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1 Introduction

The black hole information paradox [1, 2] is one of the most fundamental problems in con-
temporary physics. Resolving it has been regarded as the crux of understanding quantum
gravity. According to Hawking’s original calculations, the radiation of a black hole behav-
ing like thermal radiation implies that the entanglement entropy outside the black hole is
monotonically increasing. This result contradicts the expectation of the unitarity of the
black hole evaporation process, which is commonly reckoned to be compatible only with
the evolution of radiation entropy satisfying the so-called “Page curve” [3, 4]. Whereas, the
original calculations of the entanglement entropy in [3, 4] depends on a postulate that the
Hilbert space is factorizable. Recent research indicates that the bulk locality is absent in
the gravitational system and the boundary system encodes all the bulk information [5–9].
Without the bulk locality, the whole system can not be divided into the black hole and
Hawking radiation intrinsically. In this scenario, one can only collect the bulk informa-
tion at the asymptotic boundary and then get a constant fine-grained entropy [6, 8, 9].
However, the bulk locality can be restored by gluing a non-gravitational system, which is
called “bath” conventionally, to the black hole [6] with transparent boundary conditions,
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and one can thus calculate the fine-grained entropy of the Hawking radiation absorbed by
the bath. The price of doing so is that the conservation of stress tensor is broken and the
graviton obtains mass [10–13]. Thanks to the break of the stress tensor conservation, in
the AdS/CFT literature, a new approach, known as the island formula, has been applied to
compute the radiation entropy of evaporating black holes and yield the Page curve [14–18].

The island formula somehow stems from the investigations of the quantum correc-
tions [19–21] of the Ryu-Takayanagi (RT) formula [22, 23]. It is well known that the RT
formula, as a significant crystallization of the AdS/CFT correspondence [24–26], provides
a powerful holographic way to evaluate the entanglement entropy of boundary conformal
field theory (CFT). Nevertheless, the RT formula is a classical formula, as was proposed
in [21], when one wishes to count the bulk quantum effects, it should give way to the QES
prescription. The QES extremizes the generalized entropy which is the sum of area and
bulk entanglement entropy. In terms of the prescription of minimal quantum extremal
surface, the island formula for computing the fine-grained entanglement entropy of the
Hawking radiation is proposed as [16]

SRad(A) = min
{
ext
I

[Area(∂I)
4GN

+ Smatter(A ∪ I)
]}

. (1.1)

Here SRad(A) is the generalized entropy for the radiation in the region A, I called island
is a bulk region whose boundary ∂I is the minimal quantum extremal surface. The en-
tanglement entropy from matter part contains the UV divergence which is proportional
to the island area, subject to a UV cut-off scale [27, 28], and the Newton constant GN
must be renormalized [29]. The Smatter corresponds to the finite contribution of the matter
entanglement entropy. The validity of this formula is provided by the bulk locality, thus
the coupling of the non-gravitational bath is necessary [7]. Note that (1.1) can be also
derived from the replica trick for gravitational theories [14, 30].

Although the island formula was originally used to reproduce the Page curve of the
evaporating black hole in Jackiw-Teitelboim (JT) gravity [16, 18], the correlational research
has been extended to many aspects so far. As an incomplete summary, except for the well-
known doubly holographic model as well as the replica wormhole [13, 31–34], for instance,
more on evaporation models and details are explored in [35–40]. Meanwhile, higher dimen-
sional black hole cases are considered in [41–48] as well as higher derivative gravity [49, 50].
Interestingly, the page curve can be realized in the moving mirror scenario [51–53], and
other quantum information or thermodynamic quantities except entanglement entropy are
investigated within island formula [54–62]. As pointed in [63], within the framework of the
so-called “black hole couples thermal baths” model, the island appears outside the horizon
for an external black hole in 2D JT gravity. The radiation entropy approaches 2SBH in
the late time limit. There were several case-by-case studies, to confirm the above behavior
of QES with the approximation that the central charge of thermal bath is smaller than
the inverse of Newton constant associated with a black hole. In this paper, we would like
to systematically study QES for various two-dimensional external black holes including
asymptotically flat and AdS cases, and higher-dimensional cases. In asymptotically AdS
cases, we couple a flat bath at the boundary of the spacetime, while in asymptotically
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flat cases, we couple the flat bath at some finite location and then cut off the spacetime
region outside it. The Page curves in these kind of models display the information trans-
formation from the gravitational system to the flat bath carried by the Hawking radiation.
As mentioned above, coupling a flat bath makes the graviton massive. Unfortunately, the
validity of the QES formula and the entanglement wedge reconstruction in both asymp-
totically flat spacetime and massive gravity theory is still an open question. The island
formula and Page curve have been investigated in asymptotically flat spacetime without
non-gravitational bath [35, 36, 42–48, 64, 65]. In this work, we assume the QES formula
is applicable in the asymptotically flat spacetime with massive graviton. In these generic
gravitational backgrounds, we try to extract universal features for the existence of QES and
islands. We find that once the combination c ·G(D) of central charge and Newton constant
stays within a certain region, the QES and island configuration in such generic gravita-
tional background always exists outside nearby the black hole event horizon, not inside the
horizon. We further do the analytical and numerical self-consistency checks in several GDT.

The organization of this paper is as follows. In section 2, we set up the generic “black
hole couples thermal baths” model and obtain certain constraints in terms of the existence
of QES. To close this section, we do the numerically self-consistency checks and go beyond
the c · G(D) � 1 limit in 2D eternal black holes. The summary and prospect are given in
section 3. Some calculation details and useful formulae are presented in the appendices.

2 Island formula in eternal black holes

2.1 Setup and assumptions

Let us consider a D-dimensional (D ≥ 2) gravitational system, which consists of a non-
extremal asymptotically flat (or AdS) black hole and a thermal bath with which it reaches
thermal equilibrium. The whole system is assumed to be filled with conformal matter with
central charge c, and the black hole’s metric is assumed under the Schwarzschild gauge as
follows

ds2 = −f(r)dt2 + f(r)−1dr2 + r2dΩ2
D−2. (2.1)

Here dΩ2
D−2 is the unit metric on SD−2 and f(r) is allowed to have multiple roots and rh

(f(rh) = 0) represents the largest one (i.e., the location of the outermost horizon). The
black hole’s Hawking temperature and entropy are

TH = κ

2π = f ′(rh)
4π , S = A(rh)

4G(D)
, (2.2)

respectively. Thereinto, κ is surface gravity of the outermost horizon, G(D) is D-
dimensional Newton constant, and A(r) is a model-dependent function which stands for
the area of the (D − 2)-sphere at radius r in D ≥ 3 dimensional Einstein gravity and
represents the value of the dilaton field at r in two-dimensional dilaton gravity [66], etc.
The Penrose diagram of the full system might be depicted as figure 1, and the coordinate
transformations between Kruskal coordinates and Schwarzschild coordinates in the four
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ûv̂

RadL RadR

bL bR

tL tR

II

III

IV

I

1

(a) Asymptotically flat black hole+Flat
thermal baths.

