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The transfer of energy through a network of nodes is fundamental to both how nature and current
technology operates. Traditionally we think of the nodes in a network being coupled to channels
that connect them and then energy is passed from node to channel to node until it reaches its
targeted site. Here we introduce an alternate approach to this where our channels are replaced by
collective environments (or actually reservoirs) which interact with pairs of nodes. We show how
energy initially located at a specific node can arrive at a target node - even though that environment
may be at zero temperate. Further we show that such a migration occurs on much faster time scales
than the damping rate associated with a single spin coupled to the reservoir. Our approach shows
the power of being able to tailor both the system & environment and the symmetries associated
with them to provide new directions for future quantum technologies.

Introduction– Nature has developed many methods for
the transport of energy on length scales ranging from
the atomic to cosmological [1–4]. Photosynthesis is one
extremely well known example where pigment cofactors
absorb the light and transfer it to antennae pigments
where it is converted to chemical energy [5–13]. Such
energy transport is not restricted to natural processes
but is central to how our modern society and current
technologies operate. We are always looking at new ap-
proaches to achieve this, but one needs to keep the possi-
ble applications in mind and the properties they require.
In general, both classical and quantum systems are af-
fected by the environment [14] . The natural question
here is: does noise help or hinder this transport process?
Actually (and counter intuitively) it was found that en-
ergy transport can be enhanced by adding environmen-
tal noise [15–20]. Further, quantum mechanics provides
unique opportunities in how energy transport could be
enhanced using the principles of superpositions and en-
tanglement [21–23], and establishes tight bounds on how
fast such energy transport processes can be [24–26].

The recent developments in quantum technology have
given us excellent design options to tailor both our sys-
tem and environmental properties to the tasks we want
to achieve [27–30]. It has been shown that a hybrid
quantum systems composed of an ensemble of nega-
tively charged nitrogen–vacancy (NV−) centers in dia-
mond coupled to a resonator [31] exhibits superradiant
decay [32, 33] - a collective effect where radiation is am-
plified by the coherence of multiple emitters. In fact they
showed collective decay twelve orders of magnitude faster
than the decay of a single NV− center [31]. Interestingly
the reverse process ‘superabsorption’ also exists - when
radiation is absorbed much faster into the ensemble [34],
which has been experimentally realized by implementing
a time-reversal process of superradiance [34]. This was an

extremely interesting observation from an energy trans-
port point of view - combining the two phenomena would
allow extremely fast energy transfer.

One can however go further than this when one can en-
gineer the environment [27, 35–38]. Generally one would
consider each ensemble coupling to its own environment.
Hama et. al [39, 40] recently considered collective cou-
pling of two ensembles to a reservoir and noted an un-
usual observation. They investigated what occurs if the
first much larger ensemble was initially fully excited while
the second is in its ground state and found the first en-
semble ‘superradiantly’ decays while the second ensemble
undergoes ‘superabsorption’ (and can become fully popu-
lated). However the process is not that simple due to the
nature of the coupling to the environment [39, 41], that
can induce coherent coupling [42, 43]. Instead the key
to explain the observed behavior lies in the symmetries
of the system, which can be seen from this very simple
example. Consider two spins A and B initially in a state
|ψ〉 = |1〉A|0〉B = |1〉|0〉 which can also be expressed as

|ψ〉 =
1

2
[|1〉|0〉+ |0〉|1〉] +

1

2
[|1〉|0〉 − |0〉|1〉] . (1)

