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Searching for gravitational waves from compact binary coalescence (CBC) is performed by matched
filtering the observed strain data from gravitational-wave observatories against a discrete set of waveform
templates designed to accurately approximate the expected gravitational-wave signal, and are chosen to
efficiently cover a target search region. The computational cost of matched filtering scales with both the
number of templates required to cover a parameter space and the in-band duration of the waveform. Both of
these factors increase in difficulty as the current observatories improve in sensitivity, especially at low
frequencies, and may pose challenges for third-generation observatories. Reducing the cost of matched
filtering would make searches of future detector’s data more tractable. In addition, it would be easier to
conduct searches that incorporate the effects of eccentricity, precession or target light sources (e.g.,
subsolar). We present a hierarchical scheme based on a reduced basis method to decrease the computational
cost of conducting a matched-filter based search. Compared to the current methods, we estimate without
any loss in sensitivity, a speedup by a factor of ∼10 for sources with signal-to-noise ratio (SNR) of at
least ¼ 6.0, and a factor of ∼6 for SNR of at least 5. Our method is dominated by linear operations which
are highly parallelizable. Therefore, we implement our algorithm using graphical processing units (GPUs)
and evaluate commercially motivated metrics to demonstrate the efficiency of GPUs in CBC searches. Our
scheme can be extended to generic CBC searches and allows for efficient matched filtering using GPUs.
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I. INTRODUCTION

The first gravitational-wave (GW) detection in 2015
marked the dawn of GW astronomy [1]. The first two
observation runs of LIGO [2] and VIRGO [3] detectors (O1
and O2) reported over a dozen confident detections [4,5].
The number of detections has rapidly increased to over 50
with the most recent O3 observing run [6,7]. To date, all
gravitational-wave observations have come from compact
binary coalescences (CBC); the vast majority of sources
were from binary black holes (BBH) [6,7], but notably two
binary neutron star (NS) mergers [8,9], and recently two
neutron star—black hole NSBH mergers [10] have been
observed. These observations have helped us to understand
the physics of compact objects [11,12] and their dynamical
evolution [11]. As the gravitational-wave observatories
become more sensitive, the increased number of CBC
sources will allow us to determine merger rate [13] and
population distribution [14]. Upcoming third-generation

observatories such as the Einstein telescope [15], cosmic
explorer [16], and LISA [17] are expected to detect new
kinds of astrophysical sources [15,18–20].
Matched filtering is the most widely used technique to

detect CBC signals [5,21–23]. The method is optimal for
stationary Gaussian noise [24]. While the detector data
contains non-Gaussian noise transients [25,26], which
require the use of vetoing techniques [27,28], matched
filtering remains the dominant computational cost of a
search algorithm [29]. In this work, we focus only on the
implementation of matched filtering. Matched filtering
requires accurate models of the expected gravitational
waveform; CBCs can be modeled using different tech-
niques [30–32]. The parameters of a binary merger are
categorized into intrinsic (e.g., masses and spins) and
extrinsic (e.g., binary orientation and location). To search
for sources with unknown intrinsic parameters, we must
select a discrete bank of templates which span the param-
eter space. These templates are chosen such that the
minimum match (MM) between the data and at least
one template from the bank is sufficiently large [33,34].
For example, a minimum match value of ∼0.97 would
imply that at least 97% of the signal-to-noise ratio (SNR) of
any signal with parameters within the search area could be
recovered. To identify a potential signal, gravitational-wave
strain data is convolved with every template in a bank to
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calculate a signal-to-noise time series. Extrinsic parameters
are often analytically maximized over. A possible candidate
is identified if the SNR rises above a predetermined
threshold, passes various tests of signal consistency
[27,28] and data quality [25,35,36], and is statistically
significant [4,37]. The computational cost of matched
filtering, and so also the entire search, scales linearly with
the number of templates in a bank and also increases with
the duration of the observable signal, though generally
sublinearly.
With advancements in the current and future detectors, it

is expected that observation of signals at an increasingly
lower frequency will become possible [15,18,19,38,39]. As
the low frequency cutoff of a search decreases, both the size
of the template bank and the signal duration grows rapidly,
leading to increased computational costs [38,40,41]. While
current template-based searches have confident detections
only from quasicircular aligned-spin binaries [5,6,21,22],
sources that exhibit measurable eccentricity or precession
of the orbital plane could provide unique astrophysical
insights [42,43]. While a few searches have included the
effect of eccentricity [40,44,45] for parts of parameter
space, many searches neglect the effects from eccentricity
of the orbital plane [46] and precession of the orbit [47] in
part due to the increased computational cost relative to
normal searches [7,40,41,48]. For example, it has been
shown that the template bank including precession is at
least 10 times bigger than one without precession [48].
Furthermore, the lower mass boundary of subsolar primor-
dial black hole searches is limited by computational
cost considerations [7,38,40,41]. Development of a cost-
efficient filtering algorithm would allow searches to be
conducted more easily, with higher sensitivity, and in
uncharted regions of parameter space.
The computational costs for matched filtering data with

templates consist of redundant computations due to sig-
nificant overlap of templates with each other in the
neighborhood. This redundancy is be eliminated by using
an orthonormal basis to filter data instead of templates [49].
The costs of filtering scale linearly with the number of basis
and can be reduced by rejecting the basis vectors of lower
importance [49]. Disregarding contributions from a few
basis vectors leads to a loss in SNR, but this loss is kept
under a tolerance by tuning the number of relevant basis p
involved for filtering purpose [49]. When considering large
number of templates, the value of p is much smaller, and
therefore, it is possible to filter data with a fewer number of
basis. Current online (low-latency) searches [23,50]
employ this technique and are in good agreement with
searches that do not use this approximation [51,52].
Since the basis vectors do not correspond to any physical

source, matched-filtering outputs from each basis are
weighted and linearly combined to give an SNR time
series for a unique template, in a reconstruction process.
The reconstruction is performed for each template and at

every time sample which incurs additional costs to matched
filtering. The naive costs for reconstructing SNR time series
for T templates can be estimated in terms of a matrix
multiplication which scales as OðNpTÞ, where p is the
number of basis vectors and N is the number of samples in
the data. On the other hand, the direct template-based
filtering is widely done using a Fast Fourier Transform
(FFT)—based algorithm which requires OðNT logNÞ
operations. Usually logN ∼Oð10Þ and p ∼Oð102–103Þ
which suggests that naive reduced basis filtering is more
expensive than the template-based filtering.
In this work, we demonstrate a cost-efficient matched

filtering method by employing a new hierarchical scheme
using a reduced set of basis. The reduced basis are obtained
by applying principal component analysis (PCA) on a
template bank. A two-stage hierarchical scheme is then
invoked to compute the SNR time series for each template.
In the first stage, an intermediate time series is computed
that corresponds to a binned average of the complete SNR
time series. In the second step we, do a full time resolution
(nonaveraged) reconstruction using the reduced basis
inside the bins where the average SNR exceeds a threshold.
We demonstrate our method on simulated Gaussian noise
and a population of CBC signals. To estimate the improve-
ment from our method, we compare it against the flat
template-based filtering scheme used in current searches.
We observe that our method attains a speed up by a factor
of ∼6 for a threshold of SNR ¼ 5. Furthermore, we expect
the performance of our method to increase at higher SNR
thresholds, and similarly observe a performance gain of
∼10 times for SNR ¼ 6.
Matched filtering is dominated by mathematical opera-

tions which are easily parallelizable across different threads
or computation cores. Since a GPU is designed to accom-
modate a large number of threads, we employ GPUs in this
work for an efficient implementation of matched filtering in
parallel. To investigate the relative performance of different
hardware, we compare the matched filtering implementa-
tions on GPUs with the central processing units (CPUs) that
is currently used in the PyCBC search pipelines.We use two
metrics to quantify the performance—cost, and power
efficiency—while filtering data. We observe that GPUs
are much more efficient than CPUs in performing matched
filtering. In this analysis, we have restricted ourselves to
aligned spins, dominant mode, and a single-detector analy-
sis. However, our method can be easily extended to multiple
detectors, and search scenarios including eccentricity, pre-
cession, or higher-order modes.
The rest of the paper is organized as follows. In Sec. II,

we give a brief overview of the matched filtering process
and the motivatation for why we need a new approach
which is different from previous works. In Sec. III we
describe our search method and the implementation. In
Sec. IV we presents our results and compare them with the
existing search methods. Finally we conclude in Sec. V.
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II. COMPACT BINARY COALESCING SEARCHES