ûv̂

RadL RadR

bL bR

tL tR

II

III

IV

I VIV

4

(b) Asymptotically AdS black hole+Flat
thermal baths.

Figure 1. Penrose diagrams of the whole gravitational system (Left: asymptotically flat black hole
with single horizon and singularity. right: asymptotically AdS black hole with single horizon and
singularity). Each point on diagrams represents a (D − 2)-dimensional sphere. The dotted gray
lines in (a) are boundaries of non-gravitational baths which used to collect the Hawking radiation.
The blue lines stand for collecting region with boundaries bL(R) in a schwarzschild time slice. We
consider the symmetric case that tbL

= tbR
= tb and r∗bL

= r∗bR
= r∗b .

wedges of the Penrose diagram of the black hole are set to following

I : û = κ−1eκ(tR+r∗(rR)), v̂ = −κ−1e−κ(tR−r∗(rR)) (rR > rh), (2.3)
II : û = κ−1eκ(tR+r∗(rR)), v̂ = κ−1e−κ(tR−r∗(rR)) (rR < rh), (2.4)
III : û = −κ−1e−κ(tL−r∗(rL)), v̂ = κ−1eκ(tL+r∗(rL)) (rL > rh), (2.5)
IV : û = −κ−1eκ(tL+r∗(rL)), v̂ = −κ−1e−κ(tL−r∗(rL)) (rL < rh), (2.6)

where r∗ ≡
∫ r f(r̃)−1dr̃ is tortoise coordinate. The transformations above give the length

element in Kruskal coordinates

ds2 = −e2ρdûdv̂ + r2
R(L)dΩ2

D−2

(
e2ρ ≡ f(rR(L))e−2κr∗(rR(L))

)
. (2.7)

As shown in figure (b), we have adopted the customary approach to deal with the
black hole and the thermal bath in the case of asymptotically AdS: D-dimensional flat
spacetimes R1,D−1 will be used as auxiliary thermal baths to be glued to both sides of
the two-sided black hole [63].1 When the spacetime is asymptotically flat, the prevalent

1We follow the prescription in [63] but generalize it to higher-dimensions. Firstly the tortoise coordinates
are normalized by requiring lim

rR(L)→∞
r∗R(L) = 0, such that the right (left) bath corresponds to r∗R(L) > 0.

The Kruskal coordinates thus can be extended to the baths (V and VI):

V : û = −κ−1e−κ(tL−r∗L), v̂ = κ−1eκ(tL+r∗L) (r∗L > 0),

VI : û = κ−1eκ(tR+r∗R), v̂ = −κ−1e−κ(tR−r∗R) (r∗R > 0).

Meanwhile, we assume that the two-sided black hole is truncated at rR = Λ and rL = Λ respectively, and
the metric of the right (left) bath is set to following

ds2 = f(Λ)
(
−dt2R(L) + (dr∗R(L))2)+

(√
f(Λ)r∗R(L) + Λ

)2
dΩ2

D−2

to ensure that two metrics (black hole and bath) are continuously connected at the cut-off. Note that this
metric is flat.
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method is to select the region far away from the black hole as the thermal bath [35, 64].
As discussed in the introduction, the bulk locality is absent without a flat bath, and as
a result the island formula is inapplicable. To solve this problem, we couple a flat bath
to collect Hawking radiation at a certain Schwarzschild coordinate r → rb+, as shown in
figure (a). Note that the dependence on the character of the bath in equation (2.8) is only
the location rb and the Weyl factor W (rb) of b. With the benefit of the continuity of the
metric at rb, these two quantities of our models are the same as those models without flat
bath [42–47, 64, 65, 67].

It is also important to emphasize that, when D ≥ 3, the s-wave approximation [42, 68]
has been taken into account in the calculations of Smatter below. The entanglement entropy
of matter between two shells S1 and S2 becomes

Smatter(S1, S2) = c

6 log d2(S1, S2)

= c

6 log
∣∣∣∣(û(S1)− û(S2)

)(
v̂(S1)− v̂(S2)

)√
W(S1)W(S2)

∣∣∣∣ , (2.8)

when the quantum state of total system is vacuum in (û, v̂) coordinates. In the above,
W (S1) and W (S2) are warped factors of the metric at S1 and S2 under the (û, v̂) coordi-
nates, respectively.

2.2 Without island, the radiation entropy diverges linearly

In this section, we evaluate the entanglement entropy of the Hawking radiation at late
times in the missing island construction. It shows that “information loss” is a common
phenomenon for black holes we are considering.

Without island, the only contribution of (1.1) is coming from the collecting regions of
the Hawking radiation (see RadL and RadR in figure 1). The collecting region on the right
(left) is the region outside the shell r∗R(L) = r∗bR(L)

in time slices of (tR(L), r
∗
R(L)) coordinates

and we shall choose the symmetric configuration r∗bL = r∗bR = r∗b and tbL = tbR = tb
in the following calculations. Assuming that the state of total system is vacuum in (û, v̂)
coordinates, The formula can be further reduced to the entanglement entropy of the interval
[bL, bR] by (2.8), that is

SRad = c

6 log
∣∣∣(û(bL)− û(bR)

)(
v̂(bL)− v̂(bR)

)√
W (bL)W (bR)

∣∣∣, (2.9)

where

W (bR(L)) =

−f(rb)e−2κr∗b , for asymptotically flat black holes,
−f(Λ)e−2κr∗b , for asymptotically AdS black holes.

(2.10)

Simple calculation shows that

SRad =


c
6 log

(
4κ−2f(b) cosh2 κtb

)
, for asymptotically flat black holes

c
6 log

(
4κ−2f(Λ) cosh2 κtb

)
, for asymptotically AdS black holes


' c

3κtb + time independent terms. (2.11)

– 5 –



J
H
E
P
0
5
(
2
0
2
2
)
0
4
7
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(b) Asymptotically AdS black hole with an
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Figure 2. Penrose diagrams with islands (Left: asymptotically flat black hole with single horizon
and singularity. right: asymptotically AdS black hole with single horizon and singularity). The
pink lines are islands whose boundaries are outside the horizon. The dotted gray lines in (a)
are boundaries of collecting region for the Hawking radiation. The blue lines stand for collecting
region with boundaries bL(R) in a Schwarzschild time slice. We consider the symmetric case that
tbL

= tbR
= tb, taL

= taR
= ta, raL

= raR
= ra, r∗bL

= r∗bR
= r∗b .

Notice that (2.11) holds for all black holes we are considering. The linear growth of
radiation entropy when the island contribution is missing obviously contradicts the Page
curve and thus leads to the information paradox for the black hole.