Under collective decay to a zero temperature bath, the
first Bell state (a triplet state) decays to |0〉|0〉 while the
second term (a dark state) remains unchanged. This
means the mean population of spin B has increased from
zero to n̄B = 1/4 via that collective coupling to the reser-
voir. We must emphasize that there is no direct coupling
between the spins meaning we are not seeing simple en-
ergy transfer. Further those spins only collectively couple
to a zero temperature reservoir meaning energy is not
being given to the second spin from it. Instead this is
a quantum process associated with the collective decay
breaking a symmetry in the system and the symmetries
of the initial state. The triplet (or symmetric) part of
the initial state can decay but the dark (antisymmetric)
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FIG. 1. a) Illustration of a dissipatively coupled chain of spin domains. Each domain Di contains Ni identical spin-1/2 particles.
All spin have an energy ~ω0 with associated frequency frequency ω0/2π. Two neighboring domains Di and Di+1 are interacting
via a common (zero temperature) reservoir mediated by the dissipation rate γi. b) Schematic representation of the effective
excitation transfer from the first domain (with N1 = 3 spins and total angular momentum j1 = 3/2 and 1/2) to the second
domain (with N2 = 2 spins and total angular momentum j2 = 1 and 0): Initially D1 is fully excited while D2 is in the ground
state. This corresponds to the (partial) excitation of states with different total angular momentum (bottom row). Due to the
collective decay, which preserves the total angular momentum, the system relaxes down the ladders and reaches a steady state
where D1 and D2 are locally not in their respective ground states. This results in excitations arising in the second domain -
even though it was initially in its ground state.

part can not. While this behavior can be seen in two
spins [44], similar behavior can be seen with two ensem-
bles collectively coupled to the environment [39, 40]. We
would like to highlight that this process is different from
energy transfer in the traditional sense. Instead we call
this energy migration to distinguish it.

In this paper, our primary focus is to explore the fast
migration of energy through a series of nodes - not con-
nected by channels but collective environments instead.
We utilize the well-known phenomenon of superradiance
and superabsorption [33] to facilitate such energy mi-
gration between the multiple nodes. We will determine
whether such a technique can be used to migrate energy
around small networks where each node is an ensemble
of spins that are collectively coupled to an environment.

Our Model– Let us begin with a simple mathematical
model of our system which extends a double domain sys-
tem [39, 40] to the multiple spin domain regime. Our
system depicted in Fig. 1(a) consists of M different non-
interacting spin domains Di, each containing Ni identi-
cal spin-1/2 particles (with frequency ω0/2π). Pairwise
these domains are collectively coupled to a zero tem-
perature reservoir. These reservoirs are modeled as a
collection of bosonic modes with frequencies ωki/2π and

bosonic creation (annihilation) operators a†ki (aki). Im-
portantly, our system is symmetric under exchange of
any two spins within each domain but not within the
overall system. Therefore, it is useful to define collective
spin operators for the ith domain Jαi =

∑Ni

ni=1 S
α
ni

with
α = x, y, z and where Sαni

are the nith spin operators.
Further the ith domain raising and lower operators are
given by J±i = Jx

i ± iJy
i . The Hamiltonian of the total

system with M ensembles and M − 1 reservoirs is

H = ~ω0

M∑
i

Jzi +

M−1∑
i

∑
ki

~ωkia
†
ki
aki (2)

+

M−1∑
i

∑
ki

[
tki
(
J+
i + J+

i+1

)
aki + t∗kia

†
ki

(
J−i + J−i+1

)]
,

where the first and second term represents the Hamil-
tonian of the spin ensembles and the bosonic reservoirs,
respectively. The third term is the interaction of the spin
ensemble i and i + 1 with their common reservoir (la-
beled as i) where tki , t

∗
ki

represent emission (absorption)
amplitudes that fix the spectral density of the reservoirs
Γi(ω) = 2π

∑
ki
|tki |2δ(ω − ωki). Within the standard

weak-coupling approach (Born-Markov approximation)
and assuming zero-temperature reservoirs, the Lindblad
master equation of the system can be written as [14, 45]:

ρ̇s = −iω0

M∑
i

[Jzi , ρs] +

M−1∑
i

γi
2
D
[
J−i + J−i+1

]
ρs , (3)

where the Lindblad term is D [O] ρ = 2OρO† − O†Oρ −
ρO†O for any operator O. The dissipative coupling be-
tween the different spin ensembles is mediated via the
rates γi = Γi(ω0) = αiω0 in the wide band limit, where
αi is constant. Previous works have used dissipative cou-
pling to induce frustration [46] and quantum synchro-
nization of oscillators [47] and atomic ensembles [48].
System dynamics– As we are mostly interested in exci-

