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Eye movements are a direct expression of our thoughts, goals 
and memories, and where we look determines fundamentally 
what we know about the visual world. The combination of eye 

tracking and neuroimaging can thus provide a window into many 
central aspects of human cognition, along with insights into neuro-
degenerative diseases and neural disorders of the brain1. A widely 
used tool to study human brain function is fMRI, which allows the 
examination of brain activity while participants engage in a broad 
range of tasks. Viewing behavior is either a variable of interest or one 
of potential confound in many fMRI studies; yet, the vast majority 
of them do not perform eye tracking.

We argue that eye tracking can and should be a central compo-
nent of fMRI research. Not only does it allow in-depth insights into 
brain function but it also offers a powerful behavioral readout dur-
ing scanning. Importantly, eye movements are also associated with 
perceptual distortions2, visual and motor activity3,4 and imaging 
artifacts5, which can severely affect the interpretation of neuroimag-
ing results. If differences in viewing behavior between experimental 
conditions remain undetected, there is a high risk of misinterpret-
ing differences in the observed brain activity6. Crucially, this is not 
restricted to studies of the visual system but affects task-based and 
resting-state neuroimaging on a large scale.

Magnetic resonance (MR)-compatible camera eye trackers offer 
a solution. They track gaze position during scanning with high 
temporal and spatial resolution and, hence, allow for analysis of 
or accounting for gaze-related brain activity. In practice, however, 
camera systems are being used only in a small percentage of fMRI 
studies. The reasons for this are manifold, but often they are sim-
ply not available or applicable in the respective research or clinical 
setting. Moreover, especially when viewing is not a focus of study, 
it may not always be obvious how the necessary investments out-
weigh the benefits. MR-compatible cameras are expensive, require 
trained staff and valuable setup and calibration time, and impose 
experimental constraints (for example, the eyes need to be open). 
Moreover, they cannot be used in blind participant groups or post 
hoc once the fMRI data have been acquired.

An alternative and complementary framework is MR-based 
eye tracking, the reconstruction of gaze position directly from the 
magnetic resonance signal of the eyeballs. While previous work 
suggested that this is indeed feasible7–10, several critical constraints 
remained that limited the usability to specific scenarios. These ear-
lier approaches were not as accurate as required for many studies, 
were limited to the temporal resolution of the imaging protocol and, 
most importantly, required dedicated calibration scans for every 
single participant.

Here, we present DeepMReye, an open source cameraless 
eye-tracking framework based on a CNN that reconstructs viewing 
behavior directly from the MR signal of the eyeballs. It can be used 
to perform highly robust cameraless eye tracking in future fMRI 
experiments and also, importantly, in datasets that have already 
been acquired. It decodes gaze position in held-out participants 
at subimaging temporal resolution, performs unsupervised outlier 
detection and is robust across a wide range of viewing behaviors and 
fMRI protocols. Moreover, it can create new experimental opportu-
nities, for example, by performing eye tracking while the eyes are 
closed (for example, during resting state or rapid eye movement 
(REM) sleep) or in groups of individuals for which eye tracker cali-
bration remains challenging.

Results
In the following, we present our model and results in three sections. 
First, we introduce our datasets, tasks, data processing pipeline and 
CNN in detail. Second, we show that the decoded gaze positions 
are highly accurate and explore the applicability and requirements 
of DeepMReye in depth. Third, by regressing the decoded gaze 
labels against the simultaneously recorded brain activity, we show 
that viewing behavior explains activity in a large network of regions 
and that DeepMReye can replace camera-based eye tracking for 
studying or accounting for these effects. The approach and results 
presented below emphasize the importance of eye tracking for MRI 
research and introduce a software solution that makes cameraless 
MR-based eye tracking widely available for free.
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Decoding gaze position from the eyeballs. We demonstrate the 
wide applicability of our CNN approach (Fig. 1a,b) by decoding 
gaze from multiple existing fMRI datasets with a total of 268 par-
ticipants performing diverse viewing tasks (Fig. 1d), including fixa-
tion (dataset 1)11, smooth pursuit (datasets 2–4)12–14, visual search 
(dataset 5)15 and free picture viewing (part of dataset 6). These data-
sets were acquired on five 3T MRI scanners using 14 scanning pro-
tocols. Repetition times (TRs) ranged between 800 and 2,500 ms, 
and voxel sizes ranged between 1.5 and 2.5 mm. The eyeballs of 
each participant were first co-registered non-linearly to those of 
our group average template, which was obtained by averaging the 
functional images of all participants in dataset 4 (ref.14) fixating at 
the screen center. For each participant, we first aligned the head, 
then a facial bounding box and finally the eyeballs to the ones of 
our template. This optional three-step procedure ensured that the 
eyeballs were aligned across participants and that the average gaze 
position reflected the screen center (Supplementary Fig. 1). Note 
that potential offsets to the screen center can be estimated in the 
training data and then factored in after the decoding. The tem-
plate brain has itself been co-registered to a Montreal Neurological 
Institute (MNI) structural template in which the eyes were manu-
ally segmented (Fig. 1a). We then extracted the multivoxel pattern 
(MVP) of the eyes at each imaging acquisition, normalized the pat-
tern in time and space (Fig. 1b) and fed it into the CNN (Fig. 1c). 
While the exact model training and test procedure will be explained 
in detail later, it essentially uses the MVP of the eyes to predict ten 
on-screen gaze coordinates corresponding to the respective volume. 
For the main analyses, these ten gaze labels per TR were obtained 
either using camera-based eye tracking in the case of the uncon-
strained visual search dataset15 or from the screen coordinates of the 
fixation target in the case of all others11–14. For the final model eval-
uation, these ten gaze labels were median averaged to obtain one 
gaze position per TR. The CNN was trained using cross-validation 
and a combination of two weighted loss functions (Fig. 1c), (1) the 
‘Euclidean error’ (EE) between real and predicted gaze position and 
(2) a ‘predicted error’ (PE). The latter represents an unsupervised 
measure of the expected EE given the current input data.

Decoding viewing behavior in held-out participants. First, we 
examined the decoding performance at image-wise resolution in 
the five key datasets that were acquired for other purposes (data-
sets 1–5 (refs. 11–15); Methods and Fig. 2). The model was trained 
and tested using an across-participant decoding scheme, meaning 
that it was trained on 80% of the participants within each dataset 
and then tested on the held-out 20% of participants of that dataset. 
This procedure was cross-validated until all participants were tested 
once. For all viewing behaviors, we found that the decoded gaze path 
followed the ground truth gaze path closely in the majority of par-
ticipants (Fig. 2a). To quantify gaze decoding on the group level, we 
computed four measures: the EE (Fig. 2b and Extended Data Fig. 1), 
the Pearson correlation (r; Fig. 2c), the coefficient of determination 
(R2; Extended Data Fig. 2a) between the real and the decoded gaze 
paths of each participant and the error as a fraction of total stimulus 
size (FoS). We found that gaze decoding worked in the large major-
ity of participants with high precision (Fig. 2c and Extended Data 
Fig. 2b) and for all viewing behaviors tested (median performance 
of the 80% most reliable participants (low PE): all datasets, r = 0.89, 
R2 = 0.78, EE = 1.14°, FoS = 7.6%; fixation, r = 0.86, R2 = 0.74, 
EE = 2.89°, FoS = 11%; pursuit 1, r = 0.94, R2 = 0.89, EE = 0.64°, 
FoS = 5%; pursuit 2, r = 0.94, R2 = 0.88, EE = 1.14°, FoS = 8%; pur-
suit 3, r = 0.86, R2 = 0.72, EE = 1.11°, FoS = 5%; free viewing, r = 0.89, 
R2 = 0.78, EE = 2.17°, FoS = 9%). These results were also robust when 
independent data partitions of each participant were used for train-
ing and testing (within-participant decoding scheme, Extended Data 
Fig. 3a), and we uncovered gaze position even when independent 
datasets were used for model training and testing (across-dataset 
decoding, Extended Data Fig. 3b). Moreover, by shuffling the time 
courses of individual voxels and quantifying the influence on the EE 
of our model, we further found that the information used for decod-
ing indeed originated mostly in the eyeballs and the optic nerves 
(Supplementary Fig. 2). Together, these results demonstrate that 
gaze decoding with DeepMReye can be highly reliable and accurate. 
It allows reconstructing even complex viewing behaviors in held-out 
participants, critically relying solely on the MR signal of the eyeballs 
without requiring any MR-compatible camera equipment.
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Fig. 1 | Model architecture and input. a, Manually delineated eye masks superimposed on a T1-weighted structural template (Colin27) at MNI coordinate 
Z = –36. b, Eyeball Mr signal reflects gaze direction. The normalized Mr signal of eye mask voxels of a sample participant who fixated on a target on the 
left (X, Y = –10, 0°), right (10, 0°), top (0, 5.5°) or bottom (0, –5.5°) of the screen are plotted. Source data are provided. c, CNN architecture. The model 
takes the eye mask voxels as three-dimensional (3D) input and predicts gaze position as a two-dimensional (2D; X, Y) regression target. It performs 
a series of 3D convolutions (3D Conv) with group normalizations (GroupNorm) and spatial downsampling via average pooling (AvgPool) in between. 
residual blocks (resBlock) comprise an additional skip connection. The model is trained across participants using a combination of two loss functions: 
(1) the Euclidean Error (EE) between the predicted and the true gaze position and (2) the error between the EE and a predicted error (PE). It outputs gaze 
position and the PE as a decoding confidence measure for each repetition time (Tr). d, Schematics of viewing priors. We trained and tested the model on 
data from 268 participants performing fixations11, smooth pursuit on circular or star-shaped trajectories12–14 and free viewing15.
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Unsupervised outlier detection. As mentioned above, the model 
computes a PE score for each sample and participant in addition 
to decoding gaze position. Importantly, this PE correlated with 
the true EE across participants, allowing for the detection of par-
ticipants for which the decoding did not work as well as for others  
(Fig. 2b and Extended Data Fig. 1a,b). For example, if the eye masks 
were not well co-registered, if an eye was missing or if there were 
other sources of noise, the voxel values obtained for the respec-
tive participant would differ from those of other participants. 
Accordingly, the outlier participant would show a high EE because 
the voxels would not be informative about the gaze position. The 
model learns to recognize these features in the data associated with 
accurate and inaccurate decoding, and it expresses its own estimate 

of decoding reliability in the form of the PE. This relative measure 
of decoding reliability can thus be used to remove outliers from 
subsequent analysis or to account for them, for example, by add-
ing covariate regressors in group analyses. Moreover, in addition 
to detecting outlier participants, the PE also allowed for removal  
of outlier samples within each participant, which further improved 
the reliability of the results (Extended Data Fig. 4). Note that in 
addition to computing the PE, our pipeline visualizes various fea-
tures of the input data (Supplementary Fig. 3), which can further 
aid quality assessment.