The core of any modeled searches for CBC signals is the
matched-filtering technique which involves searching
the interferometric data for a modeled waveform of the
expected GW signal [5,21–23]. In this section we briefly
describe the process of matched filtering and introduce
some ideas for efficient filtering algorithms. We also
discuss previous efforts to improve the performance of
matched filtering in Sec. II B.
GW signals from a noneccentric CBC sources are

characterized by 15 parameters [30–32]. These parameters
are divided in two categories, (1) intrinsic parameters—
(m1, m2) component masses, and three-dimensional spin
vectors (χ⃗1; χ⃗2) and (2) extrinsic parameters (in the
observer frame of reference)—standard spherical coordi-
nates (D, i, ψ), sky-location ðθ;ϕÞ, and lastly ðtc;ϕcÞ the
time and the phase at the coalescence. The anticipated
signal is then accurately modeled in terms of these
parameters with the help of various analytical and
numerical techniques [30–32].
To search for the modeled signal h̃ðfÞ also referred as

template, matched filtering is performed in the Fourier
domain to quantify the likelihood of data containing the
particular template. The matched-filter statistic is a corre-
lation between the Fourier transform of the data [s̃ðfÞ] and
the template [h̃ðfÞ] weighted by the noise power spectral
density (PSD) SnðfÞ [24]. It can be shown that the matched
filter is an optimal detection statistic for distinguishing
signals in the presence of stationary Gaussian noise [24].
The mathematical form of the complex matched filter
statistic is

hsjhi ¼ 4

Z
∞

0

s̃ðfÞh̃�ðfÞ
SnðfÞ

df: ð1Þ

The output of the matched filter after normalizing with the
correlation of the template with itself hhjhi1=2 is the signal-
to-noise ratio

ρ2 ¼ ðRe½hsjhi�Þ2
hhjhi : ð2Þ

A priori the parameters of gravitational-wave signals are
unknown and to search for the intrinsic parameters, a
discrete template bank is used to cover the intrinsic
parameter space. The notion of cover is to sample enough
points in the parameter space such that the match between
data and at least one template is above a minimum match
value. In current searches typically a minimum match of
0.97 is used [29,53], and lattice-based [53–55], stochastic
methods [56,57] or hybrid methods [33,34] are applied to
sample the points in the parameter space. Since we are
considering aligned spins with the orbital angular momen-
tum in the þz direction, the intrinsic parameter space

consists only of ζ ¼ ðm1; m2; χ1z; χ2zÞ parameters.
The search over the two categories of binary parameters
are handled differently—the intrinsic parameters are
searched for by repeatedly match filtering for every
template, whereas, the extrinsic parameters—sky loca-
tion, the orientation of the binary, and distance to the
source are accounted for as an overall phase ϕ0 and an
amplitude A [29]

h̃ ¼ Aeiϕ0 h̃0ðζÞe2πiftc : ð3Þ

In Eq. (3), A and ϕ0 are unknown functions of
ðD; i; θ;ϕ;ψÞ, and h0 depends on the intrinsic parameters.
The unknown amplitude A is a nuisance parameter that is
eliminated by normalizing the SNR with the norm of the
template as seen in Eq. (2). The unknown phase ϕ0 is
maximized using a quadrature, which is equivalent to
maximizing the norm of the complex SNR [29]. Finally,
the position of the signal is determined by searching
for the time of coalescence of binary, represented by
the tc parameter. Variation in tc is expressed as time-
translations, and is separated using e2πift0 . Substituting
Eq. (3) into Eq. (1), the matched-filter output (SNR) at
t ¼ t0 is given by Eq. (4). The SNR as a function of time
can be obtained efficiently by performing an inverse FFT
(IFFT) of Eq. (4) [29,54]

hsjh0iðt0Þ ¼ 4

Z
∞

0

s̃ðfÞh̃�0ðf; ζÞ
SnðfÞ

e2πift0df: ð4Þ

A data segment with a SNR above a predetermined
threshold is referred to as a trigger which may contain a
true GW signal. The ambiguity is due to the assumption of
stationary Gaussian noise for the matched-filter statistic.
However, triggers due to nonstationary glitches or pure
Gaussian noise can give rise to false alarms which lower
our confidence of identifying true GW signals [25,26].
The additional signal-consistency test introduced in
[27,28,58] is performed to down-rank triggers due to
glitches. Furthermore, it is ensured that only coincident
triggers from multiple detectors are considered i.e.,
triggers corresponding to the same template and observed
within the light travel time window between the detectors
[59]. Amongst the various steps mentioned, matched
filtering comprises the dominant computational costs of
a search. Hence, our focus is to optimize the matched-
filtering process.
To summarize the matched-filtering procedure, the

intrinsic and extrinsic parameters are searched for sepa-
rately using a template bank and analytical techniques,
respectively. First, the PSD weighted correlation of data
with a single template in ζ is computed, and then an inverse
FFT is executed to obtain a complex time series. Taking the
modulus of the complex times series and normalizing it by
the norm of the template gives the SNR time series. The
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above steps are repeated for all the templates in the template
bank to search over the intrinsic parameters. Throughout
this paper, we refer to the method of matched-filtering data
with the templates as the template method for simplicity.
It is clear from above that matched-filtering operation

scales linearly with the number of templates. In the case
when the size of the template bank is large, a search can be
limited by the computational costs required for filtering the
data with templates. It is possible to numerically reduce the
size of the template banks to a fewer number of basis
vectors and filter data directly with the basis. We now give a
brief introduction to performing matched filtering with a
reduced basis.

A. Matched filtering using a reduced basis

Consider a region in the parameter space described by
ζ ¼ ðm1; m2; χ1z; χ2zÞ. Discrete templates are used to cover
this region, and as a result of the mismatch criterion,
templates are strongly correlated in the vicinity of each
other. The correlation between the templates incurs a
redundancy in matched-filtering computations; instead,
an orthonormal basis can be used to eliminate these
correlated computations [49]. Commonly used methods
for computing an orthonormal basis is the principal
component analysis (PCA) and the singular value decom-
position (SVD). The PCA approach to obtain the basis is
found by performing an eigenvalue decomposition (EVD)
of the covariance matrix C ¼ T⊤T constructed using the
templates [see Eq. (5a)], whereas, SVD is applied directly
to a matrix containing the templates T [see Eq. (5b)].