tation migration through the different spin domains, our
results will focus on the situations where the first domain
is initialized with all spins in their excited states while all
spins in subsequent domains begin in the ground state.
Our initial state can be expressed as

|is〉 = |↑ ... ↑〉1 ⊗ |↓ ... ↓〉2 ⊗ · · · ⊗ |↓ ... ↓〉M . (4)
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FIG. 2. Normalized collective spin relaxation 〈Jz
i 〉/Ni with dynamics governed by the master equation (3). (a) Two spin

domains with N1 = 40 (solid magenta), N2 = 2 (dashed blue), (b) three domains with N1 = 12 (solid magenta), N2 = 6
(dashed blue), N3 = 2 (dotted gold), (c) four domains with N1 = 8 (solid magenta), N2 = 6 (dashed blue), N3 = 5 (dotted
gold) and N4 = 1 (dot-dashed mint green).

As observed in [40] for the two domain case, this ini-
tial state (4) is not symmetric under exchange of the
ensembles 1 and 2. It is worth noting that the dissipa-
tive terms in the master equation (3) induce correlations
between neighboring domains i and i+ 1, because it de-
scribes their collective decay. The initial state can be
decomposed as a superposition of symmetric and anti-
symmetric states. As a consequence of the decay of the
symmetric subspace components, the average number of
excitations stays finite at the steady state despite the
presence of the zero temperature reservoir [see Fig. 1(b)].
Furthermore, the system may relax into a steady state,
where the second domain population of spins in the ex-
cited state is greater than 50%. However, an unbalanced
configuration of domain sizes – specifically N1 � N2 – is
necessary for this situation to occur. For this reason, we
restrict ourselves to the unbalanced configurations where
N1 > N2 > · · · > NM and explore the dynamics of exci-
tation migration from the first to the last domain.

We are now in the position to explore the dynamics of
the dissipatively coupled spin ensembles. In Figs. 2(a)–
2(c) we show the collective spin relaxation of a system
with two, three and four domains with initial state |is〉
given by (4). For the two domain system shown in
Fig. 2(a) we set N1 = 40 (magenta) and N2 = 2 (blue),
while for the three domain system [Fig. 2(b)] we have
N1 = 12 (magenta), N2 = 6 (blue) and N3 = 2 (gold).
Similarly for the four domain system shown in Fig. 2(c)
we have N1 = 8 (magenta), N2 = 6 (blue), N3 = 5 (gold)
and N4 = 1 (mint green). Since we solve Eq. (3) numer-
ically, we are restricted to rather small ensemble sizes
especially as the number of spin domains increases. Nev-
ertheless, small systems provide valuable insights into the
general dynamics and allows to draw conclusions.

It can be seen in Fig. 2 that decay of the first do-
main first leads to excitation of the second domain as a
result of the reservoir-mediated interaction between the

two domains. In the case of only two domains [Fig. 2(a)],
the dynamics comes to a halt and the system reaches a
steady state. Due to the large imbalance N1 > N2, the
first domain (magenta) is (almost) completely deexcited
and the second domain (blue) gets close to the fully ex-
cited state [40]. For more than two domains, the second
domain (at a slower rate) also decays due to the addi-
tional dissipation channel and the ensemble excitation is
transferred to the third domain [Fig. 2(b)]. This process
will continue until the last (smallest) domain absorbs the
excitation and the system finally reaches its steady state
solution where the smallest ensemble is excited. For the
system sizes considered here, the intermediate domain
population of spins in the excited state stays below 50%
and the average number of excitations in the last domain
is considerably less than the ensemble size. However, the
results of the two domain system depicted in Fig. 2(a)
indicate that larger ensemble sizes may allow to dissipa-
tively migrate the fully excited initial state from the first
domain along the chain to the last domain.

The dynamics we are able to access from numerically
solving Eq. (3) are intriguing, however due to the scal-
ing of the Hilbert space with system size, we are limited
in the number of spins. In order to investigate larger
domain sizes, we perform a mean-field (MF) approxima-
tion by factorizing different moments (see Supplemental
Material). In the following, we consider the dynamics
of three dissipatively coupled spin domains which is de-
scribed by a closed set of 13 coupled differential equations
for the expectation values of the collective spin operators,
which we denote by an overbar to emphasize their MF
character.