No camera required for model training. We next explored our 
model’s requirements and boundary conditions in detail. First, we 
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tested what type of training labels are required for DeepMReye, 
finding that both the screen coordinates of a fixation target  
(Fig. 2c) and labels obtained using camera-based eye tracking 
(Extended Data Fig. 5) led to similar performance. While the results 
presented for dataset 5 (Fig. 2c) already reflect the results obtained 
with camera-based labels, we additionally reran the model on gaze 
labels obtained via camera-based eye tracking for the smooth pursuit 
datasets 3 and 4 (Extended Data Fig. 5). Thus, because DeepMReye 
can be trained on fixation target labels only and because it gener-
alizes across participants (Fig. 2), users could acquire fMRI data 
for a few participants performing various fixation tasks, record the 
screen coordinates of the fixation target as training labels, train the 
model on these labels and then decode from all other participants. 
We provide the code for an experimental paradigm that can be used 
to produce such training labels (see Code availability and online 
user documentation).

Small training set. Next, we asked how many participants were 
required for model training as well as how much data are needed to 
be acquired for each one. We tested this by iteratively subsampling 
the number of participants in the training set, each time testing how 
well the model performed on the same test participants. We chose to 
conduct this analysis on dataset 5 because it featured the most natu-
ral and hence most complex viewing pattern tested. We found that 
model performance improved with an increasing training set size 
but also that model performance approached the ceiling level at as 
few as six to eight participants (mean performance: one participant, 
r = 0.43, R2 = 0.11, EE = 5.12°; five participants, r = 0.81, R2 = 0.62, 
EE = 3.18°; ten participants, r = 0.86, R2 = 0.71, EE = 2.58°; Fig. 2d 
and Extended Data Fig. 6). We then repeated this analysis while 
subsampling the amount of single-participant data considered dur-
ing training in addition to the number of participants in the training 
set. We found that model performance saturated at as little as 5 min 
worth of free-viewing data (Extended Data Fig. 7). This suggests 
that even a small training set can yield a well-trained model and 
hence reliable decoding results. Note, however, that model perfor-
mance likely also depends on how similar the expected viewing 
behavior is between training and test sets. If the gaze pattern is very 

similar across participants, which can be the case even for viewing 
of complex stimuli, such as real-world scenes16, decoding it in inde-
pendent participants can work even better despite a small training 
set. This fact can be seen, for example, in our main results for the 
smooth pursuit dataset 2 (ref. 12) (Fig. 2).

No hemodynamic component. Naturally, when the eyes move, the 
surrounding tissue undergoes dramatic structural changes, which 
are expected to affect the MR signal acquired at that time. To test 
whether this is the source of information used for decoding, we 
shifted the gaze labels relative to the imaging data by various TRs 
(0–10), each time training and testing the model anew. Indeed, we 
found that the eyeball decoding was most accurate for the instanta-
neous gaze position and that no hemodynamic factors needed to be 
considered (Fig. 2e). This is in stark contrast to decoding from brain 
activity for which the same model pipeline can be used (Fig. 2e). In 
the primary visual cortex (V1), decoding was optimal after around 
5–6 s (r = 0.483 ± 0.132) and followed the shape of the hemody-
namic response function.

Subimaging temporal resolution. The results presented so far 
were obtained by decoding the average gaze position from each 
volume in independent data. We believe this image-wise-resolution 
eye tracking already enables a multitude of exciting applications as 
discussed below. Intriguingly, however, because different imaging 
slices were acquired at different times and because the MR signal 
of a voxel can be affected by motion, it should, in principle, be pos-
sible to decode gaze position at a temporal resolution higher than 
the one of the imaging protocol (sub-TR resolution). As mentioned 
above, DeepMReye classifies ten gaze labels per functional volume, 
which are median averaged to obtain one gaze position per TR. This 
procedure yielded a higher decoding performance than classifying 
only one position, and it enabled testing of how well the gaze path 
can be explained by the sub-TR labels themselves (Extended Data  
Fig. 8a). We found that during visual search, more gaze path vari-
ance was explained by decoding up to three positions per TR than 
by decoding only one position per TR (Fig. 2f). In this dataset, 
which featured a TR of 1 s (ref. 15), this corresponds to a decoding 
resolution of 3 Hz, which dovetails with the average visual search 
eye movement frequency of 3 Hz (ref. 17). Moreover, the ten real and 
decoded sub-TR labels varied similarly within each TR (Extended 
Data Fig. 8b) and across TRs (Extended Data Fig. 8c,d), which again 
suggests that within-TR movements could be detected. While the 
exact resolution likely depends on the viewing behavior and the 
imaging protocol, these results show that at least a moderate subim-
aging temporal decoding resolution is indeed feasible.

Across-dataset generalization. The results presented so far 
show that the gaze decoding with DeepMReye is highly accurate 
when the viewing behavior and the imaging protocol are similar 
between training and test sets. To test if our model also general-
izes across datasets, we next implemented a leave-one-dataset-out 
cross-validation scheme. Most datasets were acquired by differ-
ent groups using different MR scanners, participants and view-
ing behaviors but with similar voxel sizes and TRs. While this 
across-dataset scheme led to overall lower performance scores than 
the across-participant (within-dataset) scheme presented earlier, 
it nevertheless recovered viewing behavior with remarkable accu-
racy in all cases (median performance of the 80% most reliable 
participants (low PE): all datasets, r = 0.84, R2 = 0.59, EE = 2.78°, 
FoS = 13.8%; fixation, r = 0.79, R2 = 0.52, EE = 5.34°, FoS = 22%; pur-
suit 1, r = 0.88, R2 = 0.64, EE = 1.47°, FoS = 14%; pursuit 2, r = 0.86, 
R2 = 0.65, EE = 2.15°, FoS = 12%; pursuit 3, r = 0.85, R2 = 0.55, 
EE = 2.01°, FoS = 9%; free viewing, r = 0.84, R2 = 0.61, EE = 2.96°, 
FoS = 12%; Extended Data Fig. 3). This suggests that datasets 
acquired with similar fMRI protocols can be used for model training,  
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even if the recording site or the protocol were not exactly the same. 
Future investigations will need to quantify how larger differences 
in scan parameters affect this across-dataset generalization (for 
example, different phase-encoding directions or slice tilts). The 
across-dataset generalization is expected to improve in the future as 
more datasets are being used for model training.

Robust across voxel sizes and TRs. fMRI protocols can differ in 
many aspects. Most importantly, in this context, they can differ in 
the spatial and temporal resolution of the acquired data (that is, 
voxel size and TR). To explore the influence of these two param-
eters on the decoding performance in detail, we varied them sys-
tematically across nine fMRI protocols for the acquisition of a sixth 
dataset. For each of the nine sequences, we scanned four partici-
pants with concurrent camera-based eye tracking while they freely 
explored pictures18 or performed fixation11 and smooth pursuit 
tasks similar to the ones used earlier12–14. DeepMReye decoded gaze 
position robustly in this dataset 6 during all of these tasks and in 
all imaging protocols tested (3 × 3 design: TR = 1.25 s, 1.8 s, 2.5 s; 
voxel size = 1.5 mm, 2 mm, 2.5 mm; Fig. 3a), demonstrating that it is 
widely applicable across a broad range of routinely used voxel sizes 
and TRs.

Eyes-closed tracking. Traditional MR-compatible eye-tracking sys-
tems typically detect certain features of the eyes, such as the pupil 
and/or the corneal reflection in a video, which are then tracked 
over time19. When the relevant features are occluded or cut off on 
the video (for example, when the eyes close), the tracking is lost. 
Because our approach relies on the fact that the eyeball MR signal 
changes as a function of gaze position (Fig. 1b), it might be pos-
sible to decode gaze position, or in this case more generally the 
state of the eyeballs, even when the eyes are closed. As a proof of 
concept, we therefore tested in one participant of dataset 6 whether 
DeepMReye can uncover viewing behavior even when the eyes are 
closed. The participant was instructed to close the eyes and move 
them either repeatedly from left to right or from top to bottom and 
to indicate the behavior via a key press. We trained DeepMReye on 
the diverse eyes-open viewing data from all participants in dataset 
6 and then decoded from the one participant while the eyes were 

closed. We found that the gaze pattern decoded with DeepMReye 
closely matched the participant’s self-report (Fig. 3b), suggesting 
that it is indeed possible to perform eye tracking while the eyes  
are closed.

Eyes-open versus eyes-closed classification. When the eyes are 
closed, the eyelid pushes down onto the eyeball, which changes its 
shape slightly20. Because this should affect the MRI signal obtained 
from the eyes, we therefore tested if our model could also decode if 
the eyes were open or closed. To do so, we used the camera-based 
eye-tracking labels of our smooth pursuit dataset 4 (ref. 14) to com-
pute the proportion of time spent eyes closed for each volume of 
each participant. These data were then used to train and test a vari-
ant of our across-participant decoding model using our 80%/20% 
data cross-validation procedure (Methods). We found that we could 
indeed recover the proportion of time spent eyes closed with high 
reliability from each volume (Extended Data Fig. 9a), which we then 
combined to obtain a continuous decoded time series. This time 
series then served as the basis for classification. To binarize it, we 
thresholded it at various thresholds (for example, at 10%; Extended 
Data Fig. 9b) and then computed hit rates and accuracy of our 
model. This showed that DeepMReye could indeed reliably predict 
whether the eyes were open or closed for various proportions of the 
TR (for example, accuracy for 10% cutoff is 89.9% ± 0.05, balanced 
accuracy is 84.6% ± 0.07 and area under the curve is 0.92), showing 
that the eyes-open versus eyes-closed classification is indeed fea-
sible. Note that the model output is the continuous, unthresholded 
time series (Extended Data Fig. 9a), and users may implement dif-
ferent classification procedures or regression analyses according to 
their needs.