2.3 Island emerges outside the horizon and saves the entropy bound

In this section, we shall reconsider the entropy of the Hawking radiation by counting the
contribution of the island. It is easy to verify that the equation determining the location of
QES has no solution inside the horizon. Therefore the basic configuration is set as shown
in figure 2. As shown in figure 2, we are continuing with the symmetric structure used in
the previous section. The two boundaries of island are marked aL and aR respectively, and
taL = taR = ta, raL = raR = ra. After taking s-wave approximation for D ≥ 3, it shows
that the entanglement entropy of conformal matter in {Rad∪ I} can be well approximated
by twice of the entanglement entropy in the single interval [aR, bR] when tb and ta →∞ [69]

SRad = A(aR)
2G(D)

+ c

3 log
∣∣∣∣(û (aR)− û (bR)

)(
v̂ (aR)− v̂ (bR)

)√
W (aR)W (bR)

∣∣∣∣, (2.12)

where W (aR) = −f(ra)e−2κr∗a and W (bR) is (2.10). Eq. (2.12) can be expressed in (tR, rR)
coordinates

SRad= c

3log
∣∣∣∣κ−2(f(ra)f(rb)e−2κ(r∗a+r∗b )) 1

2

(
2eκ(r∗a+r∗b )cosh[κ(tb−ta)]−(e2κr∗a+e2κr∗b )

)∣∣∣∣
+A(ra)

2G(D)
, (2.13)

for asymptotically flat black holes. f(rb)→f(Λ) for asymptotically AdS black holes.

– 6 –



J
H
E
P
0
5
(
2
0
2
2
)
0
4
7

It’s easy to find ta should be equal to tb when we extremise SRad with respect to ta, then
we arrive at a simpler expression compared to (2.13),

SRad= A(ra)
2G(D)

+2c
3 log

[
eκr∗b−eκr∗a

κ

]
+ c

6log
[
f(ra)f(rb)e−2κ

(
r∗a+r∗b

)]
, (2.14)

for asymptotically flat black holes. f(rb)→f(Λ) for asymptotically AdS black holes.

Taking partial derivative of SRad with respect to ra, we meet the algebra equation of
determining the location of QES (ra here)

∂raSRad = A′(ra)
2G(D)

− 2c
3

κ

f(ra)
(
eκ(r∗

b
−r∗a) − 1

) + c

6
f ′(ra)− 2κ
f(ra)

= 0, (2.15)

which is the same for both asymptotically flat black holes and asymptotically AdS black
holes. There are some model-independent properties of the solution that can be extracted
from (2.15), notwithstanding this algebra equation of ra may be precisely solved only after
f(r) and A(r) are given. The key point essentially comes from the fact that the near-
horizon geometry is common to all non-extreme black holes. To show them clearly, let’s
rewrite (2.15) as follows

Y (r) ≡ 3A′(r)
2 ·

(
2eκr∗(r)
f(r)

(
κ

eκr∗b − eκr∗(r)

)
+ 2κ− f ′(r)

2f(r)

)−1

= c ·G(D), (2.16)

where the subscript a has been omitted for brevity. The zero points of ∂raSRad now become
the points of intersection between the horizontal line y = c ·G(D) and the curve y = Y (r)(
rh < r < rb for asymptotically flat and rh < r < Λ for asymptotically AdS

)
on the r − y

plane, as shown in figure 4. Let’s focus on the behavior of Y (r) near rh. A rough estimation
can be made since f(r) ≈ 2κ(r − rh) and r∗(r) ≈ 1

2κ log
[
r
rh
− 1

]
for r & rh. Y (r) can thus

be approximated to

Y (r) ≈ 3
2A
′(rh)

(
X · r−1

h e−κr∗b
(
r

rh
− 1

)− 1
2
− f ′′(rh)

4κ

)−1
∼
√
r

rh
− 1, (2.17)

where X is an undetermined constant. The approximate behavior of function Y near rh is
sufficient for us to draw two following conclusions:

Conclusion 1 There must be a quantum extremal surface located in the near-horizon re-
gion outside the black hole,

ra = rh +
8κ(c ·G(D))2

9A′(rh)2 exp
{
− 2κr∗b − 2ρ(rh)

}
+O

((
c ·G(D)

)3)
, (2.18)

when c ·G(D) � 1.

Conclusion 2 There has to be an upper bound on c ·G(D) to have an island configuration.
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Black hole A(r) f(r) ra−rh≈

Witten(CGHS) e2λr 1−e−2λ(r−rh) 2c2G2
(2)

9λ

(
e2λ(rh+rb)−e4λrh

)−1

JT r
L

r2−r2
h

L2
2c2G2

(2)L
2

9rh e−2 rh
L2 r
∗
b

BTZ 2πr r2−r2
h

L2
c2G2

(3)
18π2rh

e−2 rh
L2 r
∗
b

4d-Schwarzschild 4πr2 1− rh
r

c2G2
(4)

144π2r2
h

(rb−rh)e
1− rb

rh

4d-non-extremal RN 4πr2 (1− r+
r

)(1− r−
r

) c2G2
(4)

144π2r2
+(rb−r+)

(
rb−r−
r+−r−

) r2
−
r2

+ e
− (rb−r+)(r+−r−)

r2
+

Table 1. Approximations of location of quantum extremal surface for several black holes.

The second conclusion can be a direct corollary to the boundedness theorem, since Y (r) is a
continuous function on the closed interval [rh, rb] ([rh,Λ] for asymptotically AdS).2 While
for the conclusion 1, firstly, the approximate behavior of Y guarantees that when c ·G(D) �
1 there must be a point of intersection near rh, which is graphically obvious.3 Secondly, the
approximate formula (2.18) is obtained by Taylor expansion of the local inverse function
of Y near rh.4 As listed in table 1, we calculate the approximate locations of QESs for
several common black holes by (2.18) and compare them with existing results [42–44, 64, 65,
67]. Note that those results are calculated in the models with gravitational bath which is
different from our models. However, the coupling of a non-gravitational bath doesn’t affect
the result mathematically as discussed in the last subsection. Explicitly, our results coincide
with qualitative results in literature [64], and exactly match the quantitative results in [42].5

Substituted the approximate solution (2.18) into (2.14), the late-time radiation entropy
after including the island contribution can be obtained as6

SRad[with island] = A(rh)
2G(D)

+ c

3 logd2(rh, rb)−
4κc2G(D)
9A′(rh) exp

{
−2κr∗b −2ρ(rh)

}
+O(c3G2

(D))

= 2SBH +O(c) (c ·G(D)� 1). (2.19)

Note that the above approximation formula for the late-time radiation entropy also coincide
2It should be emphasized that conclusion 2 is based on the fact that we completely ignore the backreaction

of Hawking radiation, and we reinvestigate the effect of backreaction on island configuration in section 2.5.
3One may worry that we may miss some other points of intersection. Indeed, for asymptotically flat

black holes, it’s not hard to find that there is another intersection near rb, which we call ra′ . However, when
considering the constraint that c · G(D) � 1, the leading order contribution of the island formula comes
from the area term, and since ra′ > ra, we have SRad(ra′) > SRad(ra). The root near rb is thus discarded.