C ¼ PLP⊤; ð5aÞ

T ¼ USP⊤: ð5bÞ

In the casewhen templates are centered the columnmeans
of T are zero, then both SVD and PCA yield the same
orthonormal basis. The basis is represented by the columns
ofPwhich are ranked by their corresponding eigenvalues in
L or singular values in S. It can be easily shown thatL ¼ S2

and that the two methods are similar. Hence, either of the
methods are applicable to obtain the basis.
Consider a set of pt basis vectors for the parameter

region ζ denoted by p̃ðfÞ in the Fourier domain. Every
template in this region hζ is expressed in terms of a unique
linear combination of the basis. Since the matched-filtering
operation is also linear, we can filter the data s̃ only using
the basis and rewrite Eq. (4) in terms of p̃ðfÞ

ρrðtÞ ¼
Xpt−1

k¼0

4

Z
∞

0

s̃ðfÞc�k;ζp̃�
kðfÞ

SnðfÞ
e2πiftdf; ð6Þ

where the template h̃ζðfÞ¼
Ppt−1

k¼0 ck;ζp̃k, is a linear com-
bination of the basis p̃ðfÞ and the unique decomposition

coefficients ck;ζ. The coefficient ck;ζ is obtained by
computing the scalar product of h̃ζ and the kth basis
vector p̃k.
Matched filtering with the basis is done by first

performing an IFFT of the correlation between s̃ and p̃k,
which results in a complex time series defined as
βkðtÞ ¼ IFFTðhsjpkiÞ. Afterwards, each βk is weighted
accordingly using the respective decomposition coeffi-
cients and then combined to give SNR time series corre-
sponding to the template h̃ζðfÞ. The process of multiplying
the coefficients ck;ζ with βk is the reconstruction step, as it
reconstructs the SNR time series using the contribution
from the basis

ρrðtÞ ¼
Xpt−1

k¼0

c�k;ζβk: ð7Þ

Using the complete orthonormal basis pt ¼ T where T is
the number of templates, Eq. (7) reproduces the same exact
results as Eq. (4).
Instead of using the full basis, it is possible to

approximately reconstruct the SNR with fewer basis
vectors. Eigenvalues σ are arranged in decreasing order
and only the first p basis vectors are chosen and the
rest are discarded. It can be shown that the first p basis
vectors span an approximate lower-rank subspace
of the original parameter space. Neglecting contributions
from some basis vectors leads to an average loss in SNR,
which is shown to be a function proportional to the
eigenvalues [49]

�
δρ

ρ

�
¼ 1 −

jPp−1
k¼0 σ

2
kj

jPpt−1
k¼0 σ2kj

: ð8Þ

The equation above indicates that the number of relevant
basis p can be fine tuned based on the choice of tolerance
in loss of SNR. For detection purposes, we want to keep
this loss under the mismatch value (0.03) due to the
discreteness of the template bank.
Reconstruction of the SNR time series is performed for

every template and thus, the reduced basis approach
requires additional costs to matched filtering. To estimate
the reconstruction costs in brief (exact costs are estimated
later in this paper), consider a data segment having N
samples, T number of templates, and reduced p basis
vectors. The number of operations required for the
reconstruction step is OðNpTÞ. Meanwhile, comparing
the costs to template-based filtering which requires
OðNT logNÞ, the actual comparison boils down to logN
and p. The exact values for logN and p vary over the
parameter region, but it is observed that p is typically 1–2
orders in magnitude bigger than logN. Hence, the reduced-
basis approach loses all the computational advantage of
filtering against fewer basis.
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B. Comparison with current methods

Different methods in the past have been implemented to
speed up the process of filtering either by reducing the
latency of the search [22,60,61] or by decreasing the
required computational costs [62–64]. For the former case,
a reduced-basis filtering technique along with multirate
sampling is used with an intent to decrease the latency of
matched filtering. In the latter case, the aim is to reduce the
filtering costs by using a multistage hierarchical filtering
method. Some of these techniques have been already
implemented in the current search pipelines [23,50,52],
and are deployed in different search scenarios. We briefly
discuss these various strategies and contrast our method-
ology next.

1. Reduced basis filtering with or
without multirate sampling

To discretize a continuous signal, the Nyquist-Shannon
criterion [65] determines the sampling rate to be at least
twice the highest resolvable frequency (1=dt ≥ 2fmax) of
the anticipated signal. This gives the relation for the
number of samples in the data N ¼ ðdfdtÞ−1 where
1=dt; 1=df are sampling rate and sampling frequency
respectively, suggesting the filtering costs increase
when searching for higher frequencies. Because the
frequency evolution of these signals is chirplike,
rapidly increasing towards the merger, this allows a
low sampling rate at the earlier times and can be increased
subsequently as the signal evolves. Using multiple
sampling rates the matched filtering costs are reduced
significantly [22,60,61].
Multirate sampling has been adopted by the MBTA

[22], LLOID [61], and SPIIR [60] schemes that are
implemented in current online pipelines for the prompt
detection of signals [22,23,50]. The MBTA method
performs matched filtering in the Fourier domain using
the standard FFT approach to obtain a SNR time series,
whereas the LLOID and SPIIR methods perform
time-domain filtering by employing FIR or IIR filters
respectively to compute an equivalent form of the matched
filter [Eq. (4)]. These filters are specially designed for
whitening the data, a process which causes the most
latency in matched filtering [22,23,50]. The overall
latency is further improved by using a reduced basis
obtained by performing SVD of the IIR/FIR filters.
Results from the online pipelines are very well in agree-
ment with the rigorous offline searches [21,51], justifying
the viability of multirate sampling and reduced basis
filtering in CBC searches.
The number of templates T drastically increases when

searching in subsolar regions [7,38,40,41] or with addi-
tional parameters [40,48] e.g., eccentricity. In such search
scenarios obtaining a reduced basis for the complete
template bank is computationally limited. This is because
SVD is performed on a template matrix whose size scales

linearly with T and might require infeasible amounts of
memory for the template matrix. To address this issue we
choose the PCA approach of computing the basis, which is
performed on a covariance matrix whose size is indepen-
dent of T, and therefore, making it feasible to obtain
orthonormal basis even for large template banks.
The major drawback of reduced-basis filtering is the

large reconstruction cost, and hence, this method is avoided
in extensive offline searches where the computational
costs play an important role. In [66,67] the authors have
introduced a new technique to decrease the reconstruction
costs by using a random projections (RP) based reduced
basis filtering method. Another approach to reduce the total
costs is to split the matched filtering into multiple stages in
a hierarchical fashion. Next, we discuss established hier-
archical methods and compare them with our new hierar-
chical scheme.

2. Hierarchical methods

The crux of any hierarchical search is to perform a coarse
and a fine search over the parameters involved in the
hierarchy. In the past, the work in [63] proposed a two-stage
hierarchical filtering on just a single chirp mass parameter,
and the same work was extended in [64] for three
parameters—the component masses and the time of coa-
lescence. The most recent works [62,68] in the hierarchical
approach to matched filtering extended the scheme to
multiple detectors analysis. In the first stage, data is
downsampled at 512 Hz, and filtered using a coarse bank
of MM ¼ 0.9. In the second stage, data is sampled at the
full rate of 2048 Hz or 4096 Hz, and filtered with a fine
bank having MM ¼ 0.97. Their method achieved ∼20×
speed up in comparison to the one-step search on simulated
data containing only Gaussian noise. The latter work in
[68] hierarchically searched advanced LIGO’s first two
observing runs and recovered all the events presented in the
GWTC-1 catalog [4].
To assign significance of any event, it is important to

estimate the noise background which is the trigger
distribution due to noise only events [59]. In the work
[62,68], the performance gain comes at the expense of a
poor estimation of the background. Since they do not
follow the noise triggers until the second stage, the true
background is mimicked by scaling the first stage back-
ground. This leads to an improper estimation of the
significance for an event.
In this method, we present a new hierarchical method

aimed at reducing the reconstruction costs. We perform a
two-stage hierarchical reconstruction of the SNR time
series for the complete bank. We follow up all the triggers
for SNR ≥ 5 till the second stage, and therefore, are able to
accurately determine the original noise background.
Furthermore, our method incurs no loss in the search
sensitivity. We discuss the methodology in detail in the
next section.
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III. REDUCED BASIS HIERARCHICAL
MATCHED FILTER

In this section we describe our new hierarchical approach
to reduced basis matched filtering in detail. We first briefly
review the PCA method in general and discuss a nonuni-
form sampling technique to reduce the costs of performing
PCA. Then we explain how PCA is applied on a template
bank and the hierarchical method of filtering data along
with their implementation on GPUs. Finally, we estimate
the matched filtering costs in detail for the template-based
method and the reduced basis hierarchical scheme to
compare the relative gain in performance.