Viewing behavior explains network-wide brain activity. The 
results presented so far demonstrate that DeepMReye can be used 
to perform eye tracking in many experimental settings. A criti-
cal open question that remained was whether its decoding output 
can be used to analyze brain activity. To test this, we implemented 
a whole-brain mass-univariate general linear model (GLM) for 
the visual search dataset 5. We again chose this dataset because  
it featured the most complex viewing pattern tested. To simulate  

Camera-based eye tracking DeepMReye

Within-participants Across-participants Across-datasets

Medial view

Lateral view

Within-participants

Decoded viewing behavior explains network-wide brain activity

P < 1 × 10–4 uncorrected P < 0.05 FWE correctedF-test: far versus short eye movements:

Fig. 4 | Decoded viewing behavior explains network-wide brain activity. GLM group results for the contrast ‘far versus short eye movements’ during 
visual search. We plot the F-statistic of this contrast superimposed on a template surface (fsaverage) for gaze labels obtained with camera-based eye 
tracking (left) as well as for three DeepMreye cross-validation schemes. For the within-participants scheme, all participants of a dataset were included 
with different partitions in model training and testing. For the across-participants scheme, different participants were included during model training and 
testing. For the across-datasets scheme, different datasets (and hence also different participants) were included during model training and testing; FWE, 
family-wise error. Source data are provided.
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differences in viewing behavior between the two conditions, we first 
computed an eye movement index, reflecting the Euclidean distance 
between gaze positions of subsequent volumes. We used this eye 
movement index to build two main regressors of interest, one mod-
eling large eye movements and one modeling short eye movements. 
Both regressors were binarized and convolved with the hemody-
namic response function. Contrasting the model weights estimated 
for these two regressors was expected to reveal regions in the brain 
whose activity is driven by viewing behavior, such as the visual and 
oculomotor (attention) network3,4.

To know what we were looking for, we first conducted this analy-
sis using the gaze labels obtained with traditional camera-based eye 
tracking and then compared the results to the ones obtained for the 
three cross-validation schemes of DeepMReye (within participants, 
across participants and across datasets).

As predicted, we found that viewing behavior explained brain 
activity in a large network of regions (Fig. 4), including the early 
visual cortex, frontoparietal regions (likely the frontal eye fields), 
the posterior parietal cortex as well as temporal lobe regions (likely 
including the human motion complex)21. Importantly, however, dif-
ferences in viewing behavior also explained brain activity in regions 
not typically associated with oculomotor function, such as the ven-
tromedial prefrontal cortex, the anterior and posterior cingulate 
cortex, the medial parietal lobe (likely comprising the retrosplenial 
cortex), the parahippocampal gyrus and the hippocampus (Fig. 4).

Strikingly, comparing the results obtained with DeepMReye 
to the ones obtained with camera-based eye tracking showed an 
exceptional match between the two (Fig. 4). This was true even for 
the across-participant decoding scheme, which can be conducted 
even in existing datasets with some preparation (Fig. 2; see online 
user documentation). Moreover, even the across-dataset scheme 
explained gaze-related variance on the group level, despite the dif-
ferences in the underlying viewing behaviors and imaging protocols.

Finally, because eye movements are associated not only with 
brain activity but also with imaging artifacts, the MRI signal might 
also be affected instantaneously when the movement occurs. To 
quantify these instantaneous effects, we repeated the GLM analy-
sis modeling eye movement-related fluctuations in the MRI sig-
nal without accounting for the hemodynamic response. Again, we 
found that eye movements explained signal variations in many brain 
regions (Extended Data Fig. 10), likely reflecting a combination of 
imaging artifacts and instantaneous hemodynamic components 
(for example, the initial dip). Together, these analyses demonstrate 
that eye movements explain a large amount of MR signal variance 
throughout the brain even when accounted for at image-wise res-
olution, which is similar to, but independent from, head motion. 
This variance is not captured by traditional head motion regressors 
(Supplementary Fig. 4).

Discussion
DeepMReye is a cameraless eye-tracking framework based on a 
CNN that decodes gaze position from the MR signal of the eye-
balls. It allows monitoring of viewing behavior accurately and con-
tinuously at a moderate subimaging resolution without the need 
for MR-compatible cameras. We demonstrated that our approach 
works robustly for a wide range of voxel sizes and repetition times 
as well as for various viewing behaviors, including fixation, smooth 
pursuit, free viewing and, as a proof of concept, even when the eyes 
were closed. For each gaze position and participant, the model out-
puts an unsupervised PE score that can be used to filter out outli-
ers even when test labels are missing. A small training set can yield 
a well-trained model and high decoding performance even when 
trained without camera-based labels. Using an easy-to-implement 
analysis, we showed that the decoded gaze positions and eye 
movements can be used in subsequent fMRI analyses similar to 
camera-based eye tracking, and doing so revealed gaze-related 

activity in a large network of regions in the brain3,4,6,21. Critically, by 
testing our model in independent participants within each dataset, 
but also across datasets acquired with different MR scanners and 
protocols, we demonstrated the potential of DeepMReye to success-
fully decode viewing behavior also in existing fMRI data.

MR-based gaze prediction. The present work is directly inspired 
by earlier reports showing that the MR signal of the eyeballs can 
be used to infer the state of the eyes during MRI scanning. This 
includes movements of the eyes7,8,22,23, the position of gaze on the 
screen9,10,22,24,25 or whether the eyes were open or closed20. Moreover, 
gaze position can be decoded from early visual cortex activity during 
scene viewing26 and, as shown here, during visual search (Fig. 2e).  
However, DeepMReye goes beyond these earlier reports in multiple  
ways. Most importantly, earlier approaches, such as predictive eye 
estimation regression10, required calibration data for every single 
participant, meaning that at least two calibration scans need to 
be acquired during each scanning session. By contrast, our deep 
learning-based approach generalizes across participants, allowing 
for eye tracking even when training and test labels are missing. The 
model could be trained on the data of a few participants and then 
used for decoding from all other participants. Moreover, earlier 
approaches were limited to the sampling resolution of the imaging 
protocol, meaning that one average gaze position per functional 
image could be extracted. By contrast, we extracted gaze position 
at a moderate sub-TR resolution (~3 Hz) and with higher accuracy 
than previous approaches, allowing us to perform MR-based eye 
tracking with a higher level of detail. As a proof of principle, we 
show that our model reconstructs viewing behavior even when the 
eyes are closed. Finally, we provide an open source and user-friendly 
implementation for MR-based eye tracking as an interactive pipe-
line inspired by other fMRI open source initiatives (for example, see 
ref. 27). Hence, DeepMReye overcomes several critical limitations of 
earlier work, presenting the most general and versatile solution to 
cameraless eye tracking in MRI to date.

What information does the model use? Eye movements naturally 
entail movements of the eyeballs but also of the optic nerves and the 
fatty tissue around them. To capture these movements, our custom 
eye masks cover a large area behind the eyes excluding skull and 
brain tissue. When the eyes move, the multivoxel pattern in these 
masks changes drastically (Fig. 1b), an effect that might even be 
amplified by the magnetic field distortions often occurring around 
the eyes. Hence, DeepMReye likely uses information tradition-
ally considered to be motion artifacts, which are not corrected by 
classical realignment during preprocessing (Supplementary Fig. 4  
and Extended Data Fig. 10). The fact that the actual orientation and 
motion of the eye are used for decoding (Supplementary Fig. 2)  
also means that no hemodynamic lag needs to be considered  
(Fig. 2e) and that both conjugate and disconjugate (vergence) eye 
movements could be detected. The current gaze position is decoded 
directly from each respective TR. Moreover, we believe that two 
sources of information further contribute to the moderate subim-
aging decoding resolution that we observed. First, different imag-
ing slices are being acquired at a different time within each TR and 
thus inherently carry some sub-TR information. This is true also 
for fMRI protocols that use multiband acquisition, which includes 
all datasets tested here. Future studies could examine the effect of 
slice timing on decoding resolution in more detail. Second, similar 
to motion blur in a long-exposure camera picture, the MRI signal 
intensity of a voxel can itself be affected by movements. The mul-
tivoxel pattern at each TR might therefore reflect how much the 
eyes moved, and the same average gaze position might look differ-
ent depending on which positions were sampled overall within the 
respective TR. An exciting avenue to be explored in future studies is 
the influence of scanning sequence parameters, such as slice timing 
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on the decoding, which may potentially reveal certain settings that 
further improve the temporal resolution of our model.

Looking forward. DeepMReye offers a multitude of exciting appli-
cations ranging from simple behavioral monitoring over confound 
removal to new and improved task-based analyses. Most basically, it 
offers an additional and low-effort behavioral readout for any fMRI 
experiment and allows for monitoring task compliance, for exam-
ple, by verifying that a fixation cross was fixated. Removing samples 
at which fixation was not maintained from subsequent analysis has 
been shown to improve predictive modeling results24 and may help 
to reduce the effects of in-scanner sleep more easily28.

Our approach enables studies of the relationship between view-
ing and brain activity and may more generally be used to inform 
almost any type of task-based model about the underlying view-
ing behavior. This could, for example, further improve the explana-
tory power of predictive models29,30 and be especially promising for 
naturalistic free-viewing paradigms because the currently attended 
aspect of a stimulus can be taken into account31. This may prove 
especially fruitful in research domains that do not typically use eye 
tracking to date6,32,33.

Importantly, eye movements can also be a major source of con-
founds in neuroimaging studies. As mentioned earlier, if differences 
in viewing between two conditions remain undetected, the inter-
pretation of neuroimaging results may be compromised. We dem-
onstrated here that many brain regions are affected by this issue, 
many of which are not typically studied in the context of eye move-
ments (Fig. 4). Moreover, eye movements are associated with imag-
ing artifacts that can affect data integrity throughout the brain5. A 
popular way of minimizing such confounds is having participants 
fixate at a fixation cross, which is helpful but also puts artificial 
constraints on a behavior that is fundamental to how we explore 
the world. Moreover, task compliance cannot always be guaranteed. 
DeepMReye may reduce confounds and artifacts, for example, by 
adding eye movement regressors directly to a GLM analysis as it 
is standard practice for head motion regressors. Additionally, it 
could be used to track if the eyes were open during scanning, poten-
tially helping to identify the effects of fatigue and frequent blink-
ing on fMRI activity. This promises to improve the interpretability 
of task-based and resting-state fMRI results alike because nuisance 
variance would no longer be assigned to the regressors of interest34.