4For details, please refer to appendix A.
5In addition, eq. (2.18) can also reproduce the results in [44, 67] and differ by a scale factor from those

of [43, 65].
6Similar to (2.18), the derivation is a little tricky, please refer to appendix B for details.
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ttPage ∼ 6SBH
cκ

SRad[with island] ≈ 2SBH(
c ·G(D) ≪ 1

)

SRad

SRad[without island] ≈ cκ
3 t

1

Figure 3. The Page curve for D-dimensional non-extremal spherically symmetric black holes.
When the contribution of the island is not considered, the late-time radiation entropy increases
linearly (red dashed line); after considering the island’s contribution and the condition c ·G(D) � 1,
the late-time radiation entropy is approximatively saturated at 2SBH (blue solid line).

with results in [42, 67]. Based on above results, we can reproduce the Page curve for generic
non-extremal spherically symmetric black holes as figure 3. Under the constraint c ·G(D) �
1, the estimation of the Page time also has a concise and uniform form, tPage ∼ 6SBH

cκ = 3SBH
πcTH

for all black holes that meet the requirements. Note that, as shown in the next section,
once the condition c ·G(D) � 1 is broken, the late-time radiation entropy after considering
the island contribution does not saturate near 2SBH, but has a significant deviation. This
suggests that the estimation for the Page time will also change.

2.4 Go beyond c · G(D) � 1: examples in two-dimensional dilaton gravity

In the previous section, we show that when c·G(D) � 1, there must be a QES located in the
near-horizon region outside the black hole, and the late-time radiation entropy given by it is
saturated near 2SBH (with sub-leading corrections of order c). It is natural to ask how does
the island change when c ·G(D) � 1 is no longer satisfied. One can expect that the location
of the QES might be model-dependent and the late-time radiation entropy may deviate
from 2SBH significantly. In this section, we shall numerically solve the equation (2.15) in
eternal black hole solutions of two-dimensional GDT to look at the change of the island as
c ·G(2) varies.

2.4.1 Eternal black holes in GDT

The action of the GDT in 2 dimensions is given by [66]

IGDT = 1
16πG(2)

∫
M

√
−g
(
φR+U(φ)(∇φ)2+V (φ)

)
d2x+ 1

8πG(2)

∫
∂M

√
−h(φK−Lc.t.)dx.

(2.20)
Note that in the above equation, U(φ) and V (φ) are arbitrary functions of dilaton field
φ. The boundary term in the action involving the extrinsic curvature K and a countert-
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erm Lc.t.
7 plays two main roles [71]: 1) It makes the variational properties of the action

compatible with the semi-classical approximation of the path integral. 2) It renders the
Euclidean on-shell action finite and gives the correct black hole thermodynamics.

Given proper functions U and V , one can in principle obtain a series of physically
reasonable solutions. Notably, a family of eternal black hole solutions have been given
in [66, 71]: under the Schwarzschild gauge of the metric and the time-independent presup-
position of the dilaton field

ds2 = −f(r)dt2 + f(r)−1dr2, φ = φ(r), (2.21)

the equations of motion corresponding to (2.20)

∂φU(φ) (∇φ)2 + 2U(φ)∇2φ− ∂φV (φ) = R, (2.22)

U∇aφ∇bφ−∇a∇bφ+ gab

[
∇2φ− 1

2U(φ) (∇φ)2 − 1
2V (φ)

]
= 0 (2.23)

can be solved as

r =
∫ φ

eQ(φ′)dφ′ + C, (2.24)

f(r) ≡ F
(
φ(r)

)
=
(
W (φ)− 16πG(2)M

)
eQ(φ), (2.25)

where

Q(φ) = Q0 −
∫ φ

U(φ′)dφ′, (2.26)

W (φ) = W0 +
∫ φ

V (φ′)eQ(φ′)dφ′. (2.27)

Here C, Q0, W0 are integration constants and M is the mass parameter8 of the black
hole as shown in appendix C to preserve the thermodynamic relation with the black hole
temperature T and entropy S,

T = β−1 = f ′(rh)
4π = ∂φW

4π

∣∣∣∣
φh

(
φh ≡ φ(rh)

)
, (2.28)

S = φh
4G(2)

, (2.29)

where rh means the location of the outermost horizon.

2.4.2 Numerical results

To show the behavior of the QES and its corresponding late-time radiation entropy with
respect to c ·G(2), we mainly focus on the following concrete cases: (Weyl-related) Witten

7The exact form of Lc.t. depends on the selection of U(φ) and V (φ), please refer to appendix C for
details. One can also refer to [70] for details.

8M is also the conserved charge associated with the Killing vector ∂t and coincides with the ADM mass
if lim
φ→∞

W (φ)eQ(φ) = 1.
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Black hole U(φ) V (φ) φ(r) f(r)

Witten (CGHS) φ−1 4λ2φ e2λr 1− e−2λ(r−rh)

Weyl-related Witten (CGHS) 0 4λ2 2λr 2λ(r − rh)

Schwarzschild
(
2φ
)−1 2λ2 λ2r2 1− rh

r

Weyl-related Schwarzschild 0 2λ2φ−
1
2 2λr

√
2λr −

√
2λrh

Black hole attractor 0 4λ2φ−1 2λr log r
rh

Weyl-related black hole attractor φ−1 4λ2 e2λr 2λe−2λr(r − rh)

JT 0 2
L2φ

r
L

r2−r2
h

L2

AdS-Schwarzschild
(
2φ
)−1 2λ2 + 6

L2φ λ2r2 (r−rh)(r2+rhr+r2
h+L2)

L2r

Table 2. Serval eternal black hole solutions in two-dimensional GDT.

(or CGHS) black hole [72–74], (Weyl-related) Schwarzschild black hole [75], (Weyl-related)
black hole attractor [76], JT black hole [77, 78], and AdS-Schwarzschild black hole [79, 80].
The first six black holes are (asymptotically) flat9 and the prefix “Weyl-related” means
that the metric of the theory is related to the original theory by a Weyl transformation
(see appendix D). The metrics, dilaton profiles and corresponding U , V functions are
summarized in table 2.

We first draw Y -functions (2.16) for black holes mentioned above. As demonstrated in
figure 4, for (asymptotically) flat black holes, Y (r) is a concave function that is continuous
and consistently greater than or equals to 0 on the closed interval [rh, rb] (0 is evaluated at
two endpoints). This indicates that when 0 < c · G(2) < max

rh<r<rb
[Y (r)], there must be two

roots, one is closer to the horizon (denoted as a) and the other is closer to the boundary of
the collecting region (denoted as a′). By comparing the late-time radiation entropy given
by the two roots, as shown in figure 5, a′ is discarded due to the larger entropy given.
When c ·G(2) = max

rh<r<rb
[Y (r)], a coincides with a′. When c ·G(2) > max

rh<r<rb
[Y (r)], eq. (2.15)

has no solution and the island structure is thus destroyed, as stated in conclusion 2. The
situation will be changed for (asymptotically) AdS black holes. As shown in figure 6, Y (r)
is monotonically increasing from zero on the interval [rh,Λ], which indicates that eq. (2.15)
has one and only one root if and only if 0 < c · G(2) ≤ Y (Λ). Therefore, as stated in
conclusion 2, for (asymptotically) AdS black holes, c · G(2) has an upper bound after the
truncation is given. For JT and AdS-Schwarzschild black holes this is given by the value

9The curvature for the Weyl-related Witten (CGHS) black hole is zero.
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(a) Y (r) for Witten (CGHS) black hole.