In Fig. 3, we show the collective spin relaxation ac-
cording to the MF description for two different ensemble
sizes of the first and second domain. In Fig. 3(a) we set
N1 = 106 (magenta), N2 = 104 (blue) and N3 = 102

(gold), and in Fig. 3(b) N1 = 108 (magenta), N2 = 105
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FIG. 3. Normalized collective spin relaxation 〈Jz
i 〉/Ni for

three domains using mean-field dynamics. (a) N1 = 106 (solid
magenta), N2 = 104 (dashed blue) and N3 = 102 (dotted
gold). (b) N1 = 108 (solid magenta), N2 = 105 (dashed
blue), N3 = 102 (dotted gold).
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FIG. 4. Collective spin relaxation 〈Jz
i 〉/Ni for an initial state

of the first domain with 〈Jz
1 〉 (t = 0) = 0 showing that the

relative population of the later domains never exceeds 〈Jz
2,3〉 =

0 . (a) The master equation approach with N1 = 12 (solid
magenta), N2 = 6 (dashed blue), N3 = 2 (dotted gold). (b)
The mean field approach with N1 = 106 (solid magenta),
N2 = 104 (dashed blue), N3 = 102 (dotted gold).

(blue) and N3 = 102 (gold). Unlike the smaller systems
sizes shown in Fig. 2, each domain differs substantially
in the number of spins from the previous domain. Con-
sequently, we are able to witness (almost) full excitation
of the second and third domains, with D3 relaxing to a
steady state of J̄z3 /N3 ≈ 0.49. This is in contrast to the
results of Fig. 2(b), where 〈Jz2 〉 /N2 and 〈Jz3 〉 /N3 clearly
do not reach the maximum of 〈Jz1 〉 /N1 (t = 0) = 1/2.

Additionally, the discrete migration of excitation from
one spin-domain to the next can clearly be witnessed (no-
tice the logarithmic time scale), in contrast to the collec-
tive spin relaxations of Fig. 2 where all domains absorb

and decay on the same time scale. This is a clear sig-
nature of the superradiant decay and thus superradiant
excitation transfer, which scales as 1/Ni for large system
sizes. From the dynamics shown in Fig. 3, we note that
the superradiant decay time of D1 as well as the super-
radiant absorption time of D2 is mostly governed by the
size of D1, thus occurs at a time that is orders of magni-
tude before the superradiant decay of D2 and absorption
of D3. Therefore, efficient migration in this dissipatively
coupled system occurs when the spin population of the
initial excited domain (N1) is sufficiently larger than the
final domain (in this case N3).

So far, we have explored the superradiant migration of
excitations when the first domain is initially fully excited
and all subsequent domains are in their respective ground
state. However, one may assume that a partially excited
initial state is sufficient to fully excite the last domain as
the number of spins within each domain decreases along
the chain. In the following, we show that this is in fact
not the case and, moreover, that the maximum relative
excitation transferable from one domain to the other is
bounded by the initial relative excitation.

Let us start by numerically exploring the three domain
system where small and large system sizes can be inves-
tigated. We first study the effect of initial conditions on
the excitation transfer described by the master equation
(3) for domain sizes N1 = 12, N2 = 6 and N3 = 2. As
N2 = N1/2 we choose as initial state the first domain
to be only half excited (〈Jz

1〉 (t = 0) = 0), however, the
second and third domain to be in their respective ground
state. In Fig. 4(a) one sees that for this initial config-
uration the second (blue) and third domain (gold) are
both less excited compared to the initial state |is〉 [cf.
Fig. 2(b)], and, especially, the third domain is consider-
ably below half excited. In contrast, in Fig. 4(b), the spin
relaxation dynamics is shown forN1 = 106, N2 = 104 and
N3 = 102 [same system sizes as Fig. 3(a)] with half of the
spins in D1 initialized in the excited state and half in the
ground state. Here, we make use of the MF equations to
solve the dynamics. Even though the number of spins in
the second and third domains are significantly less than
the number of initially excited spins in the first domain,
both J̄z2 /N2 and J̄z3 /N3 remain always below the value
of J̄z1 /N1 (t = 0). Interestingly, this occurs for any value
of N1 and any proportion of excited spins in the initial
state. That is, we observe J̄z1 /N1 (t = 0) ≥ max

(
J̄z2 /N2

)
and J̄z1 /N1 (t = 0) ≥ max

(
J̄z3 /N3

)
. This already sug-

gests that the initial population of spins in the excited
state limits the transferable amount of excitations.