A. PCA using nonuniform sampling

We first briefly explain the PCA procedure applied
on n vectors denoted by v. Every vector is centered by
subtracting the mean vector vs ¼ v − b, where b ¼
1=n

P
n
i¼0 vi is the mean vector. To ensure each vector

gets equal weight, they are normalized with respect to the
inner product defined on the vector space. Using the
normalized and centered vectors v̂s, a covariance matrix
is created C ¼ v̂⊤s v̂s. An EVD is performed to get the
orthonormal basis vectors pt of the C matrix, which are
ranked by the corresponding eigenvalues σ. The basis
vectors corresponding to small eigenvalues are discarded,
and the resulting set of reduced basis is denoted by p.
Projecting v̂s onto p gives the decomposition coefficients
D ¼ pv̂s. The reduced basis v̂s and the decomposition
coefficients D are used to retrieve an approximate version
of v̂s, given by v̂approxs ¼ D⊤p.
Even though the costs of PCA are amortized, PCA can

be time intensive and difficult to perform on a large
collection of longer duration templates e.g., corresponding
to lower masses, or with lower-frequency cutoffs. Amongst
the various steps involved in PCA, the dominant computa-
tional and memory costs are for the covariance matrix—
both scale quadratically with the number of samples Nt
required for the templates. To put the scaling relations into
perspective, consider the complete O2 bank sampled at a
constant sampling frequency of 128s, the estimated
memory required for C is ∼550 GBs. Distribution of the
EVD process for C across several machines is a difficult
task, and thus, the size of the covariance matrix is con-
strained due to the memory of a single machine. Hence, it is
crucial to reduce the size of the templates to make the PCA
faster and feasible in the low-mass regime.
In this work, we consider the frequency range from [15,

1024] Hz. The principle idea behind efficient sampling is to
adjust the sampling rate according to the number of
oscillations of a function within a given frequency bin.
To account for the complete frequency range in our
sampling analysis, we consider the template with the
longest bandwidth and identify all the frequencies corre-
sponding to the zero crossings of this template. The

identified frequencies are used to define the edges of the
nonoverlapping bins of different sizes. We further sample
every bin by using five uniformly-spaced frequencies
within, and together they make up the complete set of
nonuniform sampling frequencies. We also ensure that our
sampling criteria is never less than df ¼ 1=128, which
helps us avoid oversampling the dense bins at very low
frequencies. The number of frequencies per bin is chosen
empirically based on the relative error induced in the
templates for not using the full sampling rate. Using this
scheme we obtain a much smaller set of frequencies; Nt ¼
11074 compared to N ¼ 2048 × 128 uniform frequencies
for efficient sampling of the templates and the basis. Once
the basis are obtained, we interpolate them back to the
original sampling frequencies.
To test the accuracy of our sampling method, we check

the overlap between the templates generated using non-
uniform and uniformly sampled frequencies. For this
purpose, templates evaluated at nonuniform frequencies
are linearly interpolated to a constant sampling frequency
of 128s. We obtain a mismatch of <10−4 in the overlap
due to the interpolation of the templates, which is much
smaller than the error due to the discreteness of the
template bank and, therefore, can be safely neglected.
This justifies that our nonuniform frequencies are viable
for sampling the templates. Using our sampling method
significantly reduces the memory required for C from
∼550 GBs to only ∼0.9 GBs—therefore, saving a lot of
computational resources and simultaneously speeding up
the PCA process.

B. Implementing PCA on a template bank

In this work, we use the template bank as described in
[69] which was also used for the PyCBC analysis of the O2
observing run [5]. The parameter ranges used in this bank
are total mass M ∈ ½2; 100� and mass ratio q ∈ ½1; 98�. We
restrict ourselves to the aligned-spin case where the spins
for NS are up to 0.05 and up to 0.998 for BHs. The
minimum match criterion used in this bank is 0.97, and the
bank contains T total ∼ 400, 000 templates.
We divide the parameter space into smaller regions to

reduce the number of local basis p as they contribute
linearly to the dominant reconstruction costs. The complete
bank is split into smaller sub-banks, and then PCA is
performed on each of them individually. Splitting of
template bank is performed in the (τ0, τ3) coordinates
along iso-τ0 lines because the metric is roughly Euclidean
in these coordinates [54]. The parameter τ0 roughly
corresponds to the duration of a template (in seconds) that
scales as τ0 ∝ M−5=3f−8=30 , whereM is the chirp mass and
f0 is the lower frequency used in the analysis. We choose to
split the τ0 range into 64 equal parts, each of them
containing 6250 templates. While optimizing the splitting
is not in the scope of this work, we performed empirical
testing of the number of splits by considering smaller or
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bigger equal parts than 64, and observed no significant
improvement. In Fig. 1 we show the complete parameter
space along with an example subregion which is used as a
case study for further analysis.
The PCA operation begins by sampling templates at the

previously obtained Nt nonuniform frequencies using the
IMRPhenomPv2 waveform model [30]. Templates are
then whitened using the aLIGO PSD and normalized to
unity. The template matrix for the mth sub-bank Tm is
constructed by storing templates row wise such that Tm

has the dimensions of (T × Nt), where T ¼ T total=64. In
the case when T total is not a multiple of 64, we can simply
choose another divisor close to 64. We observed the mean
vector of Tm to be almost zero, and hence, skip the mean
subtraction step. Covariance matrices for each sub-bank
Cm are evaluated by multiplying the template matrix with
its transpose Tm × ðTmÞ⊤. In the next step, we perform the
EVD of Cm to obtain the basis vectors and their corre-
sponding eigenvalues. For this purpose we employ the
Lanczos algorithm [70]—an efficient algorithm to obtain
the p largest eigenvalues. Invoking Eq. (8) for a tolerance
of 10−5, the number of relevant eigenvalues p obtained for
a few different sub-banks are shown in the Table I.

We then compute the decomposition coefficients essen-
tial to reconstruct the whitened templates in Tm. These
coefficients are unique for each template and are obtained
by multiplying the two matrices—basis matrix Pm and the
template matrix Tm. The resulting matrix is the decom-
position matrix Dm containing the p unique coefficients
for every template in the mth sub-bank and has the
dimensions (p × T). Finally, the original whitened tem-
plates can be approximately reconstructed by multiplying
D and P. In the next section, we discuss the two-stage
hierarchical reconstruction of the matched filter output
using D and P.

C. Hierarchical reconstruction of the
SNR time series

Matched filtering with the basis vectors as per Eq. (7) is
performed using the following steps:

(i) compute FFT of the data sðtÞ with N sample points
at a uniform sampling rate 1=dt to obtain s̃ðfÞ.

(ii) linearly interpolate the basis vectors p̃kðfÞ at the
uniform frequencies (multiples of 2fmax=N).

(iii) filter data with every basis vector to obtain βk—
inverse FFT of the product s̃ðfÞp̃�

kðfÞ=
ffiffiffiffiffiffiffiffiffiffiffi
SnðfÞ

p
.