Y (r)

c ·G2

10 20 40 60 80 100
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

r

y

(rh) (rb)

(b) Y (r) for Weyl-related Witten (CGHS)
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(c) Y (r) for Schwarzschild black hole.
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(d) Y (r) for Weyl-related Schwarzschild
black hole.

Y (r)

c ·G2

10 20 40 60 80 100
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

r

y

(rh) (rb)

(e) Y (r) for black hole attractor.
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Figure 4. Y -functions (2.16) for (asymptotically) flat black holes. We draw these diagrams by
setting rh = 10, λ = 10−2, rb = 10rh.
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Figure 5. The ratio of the late-time radiation entropy given by the two roots of (2.15) for
(asymptotically) flat black holes. a represents the root near rh and a′ represents the root near rb.
The numerical result shows that the root near the horizon will always be the boundary of island, if
there is one.
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(b) Enlarged view of figure (a) at rh.
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(c) Y (r) for AdS-Schwarzschild black hole.
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(d) Enlarged view of figure (c) at rh.

Figure 6. Y -functions (2.16) for (asymptotically) AdS black holes. We draw these diagrams by
setting rh = 10, L = 100, r∗b = 0, Λ = 10rh (λ = 10−2 for AdS-Schwarzschild).

of Y (r) at cut-off. It can be seen that no matter it is asymptotic flatness (figure 4) or
asymptotic AdS (figure 6), the behavior of Y -function near rh is similar to that of the
square root function

√
r
rh
− 1, which is consistent with the previous analysis.

By solving the intersection of y = Y (r) and y = c ·G(2) numerically, we obtain a series
of curves of rQES with respect to c · G(2), see figure (a),(b) for (asymptotically) flat black
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Figure 7. Curves of the QESs and their corresponding late-time radiation entropy with respect to
c ·G(2) (for asymptotically flat black holes). Diagrams are plotted with setting rh = 10, λ = 10−2,
rb = 10rh, G(2) = 1/8π.

holes and figure (a),(b) for (asymptotically) AdS black holes. The corresponding late-time
radiation entropy for (asymptotically) flat and AdS black holes are plotted as figure (c),(d)
and figure (c),(d) respectively.

According to the results in figure 7 and 8, we may summarize the behavior of the
quantum extremum surface and its corresponding late-time radiation entropy with respect
to c · G(2): when c · G(2) � 1 (or c · G(2) ∼ 0), the location of the QES and the late-time
radiation entropy are described by (2.18) and (2.19) respectively. It results in the QES
located in the near-horizon region of the black hole and is a square function of c · G(2),
and the radiation entropy is approximately equal to two times the black hole entropy and
is a linear function of c. When c · G(2) gradually increases, the QES will gradually move
away from the horizon, and the radiation entropy will obviously deviate from the black
hole entropy. When c · G(2) grows beyond a certain limit, assuming that rb (or Λ for
asymptotically AdS black holes) has been fixed, the equation governing the location of the
QES (2.15) will have no solution and the island configuration will be destroyed.
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Figure 8. Curves of the QESs and their corresponding late-time radiation entropy with respect to
c ·G(2) (for asymptotically AdS black holes). Diagrams are plotted with setting rh = 10, L = 100,
r∗b = 0 Λ = 10rh, G(2) = 1/8π (λ = 10−2 for the AdS-Schwarzschild black hole).

2.5 Island configuration with the backreaction

In the last subsection, we prove that there should be an upper bound on c ·G(D) to have an
island configuration in the asymptotically flat and AdS spacetime. When c ·G(D) exceeds
this upper bound, the island configuration will disappear. This issue has not been discussed
in previous literatures [36, 64]. However, the calculation in the last subsection is based on
the assumption that the c ·G(D) is small enough so that the backreaction of the Hawking
radiation on the background is negligible. When c · G(D) approaches the upper bound,
the effect of Hawking radiation on the background will become significant. In this section,
we will reconsider the conditions under which island configuration appears with the finite
c · G(2) effect in GDT. The island configuration with the backreaction of the Hawking
radiation in JT gravity has been discussed in [62].

Consider the two-dimensional dilaton gravity coupled with conformal matter, the Ein-
stein equations can be rewritten as the following formula

T φab + 〈Ψ|Tχab|Ψ〉 = 0, (2.30)

where T φab is the stress-energy tensor of dilaton φ and Tχab is the stress-energy tensor of
the conformal matter field. The expression of the second term depends not only on the
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background metric but also on the quantum state |Ψ〉. The general form of 〈Ψ|Tχab|Ψ〉 can
be written as

〈Ψ|Tχ±±|Ψ〉 = − c

12π
[
(∂±ρ)2 − ∂2

±ρ
]

+ 〈Ψ| : Tχ±± : |Ψ〉,

〈Ψ|Tχ±∓|Ψ〉 = c

48π

(
4∂+∂−ρ+ λP

L2 e
2ρ
)
, (2.31)

where : Tχab : is the normal order of Tχab and ρ is the Weyl factor of metric in the conformal
gauge ds2 = e2ρdx+dx−. 〈Ψ| : Tχab : |Ψ〉 equals to the total stress-energy tensor Tχab in the lo-
cally inertial frame and relates its value in the other coordinates by the local conformal map

: Tχ±±(x±) :=
(
dy±

dx±

)2

: Tχ±±(y±) : − c

24π{y
±, x±}, (2.32)

where {y±, x±} is the Schwarzian derivative. It is easy to show that the stress-energy
tensor defined in (2.31) gives the correct trace anomaly and the tensor transformation
law [81]. The stress-energy tensor defined above can be derived directly from the so-called
Polyakov effective action [82]

SPoly = − c

24π

∫
M

d2x
√
−g

(
χR+ (∇χ)2 − λP

L2

)
− c

12π

∫
∂M

dx
√
−hχK. (2.33)

In this work, we study the island configuration in the eternal black hole geometry. As
a result, we assume that all the undetermined functions in the equations of motion are
the functions of spatial coordinate x ≡ x++x−

2 . In the conformal gauge, the equations of
motion of the generalized dilaton theories with the Polyakov effective action are

e2ρ∂φV (φ)− 2ρ′′ − 2U(φ)φ′′ − ∂φU(φ)(φ′)2 = 0,
1
4U(φ)(φ′)2 + 1

2ρ
′φ′ − 1

4φ
′′ =

2cG(2)
3

[1
4ρ
′′ − 1

4(ρ′)2 − τ±
]
, (2.34)

V (φ)
4 e2ρ − 1

4φ
′′ = −

cG(2)
6

[
λ

L2 e
2ρ − ρ′′

]
.