DeepMReye can thus provide many experimental and analytical 
benefits that traditional eye tracking systems can provide. Critically, 
it does so without requiring any expensive equipment, trained staff 
or experimental time. It can be used widely in both research and 
clinical settings, for example, to study or diagnose neurodegenera-
tive disorders1. Excitingly, it can even go beyond traditional eye 
tracking in certain aspects, offering new experimental possibili-
ties that cannot easily be realized with a camera. For example, we 
showed as a proof of principle in one participant that eye move-
ments can be tracked even while the eyes are closed. This suggests 
that our approach could be used to study oculomotor systems in 
the total absence of visual confounds, during resting state33 and 
potentially even during REM sleep. While future studies will need 
to validate the accuracy of the eyes-closed decoding in a larger 
sample, it promises many new research questions to be addressed. 
Moreover, the across-participant generalization enables new studies 
of participant groups for which camera-based eye trackers are not 
applicable. For example, DeepMReye could be trained on the data of 
healthy volunteers and then tested on blind participants for whom 
camera-based eye trackers cannot be calibrated. Most importantly, 
it allows gaze decoding in many existing fMRI datasets, and it could 
hence make new use of large and instantly available data resources.

Finally, the same model architecture can be used to decode gaze 
position from brain activity directly as well. Doing so is as simple as 
replacing the eye masks by a regions-of-interest mask of a certain 

brain region and accounting for the hemodynamic lag. We dem-
onstrated this possibility using fMRI data from area V1 (Fig. 2e).  
Likewise, the same decoding pipeline could be used to decode other 
behavioral or stimulus features from brain activity or even to clas-
sify diseases based on MRI images, again showing the power of 
deep learning-based methods for image analysis and neuroscience 
in general35,36.

Limitations and further considerations. It is important to note 
that DeepMReye also has certain limitations and disadvantages 
compared to camera-based eye tracking. First, the eyeballs need to 
be included in the MRI images. This may not always be possible 
and can affect the artifacts that eye movements can induce. In prac-
tice, however, many existing and future datasets do include the eyes, 
and even if not, DeepMReye could still be used to decode from 
brain activity directly. Second, the PE allows for detection of outlier 
participants accurately, but it should not be regarded as an abso-
lute measure of decoding quality. We recommend users to further 
consider other measures to assess the reliability of the model and 
data quality (see online user documentation). Our pipeline gener-
ates interactive quality check visualizations to support this process 
(Supplementary Fig. 3). Third, despite decoding at a temporal reso-
lution that is higher than the resolution of the imaging protocol, 
our approach does by no means reach the temporal resolution of a 
camera. Many aspects of viewing behavior happen on a time scale 
that can hence not be studied with DeepMReye. For experiments 
requiring such high temporal resolution, for example, for studying 
individual saccades and associated variables such as saccade latency 
or amplitude, we therefore recommend a camera system.

However, we believe that many fMRI studies could benefit 
immensely from eye tracking even at a moderate temporal resolu-
tion, and many research questions do not require high resolution to 
be addressed. For example, we showed that eye movements explain 
activity in many brain regions even when modeled at image-wise 
resolution (Fig. 4), which is similar to, but independent from, head 
motion. While we encourage users to implement their own anal-
yses based on the decoding output, these and other results show 
that even simple regression analyses of image-wise eye movements 
can provide key insights into human brain function and clean up 
noise10,14,15,24,26. Moreover, many regression analyses in neuroimag-
ing require the eye-tracking data to be downsampled to the imaging 
resolution irrespective of the acquisition sampling rate. This means 
that even if gaze behavior was monitored at 1,000 Hz with a camera, 
the effective eye-tracking data resolution entering fMRI analysis is 
often the same as the one of DeepMReye.

Most importantly, however, a large number of researchers, MRI 
facilities and hospitals do not have access to MR-compatible cam-
eras, leaving MR-based eye tracking as the only available option. 
The decision is thus most often to be made not between MR-based 
and camera-based eye tracking but between MR-based eye tracking 
and no eye tracking at all. To date, the latter option is the most com-
mon scenario, which we see as a missed opportunity. DeepMReye 
allows monitoring gaze without a camera with a moderate tempo-
ral resolution even in many existing datasets and when the eyes are 
closed. It therefore complements camera systems for situations in 
which these are not applicable, and it provides an open source alter-
native to cameras for research that would otherwise be conducted 
without eye tracking.

Conclusions
In sum, DeepMReye is a cameraless deep learning-based eye track-
ing framework for fMRI experiments. It works robustly across a 
broad range of gaze behaviors and imaging protocols, allowing for 
the reconstruction of viewing behavior with high precision even 
in existing datasets. This work emphasizes the importance and the 
potential of combining eye tracking, neuroimaging and artificial 
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intelligence for studying human brain function, and it provides a 
user-friendly and open source software that is widely applicable 
post hoc.
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Methods
Datasets. DeepMReye was trained and tested on data from 268 participants 
acquired on five 3T MRI scanners with 14 different scanning protocols and various 
preprocessing settings. The individual datasets are described below and were 
partially used in earlier reports. For other details of each individual dataset, please 
see the original published articles11–15. A T1-weighted structural scan with 1-mm 
isotropic voxel resolution was acquired for all participants, and camera-based 
eye-tracking data were included for participants in datasets 3–6. An overview of 
the datasets is provided in Supplementary Table 1.

Dataset 1: fixation and saccades. Data and task These data were made publicly 
available by Alexander and colleagues11 and were downloaded from the Healthy 
Brain Network (HBN) Biobank (http://fcon_1000.projects.nitrc.org). These data 
were also used in earlier reports10. It is part of a larger and ongoing data collection 
effort with a pediatric focus and comprises participants between 5 and 21 years of 
age. We limited our analysis to a subset of the full dataset for which we ensured that 
there were no visible motion artifacts in either the T1- or the average T2-weighted 
images, and the eyeballs were fully included in the functional images. We included 
170 participants in total. For each participant, at least two fMRI runs were scanned 
in which they performed a typical eye-tracking calibration protocol. In each run, 
they fixated at a fixation target that sequentially moved through 27 locations on the 
screen, with each location being sampled twice for 4 s. Gaze positions were sampled 
within a window of X = 19° and Y = 15° visual angle. The screen coordinates of the 
fixation target served as training and testing labels for the main analyses (Fig. 2).

Note that this dataset included children and thus likely relatively inexperienced 
participants who did not always fixate accurately, and it featured the least amount 
of single-participant data of all datasets tested. This may have contributed to a 
larger variance in model performance scores on group level than other datasets 
(Fig. 2c). Moreover, it featured the largest data range and thus the largest possible 
outliers, which may explain why the within-participant outlier removal had a 
stronger positive effect on model performance in this dataset than the others 
(Extended Data Fig. 4).

fMRI data acquisition and preprocessing Imaging data were acquired on a 
Siemens 3T Tim Trio MRI scanner located at the Rutgers University Brain Imaging 
Center, Newark, New Jersey, USA. The following echo-planar imaging (EPI) 
parameters were used: voxel size = 2.4 mm isotropic, TR = 800 ms, TE = 30 ms, flip 
angle = 31° and multiband factor = 6. Images were co-registered to our template 
space as described below.

Dataset 2: smooth pursuit 1. Data and task These data were used in one of our 
previous reports12. Nine participants performed a smooth pursuit visual tracking 
task in which they either tracked a fixation target moving on a circular trajectory 
with a radius of 8° visual angle or one that remained at the screen center. In 
addition, planar dot motion stimuli were displayed in the background moving 
on the same circular trajectory at various speeds. This resulted in a total of nine 
different conditions. The following pursuit and motion speed combinations were 
tested in separate trials: eye, background in degrees per s = (0, 0), (0, 1), (0, 3), (2, 
1), (2, 2), (2, 3), (3, 2), (3, 3), (3, 4). These conditions were tested in blocks of 12 s 
in the course of 34 trials over four scanning runs of ~10.5 min each. To balance 
attention across conditions, participants performed a letter repetition detection 
task displayed on the fixation target. Gaze positions were sampled within a window 
of X = 8° and Y = 8° visual angle. The screen coordinates of the fixation target 
served as training and testing labels for our model.

fMRI data acquisition and preprocessing Imaging data were acquired 
on a Siemens 3T MAGNETOM Prisma MRI scanner located at the 
Max-Planck-Institute for Biological Cybernetics in Tubingen, Germany. The 
following EPI parameters were used: voxel size = 2 mm isotropic, TR = 870 ms, 
TE = 30 ms, flip angle = 56°, multiband factor = 4 and generalized autocalibrating 
partial parallel acquisition (GRAPPA) factor = 2. Note that nine other participants 
were excluded because the functional images did not or only partially included 
the eyeballs. Images were corrected for head motion and field distortions using 
SPM12 (www.fil.ion.ucl.ac.uk/spm/) and then co-registered to our template space 
as described below.

Eye tracking We monitored gaze position at 60 Hz using a camera-based eye 
tracker by Arrington Research. Please note that these eye-tracking data showed a 
higher noise level than the other datasets due to drift and because the pupil was 
frequently lost. We therefore used the screen coordinates of the fixation target for 
model training and testing as in dataset 1. To still visually compare the decoding 
output to the eye-tracking data post hoc, we removed blinks, detrended the 
eye-tracking time series using a second-order polynomial function and median 
centered it on the screen center. We removed samples in which the pupil was lost 
by limiting the time series to the central 14° × 14° visual angle, smoothed it using 
a running average kernel of 100 ms and scaled it to match the data range of the 
fixation target using the sum of squared errors as loss function. The time series was 
then split into the individual scanning acquisitions.