(iv) average βk in bins of w samples to obtain βavgk .
(v) perform first stage reconstruction to obtain averaged

SNR time-series.
(vi) perform second stage reconstruction around the

triggers from the first stage.
The first step in the reduced basis matched filtering

process is to compute forward FFT of the data sðtÞ. Since
sðtÞ is sampled uniformly with a rate of 1=dt ¼ Ndf,
the Fourier-transformed data s̃ðfÞ is obtained at frequen-
cies given by integer multiples of 2fmax=N, where
fmax ¼ 1=ð2dtÞ. Now to filter the data with the basis,
the correlation of data and basis are computed at the
uniform frequencies, and for this reason, the basis are
linearly interpolated from fmin to fmax in df steps. Since
the basis are already whitened and the denominator in the
matched filtering [Eq. (6)] requires SnðfÞ, we multiply the
correlation product with SnðfÞ−1=2 to get the appropriate
denominator. For a basis vector p̃k, the filtered output βk
time series is obtained by computing the inverse FFT of
the weighted correlation. Finally, for every data, p differ-
ent time series (basis output) are stored in a separate β
matrix of size N × p.
The reconstruction of SNR time series for every sample

and each template requires large computational costs.
Since we are only interested in triggers exceeding a certain
threshold, it is better not to reconstruct the complete SNR
time series, rather only in the vicinity of the triggers. We
propose a two-step hierarchical scheme for reconstruction,
which performs a coarse reconstruction, and then a finer
reconstruction around the triggers obtained in the first
stage. In the first stage, we consider fixed nonoverlapping
bins of w samples. Then the outputs from each basis

FIG. 1. O2 template bank [69] used in this work; the small
orange region corresponds to the sub-bank used as a case study
containing 6250 templates.

TABLE I. Example of a few sub-banks corresponding to their
respective τ0 ranges in the second column. The third column is
the number of relevant eigenvalues p for the respective subregion.

Sub-bank index τ0 (sec) p

1 [0.1, 5.1] 64
� � � � � � � � �
� � � � � � � � �
34(case study) [98.0, 103.4] 254
� � � � � � � � �
� � � � � � � � �
64 [442.5, 595.7] 200
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vector βk are averaged in the bins referred as the averaged
time series

βavgk ½ti� ¼
Xw−1
j¼0

βk½ti×wþj�=w; ð9Þ

where i ¼ f0;…; N=w − 1g corresponds to different bins,
and j ¼ f0;…; w − 1g goes over the samples inside each
bin. The bin index i can be considered as a sample point in
the shortened averaged time series. By linearly combining
the βavgk with the decomposition coefficients ck;ζ similar to
Eq. (7), results in an averaged SNR times series for the
template hζ. We identify the first-stage triggers and their
corresponding bins having the average SNR above a first-
stage threshold ρI. In the next step we perform a finer
reconstruction for every sample inside all the triggering
bins. Triggers from the second stage which are above a
second stage threshold ρII are referred as the final triggers.
In the Fig. 2, we show the hierarchical reconstruction of
SNR time-series around a trigger.
Our aim is to minimize the total costs for the hierarchical

method without losing any sensitivity. The sensitivity is
determined by computing the fraction of triggers recovered
at a given SNR, or conversely, the SNR threshold at which
all the triggers are recovered. We compute the sensitivity
(using the latter approach) by comparing the hierarchical
distribution of the triggers with the original distribution.
The parameters w; ρI are fine tuned under the constraint of
reaching a fixed target SNR (ρtarget) to optimize the total

costs. We give a detailed description to compute ρtarget in
Sec. III F.

D. Fast first stage filtering using templates

To reduce the first-stage costs the average SNR can be
obtained by the faster template method which is math-
ematically equivalent to reduced-basis filtering. Using the
template method, the average SNR time series can be
obtained by binned averaging of the integrand in the Eq. (4)
and then performing an IFFT of shorter length. To dem-
onstrate the averaging process mathematically, we consider
a single bin b with w samples, and compute the averaged
SNR for the same, which is denoted by hρθðtÞib. The w time
samples in the bin are represented by t ¼ wbþ r, where
r ∈ ½0; w − 1�. We then write the discretized version of the
Eq. (4) averaging the SNR time series over w samples

hρζðtÞib ¼
1

Nw

Xw−1
r¼0

4Δf
XN−1

f¼0

s̃½f�h̃�ζ ½f�
Sn½f�

e2πifðwbþrÞ=N: ð10Þ

Now, breaking the summation over f ∈ ½0; N − 1� into a
double sum by expressing f ¼ lN=wþ f0, we can rewrite
the single summation of any function g̃ðfÞ in the Fourier
domain as

XN−1

f¼0

g̃½f� ¼
XN=w−1

f0¼0

Xw−1
l¼0

g̃

�
l
N
w
þ f0

�
; ð11Þ

where l ∈ ½0; w − 1� and f0 ∈ ½0; N=w − 1�. This modifies
Eq. (10) to

hρζðtÞib ¼
4wΔf
N

XN=w−1

f0¼0

e2πif
0w
Nb

×
1

w2

Xw−1
l¼0

s̃½l Nw þ f0�h̃�ζ ½l Nw þ f0�
Sn½l Nw þ f0�

Xw−1
r¼0

e2πiðlNwþf0Þ rN

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼Ωðf0Þ

¼ 4wΔf
N

XN=w−1

f0¼0

e2πif
0w
NbΩðf0Þ: ð12Þ

To simplify Eq. (12), we introduce a new frequency series
Ωðf0Þ which represents the binned average of the PSD-
weighted correlation of the data and template. The second
summation term in Ωðf0Þ has a closed-form solution and
can be computed analytically. We notice that the last line of
Eq. (12) has a similar form to Eq. (4) but, the integrand
replaced with Ωðf0Þ having only N=w number of samples.
Suggesting that the average SNR time series can be
obtained by an IFFT of Ωðf0Þ, where one can think of b
as the new time equivalent variable which ranges between
½0; N=w − 1�. Therefore, it is possible to perform the first

FIG. 2. Demonstration of the hierarchical scheme, the first
panel shows the reconstructed SNR time series without any
averaging and a single trigger (SNR ≥ 4). In the middle panel is
the averaged SNR series obtained from binned averaging of w ¼
16 samples (shown in green in the first panel), and the red region
corresponds to the bin containing the original trigger. The last
panel shows a finer reconstruction performed only for the bin
having average SNR greater than the first stage threshold.
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stage using basis or templates, however, the second-stage
filtering needs to be done with the basis.

E. Implementation

We now discuss the implementation of our method
which is divided into two parts: 1) preparation and 2)
matched filtering. The preparation stage is implemented
partially on GPUs, whereas matched filtering is performed
entirely on the GPUs. We use several Nvidia GV100 GPUs,
each having memory of 32 GB as well as several RTX 2070
Super each with 8 GB of memory. Our code is written in C
language and uses various optimized libraries for different
purposes. Operations on the GPU are performed using
CUDA [71] an application programming interface by
Nvidia.
In the preparation stage, we perform PCA on the

template bank to obtain the reduced basis and the respective
decomposition coefficients. Matrix multiplications on the
GPUs in this stage are performed using the cuBLAS library
from CUDA.We begin by computing the covariance matrix
in several parts in parallel using cuBLAS. Afterwards, we
combine all the parts to obtain the final matrix C. The
Lanczos algorithm for EVD of C is implemented on CPUs
using the SLEPc [72] and PETSc [73] libraries. We obtain
the decomposition coefficients matrix D by multiplying the
matrices T and P. The preparation stage is computed in
advance and performed only once. Results from this
stage—the basis and the decomposition coefficients—are
stored on hard drives for the later matched-filtering stage.
To reduce the input/output (IO) bandwidth, we compress
the PCA results before writing them on the hard drive.
In the next stage, we read the output from the previous

