝜙𝛼(0)
̅̅ ̅̅ ̅̅ ̅ ≫≪ 𝜙𝛼(0)

̅̅ ̅̅ ̅̅ ̅|𝝁̂̂𝑛𝜔+𝑚𝜔|𝜙𝛽(0)
̅̅ ̅̅ ̅̅ ̅ ≫

𝜖𝛼(0) − 𝜖𝛽(0) −𝑚𝜔
(𝛽,𝑚)≠(𝛼,0)

  

We plug 

 λŴ(t) = λℜ{𝐩 ⋅ 𝛍̂eisωt} (S 19) 

into (S 18) since the system is perturbed by a linearly polarized electric field of amplitude λ, 

polarization 𝒑 ∈ ℝ2, and frequency sω, where ω = 2π T⁄  and 𝑠 may be any integer. 

≪ 𝜙𝛼(0)
̅̅ ̅̅ ̅̅ ̅|𝝁 ̂̂𝑛𝜔|𝜙𝛼(1)

̅̅ ̅̅ ̅̅ ̅ ≫

= ∑
≪ 𝜙𝛽(0)

̅̅ ̅̅ ̅̅ ̅|𝒑𝒈 ⋅ 𝝁̂̂(𝑔𝑠−𝑚)𝜔|𝜙𝛼(0)
̅̅ ̅̅ ̅̅ ̅ ≫≪ 𝜙𝛼(0)

̅̅ ̅̅ ̅̅ ̅|𝝁̂̂(𝑛+𝑚)𝜔|𝜙𝛽(0)
̅̅ ̅̅ ̅̅ ̅ ≫

𝜖𝛼(0) − 𝜖𝛽(0) −𝑚𝜔
(𝛽,𝑚)≠(𝛼,0)

𝑔=±1

 (S 20) 

where 𝒑𝑔 ≡ 𝕽{𝒑} + 𝑖𝑔ℑ{𝒑} and the time-independent matrix element 𝐅n
βα

 

 𝐅n
βα

≡≪ ϕ𝛃(0)
̅̅ ̅̅ ̅̅ ̅|𝛍̂̂nω|ϕα(0)

̅̅ ̅̅ ̅̅ ̅ ≫ (S 21) 

represents the 𝑛𝜔 frequency component of the time-dependent matrix element: 

 ⟨𝜙𝛽(0)|𝝁̂|𝜙𝛼(0)⟩ = ∑𝑭𝑛
𝛽𝛼
𝑒𝑖𝑛𝜔𝑡

𝑛

 (S 22) 

Rewriting Eq.(S 20) using 𝐅n
βα

, we obtain  

≪ 𝜙𝛼(0)
̅̅ ̅̅ ̅̅ ̅|𝝁 ̂̂𝑛𝜔|𝜙𝛼(1)

̅̅ ̅̅ ̅̅ ̅ ≫= ∑
(𝐩𝒈 ⋅ 𝐅gs−m

βα
)𝐅n+m

αβ

ϵα(0) − ϵβ(0) −mω
(β,m)≠(α,0)

g=±1

 
(S 23) 

Plugging Eq.(S 23) into Eq.(S 17), we have 

 𝐄̃1(Ω) = ∑
(𝐩𝒈 ⋅ 𝐅gs−m

βα
)𝐅n+m

αβ
+ (𝐩𝒈 ⋅ 𝐅m−gs

α𝛽
)𝐅n−m

βα

ϵα(0) − ϵβ(0) −mω
(β,m)≠(α,0)

g=±1

 
(S 24) 

This is exactly Eq.(6) of the main text. Similarly, the term 𝑬̃2(𝛺) is given by 

 𝑬̃2(𝑛𝜔) =≪ 𝜙𝛼(1)
̅̅ ̅̅ ̅̅ ̅|𝝁̂̂𝑛𝜔|𝜙𝛼(1)

̅̅ ̅̅ ̅̅ ̅ ≫= (S 25) 

=
1

4
∑

≪ 𝜙𝛼(0)
̅̅ ̅̅ ̅̅ ̅|𝒑𝒈𝟏 ⋅  𝝁̂̂(𝑙−𝑔1𝑠)𝜔|𝜙𝜅(0)

̅̅ ̅̅ ̅̅ ̅ ≫≪ 𝜙𝛽(0)
̅̅ ̅̅ ̅̅ ̅ |𝒑𝒈𝟐 ⋅ 𝝁̂̂(𝑔2𝑠−𝑚)𝜔|𝜙𝛼(0)

̅̅ ̅̅ ̅̅ ̅ ≫≪ 𝜙𝜅(0)
̅̅ ̅̅ ̅̅ ̅|𝝁̂̂(𝑛+𝑚−𝑙)𝜔|𝜙𝛽(0)

̅̅ ̅̅ ̅̅ ̅̅ ≫

(𝜖𝛼(0) − 𝜖𝜅(0) − 𝑙𝜔)(𝜖𝛼(0) − 𝜖𝛽(0) −𝑚𝜔)
(𝛽,𝑚)≠(𝛼,0)

(𝜅,𝑙)≠(𝛼,0)
𝑔1,𝑔2=±1

 

Plugging in Eq.(S 21) into (S 25) we obtain 
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𝐄̃2(nω) =
1

4
∑

(𝐩𝒈𝟏 ⋅ 𝐅l−g1s
ακ )(𝐩𝒈𝟐 ⋅ 𝐅g2s−m

βα
)𝐅n+m−l

κβ

(ϵα(0) − ϵκ(0) − lω)(ϵα(0) − ϵβ(0) −mω)
(β,m)≠(α,0)

(κ,l)≠(α,0)
g1,g2=±1

 
(S26) 

This is Eq.(7) of the main text.  

S.II DERIVATION OF TABLE 1 IN THE MAIN TEXT 
 

In this section, we derive the selection rules for breaking selection rules presented in Table 1 

of the main text. 

 

𝑪̂𝑵,𝑴 𝐚𝐧𝐝 𝒆̂𝑵,𝑴 symmetry breaking 

 

The 𝐶̂𝑁,𝑀 operation is defined as 𝐶̂𝑁,𝑀 = 𝑅̂𝑁,𝑀 ⋅ 𝜏̂𝑁 where 𝑅̂𝑁,𝑀 is a 2𝜋𝑀 𝑁⁄  rotation and 𝜏̂𝑁 is 

a 𝑇 𝑁⁄  time translation. The eigenvalues of the 𝑅̂𝑁,𝑀 operation are 𝑒𝑥𝑝(±𝑖 2𝜋𝑀 𝑁⁄ ) and the 

eigenvalues of 𝜏̂𝑁 are {𝑒𝑥𝑝(−𝑖 2𝜋𝑘 𝑁⁄ ) | 𝑘 = 0,… ,𝑁 − 1}. Hence, the eigenvalues of 𝐶̂𝑁,𝑀 are 

{𝑒𝑥𝑝 (−𝑖
2𝜋𝑘

𝑁
± 𝑖

2𝜋𝑀

𝑁
) | 𝑘 = 0, … , 𝑁 − 1} = {𝑒𝑥𝑝 (−𝑖

2𝜋𝑘

𝑁
) | 𝑘 = 0,… ,𝑁 − 1}. If the 

unperturbed system is 𝐶̂𝑁,𝑀 symmetric, the unperturbed Floquet states |𝜙𝛼(0)⟩, |𝜙𝛽(0)⟩ are 

eigenfunctions of 𝐶̂𝑁,𝑀 with eigenvalues 𝑒−𝑖2𝜋𝑘𝛼 , 𝑒−𝑖2𝜋𝑘𝛽 respectively. 

To obtain the selection rules for 𝑭𝒏
𝜷𝜶

, we operate with 𝑪̂𝑵,𝑴 on Eq.(S 22) to find  

 

𝐶̂𝑁,𝑀⟨𝜙𝛽(0)|𝝁̂|𝜙𝛼(0)⟩ =  𝑒
𝑖2𝜋(𝑘𝛽−𝑘𝛼)

𝑁 ∑𝑭𝒏
𝛽𝛼
𝑒𝑖𝑛𝜔𝑡

𝑛

= ∑𝑒
𝑖2𝜋𝑛
𝑁 𝑅̂𝑁,𝑀 ⋅ 𝑭𝒏

𝛽𝛼
𝑒𝑖𝑛𝜔𝑡

𝑛

 

(S 27) 

, and 

 
𝑒
𝑖2𝜋(𝑘𝛽−𝑘𝛼−𝑛)

𝑁 𝑭𝒏
𝛽𝛼

= 𝑅̂𝑁,𝑀 ⋅ 𝑭𝒏
𝛽𝛼

 (S 28) 

Since the eigenvalues of 𝑹̂𝑵,𝑴 are 𝒆±𝒊
𝟐𝝅𝑴

𝑵 , Eq.(S 28) has a nontrivial solution (where 𝑭𝒏
𝜷𝜶

 is 

nonzero) only if there exists an integer 𝒛 ∈ ℤ such that 

 𝑛 = 𝑁 × 𝑧 + 𝑘𝛽 − 𝑘𝛼 ±𝑀 (S 29) 

We consider a specific 𝜷,𝒎,𝒈 contribution to 𝑬̃𝟏(𝒏𝝎) (Eq.(S 24)). By Eq.(S 29), this 

contribution is nonzero only if there are two integers 𝒛𝟏, 𝒛𝟐 that simultaneously fulfill 

 𝑔𝑠 − 𝑚 = 𝑁 × 𝑧1 + 𝑘𝛽 − 𝑘𝛼 ±𝑀 (S 30) 

 𝑛 +𝑚 = 𝑁 × 𝑧2 + 𝑘𝛼 − 𝑘𝛽 ±𝑀 (S 31) 