Dataset 3: smooth pursuit 2. Data and task These data were used in one of our 
previous reports and comprised 34 participants13. Like in dataset 2, participants 
performed a smooth pursuit visual tracking task in which they fixated at a fixation 

target moving on a star-shaped trajectory. Twenty-four eye movement directions 
were sampled in steps of 15° at four speed levels, 4.2° per s, 5.8° per s, 7.5° per s and 
9.1° per s. Speeds were interleaved and sampled in a counterbalanced fashion. In 
addition to the visual tracking task, participants performed a time-to-collision task. 
The trajectory was surrounded by a circular yellow line on a gray background with 
a radius of 10° visual angle centered on the screen center. Whenever the fixation 
target stopped moving before switching direction, participants indicated by button 
press when the target would have touched the yellow line if it continued moving. 
Gaze positions were sampled within a window of X = 10° and Y = 10° visual angle. 
Each participant performed a total of 768 trials in the course of four scanning runs 
with 16–18 min (including a short break in the middle). The screen coordinates of 
the fixation target served as training and testing labels for the main analyses (Fig. 2).

fMRI data acquisition and preprocessing Imaging data were acquired on a 
Siemens 3T MAGNETOM Skyra located at the St. Olavs Hospital in Trondheim, 
Norway. The following EPI parameters were used: voxel size = 2 mm isotropic, 
TR = 1,020 ms, TE = 34.6 ms, flip angle = 55° and multiband factor = 6. Images 
were corrected for head motion using SPM12. The FSL topup function was used to 
correct field distortions using an image acquired with the same protocol except that 
the phase-encoding direction was inverted (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
topup). Images were then co-registered to our template space as described below.

Eye tracking We monitored gaze position during the experiment at a rate 
of 1,000 Hz using an MR-compatible infrared-based eye tracker (Eyelink 1000). 
Blinks were removed, and the time series was downsampled to 100 Hz, linearly 
detrended within each scanning run and smoothed with a running average kernel 
of 100 ms. We then split the time series into individual scanning acquisitions (TRs) 
to obtain the final training and testing gaze labels for our model. The camera-based 
eye-tracking labels served as training and testing labels for supplementary analyses 
(Extended Data Fig. 5).

Dataset 4: smooth pursuit 3. Data and task These data were used in one of our 
previous reports14. Twenty-four participants performed a smooth pursuit visual 
tracking task in which they tracked a fixation target moving at a speed of 7.5° 
per s on a star-shaped trajectory with 36 directions. The target moved within a 
virtual arena, which participants oversaw from a bird’s-eye view. Eye movement 
directions were sampled in steps of 10°. In a visual motion control condition, the 
target remained at the screen center, and the arena moved instead. Participants 
additionally performed a spatial memory task. They memorized the location of 
colored objects on the screen, which were shown only when the fixation target 
moved across them. Gaze positions were sampled within a window of X = 15° and 
Y = 15° visual angle. Each participant performed a total of 81 trials in the course 
of nine scanning runs. This included 54 smooth pursuit trials of 60 s each and 
27 center fixation trials of 30 s each. The screen coordinates of the fixation target 
served as training and testing labels for the main analyses (Fig. 2).

fMRI data acquisition and preprocessing Imaging data were acquired on a 
Siemens 3T MAGNETOM PrismaFit MRI scanner located at the Donders Centre 
for Cognitive Neuroimaging in Nijmegen, the Netherlands. The following EPI 
parameters were used: voxel size = 2 mm isotropic, TR = 1,000 ms, TE = 34 ms, flip 
angle = 60° and multiband factor = 6. Data were realigned using SPM12 (https://
www.fil.ion.ucl.ac.uk/spm/) and co-registered to our template space as described 
below.

Eye tracking Similar to dataset 3, we again monitored gaze position during the 
experiment at 1,000 Hz using an Eyelink 1000 eye tracker. Blinks were removed, 
and the data were downsampled to the monitor refresh rate of 60 Hz. We then 
reduced additional tracking noise by removing samples at which the pupil size 
diverged more than one standard deviation from the mean by removing the 
intertrial interval during which most blinks occurred and by smoothing the time 
series with a running average kernel of 100 ms. We then linearly detrended and 
median centered the time series of each trial individually to remove drift. Finally, 
we split the time series according to the underlying scanner acquisition times to 
create our final training and testing labels for this dataset. Note that the original 
dataset14 includes five additional participants for which no eye-tracking data have 
been obtained and were excluded. The camera-based eye-tracking labels served as 
training and testing labels for supplementary analyses (Extended Data Fig. 5).

Dataset 5: visual search. Data and task These data were kindly provided by Julian 
and colleagues15. Twenty-seven participants performed a self-paced visual search 
task, searching for the letter ‘L’ in a search display filled with distractor letter 
‘T’. Following detection, participants pressed a button. Each trial lasted for an 
average of 7.50 s, followed by fixation at the screen center for 2–6 s. The number 
of distractors varied over trials between 81, 100, 144, 169 or 121. Participants 
performed either four or six runs of 6.5 min each. Task-relevant gaze positions 
were sampled within a window of X = 17° and Y = 17° visual angle. Camera-based 
eye-tracking data were acquired and served as training and testing labels for our 
model (see below).

fMRI data acquisition and preprocessing Imaging data were acquired on 
a Siemens 3T MAGNETOM Prisma MRI scanner located at the Center for 
Functional Imaging in Philadelphia, Pennsylvania, USA. The following EPI 
parameters were used: voxel size = 2 mm isotropic, TR = 1,000 ms, TE = 25 ms, flip 
angle = 45° and multiband factor = 4. Images were corrected for head motion using 
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SPM12 and co-registered to our template space as described below. Note that the 
original dataset includes nine more participants whose eyeballs were cut off on the 
functional images and were excluded here.

Eye tracking Gaze position was monitored at 30 Hz using the camera-based eye 
tracker LiveTrack AV by Cambridge Research Systems. We median centered the 
time series and removed tracking noise by limiting the time series to values within 
the central 40 × 40 visual degree. We then split the data into individual scanning 
acquisitions to obtain the final gaze labels for model training and testing.

Dataset 6: fixation, smooth pursuit, free viewing and eyes-closed eye movements. 
Data and task Four male participants performed four viewing tasks while imaging 
data were acquired in the course of nine scanning runs using nine EPI protocols 
(one per run) along with concurrent camera-based eye tracking. First, they 
fixated sequentially at 37 locations on the screen for 2 s each starting in the screen 
center. The locations were determined using a custom random-walk algorithm 
that balanced the sampling of 12 directions (30° steps) and distances between 
the fixation points (4°, 8° or 12° visual angle). Next, they performed a smooth 
pursuit version of this random-walk task for which we linearly interpolated the 
trajectory between fixation points. This resulted in a target moving sequentially 
into 12 directions at a speed of 2° per s, 4° per s or 6° per s, changing to a randomly 
selected direction and speed every 2 s. Next, participants freely explored 30 
sequentially presented images of everyday objects for 3 s each. The images were 
randomly drawn from the THINGS database18. Finally, participants closed their 
eyes and moved them either from left to right or from top to bottom for a total 
of 105 s. Switches between horizontal and vertical movements were indicated via 
button press.

fMRI data acquisition and preprocessing Imaging data were acquired using 
nine EPI sequences on a Siemens 3T MAGNETOM Skyra located at St. Olavs 
Hospital in Trondheim, Norway. The sequences featured three repetition times 
and three voxel sizes in a 3 × 3 design. All images were corrected for head motion 
using SPM12 and co-registered to our template space as described below. See 
Supplementary Table 2 for parameter details. Data acquisition was approved by the 
regional committees for medical and health research ethics (REK sør-øst), Norway, 
and participants gave written informed consent before scanning.

Eye tracking Gaze position was monitored during the experiment at 1,000 Hz 
using an Eyelink 1000 eye tracker. Tracking noise was reduced by excluding 
samples at which the pupil size diverged more than two standard deviations from 
the mean. Blinks were removed. The time series was downsampled to 60 Hz and 
median centered based on the median gaze position of the free viewing condition 
within each scanning run. We then split the time series into individual scanning 
acquisitions to obtain the final training and testing gaze labels for our model.

Eye masks, co-registration and normalization. Eye masks were created by 
manually segmenting the eyeballs including the adjacent optic nerve, fatty tissue 
and muscle area in the Colin27 structural MNI template using itkSNAP (http://
www.itksnap.org; Fig. 1a). We then created a group average functional template 
by averaging the co-registered functional images of 29 participants. These were 
acquired while the participants fixated at the screen center for around 13 min 
each in the course of a longer scanning session14. To ensure that the final eye 
masks contain the eyeballs of every participant, all imaging data underwent three 
co-registration steps conducted using Advanced Normalization Tools (ANTs) 
within Python (ANTsPy). First, we co-registered each participant’s mean EPI 
non-linearly to our group-level average template. Second, we co-registered all 
voxels within a bounding box that included the eyes to a preselected bounding 
box in our group template to further improve the fit. Third, we co-registered the 
eyeballs to the ones of the template specifically. Importantly, all data in our group 
average template reflected gaze coordinates (0, 0), which is the screen center. This 
third eyeball co-registration hence centered the average gaze position of each 
participant on the screen. We did this to improve the fit but also because it aligned 
the orientation of the eyeballs relative to the screen across participants. Finally, 
each voxel underwent two normalization steps. First, we subtracted the across-run 
median signal intensity from each voxel and sample and divided it by the median 
absolute deviation over time (temporal normalization). Second, for each sample, 
we subtracted the mean across all voxels within the eye masks and divided by the 
standard deviation across voxels (spatial normalization). The fully co-registered 
and normalized voxels inside the eye masks served as model input.

Note that the average gaze centering procedure is fully optional. Without 
it, however, two participants fixating the same screen location may gaze into 
different directions depending on the mirror placement inside the MRI. Our 
model assumption overcomes this problem, is valid for all datasets tested here 
(Supplementary Fig. 1) and will likely be valid in many other datasets as well. 
However, users may choose not to use it, or they could estimate potential offsets 
to the screen center in their own training data and factor it in after obtaining the 
decoded gaze coordinates. DeepMReye can thus also be used for datasets in which 
the average gaze position does not reflect the screen center.

Model architecture. DeepMReye is a CNN that uses 3D data to classify a 2D 
output, the horizontal (X) and vertical (Y) gaze coordinates on the screen. The 
model uses the voxel intensities from the eye masks as input and passes it through 

a series of 3D convolutional layers interleaved with group normalization and 
non-linear activation functions (mish37). In detail, the eye mask (input layer) is 
connected to a 3D convolutional block with a kernel size of 3 and strides of 1, 
followed by dropout and a 3D convolutional downsampling block, which consists 
of one 3D convolution followed by a 2 × 2 × 2 average pooling layer. After this layer, 
we use a total of six residuals blocks, in which the residual connection consists 
of one 3D convolutional block concatenated via simple addition. Each residual 
block consists of group normalization, non-linear activation and a 3D convolution, 
which is applied twice before being added to the residual connection. This results 
in a bottleneck layer consisting of 7,680 units, which we resample to achieve 
sub-TR resolution (see details below). The time resolution dictates the number of 
resampled bottleneck layers, with, for example, ten resampled layers producing a 
10 times higher virtual resolution than the original TR.