The results we have observed so far for the three do-
main case, also holds for the case of only two domains.
That is the the maximum relative excitation of the sec-
ond domain is bounded by the initial relative excitation
of the first domain. In fact, as we show in the Supple-
mental Material, for the two domain case with N1 � N2

the steady state of the second domain is approximately
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given by

J̄z
2

N2
(t→∞) ≈ J̄z

1

N1
(t = 0) . (5)

As we discussed in the previous section, for superradiant
excitation transfer to occur we need large differences in
the number of spins within each domain. This results
in a time scale separation of transfer between the first
and second and transfer between the second and third
domain. Because of this time scale separation the second
domain reaches its maximum relative excitation before
transport to the third domain takes place. We thus con-
clude from Eq. (5) that the maximum relative excitation
of the last domain is bounded by the initial state, i.e.,
J̄zM/NM (t →∞) ≈ J̄z

1/N1(t = 0). This has implications
for quantum thermodynamics and especially the charging
of quantum batteries [49].

Discussion– It is well established that movement or
transfer of energy around physical system is a primitive
operation with applications in many diverse fields. We
are always looking for new ways to achieve this in faster
and more efficient ways. In this article we have shown
an energy migration approach in a small scale quantum
network based on collective coupling to a reservoir. En-
ergy is not flowing from node to node. Instead our ini-
tial state is not symmetric with respect to the collective
coupling to the reservoirs and so different parts of the
quantum wavefunction decay at different rates (or not at
all). This results in populations arising in nodes which we
initially unoccupied. Combining this behavior with su-
perradiant decay and absorption, we show the apparent
flow of energy from node to node in the network. In ex-
ploring the dynamics of energy migration in the network,
we were able to find the conditions which facilitate the
fastest and most efficient energy transfer. By tailoring
the system and environment and symmetries associated
with them, our approach can illustrate new directions for
the future of quantum technologies.
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eron, A.-M. Tremblay, J. Kokalj, D. A. Huse, et al., Bad
metallic transport in a cold atom fermi-hubbard system,
Science 363, 379 (2019).

[3] E. Grohs, G. M. Fuller, C. T. Kishimoto, M. W. Paris,
and A. Vlasenko, Neutrino energy transport in weak de-
coupling and big bang nucleosynthesis, Phys. Rev. D 93,
083522 (2016).

[4] M. Szyd lowski, Cosmological model with energy transfer,
Phys. Lett. B 632, 1 (2006).

[5] E. Collini, C. Y. Wong, K. E. Wilk, P. M. G. Curmi,
P. Brumer, and G. D. Scholes, Coherently wired light-
harvesting in photosynthetic marine algae at ambient tem-
perature, Nature 463, 644 (2010).

[6] J. Cao, R. J. Cogdell, D. F. Coker, H.-G. Duan, J. Hauer,
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SUPPLEMENTAL MATERIAL

I. MEAN-FIELD APPROXIMATION

In this section we apply a MF approximation to the three domain system to access the system dynamics for large
domain sizes. The full dynamics is described by Eq. (3) with M = 3. In order to obtain a consistent closed set of
equations, we make the following approximations:〈

(Jz
i )

2
〉
≈ 〈Jz

i 〉2 ,
〈

(Jz
i )

2
Jz
j

〉
≈ 〈Jz

i 〉
〈
Jz
i J

z
j

〉
,
〈
Jz
1/2A

〉
≈
〈
Jz
1/2

〉
〈A〉 ,〈

Jz
2/3B

〉
≈
〈
Jz
2/3

〉
〈B〉 ,

〈
Jz
1/3C

〉
≈
〈
Jz
1/3

〉
〈C〉 ,

(S1)

where we defined the new operators

A = J+
1 J
−
2 + J−1 J

+
2 , B = J+

2 J
−
3 + J−2 J

+
3 , C = J+

1 J
−
3 + J−1 J

+
3 . (S2)

Note that we do not factorize expectation values that involve operators of all three domains, e.g. 〈Jz
1B〉.