By summing Eqs.(S 30)(S 31), we find that 𝐄̃𝟏(nω) is only nonzero for values of 𝑛 for which 

there exists an integer 𝑧 ∈ ℤ that fulfills one of the conditions 

 ±𝑠 ± 𝑛 = 𝑁 × 𝑧 ± 2𝑀 (S 32) 

 ±𝑠 ± 𝑛 = 𝑁 × 𝑧  

Next, we consider a specific (𝜷,𝒎), (𝜿, 𝒍), 𝒈𝟏, 𝒈𝟐 contribution to 𝑬̃𝟐(𝒏𝝎) (Eq.(S26)). We 

denote the eigenvalues of |𝝓𝜶(𝟎)⟩, |𝝓𝜷(𝟎)⟩, |𝝓𝜿(𝟎)⟩ by 𝒆−
𝒊𝟐𝝅𝒌𝜶

𝑵 , 𝒆−
𝒊𝟐𝝅𝒌𝜷

𝑵 , 𝒆−
𝒊𝟐𝝅𝒌𝜿

𝑵  respectively. By 

Eq.(S 29) , there is a nonzero contribution only if there exists three integers 𝒛𝟏, 𝒛𝟐, 𝒛𝟑 ∈ ℤ such 

that 
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 𝑙 − 𝑔1𝑠 = 𝑁𝑧1 + 𝑘𝛼 − 𝑘𝜅 ±𝑀 (S 33) 

 𝑔2𝑠 − 𝑚 = 𝑁𝑧2 + 𝑘𝛽 − 𝑘𝛼 ±𝑀  

 𝑛 +𝑚 − 𝑙 = 𝑁𝑧3 + 𝑘𝜅 − 𝑘𝛽 ±𝑀  

By summing the three lines of Eq.(S 34), we find that 𝑬̃𝟐(𝑛𝜔) is only nonzero for values of 𝑛 

for which there exists three integers 𝑧1, 𝑧2, 𝑧3 ∈ ℤ that fulfill  

 𝑛 + (𝑔2 − 𝑔1)𝑠 = 𝑁(𝑧1 + 𝑧2 + 𝑧3) ± 𝑀 ±𝑀 ±𝑀 (S 35) 

More compactly, 𝑬̃𝟐(𝑛𝜔) is only nonzero for values of 𝑛 for which there exists an integer 𝑧 ∈
ℤ that fulfills 

 𝑛 ± (1 ± 1)𝑠 = 𝑁 × 𝑧 ± (2 ± 1)𝑀 (S 36) 

We note that the same conditions also apply to discrete elliptical symmetries, denoted 𝑒̂𝑁,𝑀, 

where the operation 𝑒̂𝑁,𝑀 is defined as 𝑒̂𝑁,𝑀 = 𝜏̂𝑁 ⋅ 𝐿̂𝑏 ⋅ 𝑅̂𝑁,𝑀 ⋅ 𝐿̂1 𝑏⁄  where:  

 𝐿̂𝑏 = (
1 0
0 𝑏

) (S 37) 

The derivation and selection rules remain the same, because the eigenvalues of 𝒆̂𝑵,𝑴 are 

identical to the eigenvalues of 𝑪̂𝑵,𝑴 , and the eigenvalues of 𝑳̂𝒃 ⋅ 𝑹̂𝑵,𝑴 ⋅ 𝑳̂𝟏 𝒃⁄  are identical to 

the eigenvalues of 𝑹̂𝑵,𝑴. 

In the case where 𝒔 = 𝒓 𝒒⁄  is a rational number, the same selection rules may be used, since a 

𝑪̂𝑵,𝑴 symmetric Floquet system whose frequency is 𝝎, perturbed by an 𝒓𝝎 𝒒⁄  perturbation can 

be treated as a 𝑪̂𝒒𝑵,𝒒𝑴 symmetric Floquet system whose frequency is 𝝎′ = 𝝎 𝒒⁄ , perturbed by 

an 𝒓𝝎′ perturbation. 

 

𝐓̂ symmetry breaking 

 

The time reversal operation is denoted by 𝑇̂. Its eigenvalues are ±1. To obtain the selection 

rules for 𝑭𝑛
𝛽𝛼

, we operate with 𝑇̂ on Eq.(S 22): 

 𝑇̂⟨𝜙𝛽(0)|𝝁̂|𝜙𝛼(0)⟩ =  ±∑𝑭𝑛
𝛽𝛼
𝑒𝑖𝜔𝑛𝑡

𝑛

= ∑𝑭−𝑛
𝛽𝛼
𝑒𝑖𝜔𝑛𝑡

𝑛

 (S 38) 

and 

 ±𝑭𝑛
𝛽𝛼

= 𝑭−𝑛
𝛽𝛼

 (S 39) 

where a plus (minus) sign is used when |𝝓𝜶(𝟎)⟩, |𝝓𝜷(𝟎)⟩ have the same (different) eigenvalue. 

Therefore, if 𝜶, 𝜷 have the same (different) eigenvalue 𝑭𝒏
𝜷𝜶

 is real (imaginary). We consider a 

specific 𝜷,𝒎,𝒈 contribution to 𝑬̃𝟏(𝒏𝝎) (Eq.(S 24)). The contribution is comprised of a 

multiplication of either two real entities, or two imaginary entities, therefore it is real. Since all 

contributions to Eq. (S 24) are real, 𝐄̃𝟏(𝒏𝝎) is a real vector, i.e. it is linearly polarized and is 

in an equal or opposite phase with the perturbation. Next, we consider a specific 

(𝜷,𝒎), (𝜿, 𝒍), 𝒈𝟏, 𝒈𝟐 contribution to 𝑬̃𝟐(𝒏𝝎) (Eq.(S 25)). If |𝝓𝜶,𝜷,𝜿(𝟎)⟩ all have the same 

eigenvalue, the contribution is comprised of a multiplication of three real entities and is 

therefore real. If one of |𝝓𝜶,𝜷,𝜿(𝟎)⟩ has a different eigenvalue from the other two, the 

contribution is comprised of a multiplication of one real entity and two imaginary entities, 

hence the contribution is real. Therefore, 𝐄̃𝟐(𝒏𝝎) is a real vector as well. 

 

𝐐̂ symmetry breaking 
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The operation 𝑄̂ is defined by 𝑄̂ = 𝑇̂ ⋅ 𝑅̂2 where 𝑇̂ is the time reversal operation and 𝑅̂2 is a 𝜋 

rotation. Its eigenvalues are ±1. To obtain the selection rules for 𝑭𝑛
𝛽𝛼

, we operate with 𝑄̂ on 

Eq.(S 22): 

 

 𝑄̂⟨𝜙𝛽(0)|𝝁̂|𝜙𝛼(0)⟩ =  ±∑𝑭𝑛
𝛽𝛼
𝑒𝑖𝜔𝑛𝑡

𝑛

= −∑𝑭−𝑛
𝛽𝛼
𝑒𝑖𝜔𝑛𝑡

𝑛

 (S 40) 

and 

 ∓𝑭𝑛
𝛽𝛼

= 𝑭−𝑛
𝛽𝛼

 (S 41) 

where a minus (plus) sign is used when |𝜙𝛼(0)⟩, |𝜙𝛽(0)⟩ have the same (different) eigenvalue. 

Therefore, if 𝛼, 𝛽 have the same (different) eigenvalue 𝑭𝑛
𝛽𝛼

 is imaginary (real). From the same 

considerations as above, 𝑬̃𝟏(𝑛𝜔) is real and 𝑬̃𝟐(𝑛𝜔) is imaginary. 

 

𝐆̂ symmetry breaking 

 

The operation 𝐺̂ is defined by 𝐺̂ = 𝑇̂ ⋅ 𝜏̂2 ⋅ 𝑅̂2 where 𝑇̂ is the time reversal operation, 𝑅̂2 is a 𝜋 

rotation and 𝜏̂2 is a 𝑇 2⁄  time translation. Its eigenvalues are ±1. To obtain the selection rules 

for 𝑭𝑛
𝛽𝛼

, we operate with 𝐺̂ on Eq.(S 22): 

 

 𝐺̂⟨𝜙𝛽(0)|𝝁̂|𝜙𝛼(0)⟩ =  ±∑𝑭𝑛
𝛽𝛼
𝑒𝑖𝜔𝑛𝑡

𝑛

= ∑(−1)𝑛+1𝑭−𝑛
𝛽𝛼
𝑒𝑖𝜔𝑛𝑡

𝑛

 (S 42) 

and 

 ∓𝑭𝑛
𝛽𝛼

= (−1)𝑛𝑭−𝑛
𝛽𝛼

 (S 43) 

 

 𝜶,𝜷 𝐡𝐚𝐯𝐞 𝐭𝐡𝐞 𝐬𝐚𝐦𝐞 𝐞𝐢𝐠𝐞𝐧𝐯𝐚𝐥𝐮𝐞 𝜶,𝜷 𝐡𝐚𝐯𝐞 𝐝𝐢𝐟𝐟𝐞𝐫𝐞𝐧𝐭 𝐞𝐢𝐠𝐞𝐧𝐯𝐚𝐥𝐮𝐞𝐬 

𝐧 𝐢𝐬 𝐞𝐯𝐞𝐧  𝑭𝑛
𝛽𝛼

 ∈ 𝑖ℝ 𝑭𝑛
𝛽𝛼

 ∈ ℝ 

𝐧 𝐢𝐬 𝐨𝐝𝐝 𝑭𝑛
𝛽𝛼

 ∈ ℝ 𝑭𝑛
𝛽𝛼

 ∈ 𝑖ℝ 

Table S1. 

selection rules for Ĝ symmetric matrix elements.  