The bottleneck layer carries an abstracted low-dimensional latent 
representation of the input, which is used to train two fully connected layers for 
decoding. The first dense layer learns to decode gaze position by minimizing the 
EE between the predicted gaze position and the ground truth gaze position as a 
loss function. The second dense layer in turn predicts the EE used to train the 
first dense layer. This allowed us to obtain an unsupervised EE for each decoded 
gaze sample even when test labels were missing. We refer to this predicted, 
unsupervised EE as the PE. It indicates how certain the model is about its own gaze 
decoding output and is strongly correlated with the real EE in our test data (Fig. 2b 
and Extended Data Fig. 1). The second dense layer basically learns how the input 
normally looks when the error is low versus when it is high (for example, when 
the data are not well aligned or the eyeballs are missing; Supplementary Fig. 3). If 
the unsupervised error is high, the model itself anticipates that the decoded gaze 
position likely diverges much from the real gaze position. Accordingly, samples 
with high PE should not be trusted. DeepMReye is trained using a combination 
of the two losses, the EE (90% weighting) and the PE loss (10% weighting) as 
described in detail below.

Model optimization and training. Hyperparameters were optimized using 
random search, which we monitored using the ‘Weights & Biases’ model tracking 
tool38. The following parameters were optimized: the learning rate (0.001–0.00001), 
the number of residual blocks (depth, 3–6), the size of the filters (16–64), the filter  
multiplier per layer (1–2; for example, 32, 64, 128 uses a multiplier of 2), the  
activation function (relu, elu, mish), the number of groups in the group normaliza-
tion (4, 8, 16), the number of fully connected layers (1, 2), the number of units in 
each fully connected layer (128–1,024) and the dropout rate (0–0.5). In addition, 
to further improve the generalizability of our model, we added the following data 
augmentations to the model training: input scaling, translations (X, Y, Z) and 
rotations (azimuth, pitch and roll), which were applied on each sample.

The model was trained using a variant of stochastic gradient descent (Adam) as 
a learning algorithm39 and a batch size of 8 to train the model. Because considering 
samples from different participants improved model performance in an earlier 
version of our pipeline, we mixed samples in each training batch to represent 
3D inputs from different participants. For estimating the loss between real and 
predicted gaze position, we used the EE

LED =

√

√

√

√

M
∑

i=1
(ŷi − yi)2 (1)

with yi as the real gaze position and ŷi as the predicted gaze position. For 
calculating the PE, which reflects an unsupervised estimate of the EE, we used the 
mean squared error between real and predicted EE, which itself has been computed 
using the real and predicted gaze path as described above. The PE was computed as

LMSE =
1
M

M
∑

i=1

(

ŷi − yi
)2 (2)

with yi being the EE between real and predicted gaze path (LED) and ŷi being the 
predicted EE for this sample. The full loss for optimizing the model weights was 
computed as

L = 0.1 × LMSE + LED (3)

Note that because both dense layers make use of the same information in the 
bottleneck layer, and because only one functional image is evaluated at a time, 
our model does not use or require any temporal information, autocorrelation or 
variance across images or movements to be trained on.

Decoding schemes. We implemented three decoding schemes differing in how the 
data were split into training and test sets. These decoding schemes are described in 
the following.

Within-participant decoding Here, we split the data of each participant into 
two equally sized partitions (50%/50% split). The model was trained on one-half 
of the data of all participants and then tested on the other half of the data of all 
participants. This cross-validation procedure allowed the model to learn about 
the intricacies and details of each participant’s MR signal and behaviors while still 
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having to generalize across participants and to new data of the same participants 
(Extended Data Fig. 3).

Across-participant decoding To test whether the model generalizes to 
held-out and hence fully independent participants, we further implemented an 
across-participant decoding scheme. This scheme represents our default pipeline 
and was used to obtain the main results in Fig. 2. Each dataset was split into five 
equally sized partitions containing different participants. We then trained the 
model on four of these data partitions and then decoded from the fifth (80%/20% 
split). This procedure was cross-validated until all data partitions and hence all 
participants were tested once. The across-participant decoding scheme requires the 
model to generalize to eyeballs and behavioral priors that it has not encountered 
during training. The fMRI and eye-tracking data, however, have been acquired on 
the same scanner and with the same scanning protocol.

Across-dataset decoding Finally, we tested whether DeepMReye generalizes 
across datasets that have been acquired in independent participants performing 
different viewing tasks scanned on different scanners and with different scanning 
protocols. We trained the model in a leave-one-dataset-out fashion using all 
datasets, meaning that the model was trained on all datasets except one and then 
tested on the one that was held out. This procedure was cross-validated until all 
datasets and hence all participants were tested once. Note that the voxel sizes and 
repetition times used for the acquisition of the key datasets 1–5 were similar but 
that the model still had to generalize across different participants, MRI scanners 
and other scan parameters (for example, slice orientation). Interestingly, despite 
higher EE and lower R2 scores than within-dataset decoding (Extended Data Fig. 3),  
the across-dataset decoding scheme led to relatively high Pearson correlations. This 
indicates that the main reason for the lower performance scores is the scaling of 
the decoding output relative to the test labels, likely because the data range of the 
training and testing labels differed. Importantly, this also suggests that the presence 
of putative eye movements, but not their correct amplitude, could still be detected 
accurately, which is most important for many fMRI analyses or nuisance models. 
Further note that the model performance of the across-dataset procedure would 
likely further improve if even more diverse viewing behaviors and fMRI data were 
used for model training (Extended Data Fig. 3).

Model quantification. To quantify model performance, we used the EE as 
described above for model training and evaluation. In addition, we computed the 
Pearson correlation and the R2 score as implemented in scikit-learn40 between real 
and decoded gaze path for model inference. The R2 score expresses the fraction of 
variance that our gaze decoding accounted for in the ground truth gaze path.

R2
= 1 −

∑M
i=1(yi − ŷi)

∑M
i=1(yi − ȳ)

(4)

Here, yi is the ground truth of sample i, ŷi is the predicted value and ȳ is the mean 
value. Unlike the Pearson correlation, or the squared Pearson correlation, the R2 
score used here is affected by the scaling of the data and can be arbitrarily negative. 
Model performance scores were calculated for vertical and horizontal coordinates 
and then averaged to obtain the final scores. Moreover, we computed the error as a 
FoS as the EE divided by the stimulus diagonal (that is, 

√

Xrange2 + Yrange2).
Importantly, if a participant did not fixate at the cued locations or if there was 

noise in the ground truth eye-tracking data, that participant would likely show 
high error estimates even if our decoding worked perfectly. All model performance 
scores are therefore a function of the accuracy of our model as well as the accuracy 
of the test labels. The error estimates of the across-participant decoding scheme 
could therefore be used to monitor task compliance in the absence of camera-based 
eye tracking.

Shuffling-based voxel-wise salience score. To test which voxels were most 
informative for our model for gaze decoding, we iteratively shuffled the time 
courses of the eye mask voxels and quantified how much this shuffling affected 
the EE of our across-participant decoding model. This influence is captured in the 
salience score of a voxel, which reflects the average increase in the EE caused by 
shuffling the time course of the respective voxel. To reduce computational costs, 
we did not shuffle individual voxels but entire slices, which were selected randomly 
for each iteration from one of the three dimensions (XYZ). We repeated this for 
each sample across all participants five times with an average of 10,640 shuffles 
per participant. Each voxel was included in multiple shuffles, and we averaged the 
resulting scores across iterations to obtain one final saliency score per voxel, which 
we then visualized for inspection (Supplementary Fig. 2).

Decoding from the eyeballs and early visual cortex with time-shifted data. To 
investigate if the decoding is instantaneous or further improves when temporal 
delays are being considered, we shifted the functional image time series relative to 
the gaze labels. We again used the free-viewing dataset15, because it featured the 
most complex and natural viewing behaviors in our sample. For each image shift 
(0–10 TRs), we retrained the full model and tested it on held-out participants using 
the across-participant decoding scheme.

To further assess whether DeepMReye can also be used to decode from brain 
activity directly, we used the same temporal shifting procedure while decoding 

from area V1. The regions-of-interest mask was obtained by thresholding the 
Juelich atlas mask ‘Visual_hOc1.nii’ at 60% probability and reslicing it to the 
resolution of our template space (Supplementary Fig. 5). As the model is agnostic 
to the dimensions of the input data, decoding from region of interests other than 
the eyeballs required no change in model architecture.

Effect of training set size. To evaluate how the number of participants in the 
training set influences decoding performance, we retrained the model using 
different subsets of participants across model iterations (1–21 participants). For 
each iteration, we tested the model on the same six participants, which were 
not part of the training set. To ensure that the results were robust and did not 
depend on individual details of single participants used for model training, we 
repeated this procedure five times for each training set size and then averaged the 
results. To do so, we randomly assigned participants to the training set in each 
cross-validation loop while keeping the test set fixed. Moreover, to avoid overfitting 
to these small training sets, we reduced the number of training epochs using 
e = 2 + N, with N being the number of participants in the current training run and e 
the number of epochs. Each epoch reflects a total of 12,000 samples (1,500 gradient 
steps × 8 samples) that were passed through the network during training. We kept 
the number of gradient steps in each epoch constant (n = 1,500).

In addition to testing how the number of participants in the training set 
influenced model performance, we further quantified how much the amount of 
data acquired for each one of the participants influenced model performance. To 
do so, we again subsampled the training data like before but this time subsampled 
the data within each participant in addition to the number of participants in the 
training set (n = 8 and n = 20). We trained the model using different proportions 
of the data of each participant (1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100% of 
the available data), which approximately corresponded to 0.3, 2, 4, 7, 11, 14, 18, 
21, 25, 28, 32 and 35 average minutes of scanning time. The smallest training 
set we tested comprised only around 134 s worth of data (21 s per participant × 8 
participants × 4/5 cross-validation splits). We again quantified model performance 
as the Pearson correlation and the R2 score between the real and the predicted gaze 
path of each held-out participant in the test set (Extended Data Fig. 7).