Using the approximations (S1), we find in total 13 coupled equations of motion:

d

dt
〈Jz

1〉 =− γ
[
N̄1 − 〈Jz

1〉2 + 〈Jz
1〉+

1

2
〈A〉
]
,

d

dt
〈Jz

2〉 =− γ
[
N̄2 − 〈Jz

2〉2 + 〈Jz
2〉+

1

2
〈A〉
]
− γ

[
N̄2 − 〈Jz

2〉2 + 〈Jz
2〉+

1

2
〈B〉

]
,

d

dt
〈Jz

3〉 =− γ
[
N̄3 − 〈Jz

3〉2 + 〈Jz
3〉+

1

2
〈B〉

]
,

d

dt
〈A〉 =γ

[
〈Jz

1〉
(
〈A〉+ 2N̄2 − 2 〈Jz

1J
z
2〉
)

+ 〈Jz
2〉
(
2 〈A〉+ 2N̄1 − 2 〈Jz

1J
z
2〉
)

+ 4 〈Jz
1J

z
2〉+ 〈Jz

2C〉 −
3

2
〈A〉
]
,

d

dt
〈B〉 =γ

[
2 〈Jz

2〉
(
〈B〉+ 2N̄3 − 2 〈Jz

2J
z
3〉
)

+ 〈Jz
3〉
(
〈B〉+ 2N̄2 − 2 〈Jz

2J
z
3〉
)

+ 4 〈Jz
2J

z
3〉+ 〈Jz

2C〉 −
3

2
〈B〉

]
,

d

dt
〈C〉 =γ

[
〈Jz

1〉 〈C〉+ 〈Jz
1B〉 −

1

2
〈C〉
]

+ γ

[
〈Jz

3〉 〈C〉+ 〈Jz
3A〉 −

1

2
〈C〉
]
,

(S3)

d

dt
〈Jz

1J
z
2〉 =− γ

2
〈A〉 (〈Jz

1〉+ 〈Jz
2〉 − 1)− γN̄1 〈Jz

2〉 − 2γN̄2 〈Jz
1〉+ γ 〈Jz

1J
z
2〉 (〈Jz

1〉+ 2 〈Jz
2〉 − 3)− γ

2
〈Jz

1B〉 ,
d

dt
〈Jz

2J
z
3〉 =− γ

2
〈B〉 (〈Jz

2〉+ 〈Jz
3〉 − 1)− γN̄3 〈Jz

2〉 − 2γN̄2 〈Jz
3〉+ γ 〈Jz

2J
z
3〉 (〈Jz

2〉+ 2 〈Jz
3〉 − 3)− γ

2
〈Jz

3A〉 ,
d

dt
〈Jz

1J
z
3〉 =− γ

[
〈Jz

3〉 N̄1 − 〈Jz
1J

z
3〉 〈Jz

1〉
]
− γ

[
〈Jz

1J
z
3〉+

1

2
〈Jz

3A〉
]
.

d

dt
〈Jz

1B〉 =− γ

2

[
2N̄1 〈B〉+ 〈A〉 〈B〉

]
+
γ

2
〈Jz

1B〉 [2 〈Jz
1〉+ 4 〈Jz

2〉+ 2 〈Jz
3〉 − 5] + γ 〈Jz

2C〉 [〈Jz
1〉 − 1]

+ 2γ 〈Jz
1J

z
2J

z
3〉 [2− 〈Jz

2〉 − 〈Jz
3〉] + 2γ 〈Jz

1J
z
2〉 N̄3 + 2γ 〈Jz

1J
z
3〉 N̄2,

d

dt
〈Jz

3A〉 =− γ

2

[
2N̄3 〈A〉+ 〈A〉 〈B〉

]
+
γ

2
〈Jz

3A〉 [2 〈Jz
3〉+ 4 〈Jz

2〉+ 2 〈Jz
1〉 − 5] + γ 〈Jz

2C〉 [〈Jz
3〉 − 1]