 

We consider a specific 𝜷,𝒎,𝒈 contribution to 𝑬̃𝟏(𝒏𝝎) (Eq.(S 24)). If s and n are of the same 

parity, 𝒈𝒔 −𝒎 and 𝒏 +𝒎 are of the same parity as well, and the contribution is comprised of 

either a multiplication of real or two imaginary entities. Therefore, if s and n are of the same 

(different) parity 𝐄̃𝟏(𝒏𝝎) is real (imaginary). By a similar analysis, we find that 𝑬̃𝟐(𝟐𝒎𝝎) is 

imaginary and 𝑬̃((𝟐𝒎+ 𝟏)𝝎) is real (Table S2).  

 

𝑬̃𝟏 𝑬̃𝟏((𝟐𝒎 ± 𝒔)𝝎) ∈ ℝ𝟐 𝑬̃𝟏((𝟐𝒎± 𝒔 + 𝟏)𝝎) ∈ 𝒊ℝ𝟐 

𝑬̃𝟐 𝑬̃𝟐(2𝑚𝜔) ∈ 𝑖ℝ2 𝑬̃𝟐((2𝑚 + 1)𝜔) ∈ ℝ2 

Table S2. 

selection rules for 𝑬̃𝟏(𝒏𝝎), 𝑬̃𝟐(𝒏𝝎), given that the unperturbed system is 𝑮̂ symmetric. 
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𝑫̂𝒚 symmetry breaking 

The operation 𝐷̂𝑦 is defined by 𝐷̂𝑦 = 𝑇̂ ⋅ 𝜎̂𝑦 where 𝑇̂ is the time reversal operation and 𝜎̂𝑦 is a 

reflection relative to 𝑦̂ (i.e 𝑥 → −𝑥). Its eigenvalues are ±1. To obtain the selection rules for 

𝑭𝑛
𝛽𝛼

, we operate with 𝐷̂𝑦 on Eq.(S 22): 

 

 𝐷̂𝑦⟨𝜙𝛽(0)|𝝁̂|𝜙𝛼(0)⟩ =  ±∑(
𝐹𝑛𝑥
𝛽𝛼

𝐹𝑛𝑦
𝛽𝛼) 𝑒

𝑖𝜔𝑛𝑡

𝑛

= ∑(
−𝐹−𝑛𝑥

𝛽𝛼

𝐹−𝑛𝑦
𝛽𝛼 )𝑒𝑖𝜔𝑛𝑡

𝑛

 (S 44) 

and 

 
±(

𝐹𝑛𝑥
𝛽𝛼

𝐹𝑛𝑦
𝛽𝛼) = (

−𝐹−𝑛𝑥
𝛽𝛼

𝐹−𝑛𝑦
𝛽𝛼 ) (S 45) 

where a plus (minus) sign is used when |𝝓𝜶(𝟎)⟩, |𝝓𝜷(𝟎)⟩ have the same (different) eigenvalue. 

Table S3 is obtained from Eq.(S 45).  

 

 𝛂, 𝛃 𝐡𝐚𝐯𝐞 𝐭𝒉𝒆 𝐬𝐚𝐦𝐞 𝐞𝐢𝐠𝐞𝐧𝐯𝐚𝐥𝐮𝐞 𝛂, 𝛃 𝐡𝐚𝐯𝐞 𝐝𝐢𝐟𝐟𝐞𝐫𝐞𝐧𝐭 𝐞𝐢𝐠𝐞𝐧𝐯𝐚𝐥𝐮𝐞𝐬 

𝑭𝒏
𝜷𝜶

⋅ 𝒙̂  𝑭𝑛
𝛽𝛼

⋅ 𝒙̂  ∈ 𝑖ℝ 𝑭𝑛
𝛽𝛼

⋅ 𝒙̂  ∈ ℝ 

𝑭𝒏
𝜷𝜶

⋅ 𝒚̂ 𝑭𝒏
𝜷𝜶

⋅ 𝒚̂ ∈ ℝ 𝑭𝒏
𝜷𝜶

⋅ 𝒚̂  ∈ 𝑖ℝ 

Table S3. 

Selection rules for D̂y symmetric matrix elements. 

 

By Eqs.(S 24)(S26) and Table S3,  

 𝑬̃𝟏(𝑛𝜔) = 𝑝𝑥 (
𝑎
𝑖𝑏
) + 𝑝𝑦 (

𝑖𝑐
𝑑
) ; 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℝ (S 46) 

 𝑬̃𝟐(𝑛𝜔) = (𝑝𝑥
2𝑎 + 𝑝𝑦

2𝑏 + 𝑖𝑝𝑥𝑝𝑦𝑐) (
𝑖𝑑
𝑒
) ; 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 ∈ ℝ (S 47) 

𝐇̂𝐲 symmetry breaking 

The operation 𝐻̂𝑦 is defined by 𝐻̂𝑦 = 𝑇̂ ⋅ 𝜏̂2 ⋅ 𝜎̂𝑦 where 𝑇̂ is the time reversal operation , 𝜎̂𝑦 is 

a reflection relative to the y axis (i.e 𝑥 → −𝑥) and 𝜏̂2 is a 𝑇 2⁄  time translation. Its eigenvalues 

are ±1. To obtain the selection rules for 𝑭𝑛
𝛽𝛼

, we operate with 𝐻̂𝑦 on Eq.(S 22): 

 𝐻̂𝑦⟨𝜙𝛽(0)|𝝁̂|𝜙𝛼(0)⟩ =  ±∑(
𝐹𝑛𝑥
𝛽𝛼

𝐹𝑛𝑦
𝛽𝛼)𝑒

𝑖𝜔𝑛𝑡

𝑛

= ∑(−1)𝑛 (
−𝐹−𝑛𝑥

𝛽𝛼

𝐹−𝑛𝑦
𝛽𝛼 )𝑒𝑖𝜔𝑛𝑡

𝑛

 (S 48) 

and 

 
±(

𝐹𝑛𝑥
𝛽𝛼

𝐹𝑛𝑦
𝛽𝛼) = (−1)𝑛 (

−𝐹−𝑛𝑥
𝛽𝛼

𝐹−𝑛𝑦
𝛽𝛼 ) (S 49) 

where a plus (minus) sign is used when |𝝓𝜶(𝟎)⟩, |𝝓𝜷(𝟎)⟩ have the same (different) eigenvalue. 

Table S4 is obtained from Eq.(S 49).  

 

 𝛂, 𝛃 𝐡𝐚𝐯𝐞 𝐭𝐡𝐞 𝐬𝐚𝐦𝐞 𝐞𝐢𝐠𝐞𝐧𝐯𝐚𝐥𝐮𝐞 𝛂, 𝛃 𝐡𝐚𝐯𝐞 𝐝𝐢𝐟𝐟𝐞𝐫𝐞𝐧𝐭 𝐞𝐢𝐠𝐞𝐧𝐯𝐚𝐥𝐮𝐞𝐬 

𝑭𝟐𝒏
𝜷𝜶

⋅ 𝒙̂  𝑭𝟐𝑛
𝛽𝛼

⋅ 𝒙  ∈ 𝑖ℝ 𝑭𝟐𝑛
𝛽𝛼

⋅ 𝒙̂  ∈ ℝ 

𝑭𝟐𝒏
𝜷𝜶

⋅ 𝒚̂ 𝑭𝟐𝑛
𝛽𝛼

⋅ 𝒚̂ ∈ ℝ 𝑭𝟐𝑛
𝛽𝛼

⋅ 𝒚̂  ∈ 𝑖ℝ 
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𝑭𝟐𝒏+𝟏
𝜷𝜶

⋅ 𝒙̂  
𝑭𝟐𝑛+𝟏
𝛽𝛼

⋅ 𝒙̂  ∈ ℝ 𝑭𝟐𝑛+𝟏
𝛽𝛼

⋅ 𝒙̂  ∈ 𝑖ℝ 

𝑭𝟐𝒏+𝟏
𝜷𝜶

⋅ 𝒚̂ 
𝑭𝟐𝑛+𝟏
𝛽𝛼

⋅ 𝒚̂ ∈ 𝑖ℝ 𝑭𝟐𝑛+𝟏
𝛽𝛼

⋅ 𝒚̂  ∈ ℝ 

Table S4. 

Selection rules for Ĥy symmetric matrix elements 

 

By Eqs. (S 24)(S26) and Table S4, 𝐄̃𝟏(𝐧𝛚) scales as:  

 𝑬̃𝟏((2𝑚 ± 𝑠)𝜔) = 𝑝𝑥 (
𝑎
𝑖𝑏
) + 𝑝𝑦 (

𝑖𝑐
𝑑
) ; 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℝ (S 50) 

 𝑬̃𝟏((2𝑚 ± 𝑠 + 1)𝜔) = 𝑝𝑥 (
𝑖𝑎
𝑏
) + 𝑝𝑦 (

𝑐
𝑖𝑑
) ; 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℝ (S 51) 

and 𝑬̃𝟐(𝑛𝜔) scales as 

 𝑬̃𝟐(2𝑚𝜔) = (𝑖𝑝𝑥
2𝑎 + 𝑖𝑝𝑦

2𝑏 + 𝑝𝑥𝑝𝑦𝑐) (
𝑑
𝑖𝑒
) ; 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 ∈ ℝ (S 52) 

 𝑬̃𝟐((2𝑚 + 1)𝜔) = (𝑖𝑝𝑥
2𝑎 + 𝑖𝑝𝑦

2𝑏 + 𝑝𝑥𝑝𝑦𝑐) (
𝑖𝑑
𝑒
) ; 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 ∈ ℝ (S 53) 

𝐙̂𝐲 symmetry breaking 

The operation Ẑy is defined by Ẑy = 𝜏̂2 ⋅ 𝜎̂𝑦 where 𝜎̂𝑦 is a reflection relative to the y axis (i.e. 