Eyes-closed eye tracking. As a proof of concept, we tested whether DeepMReye 
is capable of decoding gaze position or rather the state of the eyeballs while the 
eyes are closed. We trained the model on the camera-based eye tracking labels 
of the four participants in dataset 6. We included the data acquired with all nine 
scanning protocols and with all viewing behaviors tested (fixation, smooth pursuit 
and picture viewing). We then evaluated the model on one participant, who was 
instructed to close their eyes and move them alternatingly from left to right or 
up and down. The participant indicated the direction of movement by pressing 
a button, which was used to color the coordinates in Fig. 3b. The participant 
performed this task nine times for 1 min each. To reduce overfitting to the viewing 
behaviors in the training set, we here used a higher dropout rate in the fully 
connected layers (drop ratio = 0.5) than in our default model (drop ratio = 0.1).

Decoding at subimaging temporal resolution. Because different imaging slices 
are being acquired at different times, and because the MR signal of a voxel could 
be affected by eye motion within each TR, we tested whether our model is capable 
of decoding gaze position at subimaging temporal resolution. Across different 
model iterations, we retrained and retested the model using different numbers 
of gaze labels per TR (n = 1–10 labels), each time testing how much variance the 
decoded gaze path explained in the true gaze path. Decoding different numbers of 
gaze labels per TR was achieved by replicating the bottleneck layer n times, each 
one decoding gaze position for their respective time points using a fully connected 
layer. Importantly, the weights between these layers were not shared, which  
allowed each layer to use a different node in the bottleneck layer. Each layer  
could therefore capture unique information at its corresponding within-TR time 
point to decode its respective gaze label. To keep the overall explainable variance 
in the test set gaze path constant, we always upsampled the decoded gaze path to a 
resolution of ten labels per TR using linear interpolation before computing the R2 
score for each model iteration. Potential differences in model performance across 
iterations can therefore not be explained by differences in explainable variance. 
These final test R2 scores were range normalized within each participant for 
visualization (Fig. 2f).

The subimaging labels were not specifically matched to the slice timing of the 
imaging sequence. However, because all imaging sequences featured simultaneous 
multislice/multiband acquisition, the eyes were included at every slice time in at 
least one slice. Future studies will need to estimate the subimaging resolution for 
sequential single-slice acquisitions, but because these often sample slices in an 
interleaved fashion, the eyes will still be featured at various time points throughout 
the TR. Intriguingly, exploring the influence of slice timing and other sequence 
parameters on the subimaging resolution may lead to sequences that further 
improve the accuracy and the temporal resolution of the subimaging decoding 
beyond the results presented here (Fig. 2f and Extended Data Fig. 8).

Eyes-closed versus eyes-open classification. We tested if our model could decode 
whether the eyes were open or closed during the acquisition of a functional 
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volume. To do so, we used the camera-based eye-tracking data acquired for the 
smooth pursuit dataset 4 (ref. 14) to compute the proportion of time spent with 
the eyes closed for each volume of each participant. We trained and tested our 
model on these labels using our across-participant decoding scheme again with 
a 80%/20% train/test cross-validation split. This procedure was iterated until 
all participants were included in the test set once. One value per volume was 
decoded. As the only loss function, we used the mean squared error between 
the real and predicted proportion of time spent with eyes closed. We obtained a 
continuous decoding time course for each participant in the test set by decoding 
the proportion of time spent with eyes closed from each volume. To quantify 
classification performance of the model, we thresholded this time series, for 
example, at the 10% level to obtain categorical labels (eyes open versus eyes 
closed). These binary labels reflected whether the eyes were open for the full time 
of volume acquisition or whether they were closed for more than, for example, 
10% of the time. We then used these labels to calculate accuracy and balanced 
accuracy (that is, (true positive rate + true negative rate)/2) as well as to visualize 
receiver operating characteristic (ROC) curves (Extended Data Fig. 9). The results 
of all thresholds in steps of 10% are reported in the following (threshold–balanced 
accuracy): 0%–81.9%, 10%–84.6%, 20%–84.3%, 30%–81.8%, 40%–79.3%,  
50%–78.7%, 60%–77.7%, 70%–77.8%, 80%–77.1%, 90%–74.7%.

Functional imaging analyses. We tested whether the decoding output of 
DeepMReye is suitable for the analysis of functional imaging data by regressing it 
against brain activity using a mass-univariate GLM. This analysis was expected to 
uncover brain activity related to eye movements in visual, motion and oculomotor 
regions. To demonstrate that our approach is applicable even for natural and complex 
viewing behavior, we conducted these analyses on the visual search dataset15.

First, we decoded the median gaze position at each imaging volume using all 
cross-validation schemes described above. We then obtained an approximate measure 
of eye movement amplitude by computing the vector between gaze positions of 
subsequent volumes. Based on the vector length, or the amplitude of decoded putative 
eye movements, we built two regressors of interest, one for far eye movements (>66th 
percentile of movement amplitudes) and one for short eye movements (<33rd 
percentile of amplitudes). The midsection was excluded to separate the modeled 
events in time. The two resulting regressors per scanning run were binarized and 
convolved with the hemodynamic response function implemented in SPM12 using 
default settings. Head motion parameters obtained during preprocessing were added 
as nuisance regressors. Contrasting the resulting model weight between far and short 
eye movements yielded one t-statistics map per participant.

To test which brain areas signaled the difference between far and short eye 
movements, we normalized the t-map of each participant to MNI space and 
smoothed it with an isotropic Gaussian kernel of 6 mm (full-width half-maximum). 
The smoothed statistical maps were then used to compute an F-statistic on  
group level using SPM12. Moreover, to compare the results obtained with 
DeepMReye to the ones of conventional eye tracking, we repeated the imaging 
analysis described above using gaze positions obtained with a conventional 
camera-based eye tracker. The final F-statistics maps were warped onto the 
fsaverage Freesurfer template surface for visualization using Freesurfer (https://
surfer.nmr.mgh.harvard.edu/).

Statistics and reproducibility. Datasets 1–5 were used in previous reports and 
are described in detail in the original publications11–15 as well as in dedicated 
Methods sections. No statistical methods were used to predetermine the sample 
size of dataset 6, but no significance testing was performed. All datasets met 
the assumptions, and individual data distributions are shown in all figures. No 
randomization or blinding was used, and data exclusion criteria are described in 
the respective Methods sections of each dataset (for example, participants were 
excluded if the eyes were not scanned and were missing on the functional images).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
We analyzed data of multiple previous reports, which can be requested from  
the respective authors. Dataset 1 is part of a larger data-sharing initiative  

and can be downloaded at http://fcon_1000.projects.nitrc.org. We further  
share online on Open Science Framework (https://doi.org/10.17605/OSF.IO/
MRHK9) exemplary data to illustrate our pipeline (also see ‘Code availability’ 
statement) as well as the source data for Figs. 1–4 and Extended Data Figs. 1–10. 
Moreover, we share pretrained model weights estimated on the datasets used in the 
present work. These model weights allow for decoding of viewing behavior without 
retraining the model in certain scenarios (see online documentation for more 
details at https://github.com/DeepMReye). Source data are provided with  
this paper.

Code availability
The DeepMReye model code can be found on GitHub (https://github.com/
DeepMReye), along with user documentation and a frequently asked questions 
page. Moreover, we share Colab notebooks that illustrate the use of DeepMReye 
using exemplary data. Finally, we share exemplary eye-tracking calibration scripts 
that can be easily adapted to acquire training data for DeepMReye.
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Technical RepoRT NaTuRE NEuRosCIENCE