stage to match filter data using our hierarchical scheme. To
reduce the time-intensive memory transfers between CPU
and GPU, we load the matrices P andD at the same time on
to the GPUs. We divide the data into several smaller
segments such that we can optimally utilize the memory
of the GPUs while filtering each segment in parallel. We
use data segments of 128s and a sampling rate of 2048 Hz.
Each data segment has N ¼ 128 × 2048 samples which
overlap with N=2 samples from the previous segment. We
employ the cuFFT library from CUDA to perform the FFTs
in this stage. Using cuFFT we perform FFT for a batch of
data segments in parallel. In the next step, we interpolate
the basis vectors and multiply them with s̃ along with
SnðfÞ−1=2. Afterward we perform in-place batched IFFTs to
obtain the filtering output from the basis. The in-place
technique saves GPU memory by recycling the allocated
input memory to write the output.
To perform the hierarchical reconstruction we first

average the output from basis to obtain the βavg matrix.
The first stage reconstruction is done using cuBLAS by
multiplying βavg and D, which outputs the average SNR
time series. Next, we use a dedicated function on the GPU
to find triggers with average SNR above ρI. Once the

triggers are identified, we store their bin indices along with
their corresponding average SNRs. Since these triggers are
not contiguous in memory, further reconstruction of the
triggering bins cannot be performed by simple matrix
multiplication. Therefore, instead of using the optimized
cuBLAS library, we use a custom-built function on the
GPU to perform the second reconstruction.

F. Cost estimation

In this subsection we estimate the floating-point oper-
ations required by the two different matched-filtering
schemes. The purpose of estimating the number of oper-
ations is to get a rough idea of the scaling relations involved
for the total filtering costs. Moreover, it will allow us to
estimate the improvement in performance due to the
proposed hierarchical scheme. In both methods, we split
the data into blocks ofN samples, having an overlap ofN=2
samples with the previous block. This is generally done to
avoid corrupt SNR samples at the start and end of a data
segment [29]. Hence, filtering a single block results in N=2
unique SNR time samples. Most operations involve com-
plex numbers unless otherwise specified. Throughout the
cost estimation, we consider six operations for multiplica-
tion and two operations for the addition of two complex
numbers. To estimate the costs for the FFTs we consider a
split-radix method [74].
We first estimate the costs for the template method which

will be our baseline comparison. The first step is to
compute the forward real-to-half-complex FFT of the data
with N samples, which requires 3=2N logN operations per
block [74]. Computing the integrand of the matched
filtering Eq. (1) for T templates requires 6NT operations.
Finally, an inverse complex-to-complex FFT is required to
obtain the SNR time series for each template, and this
attributes to 5TN logN operations, where each IFFT
requires 5N logN operations. In total the template method
for a single block requires N logNð3=2þ 5TÞ þ 6TN
operations. Usually, the number of templates is huge
(T ≫ 1), so we can neglect the cost for the forward FFT
of data. Therefore, the total floating-point operations zbasic
for filtering N=2 data samples with the template method
can be approximated to

zbasic ¼ NTð5 logN þ 6Þ: ð13Þ

Now, we estimate the costs for the two-stage hierarchical
filtering. As shown in the Secs. III C and III D, the first
stage can be performed either by using the basis or the
templates. We evaluate the first-stage costs by considering
the faster template method described in the Sec. III D
starting with the forward FFT of the data which needs
3=2N logN operations. The weighted correlation of the
matched filter in Eq. (12) is then obtained for every
template in 6NT multiplicative operations. Then, we
perform binned averaging of the correlations to get reduced
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frequency series Ωðf0Þ of size N=w for each template, and
this requires 2NT=w operations. For every template we
obtain the average time series by computing the IFFT of
Ωðf0Þ in 5NT=w logðN=wÞ operations. Hence, the number
of floating-point operations (neglecting the forward FFT)
required for the first stage is

zfirst ¼ NT

�
5

w
log

�
N
w

	
þ 6þ 2

w

	
: ð14Þ

In the next stage, we compute a finer reconstruction of w
points around each first stage trigger. The costs for the
second stage are calculated in terms of the number of first
stage triggers. We denote the number of first-stage triggers
for a single template by fðw; ρIÞ. We assume that the
number of triggers do not vary for different templates, and
thus, can be obtained from a single test template. This
assumption is justified for the templates in the vicinity of
the test template as the number of triggers would be
roughly the same. In addition, since fðw; ρIÞ decreases
rapidly at higher SNRs, the error in the total costs due to our
assumption is negligible. Since the fast first stage does not
involve computing the basis outputs βk, we evaluate them
in the second stage in Npð5 logðNÞ þ 6Þ operations. Using
the above assumption, the second stage requires zsecond ¼
4pwfðw; ρIÞT þ Npð5 logðNÞ þ 6Þ operations. Summing
up the costs from both the stages, the total floating-point
operations required for the hierarchical method are

ztotal ¼ NT
�
5

w
log

�
N
w

	
þ 6þ 2

w

	

þ ð4pwfðw; ρIÞT þ Npð5 logðNÞ þ 6ÞÞ: ð15Þ

The final costs in Eq. (15) are obtained in terms of two
nuisance parameters w and ρI. An appropriate choice of the
first-stage threshold ρI is important in determining the
background trigger distribution. (This is to not miss any
potential triggers in the first stage, because only triggers
that are followed till the second stage are accounted in the
background estimation.) To ensure that we recover all
the triggers using a reliable first-stage threshold in the
two-stage filtering scheme, we compare the hierarchical
distribution of second-stage triggers against the trigger
distribution from the flat scheme. The idea is to identify a
target SNR (ρtarget) as a function of ðw; ρIÞ, such that the
hierarchical scheme recovers 99% of the total triggers from
the flat scheme. Considering a certain first stage configu-
ration given by specific values of ðw; ρIÞ, we denote the
number of final triggers above ρII as nfinalðρIIÞ. Similarly,
using the same threshold ρII, we denote triggers from the
flat scheme as nflatðρIIÞ. The target SNR ρtarget is then
defined as

ρtargetðw; ρIÞ ¼ ðminðρIIÞjnfinalðρIIÞ ≥ 0.99nflatðρIIÞÞ: ð16Þ

G. Low-pass filter interpretation for the first stage

There are many ways to coarse filter the data to produce
a reduced SNR time series; one such methods is using a
low-pass filter combined with decimation. Our proposed
method of averaging the SNR time series (described in
Sec. III D) resembles, qualitatively, a low-pass filter, how-
ever it takes into account the entire frequency range as seen
in Eq. (11).
We test the performance of a low-pass and our first-stage

filtering methods by filtering simulated Gaussian noise. A
metric for comparison could be the number of false alarms
produced for a given target SNR. Since the target SNR
depends on the thresholding criterion we obtain the thresh-
olds respectively for each method. Using Eq. (16), we
obtain the number of first stage triggers fð16; ρIÞ as a
function of the target SNR as shown in the Fig. 3. We
observe that both methods have very similar, but not
identical, performance. Both methods produce the same
number of triggers at SNRs ≤ 5, but for SNRs > 5 the
low-pass method triggers more false alarms than the first
stage—we observe up to ten times more false alarms. This
indicates that because the first-stage filter preserves the
high-frequency content, it has slightly better sensitivity
over a low-pass filter.