𝑥 → −𝑥) and 𝜏̂2 is a 𝑇 2⁄  time translation. Its eigenvalues are ±1. To obtain the selection rules 

for 𝐹𝑛
𝛽𝛼

, we operate with 𝑍̂𝑦 on Eq.(S 22): 

 𝑍̂𝑦⟨𝜙𝛽(0)|𝜇̂|𝜙𝛼(0)⟩ =  ±∑(
𝐹𝑛𝑥
𝛽𝛼

𝐹𝑛𝑦
𝛽𝛼) 𝑒

𝑖𝜔𝑛𝑡

𝑛

= ∑(−1)𝑛 (
−𝐹𝑛𝑥

𝛽𝛼

𝐹𝑛𝑦
𝛽𝛼 ) 𝑒𝑖𝜔𝑛𝑡

𝑛

 (S 54) 

and 

 
±(

𝐹𝑛𝑥
𝛽𝛼

𝐹𝑛𝑦
𝛽𝛼) = (−1)𝑛 (

−𝐹𝑛𝑥
𝛽𝛼

𝐹𝑛𝑦
𝛽𝛼 ) (S 55) 

where a plus (minus) sign is used when |𝜙𝛼(0)⟩, |𝜙𝛽(0)⟩ have the same (different) eigenvalue. 

Table S5 is obtained from Eq.(S 55).  

 

 𝛂, 𝛃 𝐡𝐚𝐯𝐞 𝐭𝐡𝐞 𝐬𝐚𝐦𝐞 𝐞𝐢𝐠𝐞𝐧𝐯𝐚𝐥𝐮𝐞 𝛂, 𝛃 𝐡𝐚𝐯𝐞 𝐝𝐢𝐟𝐟𝐞𝐫𝐞𝐧𝐭 𝐞𝐢𝐠𝐞𝐧𝐯𝐚𝐥𝐮𝐞𝐬 

𝑭𝟐𝒏 ⋅ 𝒙̂  ≪ 𝜙𝛽(0)
̅̅ ̅̅ ̅̅ ̅|𝑥̂̂(2𝑛)𝜔|𝜙𝛼(0)

̅̅ ̅̅ ̅̅ ̅ ≫ = 0 ≪ 𝜙𝛽(0)
̅̅ ̅̅ ̅̅ ̅|𝑥̂̂(2𝑛)𝜔|𝜙𝛼(0)

̅̅ ̅̅ ̅̅ ̅ ≫ ≠ 0 

𝑭𝟐𝒏 ⋅ 𝒚̂ ≪ 𝜙𝛽(0)
̅̅ ̅̅ ̅̅ ̅|𝑦̂̂(2𝑛)𝜔|𝜙𝛼(0)

̅̅ ̅̅ ̅̅ ̅ ≫≠ 0 ≪ 𝜙𝛽(0)
̅̅ ̅̅ ̅̅ ̅|𝑦̂̂(2𝑛)𝜔|𝜙𝛼(0)

̅̅ ̅̅ ̅̅ ̅ ≫ = 0 

𝑭𝟐𝒏+𝟏

⋅ 𝒙̂  
≪ 𝜙𝛽(0)

̅̅ ̅̅ ̅̅ ̅|𝑥̂̂(2𝑛+1)𝜔|𝜙𝛼(0)
̅̅ ̅̅ ̅̅ ̅ ≫ ≠ 0 ≪ 𝜙𝛽(0)

̅̅ ̅̅ ̅̅ ̅|𝑥̂̂(2𝑛+1)𝜔|𝜙𝛼(0)
̅̅ ̅̅ ̅̅ ̅ ≫ = 0 

𝑭𝟐𝒏+𝟏

⋅ 𝒚̂ 
≪ 𝜙𝛽(0)

̅̅ ̅̅ ̅̅ ̅|𝑦̂̂(2𝑛+1)𝜔|𝜙𝛼(0)
̅̅ ̅̅ ̅̅ ̅ ≫= 0 ≪ 𝜙𝛽(0)

̅̅ ̅̅ ̅̅ ̅|𝑦̂̂(2𝑛+1)𝜔|𝜙𝛼(0)
̅̅ ̅̅ ̅̅ ̅ ≫ ≠ 0 

Table S5. 

Selection rules for Ẑy symmetric matrix elements 

 

By Eqs. (S 24)(S26) and Table S5, 𝐄̃𝟏 scales as: 
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𝐄̃𝟏((2𝑚 ± 𝑠)𝜔) = (

𝑝𝑥𝑎
𝑝𝑦𝑏

) ; 𝑎, 𝑏 ∈ ℂ (S 56) 

 
𝐄̃𝟏((2𝑚 ± 𝑠 + 1)𝜔) = (

𝑝𝑦𝑎

𝑝𝑥𝑏
) ; 𝑎, 𝑏 ∈ ℂ 

 
(S 57) 

and 𝐄̃𝟐 scales as 

 
𝐄̃𝟐(2𝑚𝜔) = (

𝑝𝑥𝑝𝑦𝑎

𝑝𝑥
2𝑏 + 𝑝𝑦

2𝑐
) ; 𝑎, 𝑏, 𝑐 ∈ ℂ (S 58) 

 
𝐄̃𝟐((2𝑚 ± 1)𝜔) = (

𝑝𝑥
2𝑎 + 𝑝𝑦

2𝑏
𝑝𝑥𝑝𝑦𝑎

) ; 𝑎, 𝑏, 𝑐 ∈ ℂ (S 59) 

 

S.III DERIVATION OF TABLE 1 IN CIRCULARLY POLARIZED BASIS 
 

In this section we derive selection rules for breaking selection rules induced by circularly 

polarized perturbations. That is, we consider perturbations whose polarization vector can be 

written in a cartesian basis as  

 𝒑(𝑐𝑎𝑟𝑡𝑒𝑠𝑖𝑎𝑛) =
𝑝𝑅

√2
(1,−𝑖) +

𝑝𝐿

√2
(1, 𝑖) (S 60) 

where 𝑝𝑅 , 𝑝𝐿 ∈ ℝ are the amplitudes of the right-handed and left-handed circular polarization 

components of the perturbation. In circularly polarized basis (CP), p is written as 

 𝒑(𝐶𝑃) = (𝑝𝑅 , 𝑝𝐿) (S 61) 

Notably, Eqs. (S 24)(S26) are basis independent. Therefore, in this section, we write vector 

quantities in the CP basis, for example 𝐄̃1(n𝜔) = (Ẽ1R(n𝜔), Ẽ1L(n𝜔)) , 𝐄̃2(n𝜔) =

(Ẽ2R(n𝜔), Ẽ2L(n𝜔)), 𝐅n
βα

= (𝐅R,n
βα
, 𝐅L,n

βα
) etc. The results of this section are summarized in 

Table S6.  
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Dynamical 

Symmetry 
 𝐄̃𝟏(𝐧𝛚) 𝐚𝐧𝐝 𝐄̃𝟐(𝐧𝛚) 𝐬𝐞𝐥𝐞𝐜𝐭𝐢𝐨𝐧 𝐫𝐮𝐥𝐞𝐬 

𝐂̂𝐍,𝐌 

 𝐞̂𝐍,𝐌 

RCP perturbation: 

Ẽ1R(n𝑅𝜔) → 𝑛𝑅 = 𝑁𝑞 ± 𝑠 − 2𝑀 

Ẽ1L(n𝐿𝜔) → 𝑛𝐿 = 𝑁𝑞 ± 𝑠 

𝐸̃2𝑅(𝑛𝑅𝜔) → 𝑛𝑅 = 𝑁𝑞 ± (1 ± 1)𝑠 −
3𝑀  

𝐸̃2𝐿(𝑛𝑅𝜔) → 𝑛𝐿 = 𝑁𝑞 ± (1 ± 1)𝑠 −
𝑀 

LCP perturbation: 

Ẽ1R(n𝑅𝜔) → 𝑛𝑅 = 𝑁𝑞 ± 𝑠 

Ẽ1L(n𝐿𝜔) → 𝑛𝐿 = 𝑁𝑞 ± 𝑠 + 2𝑀 

𝐸̃2𝑅(𝑛𝑅𝜔) → 𝑛𝑅 = 𝑁𝑞 ± (1 ± 1)𝑠 +
𝑀  

𝐸̃2𝐿(𝑛𝑅𝜔) → 𝑛𝐿 = 𝑁𝑞 ± (1 ± 1)𝑠 +
3𝑀 

𝐓̂ 
𝐄̃𝟏(nω) and 𝐄̃𝟐(nω) are real vectors in ℝ2 when represented in the circularly 

polarized basis 

𝐐̂ 
𝐄̃𝟏(nω) ∈ ℝ2 ; 𝐄̃𝟐(nω) ∈ iℝ2 (when represented in the circularly polarized 

basis) 

𝐃̂𝐲 

𝑬̃𝟏(𝑛𝜔) = (
𝑝𝑅𝑎 + 𝑝𝐿𝑏̅
𝑝𝑅𝑏 + 𝑝𝐿𝑎̅

) ; 𝑎, 𝑏 ∈ ℂ 

𝑬̃𝟐(𝑛𝜔) = (
𝑝𝑅
2𝑎 + 𝑝𝑅𝑝𝐿𝑏 + 𝑝𝐿

2𝑐

𝑝𝑅
2𝑐̅ + 𝑝𝑅𝑝𝐿𝑏̅ + 𝑝𝐿

2𝑎̅
) ; 𝑎, 𝑏, 𝑐 ∈ ℂ 

𝐇̂𝐲 

 

𝑬̃𝟏(𝑛𝜔) = (
𝑝𝑅𝑎 + 𝑝𝐿𝑏

𝑝𝐿𝑏̅(−1)
𝑛+𝑠 + 𝑝𝐿𝑎̅(−1)

𝑛+𝑠) ;  𝑎, 𝑏 ∈ ℂ 

𝑬̃𝟐(𝑛𝜔) = (
𝑝𝑅
2𝑎 + 𝑝𝑅𝑝𝐿𝑏 + 𝑝𝐿

2𝑐

(−1)𝑛+1(𝑝𝑅
2𝑐̅ + 𝑝𝑅𝑝𝐿𝑏̅ + 𝑝𝐿

2𝑎̅)
) ; 𝑎, 𝑏, 𝑐 ∈ ℂ 

𝐆̂ 

𝐄̃𝟏((2m ± s)ω) ∈ ℝ𝟐 ; 𝐄̃𝟏((2m + 1 ± s)ω) ∈ iℝ𝟐 when represented in the 

circularly polarized basis. 