Extended Data Fig. 1 | Predicted error (Pe) correlates with the euclidean error between real and predicted gaze positions. This allows to filter the test 
set post-decoding based on estimated reliability. A) results plotted for models trained and tested using the fixation target coordinates. B) results plotted 
for models trained and tested using labels acquired using camera-based eye tracking. A, B) We plot single-participant data (dots) with regression line 
as well group-level Whisker-box-plots (central line: median, box: 25th and 75th percentile, whisker: all data points not considered outliers, outliers: data 
points outside 1.5x interquartile range). Participants were split into 80% most reliable (Low PE, blue) and 20% least reliable participants (high PE, orange). 
All scores expressed in visual degrees.
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Extended Data Fig. 2 | Quantifying gaze decoding in high predicted error and out-of-sample participants. A) Gaze decoding group results expressed 
as the coefficient-of-determination (R2). Top panel shows gaze decoding expressed as the R2-score implemented in scikit-learn40 between the true and 
decoded gaze trajectory for the five key datasets featuring fixations, 3x smooth pursuit and visual search. Note that R2 can range from negative infinity to 
one. Participants are color coded according to predicted error (PE). We plot Whisker-box-plots for Low-PE participants (central line: median, box: 25th 
and 75th percentile, whisker: all data points not considered outliers, outliers: data points outside 1.5x interquartile range) and single-participant data for 
all (dots). (B) Group-average spread of decoded positions around true positions collapsed over time in visual degrees for participants with high predicted 
error (orange dots in A).
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Extended Data Fig. 3 | Model evaluation across different decoding schemes. A) Within-participant gaze decoding obtained by training and testing 
the model on different data partitions of all participants within a dataset. B) Across-dataset gaze decoding obtained using leave-one-data-set-out 
cross-validation. We plot the R2-score as implemented in scikit-learn40 between true and decoded gaze trajectory for the five key datasets featuring 
fixations, 3x smooth pursuit and visual search. Note that R2 can range from negative infinity to one. The results of datasets 1-3 were obtained using the 
fixation target labels, the ones of datasets 4-5 were obtained using camera-based eye tracking labels. Participants are color coded according to predicted 
error (PE). A, B) We plot Whisker-box-plots for Low-PE participants (central line: median, box: 25th and 75th percentile, whisker: all data points not 
considered outliers, outliers: data points outside 1.5x interquartile range) and single-participant data for all (dots).
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Extended Data Fig. 4 | Model performance evaluated before and after exclusion of volumes with unreliable decoding. Here, before computing model 
performance we filtered out either the 0%, 20% or 50% least reliable volumes (that is those with the highest predicted error (PE)). Model performance 
is expressed as the coefficient-of-determination R2-score implemented in scikit-learn40 between true and decoded gaze trajectory for the five key datasets 
featuring fixations, 3x smooth pursuit and visual search. Note that R2 can range from negative infinity to one. We plot single-participant data (dots) as well 
as the mean ± standard error of the mean (line plots). Participant dots were additionally color coded according to the participants’ PE.
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Extended Data Fig. 5 | Gaze decoding evaluated using camera-based eye tracking for smooth pursuit datasets 3-4. Model performance expressed as 
the Pearson correlation between true and decoded gaze trajectory for the datasets with camera-based eye tracking. Because the visual search dataset 5 
used labels obtained using camera-based eye tracking as well, we additionally plot the results obtained for this dataset again for the sake of completeness. 
Participants are color coded according to predicted error (PE). We plot Whisker-box-plots for Low-PE participants (central line: median, box: 25th and 75th 
percentile, whisker: all data points not considered outliers, outliers: data points outside 1.5x interquartile range) and single-participant data for all (dots).
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Extended Data Fig. 6 | Normalized test error as a function of how many participants were used for model training plotted for three different viewing 
behaviors. We plot single participant data (dots) as well as the across-participant average model performance (black lines). Error bars depict the standard 
error of the mean. right panel shows the average across datasets.
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Extended Data Fig. 7 | across-participant decoding performance as a function of how much single-participant data was considered for model training 
as well as of the number of participants in the training data (n=8 and n=20). We plot the group-level mean (line plots) ± standard error of the mean 
(error bars) of the model performance expressed as the Pearson correlation and the r-squared score between real and predicted gaze path in the test set. 
For free viewing, model performance saturates at as little as 5-10 Minutes of training data. Note that these results likely depend on the viewing behavior 
and on how similar the behavior is across data partitions and participants.
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Extended Data Fig. 8 | sub-imaging decoding resolution. A) Group results when all 10 sub-Tr samples are considered for computing the Pearson 
correlation between true and decoded gaze trajectories. Participants are color coded according to predicted error (PE). We plot Whisker-box-plots for 
Low-PE participants (central line: median, box: 25th and 75th percentile, whisker: all data points not considered outliers, outliers: data points outside 1.5x 
interquartile range) and single-participant data for all (dots). B) Similar standard deviation of real and decoded gaze labels within each functional volume 
(Tr), that is if the 10 real gaze labels of a Tr had a high standard deviation (indicating larger eye movements within this Tr) then the 10 decoded gaze 
labels showed a high standard deviation as well. We plot the Pearson correlation between the within-Tr standard deviation computed using the full time 
course of each participant as Whisker-box-plots (central line: median, box: 25th and 75th percentile, whisker: all data points not considered outliers, 
outliers: data points outside 1.5x interquartile range) and single-participant data as dots. C, D) Single-participant examples of gaze decoding at a virtual 
sub-imaging resolution of 10 samples per volume. We plot three example participants with low predicted error (C) and three example participants with 
high predicted error (D) for the fixation, smooth pursuit and free-viewing datasets11,14,15. Functional-volume onsets plotted as grey vertical lines.
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Extended Data Fig. 9 | eyes-open vs. eyes-closed across-participant decoding in smooth pursuit dataset 3. A) Single-participant example of decoding 
the proportion of time spent eyes-closed. Note that model accuracy and hit rates were computed on binarized decoding labels, but that the model output 
is the actual proportion of time spent eyes-closed as shown on in this panel. B) Group-level accuracy for decoding whether the eyes were open or closed 
for more than 10% of the time it took to acquire the respective functional volume (left panel). We plot whisker-box-plots (central line: median, box: 25th 
and 75th percentile, whisker: all data points not considered outliers, outliers: data points outside 1.5x interquartile range) and single-participant data 
(dots). We calculated balanced accuracy to rule out that the results reflect the model always classifying the most common label. In addition, we plot a 
receiver operating characteristic (rOC) curve of the group-level data (right panel).
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Extended Data Fig. 10 | General-linear-model (GLM) group results for the contrast ‘Far vs. short eye movements’ during visual search without 
accounting for the hemodynamic response function. We plot the F-statistic of this contrast superimposed on a template surface (fsaverage) for 
gaze-labels obtained with camera-based eye tracking (first panel) as well as for three DeepMreye cross-validation schemes. Within-participants: All 
participants of a dataset were included with different partitions in model training and test. Across-participants: Different participants were included during 
model training and test. Across-datasets: Different datasets (and hence also different participants) were included during model training and test.

NatuRe NeuRosCieNCe | www.nature.com/natureneuroscience

http://www.nature.com/natureneuroscience


1

nature portfolio  |  reporting sum
m

ary
M

arch 2021

Corresponding author(s): Markus Frey, Matthias Nau

Last updated by author(s): Sep 1, 2021

Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Matlab (2019b), Psychtoolbox (3.0)

Data analysis Matlab (2019b), Python (3.7), tensorflow-gpu (2.2.0), numpy (1.19.1), pandas (1.0.5), matplotlib (3.2.2), scipy (1.5.0), ipython(7.13.0), plotly 
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We analyzed data of multiple previous reports, which are available from the respective authors upon request. Dataset 1 is part of a larger data-sharing initiative and 
can be downloaded here: http://fcon_1000.projects.nitrc.org. We share online exemplary data to illustrate our pipeline (also see "Code availability" statement), as 
well as pre-trained model weights estimated on the datasets used in the present work. These model weights allow decoding viewing behavior without re-training 
the model in certain scenarios (see online documentation for more details: https://github.com/DeepMReye)
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size We tested 6 independent datasets in this study:  
Fixation dataset: 170 Participants  
Pursuit 1: dataset 24 Participants  
Pursuit 2 dataset: 34 Participants  
Pursuit 3 dataset: 9 Participants  
Free viewing dataset: 27 participants  
Dataset 6: 4 Participants 
 
The number of datasets was chosen to include the following viewing behaviors (free viewing, fixation, smooth pursuit, eyes-closed) 

Data exclusions Free viewing dataset: We excluded 9 participants because the functional images did not or only partially include the eyeballs  
Smooth pursuit dataset 3: 5 participants where excluded as no eye tracking data has been obtained during the experiment  
Fixation dataset: This dataset was limited to participants with no visible motion artifcats in either the T1- or the average T2 weighted images  
and the eyeballs were fully included in the functional images

Replication All effects were replicated in 6 independent datasets

Randomization We cross validated all experiments, with the data split into 5 distinct groups each containing 1/5th of all subjects. This procedure was iterated  
until each split was used as test set once. 

Blinding For dataset 1-5 see blinding information in original manuscripts. For dataset 6 no blinding was used as all four participants performed all tasks.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Human research participants
Policy information about studies involving human research participants

Population characteristics Datasets 1-5 were part of previous reports and are described in dedicated sections (see "Methods") and in detail in the 
original publications (Alexander et al. 2017, Nau et al. 2018, Nau et al. 2018, Polti et al. 2021, Julian et al. 2018). The sixth 
dataset included four male participants (Age 25-32). 

Recruitment Datasets 1-5 were part of previous reports and recruitment details can be found in the original publications. Dataset 6 was 
recruited through local recruitment at the University. 

Ethics oversight Data acquisition was approved by the regional committees for medical and health research ethics (REK sør-øst), Norway, and 
participants gave written informed consent prior to scanning. Ethics oversight for Datasets 1-5 can be found in the original 
publications

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Magnetic resonance imaging

Experimental design

Design type Event-related

Design specifications Different experimental designs for each dataset, but DeepMReye considers each functional volume as separate input.  
The following number of volumes were used per participant.  
Dataset 1: 270  
Dataset 2: 3961  
Dataset 3: 3568  
Dataset 4: 2778  
Dataset 5: 2128  
Dataset 6: 287, 200 or 144 depending on the fMRI sequence used

Behavioral performance measures Four datasets recorded additional eye tracking data 

Acquisition

Imaging type(s) functional

Field strength 3T

Sequence & imaging parameters The data were acquired using 14 scan protocols described in detail in the methods and the original publications cited in  
the manuscript.

Area of acquisition We used region-of-interest masks for the eyeballs (manual segmentation) and the early visual cortex (Juelich Atlas) 

Diffusion MRI Used Not used

Preprocessing

Preprocessing software Matlab, SPM12, ANTs 

Normalization All data were normalized to MNI-template and a group average template using SPM12 and ANTs 

Normalization template MNI-template and group-average template 

Noise and artifact removal Images were corrected for head motion and field distortions using SPM12

Volume censoring No volume censoring was performed 

Statistical modeling & inference

Model type and settings DeepMReye is a convolutional neural network that uses three-dimensional data to classify a two-dimensional output; the  
horizontal (X) and vertical (Y) gaze coordinates on the screen. The model uses the voxel intensities from the eye masks as  
input and passes it through a series of 3D-convolutional layers interleaved with group normalization and non-linear activation  
functions (mish). In detail, the eye mask (input layer) is connected to a 3D convolutional block with a kernel size of 3 and  
strides of 1, followed by dropout and a 3D convolutional downsampling block which consists of one 3D-convolution followed  
by a 2x2x2 average pooling layer. After this layer, we use a total of six residuals blocks, in which the residual connection  
consists of one 3D convolutional block, concatenated via simple addition. Each residual block consists of group normalization,  
non-linear activation, and a 3D convolution, which is applied twice before being added to the residual connection. This  
results in a bottleneck layer consisting of 7680 units, which we resample to achieve sub-TR resolution.

Effect(s) tested The first dense layer learns to decode gaze position by minimizing the Euclidean error between the predicted gaze position  
and the ground truth gaze position as a loss function. The second dense layer in turn predicts the Euclidean error used to  
train the first dense layer. 

Specify type of analysis: Whole brain ROI-based Both

Anatomical location(s)

The V1 mask was obtained by thresholding the Juelich-atlas mask at 60 percent probability. Eye masks  
were created by manually segmenting the eyeballs including the adjacent optic nerve, fatty tissue and  
muscle area in the Colin27 structural MNI template using itkSNAP 
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Statistic type for inference
(See Eklund et al. 2016)

voxel-wise

Correction FWE

Models & analysis

n/a Involved in the study
Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis

Multivariate modeling and predictive analysis To quantify model performance, we used the Euclidean error for model training and evaluation. In addition,  
we computed the Pearson correlation and the R2-score as implemented in scikit-learn between real and  
decoded gaze path for model inference. The R2-score expresses the fraction-of-variance that our gaze  
decoding accounted for in the ground truth gaze path.
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