where prime means the derivative with respect to x and τ± is the average of the
〈Ψ| : Tχ±± : |Ψ〉 in some state |Ψ〉. As discussed in [63], we choose the state of the matter
field as the Hartle-Hawking state which means that the average of the normal order of the
stress-energy tensor vanishes in the Kruskal coordinates {û, v̂},

〈HH| : Tχûû : |HH〉 = 〈HH| : Tχv̂v̂ : |HH〉 = 0. (2.35)

Obviously, we can get the expressions of 〈HH| : Tχab : |HH〉 in other coordinates by
the conformal transformations (2.32) easily. By looking at the equations (2.34), we
find that the background metric in JT gravity and Weyl related Witten black hole are
unaffected under the backreaction of the matter field. In these cases, we can solve the
full backreaction equations (2.34) analytically. For the other cases, we will solve the
equations (2.34) in the linear order of c · G(2). Note that the equations (2.34) satisfy the
tensor transformation law, so we shall solve it in the Schwarzschild gauge for simplicity.
The undetermined function in this gauge are φ(r) and f(r) where f(r) = e2ρ(r∗(r)).
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(b) ∂raSRad for Weyl-related Witten (CGHS) black hole.

Figure 9. rh = 10, rb = 200, λp = L = 1, λ = 10−3 for Witten black hole and rh = 10, rb = 100,
λp = L = 1, λ = 10−2 for Weyl-related Witten black hole.

2.5.1 Numerical results

For the case of the Weyl-related Witten black hole, the metric is unaffected and the dila-
ton field can be solved easily. For the case of the Witten black hole, we expand the
equations (2.34) at the linear order of c · G(2) and choose the boundary condition of the
perturbative field as

lim
r→rh

f1(r) = 0; lim
r→rh

∂rf1(r) = 0;

lim
r→∞

f1(r) < f0(r); lim
r→∞

φ1(r) ≤ φ0(r), (2.36)

where f1(r) and φ1(r) are the corrections up to the linear order of c · G(2) of the metric
function f(r) and dilaton φ(r), and f0(r) and φ0(r) are original solutions without including
the backreaction, namely we have

f(r) = f0(r) + c ·G(2)f1(r) +O
(
c2 ·G2

(2)
)
, (2.37)

φ(r) = φ0(r) + c ·G(2)φ1(r) +O
(
c2 ·G2

(2)
)
. (2.38)

We plot the extreme value conditions (2.15) of the entanglement entropy in the model
of Witten black hole and Weyl-related Witten black hole in figure 9a and figure 9b re-
spectively. For the Weyl-related Witten black hole, the solutions of f1(r) and φ1(r) are
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Figure 10. (a). rh = 1, rb = 10, λp = λ = L = 1 for Schwarzschild black hole, (b). rh = 1,
rb = 10, λp = λ = L = 1 for Weyl-related Schwarzschild black hole, (c). rh = 1, rb = 10,
λp = λ = L = 1 for black hole attractor, (d). rh = 1, rb = 10, λp = L = 1 and λ = 0.1 for
Weyl-related black hole attractor.

non-perturbative so that the amplitude of c · G(2) doesn’t have to be small. We find that
the island configuration disappears when c ·G(2) exceeds some upper bound from figure 9b.
For the Witten black hole, the amplitude of c ·G(2) must be smaller enough to make sure
that the perturbation method is applicable. We show in the figure 9a that, for the is-
land configuration, there indeed exists an upper bound of c ·G(2) which is finite and small
enough. Specifically speaking, for the parameter chosen as rh = 10, rb = 200, λp = L = 1,
λ = 10−3, the upper bound of c ·G(2) is slightly more than 0.15.

For the case of Schwarzschild black hole, Weyl-related Schwarzschild black hole, black
hole attractor and Weyl-related black hole attractor, the boundary condition (2.36) can not
be satisfied, or more specifically, the linear correction terms f1(r) and φ1(r) are dominant
and tend to infinity at the asymptotic boundary. However, in order to collect the Hawking
radiation, we cut off the bulk geometry at rb and couple it with flat baths. The linear cor-
rection of the metric function f1(r) and dilaton φ1(r) are finite at rb and can be adjusted
small enough when we choose the parameter in the theory appropriately. We display the
root of the equation ∂raSRad = 0 in figure 10a–10d. It is obvious that there must be a QES
near the event horizon which is in agreement with the result asserted in conclusion 1. Un-
fortunately, We exhaust the parameter space and find that the equation (2.15) always has a
root when the c ·G(2) is small enough to make sure the perturbation method is applicable.

For the asymptotically AdS black hole, we show that, without the backreaction, the
island configuration exists if and only if 0 < c ·G(2) ≤ Y (Λ) in figure 6. In this subsection,
we reconsider this situation with the backreaction of the matter field. For the JT gravity,
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Figure 11. Y (r) for AdS-Schwarzschild black hole with the backreaction. The parameters are
choosen as rh = λp = λ = L = 1, Λ = 10rh.

the metric and dilaton field is not changed with the matter field when we choose λP = 1
which has been discussed in [62, 83]. As a result, the condition of the existence of the
island configuration is not changed in JT gravity. For the AdS-Schwarzschild black hole
model, we solve the equations (2.34) at the linear order of c ·G(2) with the same boundary
conditions (2.36). We display our result in the figure 11. From the figure 11, we see that the
configuration of the function Y (r) is not sensitive to changes in c ·G(2) and the conclusion
demonstrated in the figure 6 remain unchanged.

3 Conclusions and prospect

In this paper, we systematically study the QES associated with the Hawking radiation
collected by a non-gravitational bath for general D-dimensional (D ≥ 2) asymptotically
flat (or AdS) eternal black holes using the island formula. We focus on the non-extremal
black hole with spherical symmetry. In this case, the near-horizon geometry is common to
all non-extreme black holes and we can use the s-wave approximation in higher dimensional
(D ≥ 3) calculating of the matter field entropy. We have obtained the following conclusions:

• When c · G(D) � 1, thanks to the common near horizon structure, there must be a
quantum extremal surface (QES) located in the near-horizon region outside the black
hole,

rQES = rh +
8κ(c ·G(D))2

9A′(rh)2 exp
{
− 2κr∗b − 2ρ(rh)

}
+O

(
(c ·G(D))3), (3.1)

and the late time radiation entropy saturates 2SBH. The formula (3.1) is compatible
with various known results in [42–44, 64, 65, 67] and the late time behaviour of the
radiation entropy is in good agreement with the previous studies [14–18].

• We go beyond the c · G(D) � 1 limit and scan the parameter space numerically to
analyze the location of the QES and its corresponding radiation entropy.

1. When we ignore the backreaction of the matter field on the background metric,
it can be shown generally by the boundedness theorem that there must be an
upper bound on c ·G(D) to have an island configuration.
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2. We consider the backreaction of the matter field on the background metric. In
the case of Witten black hole and Weyl-related Witten black hole, we can show
that for the finite by small enough c ·G(D) there is an upper bound on c ·G(D)
to have an island configuration.