𝐄̃𝟐(2mω) ∈ iℝ𝟐 ; 𝐄̃𝟐((2m + 1)ω) ∈ ℝ𝟐 when represented in the circularly 

polarized basis 

𝐙̂𝐲 

𝑬̃𝟏(𝑛𝜔) = (
𝑝𝑅𝑎 + 𝑝𝐿𝑏

𝑝𝐿𝑏(−1)
𝑛+𝑠 + 𝑝𝐿𝑎(−1)

𝑛+𝑠) ;  𝑎, 𝑏 ∈ ℂ  

𝑬̃𝟐(𝑛𝜔) = (
𝑝𝑅
2𝑎 + 𝑝𝑅𝑝𝐿𝑏 + 𝑝𝐿

2𝑐

(−1)𝑛+1(𝑝𝑅
2𝑐 + 𝑝𝑅𝑝𝐿𝑏 + 𝑝𝐿

2𝑎)
) ;  𝑎, 𝑏, 𝑐 ∈ ℂ 

Table S6. 

Selection rules for Ẽ1(nω) and Ẽ2(nω) written in circularly polarized basis. 

 

𝐂̂𝐍,𝐌 𝐚𝐧𝐝 𝐞̂𝐍,𝐌 symmetry breaking 

 

RCP perturbation: We assume that the perturbation is right-handed circularly polarized, i.e. 

𝒑 can be written in a circularly polarized basis as 𝒑 = (𝑝𝑅 , 0) where 𝑝𝑅 ∈ ℝ. Plugging in 𝒑 =
(𝑝𝑅 , 0), Eqs.(S 24)(S26) read in the CP basis:  

 𝐄̃1(𝑛𝜔) = ∑
(𝑝𝑅FR,gs−m

βα
)𝐅n+m

αβ
+ (pRFR,m−gs

α𝛽
)𝐅n−m

βα

ϵα(0) − ϵβ(0) −mω
(β,m)≠(α,0)

g=±1

 
(S 62) 
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𝐄̃𝟐(nω) =
1

4
∑

(p𝑅 ⋅ FR,l−g1s
ακ )(pR ⋅ F𝑅,g2s−m

βα
)𝐅n+m−l

κβ

(ϵα(0) − ϵκ(0) − lω)(ϵα(0) − ϵβ(0) −mω)
(β,m)≠(α,0)

(κ,l)≠(α,0)
g1,g2=±1

 

(S 63) 

 

To obtain the selection rules for 𝐄̃1(𝑛𝜔), 𝐄̃2(𝑛𝜔), we first need to obtain the selection rules for 

𝑭𝑅,𝑛
𝛽𝛼

, 𝑭𝐿,𝑛
𝛽𝛼

. They can be derived from Eq. (S 28), 

 

𝑒
𝑖2𝜋(𝑘𝛽−𝑘𝛼−𝑛)

𝑁 (
𝐹𝑅𝑛
𝛽𝛼

𝐹𝐿𝑛
𝛽𝛼
) = 𝑅̂𝑁,𝑀 ⋅ (

𝐹𝑅𝑛
𝛽𝛼

𝐹𝐿𝑛
𝛽𝛼
) = (

𝑒
𝑖2𝜋𝑀
𝑁 𝐹𝑅𝑛

𝛽𝛼

𝑒−
𝑖2𝜋
𝑁

𝑀𝐹𝐿𝑛
𝛽𝛼
) (S 64) 

𝑭𝑅\𝐿,𝑛𝑅\𝐿

𝛽𝛼
 is only nonzero for 

 𝑛𝑅\𝐿 = 𝑁𝑞 + 𝑘𝛽 − 𝑘𝛼 ∓𝑀 (S 65) 

where a minus (plus) sign is used for 𝑭𝑹,𝒏𝑹

𝜷𝜶
(𝑭𝑳,𝒏𝑳

𝜷𝜶
). We consider a specific 𝜷,𝒎,𝒈 contribution 

to 𝑬̃𝟏𝑹(𝒏𝝎) (Eq.(S 62)). This contribution is nonzero only if there are two integers 𝒛𝟏, 𝒛𝟐 that 

simultaneously fulfill 

 𝑔𝑠 − 𝑚 = 𝑁 × 𝑧1 + 𝑘𝛽 − 𝑘𝛼 −𝑀 (S 66) 

 𝑛𝑅 +𝑚 = 𝑁 × 𝑧2 + 𝑘𝛼 − 𝑘𝛽 −𝑀  

That is, for an RCP perturbation, 𝐄̃1R(n𝑅𝜔) is nonzero only for 𝑛𝑅 = 𝑁 × 𝑧 ± 𝑠 − 2𝑀. 

Similarly, 𝐄̃1L(n𝐿𝜔) is only nonzero for 𝑛𝐿 = 𝑁𝑧 ± 𝑠.  

Next, we consider a specific (𝛽,𝑚), (𝜅, 𝑙), 𝑔1, 𝑔2 contribution to 𝑬̃2(𝑛𝜔) (Eq.(S 63)). We 

denote the eigenvalues of |𝜙𝛼(0)⟩, |𝜙𝛽(0)⟩, |𝜙𝜅(0)⟩ by 𝑒−
𝑖2𝜋𝑘𝛼

𝑁 , 𝑒−
𝑖2𝜋𝑘𝛽

𝑁 , 𝑒−
𝑖2𝜋𝑘𝜅

𝑁  respectively. By 

Eq.(S 65) , there is a nonzero contribution only if there exists three integers 𝑧1, 𝑧2, 𝑧3 ∈ ℤ such 

that 

 𝑙 − 𝑔1𝑠 = 𝑁𝑧1 + 𝑘𝛼 − 𝑘𝜅 −𝑀 (S 67) 

 𝑔2𝑠 − 𝑚 = 𝑁𝑧2 + 𝑘𝛽 − 𝑘𝛼 −𝑀  

 𝑛𝑅 𝐿⁄ +𝑚 − 𝑙 = 𝑁𝑧3 + 𝑘𝜅 − 𝑘𝛽 ∓𝑀  

For an RCP perturbation, 𝐸̃2𝑅(𝑛𝑅𝜔), 𝐸̃2𝐿(𝑛𝐿𝜔) are nonzero only for values of 𝑛𝑅\𝐿 for which 

there exists an integer 𝑧 ∈ ℤ that fulfills 

 𝑛𝑅 = 𝑁 × 𝑧 ± (1 ± 1)𝑠 − 3𝑀 (S 68) 

 𝑛𝐿 = 𝑁 × 𝑧 ± (1 ± 1)𝑠 − 𝑀  

LCP perturbation: By similar arguments, when the perturbation is LCP, 𝐄̃1R(n𝑅𝜔) is nonzero 

only for 𝑛𝑅 = 𝑁 × 𝑧 ± 𝑠 and 𝐄̃1L(n𝐿𝜔) is only nonzero for 𝑛𝐿 = 𝑁𝑧 ± 𝑠 + 2𝑀. , 

𝑬̃𝟐𝑹(𝑛𝑅𝜔), 𝑬̃𝟐𝑳(𝑛𝐿𝜔) are only nonzero for  

 𝑛𝑅 = 𝑁 × 𝑧 ± (1 ± 1)𝑠 + 𝑀 (S 69) 

 𝑛𝐿 = 𝑁 × 𝑧 ± (1 ± 1)𝑠 + 3𝑀  

 

𝑻̂, 𝑸̂, 𝑮̂ symmetry breaking 

For 𝑇̂, 𝑄̂ and 𝐺̂ symmetries, the same derivations as Table 1 of the main text hold, with the only 

difference being that they are carried out in the CP basis. Therefore, the structure of the results 

is unchanged. For example, if we obtained that for a linearly polarized perturbation 𝑬̃1(𝑛𝜔) is 

a real vector in the cartesian basis, for a CP perturbation, 𝑬̃1(𝑛𝜔) is a real vector in the CP 

basis.  
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𝑻̂ symmetry breaking  

In the CP basis, Ẽ1(nω), Ẽ2(nω) are real vectors. 

𝐐̂ symmetry breaking 

In the CP basis, Ẽ1(nω) is real and Ẽ2(nω) is imaginary. 

𝐆̂ symmetry breaking 

In the CP basis, Ẽ1((2m± s)ω) ∈ ℝ2 ; Ẽ1((2m + 1 ± s)ω) ∈ iℝ2 and Ẽ2(2mω) ∈ iℝ2 ; 

Ẽ2((2m + 1)ω) ∈ ℝ2. 

𝑫̂𝒚 symmetry breaking 

To obtain the selection rules for 𝐹𝑛𝑅
𝛽𝛼

, 𝐹𝑛𝐿
𝛽𝛼

, we operate with 𝐷̂𝑦 on Eq. (S 22): 

 𝐷̂𝑦⟨𝜙𝛽(0)|𝝁̂|𝜙𝛼(0)⟩ =  ±∑(
𝐹𝑛𝑅
𝛽𝛼

𝐹𝑛𝐿
𝛽𝛼
) 𝑒𝑖𝜔𝑛𝑡

𝑛

= ∑(
−𝐹−𝑛𝐿

𝛽𝛼

−𝐹−𝑛𝑅
𝛽𝛼

)𝑒𝑖𝜔𝑛𝑡

𝑛

 (S 70) 

Thus 

 𝐹𝑛𝑅
𝛽𝛼

= ∓𝐹−𝑛𝐿
𝛽𝛼

= ∓𝐹𝑛𝐿
𝛽𝛼̅̅ ̅̅ ̅

 (S 71) 

where a minus (plus) sign is used when |𝝓𝜶(𝟎)⟩, |𝝓𝜷(𝟎)⟩ have the same (different) eigenvalue.  