+ 2γ 〈Jz
1J

z
2J

z
3〉 [2− 〈Jz

1〉 − 〈Jz
2〉] + 2γ 〈Jz

2J
z
3〉 N̄1 + 2γ 〈Jz

1J
z
3〉 N̄2,

d

dt
〈Jz

2C〉 =γ

[
〈Jz

2C〉 (〈Jz
1〉+ 2 〈Jz

2〉+ 〈Jz
3〉 − 3) + (〈Jz

1B〉+ 〈Jz
3A〉) (〈Jz

2〉 − 1)− 〈C〉
(

2N̄2 +
1

2
〈A〉+

1

2
〈B〉

)]
,

d

dt
〈Jz

1J
z
2J

z
3〉 =− γ

[
N̄1 〈Jz

2J
z
3〉+ 2N̄2 〈Jz

1J
z
3〉+ N̄3 〈Jz

1J
z
2〉
]

+ γ 〈Jz
1J

z
2J

z
3〉 [〈Jz

1〉+ 2 〈Jz
2〉+ 〈Jz

3〉 − 4]

− γ

2
〈Jz

1B〉 [〈Jz
2〉+ 〈Jz

3〉 − 1]− γ

2
〈Jz

3A〉 [〈Jz
1〉+ 〈Jz

2〉 − 1]

where we have defined N̄i ≡ (Ni/2) (Ni/2 + 1). The set of equations defined in Eq. (S3) describes the dynamics of
the three domain system in the limit of large numbers of spin within in each domain.
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II. MAXIMUM RELATIVE EXCITATION OF THE SECOND DOMAIN

In this section we examine the two domain case and investigate the effect of the initial relative excitation of
domain D1 on the maximum final excitation of domain D2. Specifically, we are interested in the steady state limit
〈Jz

2〉 (t → ∞). To gain some initial insight, let us start with small system sizes where the first domain consists of
N1 = 4 spins, initially all excited while the second domain is composed of a single spin in the ground state. The
corresponding state can be written as a tensor product

|ψ〉 (t = 0) = |j1 m1〉 ⊗ |j2 m2〉 = |2 2〉 ⊗ |1
2
− 1

2
〉 . (S4)

Since the operator J−1 +J−2 is a total angular momentum operator, it is useful to change to the basis of eigenstates of
the total angular momentum. In this basis, the initial state can be expressed using the Clebsch-Gordan coefficients
as

|ψ〉 (t = 0) =
1√
5
|5
2

3

2
〉+

√
4

5
|3
2

3

2
〉 . (S5)

The evolution of this state is only dissipative according to the master equation. Hence, the final state will be

|ψ〉 (t→∞) =
1√
5
|5
2
− 5

2
〉+

√
4

5
|3
2
− 3

2
〉 . (S6)

Now, in order to calculate 〈Jz
2〉 (t→∞), we need to change our basis back to the original one,

|ψ〉 (t→∞) =
1√
5
|2 − 2〉 ⊗ |1

2
− 1

2
〉+

√
4

5

(
1√
5
|2 − 1〉 ⊗ |1

2
− 1

2
〉 −

√
4

5
|2 − 2〉 ⊗ |1

2

1

2
〉
)

(S7)

from which we establish 〈Jz
2〉 (t→∞) = 7/50.