IV. ACCURACY AND PERFORMANCE ANALYSIS
OF THE HIERARCHICAL METHOD

In the previous section we demonstrated our method and
estimated the required costs for filtering. In this section we
present the accuracy of the hierarchical filtering results and
assess the reduction in the required number of operations

FIG. 3. Comparing two different coarse filtering methods—
low-pass (blue) and first-stage (orange). We show the number of
first-stage triggers fð16; ρIÞ for simulated Gaussian noise as a
function of target SNRs. The two methods have broadly the same
performance except for SNRs > 5 where the low-pass method
registers up to 10 times more false alarms.
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with respect to the baseline i.e., the template method.
Furthermore, we measure the gain in performance by
implementing matched filtering on GPUs relative to the
established CPU implementations.
We use the subregion (shown in Fig. 1 in orange) to

demonstrate our method. This subregion covers the param-
eter rangesM ∈ ½5.72; 12.05� and q ∈ ½1.0; 11.05�. Using a
tolerance of 10−5 as per Eq. (8), we obtain p ¼ 254 for this
subregion. We want to estimate a conservative reduction in
the total costs that scale linearly with p. Following this
reason, we choose the mentioned subregion as it corre-
sponds closely to the average hpi.
Current offline and online searches [51,75] generally use

a SNR threshold of ∼4–5 for the single-detector triggers.
However, searches involving a large number of templates
are affected by increased background due to noise triggers
[40,48], and thus, higher SNR thresholds are used to detect
events at a constant false alarm rate. These kinds of search
scenarios also happen to be the case where cost-efficient
algorithms are necessary. Therefore, in this work, we target
SNR thresholds of 5 and above.

A. Accuracy of the SNR

We expect two primary contributions to the SNR loss in
our method—truncation of the number of eigenvalues and
interpolation of the basis. Error due to truncating the
eigenvalues is translated as the SNR loss via the Eq. (8),
and is regulated by choosing an appropriate number
of basis vectors. The loss due to linear interpolation of
the basis is quantified in terms of the mismatch between the
interpolated and fully sampled templates. We evaluate the
total loss by computing the relative error in the SNR time
series obtained using our method and the template method.
We filter simulated colored Gaussian noise from the PSD to
acquire the SNR time series. Comparing triggers from
every template, we note the maximum relative error in the
SNR values and plot it against the SNR thresholds as
shown in Fig. 4.
Based on our sensitivity requirements we are interested

only in SNR ¼ 5 and above, and from Fig. 4 we observe
the relative error to be ∼0.4% for SNR ¼ 5.0. This amount
of error can be tolerated because the observed loss is less
than the error due to mismatch of the templates, which is up
to 3%. We also notice that the relative error decreases even
further with higher SNR thresholds. Therefore, it is
justified that our method successfully recovers the SNR
values for search scenarios requiring SNR thresholds ≥ 5.

B. Comparing performance with template-based
matched filtering

Our hierarchical method is characterized by two
parameters, the averaging bin size w, and the first-stage
threshold ρI. For testing the hierarchical scheme,
we use four different averaging bin sizes w × dt with
w ∈ ½2; 4; 8; 16�, and various different values of ρI. We drop

the dt factor when referring w, to suggest to the reader that
we simply average over w samples. We test our scheme
using noise generated from the aLIGO PSD sampled at
2048 Hz. We also check our method for a population of
BBH signals within the case study subregion. Finally, we
compare the estimated costs required by the hierarchical
method against the template method. We use PyCBC
software library [76] to generate simulated data containing
Gaussian noise and to perform injections.

1. Number of required operations

Using the estimates in Sec. III F, we compare the number
of operations required by the hierarchical scheme with the
template method. We begin by testing only Gaussian noise
generated using the aLIGO PSD. For this purpose, we
generate a total of ∼7.4 days of data using different seeds
sampled at 2048 Hz. For filtering purposes, the simulated
data is then divided in smaller segments of 128s with an
overlap of 64s from the previous segment.
To estimate the total costs for the hierarchical method

Eq. (15), we first determine the number of first-stage
triggers fðw; ρIÞ by varying the hierarchical parameters.
We neglect the variation of fðw; ρIÞ for different templates
for reasons discussed previously in Sec. III F. fðw; ρIÞ is
obtained simply by iterating over different values of the
first stage threshold ρI for different (fixed) w and by
counting the total first stage triggers above the same
threshold. The observed fðw; ρIÞ with respect to ρI for
different values of w is shown in Fig. 5.
It is seen from Fig. 5 that the number of first stage

triggers decreases with increasing ρI, as expected. But more
interestingly, we notice that fewer triggers are recovered
when the averaging is done over more samples for the same

FIG. 4. Maximum relative error between the original and
reconstructed SNR values as a function of SNR threshold. The
incurred error scales inversely with the SNR thresholds and is
smaller than the error due to the discreteness of the templates for
relevant SNR thresholds.
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ρI, i.e., bigger w. Therefore, to maintain the same sensitivity
or the number of final triggers while w increases, the first-
stage threshold must be lowered.
A particular combination of the parameters ðw; ρIÞ

determines a specific target SNR ρtarget for the hierarchical
method without any loss in sensitivity as discussed in
Sec. III F. The target SNR is computed for a fixed w and
different values of ρI, by iterating over different values of
second stage SNR ρII using Eq. (16). In Fig. 6 we plot the
relationship between ρI and ρtarget for different w. Using the

results obtained in Fig. 6 we can choose various combi-
nations of w and ρI to reach a desired ρtarget. We notice from
the plot that to reach the same ρtarget, bigger w requires a
lower value of ρI. This information combined with the
previous plot suggests that for a specific ρtarget, choosing a
bigger w leads to more number of first stage triggers.
Now, we combine the results from Figs. 5 and 6 to

estimate the final costs Eq. (15) in terms of ρtarget as shown
in the Fig. 7. These costs are normalized by the costs
required by the template method Eq. (13) (shown by the
horizontal orange line). To demonstrate the contributions in
the total costs from the individual stages separately, we plot
the first stage and the total costs together. The first-stage
costs are constant with respect to ρtarget and scale inversely
with w. On the other hand, due to the rapid increase of the
first-stage triggers fðw; ρIÞ at low SNRs, the second-stage
costs become dominant. It is also inferred from the figure
that the second stage costs are more for larger w at a
constant ρtarget. We notice from Fig. 7, the total costs
converge to the first stage costs at higher SNRs, and hence,
infer that the first stage leads to the dominant costs for the
hierarchical matched filtering.
From Fig. 7 we observe a reduction in total costs

compared to the baseline for all choices of w complying
to our desired target of ρtarget ≥ 4.0. We notice for
ρtarget ¼ 5.0, the setting with w ¼ 8 achieves a relative
speed up factor of 6, which corresponds to a reduction of
∼83% in the total costs. It is observed that the hierarchical
method performs better with increasing SNR thresholds.
Our method achieves the best computational gain of ∼10
times which is equivalent to a reduction of ∼90% in the
total costs, for ρtarget ¼ 6.0 using w ¼ 16. We have not
tested the scheme for higher values of w, but by extrapo-
lating the obtained results we may infer that the hierarchical
method might perform better with w > 16 for even higher
SNR thresholds.
While estimating the target SNR we use a fixed value of

the recovery ratio = 99% [see Eq. (16)]. To understand the
impact of varying the recovery ratio, we compare the total
costs for three values of the recovery ratio: 0.995, 0.99, and
0.9. We plot the total costs as a function of target SNR for
all averaging window sizes in the Fig. 8. From the plot we
observe that there is no significant change in the total costs
at SNRs ≥ 6 and for smaller windows. But we notice a
further reduction in costs for larger windows, especially at
low SNR values, in exchange for the reduced accuracy. We
infer from Fig. 8 a general trend for the total cost that is
proportional to the recovery ratio; the curve translates to left
or right, respectively. Moreover, the shift increases with the
window size. This suggests that our results are not sensitive
to small changes in the recovery ratio when close to unity.
Depending on the search requirements, the recovery ratio is
another parameter for further tuning performance.
To ensure that higher SNR triggers are recovered using

only ρI, and also to sanity check our method for recovering

FIG. 5. The number of first stage triggers fðω; ρIÞ per second as
a function of ρI for different averaging bin sizes w (shown in the
legend). As w is increased, ρI must be decreased to recover the
same number of triggers f.