Consider the RCP and LCP components of 𝑬̃1(𝑛𝜔): 

 

𝐄̃1R(𝑛𝜔)

= ∑
(𝑝𝑅FR,gs−m

βα
+ 𝑝𝐿FL,gs−m

βα
)FR,n+m

αβ
+ (pRFR,m−gs

α𝛽
+ pLFL,m−gs

α𝛽
)FR,n−m

βα

ϵα(0) − ϵβ(0) −mω
(β,m)≠(α,0)

g=±1

 (S72) 

 𝐄̃1L(𝑛𝜔)

= ∑
(𝑝𝑅FR,gs−m

βα
+ 𝑝𝐿FL,gs−m

βα
)FR,n+m

αβ
+ (pRFR,m−gs

α𝛽
+ pLFL,m−gs

α𝛽
)FR,n−m

βα

ϵα(0) − ϵβ(0) −mω
(β,m)≠(α,0)

g=±1

 

(S73) 

By Eqs.((S 71(S72(S73), 𝐸̃1(𝑛𝜔) can be written as  

 𝑬̃𝟏(𝑛𝜔) = (
𝑝𝑅𝑎 + 𝑝𝐿𝑏̅
𝑝𝑅𝑏 + 𝑝𝐿𝑎̅

) ; 𝑎, 𝑏 ∈ ℂ (S74) 

Consider the RCP and LCP components of 𝑬̃2(𝑛𝜔): 

𝐸̃2R(nω) =
1

4
∑

(
p𝑅
2FR,l−g1s

ακ F𝑅,g2s−m
βα

+ 𝑝𝑅𝑝𝐿FR,l−g1s
ακ F𝐿,g2s−m

βα
+

+𝑝𝐿𝑝𝑅FL,l−g1s
ακ F𝑅,g2s−m

βα
+ p𝐿

2FL,l−g1s
ακ F𝐿,g2s−m

βα
)FR,n+m−l

κβ

(ϵα(0) − ϵκ(0) − lω)(ϵα(0) − ϵβ(0) −mω)
(β,m)≠(α,0)

(κ,l)≠(α,0)
g1,g2=±1

 

(S 75) 

𝐸̃2L(nω) =
1

4
∑

(
p𝑅
2FR,l−g1s

ακ F𝑅,g2s−m
βα

+ 𝑝𝑅𝑝𝐿FR,l−g1s
ακ F𝐿,g2s−m

βα
+

+𝑝𝐿𝑝𝑅FL,l−g1s
ακ F𝑅,g2s−m

βα
+ p𝐿

2FL,l−g1s
ακ F𝐿,g2s−m

βα
)FL,n+m−l

κβ

(ϵα(0) − ϵκ(0) − lω)(ϵα(0) − ϵβ(0) −mω)
(β,m)≠(α,0)

(κ,l)≠(α,0)
g1,g2=±1

 

(S 76) 

By Eq.((S73), we can write 𝑬̃𝟐(𝑛𝜔) as 
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 𝐸̃2(𝑛𝜔) = (
𝑝𝑅
2𝑎 + 𝑝𝑅𝑝𝐿𝑏 + 𝑝𝐿

2𝑐

𝑝𝑅
2𝑐̅ + 𝑝𝑅𝑝𝐿𝑏̅ + 𝑝𝐿

2𝑎̅
) ; 𝑎, 𝑏, 𝑐 ∈ ℂ (S77) 

 

𝐇̂𝐲 symmetry breaking 

To obtain the selection rules for 𝐹𝑛𝑅
𝛽𝛼

, 𝐹𝑛𝐿
𝛽𝛼

, we operate with 𝐻̂𝑦 on Eq. (S 22): 

 𝐻̂𝑦⟨𝜙𝛽(0)|𝝁̂|𝜙𝛼(0)⟩ =  ±∑(
𝐹𝑛𝐿
𝛽𝛼

𝐹𝑛𝑅
𝛽𝛼
)𝑒𝑖𝜔𝑛𝑡

𝑛

= ∑(−1)𝑛 (
−𝐹−𝑛𝐿

𝛽𝛼

−𝐹−𝑛𝑅
𝛽𝛼

)𝑒𝑖𝜔𝑛𝑡

𝑛

 (S78) 

and 

 

±(
𝐹𝑛𝐿
𝛽𝛼

𝐹𝑛𝑅
𝛽𝛼
) = (−1)𝑛+1 (

𝐹𝑛𝐿
𝛽𝛼

𝐹𝑛𝑅
𝛽𝛼
)

̅̅ ̅̅ ̅̅ ̅̅ ̅

 (S79) 

where a plus (minus) sign is used when |𝝓𝜶(𝟎)⟩, |𝝓𝜷(𝟎)⟩ have the same (different) eigenvalue. 

By Eqs.(S72(S73(S79 ( 

 𝐸̃1(𝑛𝜔) = (
𝑝𝑅𝑎 + 𝑝𝐿𝑏

𝑝𝐿𝑏̅(−1)
𝑛+𝑠 + 𝑝𝐿𝑎̅(−1)

𝑛+𝑠) (S80) 

 

 

Similarly, by Eqs.((S 75(S 76(S79 ( 

 𝐸̃2(𝑛𝜔) = (
𝑝𝑅
2𝑎 + 𝑝𝑅𝑝𝐿𝑏 + 𝑝𝐿

2𝑐

(−1)𝑛+1(𝑝𝑅
2𝑐̅ + 𝑝𝑅𝑝𝐿𝑏̅ + 𝑝𝐿

2𝑎̅)
) (S81) 

𝐙̂𝐲 symmetry breaking 

To obtain the selection rules for 𝐹𝑛𝑅
𝛽𝛼

, 𝐹𝑛𝐿
𝛽𝛼

, we operate with 𝑍̂𝑦 on Eq.(S 22): 

 

±∑(
𝐹𝑛𝑅
𝛽𝛼

𝐹𝑛𝐿
𝛽𝛼
) 𝑒𝑖𝜔𝑛𝑡

𝑛

= ∑(−1)𝑛𝜎̂𝑦 (
𝐹𝑛𝑅
𝛽𝛼

𝐹𝑛𝐿
𝛽𝛼
) 𝑒𝑖𝜔𝑛𝑡

𝑛

= ∑(−1)𝑛+1 (
𝐹𝑛𝐿
𝛽𝛼

𝐹𝑛𝑅
𝛽𝛼
) 𝑒𝑖𝜔𝑛𝑡

𝑛

 

 

(S82) 

That is 

 ±𝐹𝑛𝑅
𝛽𝛼

= (−1)𝑛+1𝐹𝑛𝐿
𝛽𝛼

 (S83) 

By Eqs.((S72(S73,(S83   (  

 
𝐸̃1(𝑛𝜔) = (

𝑝𝑅𝑎 + 𝑝𝐿𝑏

𝑝𝐿𝑏(−1)
𝑛+𝑠 + 𝑝𝐿𝑎(−1)

𝑛+𝑠) (S84) 

By Eqs.((S 75(S 76,(S83  (  

 
𝐸̃2(𝑛𝜔) = (

𝑝𝑅
2𝑎 + 𝑝𝑅𝑝𝐿𝑏 + 𝑝𝐿

2𝑐

(−1)𝑛+1(𝑝𝑅
2𝑐 + 𝑝𝑅𝑝𝐿𝑏 + 𝑝𝐿

2𝑎)
) (S85) 
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S.IV GENERALIZATION FOR FRACTIONAL HARMONIC 
PERTURBATIONS 

 

In this section, we discuss the generalization of previous section derivations to account for 

fractional Floquet harmonic perturbations. Generally, the selection rules for all DS can be 

applied in their present form for rational values of s, by reformulating the problem in terms of 

an appropriate fundamental Floquet frequency. Alternatively, they may be explicitly derived, 

using the guidelines presented here. 

 

To illustrate the first point, we show in the next paragraph how the predictions for 𝐶̂𝑁,𝑀 

symmetry breaking can be applied for fractional harmonic perturbations of frequency 𝑠 = 𝑟 𝑞⁄  

(where 𝑟, 𝑞 are integers) without an additional derivation. A 𝑇-periodic, 𝐶̂𝑁,𝑀 symmetric, 

Floquet system, perturbed by an 𝑠𝜔 = 𝑟𝜔 𝑞⁄  perturbation, is equivalent to 𝑞𝑇  periodic, 𝐶̂𝑞𝑁,𝑞𝑀 

symmetric Floquet system perturbed by an 𝑟𝜔′ ≡ 𝑟𝜔 𝑞⁄  perturbation. Therefore, the selection 

rules for 𝑬̃1(𝑛
′𝜔′), 𝐄̃𝟐(𝑛

′𝜔′) are obtained by substituting 𝑁 → 𝑞𝑁,𝑀 → 𝑞𝑀 , 𝑛 → 𝑛′ =

𝑞𝑛, 𝑠 → 𝑞𝑠 = 𝑟 into the selection rules that have been derived in the previous section. Notably, 

the selection rules are invariant under this substitution. A similar reformulation may be carried 

out for other DSs. 