• Besides, the numerical results manifest that the location of the QES is just out of the
event horizon when c ·G(D) � 1. As the value of c ·G(D) increases, the QES gradually
goes away from the black hole event horizon and the radiation entropy bound will
obviously deviate from 2SBH.

In the section 2.5.1, we discussed the island configuration with the backreaction. Ex-
cept for the JT gravity and Weyl-related Witten black hole model, we can only get the
solution at the linear order of c ·G(D). It is important to obtain the full backreaction solu-
tion for investigating the condition of the existence of the island configuration. We hope we
can resolve this problem numerically in the next step. It will be interesting to extend our
analysis to the near extremal black hole and black hole without spherical symmetry, such
as the planar or axisymmetric black hole. Another thing to reconsider is the gravitational
effects of the bath in the asymptotically flat black hole because the thermal bath in this
case is a gravitational system intrinsically. In asymptotically AdS couple to a gravitating
bath, one finds that there is a new saddle point of the bulk geometry in the replica calcu-
lation, namely a wormhole connecting the black hole and the gravitational bath [84]. After
the Page time, this configuration is the dominant contribution and this phenomenon can
be regarded as a realization of ER=EPR [85]. Besides, it is important to proof the QES
formula still works in asymptotically flat spacetime with or without some non-gravitational
reference system. The most interesting future problem is to see how an island is generated
dynamically after the page time during the black hole evaporation process. To our knowl-
edge, one can qualitatively reproduce the page curve behavior in several asymptotically flat
(or AdS) eternal black holes. However, they can not tell how the black hole information
is restored in a concrete way. We are ignorant of the details of the black hole evaporation
process even in the semi-classical level. To dynamically generate the island will be an
important aspect to reveal the mystery of the black hole information paradox.
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A Derivation of eq. (2.18)

In this appendix, we present the details of the derivation of (2.18). The key is to find the
second derivative of the local inverse of Y around rh (the first derivative is zero), which

– 20 –



J
H
E
P
0
5
(
2
0
2
2
)
0
4
7

can be expressed in terms of the derivative of the primitive function(
Y −1

)′′ ∣∣∣∣
Y (rh)

= − Y ′′

(Y ′)3

∣∣∣∣
rh

. (A.1)

Firstly, it’s useful to set Y = 3
2A
′Z−1, and thereinto,

Z ≡ αβ + γ, α ≡ 2eκr∗(r)
f

, β ≡ κ

eκr∗b − eκr∗(r)
, γ ≡ 2κ− f ′

2f . (A.2)

Z is blow up when r → rh, as is evident from the following limits

lim
r→rh

α ∼ lim
r→rh

1√
r
rh
− 1

=∞, lim
r→rh

β = κe−κr∗b ≡ βh, lim
r→rh

γ = −f
′′(rh)

f ′(rh) ≡ γh. (A.3)

Let’s write down the derivative of Y

Y ′ = 3
2A
′′Z−1 − 3

2A
′ Z
′

Z2 , Y ′′ = 3
2A
′′′Z−1 − 3A′′ Z

′

Z2 −
3
2A
′
(
Z ′′

Z2 − 2(Z ′)2

Z3

)
, (A.4)

where

Z ′ = α′β + αβ′ + γ′

= αf−1β(κ− f ′) + α2β
2

2 + f−1
(
− f ′′

2 − γf
′
)
, (A.5)

and

Z ′′ = α′′β + 2α′β′ + αβ′′ + γ′′

= αf−2β(κ− f ′)(κ− 2f ′)− αf−1βf ′′ + α2f−1β2(κ− f ′)

+ α2f−1β2 (κ− f ′)
2 + α3β

3

2 + f−2
(
f ′f ′′ + 2γ(f ′)2

)
− f−1

(1
2f
′′′ + γf ′′

)
. (A.6)

In the above we have used the derivatives of α, β, and γ up to the second-order

α′ = αf−1(κ− f ′), α′′ = αf−2(κ− f ′)(κ− 2f ′)− αf−1f ′′, (A.7)

β′ = α
β2

2 , β′′ = αf−1β2 (κ− f ′)
2 + α2β

3

2 , (A.8)

γ′ = f−1
(
− f ′′

2 − γf
′
)
, γ′′ = f−2

(
f ′f ′′ + 2γ(f ′)2

)
− f−1

(1
2f
′′′ + γf ′′

)
. (A.9)

According to (A.5)–(A.6) and the limits of α, β, and γ, we have

Z ′

Z2 = e−κr∗(r)
2 · β(κ− f ′) +O(α−1)

β2 +O(α−1) , (A.10)

Z ′′

Z2 = e−κr∗(r)
2f · β(κ− f ′)(κ− 2f ′) +O(α−1)

β2 +O(α−1) , (A.11)

(Z ′)2

Z3 = e−κr∗(r)
2f · β

2(κ− f ′)2 +O(α−1)
β3 +O(α−1) , (A.12)
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which leads to the following two limits

lim
r→rh

feκr∗(r)Y ′′(r)

= −3
2A
′(rh) lim

r→rh

(1
2 ·

β(κ− f ′)(κ− 2f ′) +O(α−1)
β2 +O(α−1) − β2(κ− f ′)2 +O(α−1)

β3 +O(α−1)

)
= −3κ2A′(rh)

4βh
, (A.13)

lim
r→rh

feκr∗(r)
(
Y ′
)3

= −33

26
(
A′(rh)

)3 lim
r→rh

fe−2κr∗(r) · β
3(κ− f ′)3 +O(α−1)

β6 +O(α−1)

= 33κ3

43
(
A′(rh)

)3e2ρ(rh)β−3
h . (A.14)

The second derivative of the local inverse of Y at rh can thus be obtained by using above
limits (

Y −1)′′∣∣∣
Y (rh)

= lim
r→rh

−Y ′′(
Y ′
)3 = κ

(3
4A
′(rh) exp

{
ρ(rh) + κr∗b

})−2
. (A.15)

In the light of the Taylor expansion of Y (r)−1 at Y (rh) = 0, we finally arrive at the
approximation of ra upto the second-order of c2G2

(D)

ra = rh + 1
2
(
Y −1

)′′ ∣∣∣∣
Y (rh)

·
(
c ·G(D)

)2 +O
((
c ·G(D)

)3)
= rh +

8κ(c ·G(D))2

9A′(rh)2 exp
{
− 2κr∗b − 2ρ(rh)

}
+O

((
c ·G(D)

)3)
. (A.16)

B Derivation of eq. (2.19)

In this appendix, we demonstrate the derivation of (2.19). Firstly (2.14) is essentially

SRad(r) = A(r)
2G(D)

+ c

3 log d2(r, rb) (t = tb), (B.1)

where the first term is the area term, which is easy to evaluate according to (2.18)

A(ra)
2G(D)

= A(rh)
2G(D)

+ A′(rh)
2G(D)

(ra − rh) +O
(
(ra − rh)2)

= A(rh)
2G(D)

+
4κc2 ·G(D)

9A′(rh) exp
{
− 2κr∗b − 2ρ(rh)

}
+O(c3G2

(D)). (B.2)