We can generalize the previous calculation to the case of N1 spins up domain D1 and one single spin in the ground
in the second domain. In such a case [1]

〈Jz
2〉 (t→∞) =

N2
1 − 2N1 − 1

2 (N1 + 1)
2 . (S8)

which tends to 1/2 as N1 →∞. That is, the second domain D2 becomes fully exited under collective relaxation. Now
what about the situation where D1 is not initially fully excited (〈Jz

1〉 (t = 0) 6= N1/2). In this case, it is straightforward
to show that

〈Jz
2〉 (t→∞) =

〈Jz
1〉 (t = 0)N1 −N1 − 1

2

(N1 + 1)
2 , (S9)

which in the limit of large N1 becomes

lim
N1→∞

〈Jz
2〉 (t→∞)

1
=
〈Jz

1〉
N1

(t = 0). (S10)

So far we have only examined the case of a single spin in the second domain. However, using the approximate MF
equations we can explore this regime. In the case of only two domains, Eqs. (S3) reduce to

d

dt
〈Jz

1〉 =− γ
[
N̄1 − 〈Jz

1〉2 + 〈Jz
1〉+

1

2
〈A〉
]
,

d

dt
〈Jz

2〉 =− γ
[
N̄2 − 〈Jz

2〉2 + 〈Jz
2〉+

1

2
〈A〉
]
,

d

dt
〈A〉 =γ

[
〈Jz

1〉
(
〈A〉+ 2N̄2 − 2 〈Jz

1J
z
2〉
)
− 〈A〉

]
+ γ

[
〈Jz

2〉
(
〈A〉+ 2N̄1 − 2 〈Jz

1J
z
2〉
)

+ 4 〈Jz
1J

z
2〉
]
,

d

dt
〈Jz

1J
z
2〉 =− 1

2

d

dt
〈A〉 .

(S11)
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FIG. S1. Collective spin relaxation dynamics with a zero temperature T = 0K (solid curves) and finite temperature T = 1.6K
reservoir (dashed lines) (a) corresponds to the two domain case with N1 = 20 and N2 = 2 while (b) corresponds to the three
domain case with N1 = 12, N2 = 6 and N3 = 2. Finally (c) corresponds to the four domain case with N1 = 4, N2 = 3, N3 = 3
and N4 = 2 respectively. The following parameters are chosen: ω0/2π = 10GHz and γ1 = γ2 = 0.01Hz.

As initial conditions we assume 〈Jz
2〉 (0) = −N2/2 and 〈A〉 (0) = 0, i.e., no initial correlations between the first and

second domain.

At steady state (t → ∞) the left hand side of the above equations is equal to zero. If we furthermore divide the
second line of Eq. (S11) by N1 and assume N1 � N2 (or more specifically N1 � N2

2 ), we arrive at 〈A〉 (t)/N1 ≈ 0
because the absolute value of 〈Jz

2〉 (t) is bounded by the number of spins N2. In this case, we can apply an additional
mean field approximation of the form 〈Jz

1J
z
2〉 ≈ 〈Jz

1〉 〈Jz
2〉 such that from the last line of Eq. (S11) it follows that

〈A〉 (t) = −2 〈Jz
1〉 (t) 〈Jz

2〉 (t) + 2 〈Jz
1〉 (0) 〈Jz

2〉 (0). Here, the second term ensures that the initial condition 〈A〉 (0) = 0
is fulfilled. Remembering the initial condition 〈Jz

2〉 (0) = −N2/2, we have

〈Jz
2〉

N2
(t→∞) =

〈Jz
1〉

N1
(t = 0). (S12)

III. FINITE TEMPERATURE RESERVOIRS

While the main text explores the collective spin relaxation dynamics with zero temperature baths, in this section
we explore the dynamics using baths at finite temperatures Fig. S1 illustrates the dynamics for two, three and four
domain systems (with ω0/2π = 10GHz and γ = 0.01Hz), showing simultaneously the collective spin relaxation for
zero temperature baths (solid lines) and T = 1.6K baths (dashed lines).

The two domain plot in Fig. S1(a) clearly shows the steady state of Jz2 is less excited and the steady state of Jz1
is more excited for non-zero temperature, indicating a less efficient excitation transfer from the first domain to the
second. This effect is also shown in the three domain plot in Fig. S1(b). Additionally, both the two and three domain
results, indicate a faster collective spin relaxation process at non-zero temperature. The four domain plot in Fig. S1(c)
shows the effects of thermalisation as in S1(a) and S1(b) albeit less pronounced due to the smaller system size (which
is limited by the scaling of the Hilbert space as the number of domains is increased).
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