 

Alternatively, the selection rules may be explicitly derived using the following perturbation 

term : 

 𝜆𝑊̂(𝑡) = 𝜆ℜ{𝒑 ⋅ 𝝁̂𝑒𝑖𝑟𝜔𝑡/𝑞} (S 86) 

and modified versions of Eqs. (S 24)(S26). We denote the fundamental frequency of the 

perturbed system by 𝜔′ ≡ 𝜔 𝑞⁄ , and the frequency of the perturbation by 𝑟𝜔′ where r is an 

integer.  

The 𝑛′𝜔′ frequency component of the linear contribution 𝑬̃1(𝑛
′𝜔′) is calculated by a modified 

version of Eq.(S 20): 

 ≪ 𝜙𝛼(0)
̅̅ ̅̅ ̅̅ ̅|𝝁̂̂𝑛′𝜔/𝑞|𝜙𝛼(1)

̅̅ ̅̅ ̅̅ ̅ ≫= (S 87) 

 = ∑
≪ 𝜙𝛽(0)

̅̅ ̅̅ ̅̅ ̅|𝒑 ⋅ 𝝁̂̂(𝑔×𝑟−𝑚)𝜔/𝑞|𝜙𝛼(0)
̅̅ ̅̅ ̅̅ ̅ ≫≪ 𝜙𝛼(0)

̅̅ ̅̅ ̅̅ ̅ |𝝁̂̂(𝑛′+𝑚)𝜔/𝑞| 𝜙𝛽(0)
̅̅ ̅̅ ̅̅ ̅ ≫

𝜖𝛼(0) − 𝜖𝛽(0) −𝑚𝜔
(𝛽,𝑚)≠(𝛼,0)

𝑔=±1

  

The 𝑛′𝜔′ = 𝑛′𝜔/𝑞 frequency component of the quadratic contribution 𝑬̃2(𝑛
′𝜔′) is calculated 

by a modified version of Eq.(S 25): 

 𝑬̃2(𝑛
′𝜔′) =≪ 𝜙𝛼(1)

̅̅ ̅̅ ̅̅ ̅|𝝁̂̂𝑛′𝜔/𝑞|𝜙𝛼(1)
̅̅ ̅̅ ̅̅ ̅ ≫= (S 88) 

=
1

4
∑

≪ 𝜙𝛼(0)
̅̅ ̅̅ ̅̅ ̅ |𝒑𝝁̂̂(𝑙−𝑔1𝑟)𝜔

𝑞

| 𝜙𝜅(0)
̅̅ ̅̅ ̅̅ ̅ ≫≪ 𝜙𝛽(0)

̅̅ ̅̅ ̅̅ ̅ |𝒑𝝁̂̂(𝑔2𝑟−𝑚)𝜔
𝑞

| 𝜙𝛼(0)
̅̅ ̅̅ ̅̅ ̅ ≫≪ 𝜙𝜅(0)

̅̅ ̅̅ ̅̅ ̅|𝝁̂̂(𝑛′+𝑚−𝑙)𝜔
𝑞

|𝜙𝛽(0)
̅̅ ̅̅ ̅̅ ̅̅ ≫

(𝜖𝛼(0) − 𝜖𝜅(0) − 𝑙𝜔)(𝜖𝛼(0) − 𝜖𝛽(0) −𝑚𝜔)
(𝛽,𝑚)≠(𝛼,0)

(𝜅,𝑙)≠(𝛼,0)
𝑔1,𝑔2=±1

 

 

We note that since |𝜙𝛼,𝛽,𝜅(0)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅⟩⟩ are all eigenfunctions of an 𝜔 = 𝑞𝜔′ periodic Floquet system, 

the numerators of Eq.(S 87) can only be nonzero if 
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 ∃𝑧1 ∈ ℤ: 𝑔 × 𝑟 − 𝑚 = 𝑞 × 𝑧1 (S 89) 

 ∃𝑧2 ∈ ℤ 𝑛′ +𝑚 = 𝑞 × 𝑧2 (S 90) 

, and the numerators of Eq.(S 88) can only be nonzero if 

 ∃𝑧1 ∈ ℤ: 𝑙 − 𝑔1 × 𝑟 = 𝑞 × 𝑧1 (S 91) 

 ∃𝑧2 ∈ ℤ: 𝑔2 × 𝑟 −𝑚 = 𝑞 × 𝑧2 (S 92) 

 ∃𝑧3 ∈ ℤ: 𝑛′ +𝑚 − 𝑙 = 𝑞 × 𝑧3 (S 93) 

, regardless of the DS of the unperturbed system. Therefore 𝐄̃𝟏(𝑛′𝜔
′) can only be nonzero if  

 ∃𝑧 ∈ ℤ: 𝑛′ ± 𝑟 =  𝑞𝑧 (S94) 

That is, 𝐄̃𝟏(𝑛𝜔) can only be nonzero if 

 ∃𝑧 ∈ ℤ: 𝑛 ± 𝑠 =  𝑧 (S95) 

𝐄̃𝟐(𝑛′𝜔
′) can only be nonzero if  

 ∃𝑧 ∈ ℤ: 𝑛′ ± (1 ± 1)𝑟 =  𝑞𝑧 (S96) 

That is, 𝐄̃𝟐(𝑛𝜔) can only be nonzero if 

 ∃𝑧 ∈ ℤ: 𝑛 ± (1 ± 1)𝑠 =  𝑧 (S97) 

 

One immediate conclusion is that to 1st order, only the ±𝑠 = ±𝑟 𝑞⁄  harmonic sidebands are 

affected by the perturbation. The selection rules for 𝑬̃𝟏((𝑛 ± 𝑟 𝑞⁄ )𝜔), 𝑬̃𝟐((𝑛 ± (1 ±

1) 𝑟 𝑞⁄ )𝜔)  (where 𝑛 is an integer) may be derived using Eqs. (S 87)(S 88), similarly to the 

derivations for integer values of 𝑠. 

 

S.V APPLICATION OF MAIN TABLE 1 TO BI-CHROMATIC 
PERTURBATIONS 

 

In this section, we discuss the applicability of Table 1 in the main text to symmetry breaking 

induced by multi-chromatic perturbing electric fields with a general polarization. Such a field 

can always be divided to a coherent sum of linearly polarized, monochromatic components. 

Thus, the multichromatic field induces a perturbation term Ŵ in the Hamiltonian that can be 

written as a sum of perturbations described in table 1, i.e. λ1Ŵ1 + λ2Ŵ2 +⋯, where λi is the 

amplitude of the i′th component. Hence, 𝐄̃(Ω, λ) is of the form 

 𝐄̃(Ω, λ)  = 𝐄̃0(Ω) + λ1𝐄̃11(Ω) + λ1
2𝐄̃21(Ω) + λ2𝐄̃12(Ω) + λ2

2𝐄̃22(Ω)

+ λ1λ2𝐄̃12(Ω) + ⋯ 
(S 98) 

Where 𝐄̃11 , 𝐄̃12 are the linear contributions induced by Ŵ1, Ŵ2, respectively, 𝐄̃21 , 𝐄̃22 are the 

quadratic contributions induced by Ŵ1, Ŵ2 , respectively, and λ1λ2𝐄̃12(Ω) is a contribution that 

is induced by the interference of Ŵ1, Ŵ2. Note that the selection rules for 

𝐄̃11(Ω), 𝐄̃21(Ω), 𝐄̃12(Ω), 𝐄̃22(Ω) are still given in Table 1 in the main text, since they arise 

purely from a linearly polarized monochromatic field, whereas the selection rules for the cross 

contribution 𝐄̃𝟏𝟐(Ω) are not covered by Table 1 in the main text. Thus, Table 1 in the main text 

can be used to completely describe the linear-orders selection rules, and partially the quadratic 

orders, without additional derivations. With this in mind, we consider a numerical example of 

a bi-chromatic perturbative field. Consider the ω− 2ω cross-linear driving field, 𝑬(𝑡) =
sin(2𝜔𝑡) 𝒙̂ + cos(𝜔𝑡) 𝒚̂. This field exhibits Ẑx = τ̂2 ⋅ σ̂x symmetry and therefore only 𝑦̂ (𝑥̂) 

polarized 2m ± 1 (2𝑚) harmonics are allowed. The ellipticity of the cross linear drivers can 

be modified from zero to some finite value λ, by adding an additional bi-chromatic cross linear 
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field, that breaks the Ẑx symmetry and its associated polarization restrictions. The perturbed 

field, known as a bi-elliptical field, is given by 𝑬(𝑡) = (λ sin(ωt) + sin(2ωt))𝒙̂ +
(cos(ωt) + λ cos(2ωt))𝒚̂ (Lissajous curves in Figure S1). Since the perturbing field is not 

linearly polarized or monochromatic, we split the perturbation into two separate terms - Ŵ1 =
λx sin(ωt) and Ŵ2 = λy cos(2ωt). By plugging (Ŵ1: px = 1 , py = 0, s = 1) and (Ŵ2: px =

0 , py = 1, s = 2) into the Ẑ prediction of table 1 in the main text (and keeping in mind that the 

symmetry of the unperturbed system is Ẑ𝐱 and not Ẑy), we find that 

 𝐄̃21(2mω) ⋅ 𝐲̂ = 𝐄̃11(2mω) ⋅ 𝐱̂ = 0 (S 99) 

 𝐄̃21((2m + 1)ω) ⋅ 𝐱̂ = 𝐄̃11((2m + 1)ω) ⋅ 𝐲̂ = 0  (S 100) 

Hence, for spectral regions where 𝐄̃𝟏𝟐(Ω) may be neglected, 𝑥̂ (𝑦̂) polarized odd (even) 

harmonics are predicted to scale linearly in λ, whereas 𝑥̂ (𝑦̂) polarized even (odd) harmonics 

are predicted to scale quadratically in λ. All these selection rules are numerically observed in 

the TDSE calculation, in the spectral region between harmonics 28 to 43 with an average 

R2>0.95. 