FIG. 6. The plot shows different combinations of w and ρI to
achieve a specific target SNR ρtarget without losing any sensitivity.
The choice of w and ρI determines the total cost of the
hierarchical method for the corresponding ρtarget.
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CBC signals. We test our scheme for a population of 1000
CBC injections randomly generated within the case study
region. For every injection, we create separate strains of

128 sec and place signals randomly into simulated data
containing only colored Gaussian noise. The signals
correspond to SNRs ranging between [4.5, 30]. We use
two test cases of ρtarget ¼ 4.0 and 6.0 using w ¼ 16. Using
the appropriate first stage cutoff ρI from Fig. 6 we recover
all the injections that are above the respective test cases of
SNR threshold. Therefore, we verify the reliability of our
method to recover CBC signals using only ρI even at
higher SNRs.
We now make a few key remarks. The total costs of the

hierarchical method are dominated by the first stage at
higher SNR thresholds, which can be reduced by choosing
a bigger w. On the other hand, the second stage costs are
dominant at lower SNRs which grow as w increases. As
seen in Fig. 7, for different SNRs we obtain different
optimal window lengths, e.g., for ρtarget ¼ 5.0 the best
setting is when w ¼ 8. Depending upon the threshold
criterion required for the search the optimal choice of w
can be chosen based on Fig. 7. In the case where the search
demands higher SNR thresholds than shown in the plot, a
larger w may be preferred to further reduce the costs.

2. Observed performance

In this section we measure the performance of matched-
filtering implementations on GPUs to estimate a realistic
improvement compared to the established search pipelines.
For this purpose, we use a widely quoted performance

FIG. 7. The computational cost (in terms of FLOP) for hierarchical filtering ∼7.4 days of simulated data containing only Gaussian
noise against 6250 templates. We show the costs for different (fixed) wwhich are normalized by the direct template filtering cost (orange
line) versus the target SNR. The first stage costs are indicated by dot-dash lines, and the lines with markers correspond to the total costs.
On the right, the vertical axis shows the relative speed-up factor (log scale) compared to the template method. The best speed up for a
desired ρtarget is achieved by choosing w accordingly from this plot.

FIG. 8. Varying the recovery ratio used in the target SNR. We
use three values of the recovery ratio 0.99 (blue), 0.995 (orange),
and 0.9 (green) to test its impact on the total costs. We show the
total relative costs versus the target SNR for four different
window sizes. We notice the total costs are not sensitive for
small changes in the recovery ratio, but can be further fine tuned
using this ratio as a parameter.
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metric—the throughput of a search method—used for deter-
mining the number of templates analyzed in real time.
Consider a data segment ofN secs filtered againstT templates
and the filtering process takes t seconds, then the throughput
would beNT=t templates processed in real time. Once again,
we filter simulated colored Gaussian noise sampled at
2048 Hz for 64 seconds to evaluate this metric.
We benchmark the template method implemented using

the optimized cuFFT library from CUDA. The template
method in situ took roughly 100 ms to filter 64s of data
against 6250 templates per GPU. Therefore, achieving an
in situ performance of 4000 × 103 templates processed in
real time on a single Nvidia GV100. Wewant to remark that
the second-stage reconstruction is not optimized and thus,
we could not benchmark the hierarchical scheme to its full
potential. Considering the costs from Fig. 7, we estimate
the expected peak performance of a completely optimized
hierarchical method, which suggests that the hierarchical
implementation may require only 12 ms to perform the
cuFFT equivalent filtering. Hence, we expect an increase of
roughly an order of magnitude in the throughput (second
row in Table II) if the second stage is fully optimized. Work
is in progress for optimizing the second stage.
We now compare performances using previously quoted

numbers from currently used search pipelines—PyCBC
live [75] and PyCBC offline [51]—as shown in Table II.
The PyCBC search methods are implemented on multiple
CPU cores, whereas ours are on multiple GPUs. Depending
upon the search method the throughput is standardized by
templates processed in real time per core (GPU) for PyCBC
(hierarchical) implementation. We notice from the first
column in Table II that using the latest GPUs gives an
enormous improvement in the throughput. However, the
PyCBC numbers are not quoted from an up to date
hardware implementation and hence, a fair comparison
might require the latest hardware.
Furthermore, we also present commercially motivated

metrics to benchmark the performance, measuring the cost
and energy efficiency of hardware while filtering. These
metrics are computed by normalizing the throughput by the
total cost or the energy consumption of the hardware
respectively. The two metrics for the different search
schemes are listed in Table II.

It is apparent from Table II, that due to GPU’s ability to
perform tasks in a highly parallelized fashion, GPUs can
analyze ∼10× templates more than CPUs for the same
costs. We also notice that considering the same power
consumption a single GPU is equivalent to ∼103 CPU cores
for analyzing templates at a given instant. These metrics
suggest that GPUs are energy and cost efficient in perform-
ing matched filtering, which motivates their application in
CBC searches. In addition, proper implementation of our
hierarchical method will allow further improvement in the
efficiency of the hardware and will help reduce the time
required to perform extensive offline searches.

V. DISCUSSION AND FUTURE PROSPECTS

In this work we have demonstrated, using simulated data
containing Gaussian noise, an efficient way of matched
filtering. We filter using a reduced basis and employ a new
hierarchical method to reduce the reconstructions costs.
Compared to the template based filtering, our method is
∼10× faster than the template-based filtering methods
without losing sensitivity at a threshold SNR ¼ 6, and
∼6× for SNR ¼ 5. The gain in performance increases with
higher SNR thresholds and is currently estimated for a
specific region of the parameter space. Our method is
successful in recovering the original flat search back-
ground, and thus, does not compromise the significance
of detected candidates with SNR above the SNR threshold.
We demonstrate the advantages of implementing

matched filtering methods on the latest GPUs. We compare
the throughput of GPU implementation of matched filtering
with the CPU implementation of current methods.
Benchmarking the in situ performance of template-method
implementation on GPUs, we observe a performance gain
of 2–3 orders in magnitude compared to the PyCBC search
pipelines. Our results indicate a significant improvement in
performance, which may motivate the development of a
fully optimized second-stage reconstruction. In addition,
we present two new metrics to compare the performance of
the matched-filtering implementation on different hard-
ware. Analyzing these metrics suggests that GPUs are more
cost and energy efficient in performing matched filtering
than CPUs. Hence, the utilization of GPUs is encouraged
for current or future searches.

TABLE II. Comparing different implementations of the matched filtering schemes on GPUs (first and second row)
with the established PyCBC schemes on CPUs (third and fourth row). In the second column we show the throughput
for the respective methods, and in the third and fourth columns are the throughput per euro and per watt of power
consumption respectively. The expected peak performance of the hierarchical method is estimated for SNR ¼ 5.0 in
the second row.

Method Throughput Throughput/Euro Throughput/W

cuFFT (in-situ) 4000 × 103 400 14 × 103

Hierarchical scheme (expected) 2300 × 104 2300 82 × 103

PyCBC live 6300 17 31
PyCBC offline 12,000 32 60
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A possible avenue to improve the described method
would be to find better ways of performing the first stage
and a faster implementation of the second stage. In this
work, we use a constant sampling rate for matched filtering.
Multirate sampling can be implemented to further improve
the performance of the hierarchical method for cases where
latency is a strong requirement or the duration of signals is
significantly longer than those tested here.
In the near future, detectors will become more sensitive

and thus the cost-effective hierarchical method proposed
here can be useful for exploring subsolar regimes or
searching for low-frequency long duration signals. Our
method might play a role in reducing the computational
costs for the future 3G detectors where the template bank

size can be at least an order of magnitude larger [48,77]
than the current CBC banks. Furthermore, this method can
also be employed in new regions of the parameter space to
perform computationally intensive searches for sources
exhibiting precession or eccentricity.
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