We then focus on the matter term. Since the approximate behavior of Y near rh is (2.17),
meanwhile Y (r) = −3

2A
′(r)

(
∂r log d2(r, rb)

)−1, which gives that the approximate behavior
of log d2(r, rb) near rh is Ch −

√
r
rh
− 1, where Ch ≡ log d2(rh, rb). We can thus obtain its

approximation by Taylor expansion of its local inverse function at rh

r = rh + 1
2
((

log d2(r, rb)
)−1)′′∣∣∣∣

rh

·
(

log d2(r, rb)− Ch
)2
. (B.3)
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The key step again becomes finding the second derivative of the inverse function at rh
((

log d2(r, rb)
)−1)′′ = − (

log d2(r, rb)
)′′((

log d2(r, rb)
)′)3 = −Z

′

Z3 , (B.4)

where Z is defined as (A.2). In terms of the limits obtained in appendix A, it’s not difficult
to find that

lim
r→rh

((
log d2(r, rb)

)−1)′′ = lim
r→rh

(
fe−2κr∗

4 · β(f ′ − κ) +O(α−1)
β3 +O(α−1)

)

= 1
4κ exp

{
2κr∗b + 2ρ(rh)

}
. (B.5)

We then inversely solve for the approximation of log d2(ra, rb) based on (B.3) and (B.5)

log d2(ra, rb) ≈ Ch −
√√√√√√ 2(ra − rh)((

log d2(r, rb)
)−1)′′∣∣∣∣

rh

= Ch −
8κc ·G(D)
3A′(rh) exp

{
− 2κr∗b − 2ρ(rh)

}
. (B.6)

Combine (B.2) with (B.6), the final answer arrives

SRad(with island)= A(ra)
2G(D)

+ c

3 logd2(ra,rb) (B.7)

≈ A(rh)
2G(D)

+ c

3 logd2(rh,rb)−
4κc2 ·G(D)

9A′(rh) exp
{
−2κr∗b−2ρ(rh)

}
+O(c3G2

(D)).

C Black hole thermodynamics in GDT

In this appendix, we derive the thermodynamic quantities for the 2d dilaton gravity models
with action (2.20).10 We start with the corresponding Euclidean version

IE = − 1
16πG(2)

∫
M

√
g
(
φR+ U(φ) (∇φ)2 + V (φ)

)
d2x

− 1
8πG(2)

∫
∂M

√
hφKdx+ 1

8πG(2)

∫
∂M

√
hLc.t.dx, (C.1)

whereM is spacetime region outside the black hole and the corresponding boundary ∂M
is {r = rh}

⋃
{r = rreg.}. Note that rreg. is a regulator and should be removed by taking

the limit rreg. →∞.
The boundary counterterm Lc.t., as we will see below, should be of form

Lc.t. =
√
W (φ)e−Q(φ), (C.2)

10Certain assumptions have been made, 1) lim
r→+∞

φ = +∞. 2) lim
φ→+∞

W (φ) = +∞. 3) eQ 6= 0 for finite φ,
in this derivation.
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where the definitions of W (φ) and Q(φ) are (2.27) and (2.26),respectively. We show this
point by reproducing the correct thermodynamics of the black hole.

We start with evaluating the Euclidean action for the black hole solution (2.24)–(2.25).
The bulk contribution reads

Ibulk
E = −1

16πG(2)

∫
M

√
g

{
φR+U(φ)

(
∇φ
)2 +V (φ)

}
d2x

= −1
16πG(2)

∫ β

0
dτ
∫ rreg.

rh

dr
{
−φf ′′(r)+U(φ)f(r)

(dφ
dr

)2
+V (φ)

}
= −β

16πG(2)

∫ φreg.

φh

dφ
{
−φ∂2

φW +φU∂φW +φW∂φU−16πG(2)Mφ∂φU

+U
(
W −16πG(2)M

)
+∂φW

}

= −β
16πG(2)

{
−φ∂φW

∣∣∣∣φreg.

φh

+2W
∣∣∣∣φreg.

φh

+φreg.U(φreg.)
(
W (φreg.)−16πG(2)M

)}
. (C.3)

Let us next consider the on-shell Gibbons-Hawking-York(GHY) term

IGHY
E = − 1

8πG(2)

∫
∂M

√
hφKdx

= − β

8πG(2)

√
f(rreg.) · φreg.K(rreg.)

= −β
16πG(2)

{
φreg.∂φW (φreg.)− φreg.U(φreg.)

(
W (φreg.)− 16πG(2)M

)}
. (C.4)

It’s clear to see that the on-shell bulk term plus the on-shell GHY term equals
β

16πG(2)

{
2W (φh)− 2W (φreg.)− φh∂φW (φh)

}
. (C.5)

The above equation is divergent when rreg. → ∞ since we have assumed that
lim
φ→∞

W (φ) =∞.
The final contribution in (C.1) is the boundary counterterm

Ic.t.
E = 1

8πG(2)

∫
∂M

√
hLc.t.dx

= β

8πG(2)

√(
W (φreg.)− 16πG(2)M

)
eQ(φreg.) ·

√
W (φreg.)e−Q(φreg.)

= β

8πG(2)

{
W (φreg.)− 8πG(2)M +O

(
W (φreg.)−1)}. (C.6)

Summing over above contribution and letting φreg. →∞, the total on-shell action reads

Itotal
E = βM − S, (C.7)

where we have used the definitions of black hole temperature (2.28) and Wald en-
tropy (2.29). The free energy of black hole in the canonical ensemble reads

F = − 1
β

logZ ∼ − 1
β

log e−Itotal
E = M − TS. (C.8)
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D Models related by Weyl transformation

An intriguing feature of the 2d-dilaton gravity model is that one can eliminate (or recover)
the kinetic term of the dilaton in the original theory by applying a Weyl transformation [86–
88]. Let’s consider a new metric ĝµν related to gµν by

gµν = e−2Ωĝµν , Ω = 1
2

∫ φ

U(φ′)dφ′. (D.1)

The bulk term of (2.20) can be re-expressed as follows in terms of ĝ∫
M

√
−g
(
φR+ U(φ)

(
∇φ
)2 + V (φ)

)
d2x =

∫
M

√
−ĝ
(
φR̂+ e−2ΩV (φ)

)
d2x

+
∫
∂M

√
−ĥ φU(φ)n̂µ∇̂µφdx, (D.2)

where R̂ and ∇̂ are Ricci scalar and covariant derivative corresponding to ĝµν , n̂µ is the unit
vector normal to ∂M. Ignoring the boundary term of no interest, we arrive a simpler theory
with vanished kinetic term of dilaton. Three things are noteworthy about the new the-
ory (D.2): 1) It gives a linear dilaton solution, i.e., φnew(r) = e−Q0r. 2) The new metric so-
lution is closely related to the original one. We have fnew(r) ≡ Fnew(φnew) = e−2ΩF |φ=φnew ,
where F (φ) is solution of the original theory. 3) The black hole thermodynamic quantities
are invariant under the Weyl transformation.11

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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