 
S.VI. VALIDITY OF THE THEORY FOR INTEGRATED HARMONIC 

INTENSITIES 
 

When an ultrashort driver is used for HHG, the spectrum may display spectral shifts such that 

the peaks are not centered around an integer harmonic 𝑛𝜔. In those scenarios, it is 

experimentally useful to integrate the intensity of the emitted radiation around each integer 

harmonic, and to use the result as a measure for the harmonic intensity.  

In this section, we numerically demonstrate that our analytical results also hold when the 

spectral width around each harmonic is considered. Instead of considering the scaling of 

|𝑬̃(𝜆, 𝛺) − 𝑬̃(0, 𝛺)| with 𝜆, we consider the scaling of the integrated harmonics amplitudes 

(i.e., square root of the integrated harmonic intensities) with 𝜆. Explicitly, we show that for the 

numerical examples we studied in the main text, the following quantity consistently follows 

the predictions of Table 1 in the main text 

 

√ ∫ 𝑑Δ|𝐸(𝜆, Ω + Δ)|2

Δ=+𝜔 2⁄

Δ=−𝜔 2⁄

−√ ∫ 𝑑Δ|𝐸(0, Ω + Δ)|2

Δ=+𝜔 2⁄

Δ=−𝜔 2⁄

 (S 101) 

 

𝑪̂𝟓,𝟑 Symmetry broken by a 𝟓𝝎 linearly polarized field 

In Figure 1 of the main text, we numerically demonstrated that when a Ĉ5,3 DS is broken by a 

5𝜔 linearly polarized laser, |𝑬̃(𝜆, 5𝑚𝜔) − 𝑬̃(0,5𝑚𝜔)| ∝ 𝜆 and |𝑬̃(𝜆, (5𝑚 ± 2)𝜔) −

𝑬̃(0, (5𝑚 ± 2)𝜔)| ∝ 𝜆2, in agreement with the analytical prediction 𝑬̃𝟏((5𝑚 ± 2)𝜔) =

𝑬̃𝟐(5𝑚𝜔) = 0. In Figure S2, we show that the same predictions hold for the integrated 

harmonic amplitudes (Eq.(S 101)). For quadratically scaling harmonics, some of the harmonics 

display small deviations from the analytical prediction due to the inclusion of the linearly 

scaling background radiation in the computation.  

𝒁̂𝒚 DS broken by a 𝟓𝝎 linearly polarized field 

In Figure 2 of the main text, we numerically demonstrated that when a Ẑ𝑦 DS is broken by a 

5𝜔 linearly polarized laser (polarized along 𝑦̂), 2m harmonics scale linearly (quadratically) 
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with λ if polarized along 𝑥̂ (𝑦̂), and 2m ± 1 harmonics scale linearly (quadtatically) with λ if 

polarized along 𝑦̂ (𝑥̂). This is consistent with the analytical prediction Ẽ2x(2mω) =

Ẽ1y(2mω) = Ẽ2y((2m ± 1)ω) = Ẽ1x((2m ± 1)ω) = 0. In Figure S3, we show the same 

predictions hold for the integrated harmonic amplitudes (Eq.(S 101)). 

𝒁̂𝒙 DS broken by a bi-chromatic perturbation 

In Figure S1, we numerically demonstrated that when an 𝜔 − 2𝜔 cross linear driver with a DS 

𝑍̂𝑥 becomes a cross-elliptical driver with ellipticity 𝜆, there exists a spectral region where 2m ±
1 harmonics scale linearly (quadratically) with λ if polarized along 𝑥̂ (𝑦̂), and 2m harmonics 

scale linearly (quadtatically) with λ if polarized along 𝑦̂ (𝑥̂). In Figure S4, we show the same 

predictions hold for the integrated harmonic amplitudes (Eq.(S 101)).  
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Fig. S1. 

Numerical demonstration of selection rules for breaking 𝑍̂𝑥 = 𝜏̂2 ⋅ 𝜎̂𝑥 selection rules in HHG 

by multi-chromatic, cross linear perturbative field. For 𝜆 = 0, 𝑦̂ polarized 2m harmonics and 

𝑥̂ polarized 2m+1 harmonics are forbidden. For 𝜆 > 0 , the ellipticity breaks the DS and 

induces (a,d) quadratic scaling of 𝑥̂(𝑦̂) polarized even (odd) harmonics (b,c) linear scaling of 

𝑦̂(𝑥̂) polarized even (odd) harmonics.The scaling of the harmonic amplitudes with perturbation 

strengths are presented in color, , and the individual 𝑅2 values are marked with the 

corresponding color above each subfigure. The harmonic amplitudes are multiplied by a factor 

to appear on the same graph. 

 

  

𝑬̃𝟏 2𝑚𝜔 ⋅ 𝒙̂ = 0

𝑬̃𝟐 (2𝑚 + 1)𝜔 ⋅ 𝒚̂ = 0𝑬̃𝟏 (2𝑚 + 1)𝜔 ⋅ 𝒙̂ = 0

𝑬̃𝟐 2𝑚𝜔 ⋅ 𝒚̂ = 0

(𝑎) (𝑏)

(𝑐) (𝑑)

𝑬 𝑡 = sin 2𝜔𝑡 + 𝜆 sin 𝜔𝑡 𝒙̂ + cos 𝜔𝑡 + 𝜆𝑐 𝑠 2𝜔𝑡 𝒚̂
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Fig. S2. 

Numerical demonstration of selection rules for breaking 𝑪̂𝟓,𝟑 = 𝝉̂𝟓 ⋅ 𝑹̂𝟓,𝟑 selection rules in 

HHG by an 𝒙̂-polarized perturbative electric field (the same driving field and perturbation as 

Figure 1 in the main text). The scaling of integrated harmonic amplitudes (Eq.(S 101)) is linear 

for 5𝑚 harmonics and quadratic for 5𝑚 ± 2 harmonics, in accordance with the analytical 

predictions of Table 1 in the main text. The scaling of the harmonic amplitudes with 

perturbation strengths are presented in color, and the individual 𝑹𝟐 values are marked with the 

corresponding color above each subfigure. Each harmonic amplitude is multiplied by a factor 

such that all the harmonics fit to the graph. 

  

∫ 𝑑Δ 𝐸 5𝑞 + Δ 𝜔, 𝜆
2

Δ=+1 2⁄

Δ=−1 2⁄

− ∫ 𝑑Δ 𝐸 5𝑞 + Δ 𝜔, 0
2

Δ=+1 2⁄

Δ=−1 2⁄

∝ 𝐸1𝜆 ∫ 𝑑Δ 𝐸 5𝑞 ± 2 + Δ 𝜔, 𝜆
2

Δ=+1 2⁄

Δ=−1 2⁄

− ∫ 𝑑Δ 𝐸 5𝑞 ± 2 + Δ 𝜔, 0
2

Δ=+1 2⁄

Δ=−1 2⁄

∝ 𝐸2𝜆
2

(𝑏)(𝑎)

𝑬 𝑡 = cos 3𝜔𝑡 + cos 2𝜔𝑡 + 𝜆 cos 5𝜔𝑡 𝑥 + sin 3𝜔𝑡 − sin 2𝜔𝑡 𝒚̂
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Fig. S3. 

Numerical demonstration of selection rules for breaking 𝑍̂𝑦 = 𝜏̂2 ⋅ 𝜎̂𝑦 selection rules in HHG 

by an 𝑦̂-polarized perturbative electric field (the same driving field and perturbation as Figure 

2 in the main text). The scaling of integrated harmonic amplitudes (Eq.(S 101)) is linear for 

odd (even) harmonics polarized along the 𝑦̂(𝑥̂) axis, and quadratic for even (odd) harmonics 

polarized along the 𝑦̂(𝑥̂) axis. The scaling of the harmonic amplitudes with perturbation 

strengths are presented in color, and the individual 𝑅2 values are marked with the 

corresponding color above each subfigure. Each harmonic amplitude is multiplied by a factor 

such that all the harmonics fit to the graph. 

  

(𝑎) (𝑏)

(𝑐) (𝑑)

𝑬 𝑡 = sin 𝜔𝑡 𝒙̂ + (sin 2𝜔𝑡 + 𝜋 5⁄ + 𝜆 sin 5𝜔𝑡 ) 𝒚̂



 

21 

 

 

Fig. S4. 

Numerical demonstration of selection rules for breaking 𝒁̂𝒙 = 𝝉̂𝟐 ⋅ 𝝈̂𝒙 selection rules in HHG 

by a bi-chromatic perturbation (the same driving field and perturbation as Figure 3 in the main 

text). The scaling of integrated harmonic amplitudes (Eq.(S 101)) is linear for even (odd) 

harmonics polarized along the 𝒚̂(𝒙̂) axis, and quadratic for odd (even) harmonics polarized 

along the 𝒚̂(𝒙) axis. The scaling of the harmonic amplitudes with perturbation strengths are 

presented in color, and the individual 𝑹𝟐 values are marked with the corresponding color above 

each subfigure. Each harmonic amplitude is multiplied by a factor such that all the harmonics 

fit to the graph. 

𝑬̃𝟏 2𝑚𝜔 ⋅ 𝒙̂ = 0

𝑬̃𝟐 (2𝑚 + 1)𝜔 ⋅ 𝒚̂ = 0𝑬̃𝟏 (2𝑚 + 1)𝜔 ⋅ 𝒙̂ = 0

𝑬̃𝟐 2𝑚𝜔 ⋅ 𝒚̂ = 0

(𝑎) (𝑏)

(𝑐) (𝑑)

𝑬 𝑡 = sin 2𝜔𝑡 + 𝜆 sin 𝜔𝑡 𝒙̂ + cos 𝜔𝑡 + 𝜆𝑐 𝑠 2𝜔𝑡 𝒚̂


