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1Technische Universität Berlin, Institut für Theoretische Physik, 10623 Berlin, Germany
2Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Str. 38, 01187 Dresden, Germany
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Floquet engineering of isolated systems is often based on the concept of the effective time-
independent Floquet Hamiltonian, which describes the stroboscopic evolution of a periodically driven
quantum system in steps of the driving period and which is routinely obtained analytically using
high-frequency expansions. The generalization of these concepts to open quantum systems described
by a Markovian master equation of Lindblad type turns out to be non-trivial: On the one hand,
already for a two-level system two different phases can be distinguished, where the effective time-
independent Floquet generator (describing the stroboscopic evolution) is either again Markovian and
of Lindblad type or not. On the other hand, even though in the high-frequency regime a Lindbladian
Floquet generator (Floquet Lindbladian) is numerically found to exist, this behaviour is, curiously,
not correctly reproduced within analytical high-frequency expansions. Here, we demonstrate that a
proper Floquet Lindbladian can still be obtained from a high-frequency expansion, when treating
the problem in a suitably chosen rotating frame. Within this approach, we can then also describe
the transition to a phase at lower driving frequencies, where no Floquet Lindbladian exists, and
show that the emerging non-Markovianity of the Floquet generator can entirely be attributed to the
micromotion of the open driven system.

I. INTRODUCTION

Floquet engineering, that is the idea of manipulating
the properties of a coherent quantum system by means
of strong time-periodic driving, has been successfully ap-
plied to artificial many-body systems of ultracold atoms
in optical lattices [1–8]. These systems are well iso-
lated from their environment and therefore well described
by the Schrödinger equation. However, with the recent
progress in the engineering of quantum materials as well
as complex photonic many-body systems [9, 10], also the
control of these systems via periodic forcing becomes an
interesting and promising perspective. They are typi-
cally interacting with an environment, which introduces
dissipation to the system’s dynamics; see, e.g., Ref. [9].
It is, therefore, desirable to extend the concept of Flo-
quet engineering to open quantum systems. In this con-
text, two questions are of interest. The first one concerns
the properties of the non-equilibrium steady state that
such open periodically modulated systems approach in
the long-time limit [11–23]. The second question, which
will be discussed in this paper, concerns the transient
dynamics of these systems. Here, analogously to the
Floquet engineering of isolated quantum systems, one
can ask, whether it is possible to find an effective time-
independent description of the stroboscopic dynamics of
the system [24–33].

While for a closed system the stroboscopic dynamics
can always be recast into an effective coherent evolu-
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tion governed by a time-independent Floquet Hamilto-
nian [6, 34], it is not obvious whether such a mapping
exists for an open periodically modulated system. More
specifically, when considering the Markovian evolution
described by Lindblad-type master equations, the ques-
tion is whether the stroboscopic dynamics can be de-
scribed by an effective time-independent Floquet genera-
tor of the Lindblad type (henceforth addressed as Floquet
Lindbladian). The existence of such Floquet Lindbladi-
ans has implicitly been assumed in recent works [25, 27–
29]. However, in Ref. [24] it was shown that, already for a
simple two-level system, there is no guarantee that such
an operator exists. Namely, extensive parameter regions
were found, where it does not exist, while in other ex-
tensive parameter regions, including the high-frequency
limit, it does exist.

The high-frequency regime plays an important role for
Floquet engineering of isolated systems. On the one
hand, it is appealing because in this regime unwanted
heating via resonant excitations is suppressed [6, 34–37].
On the other hand, it is possible to calculate the Floquet
Hamiltonian by using systematic high-frequency expan-
sions, such as the Magnus expansion [38], and thus to
analytically predict the properties of the Floquet sys-
tem. It is, therefore, very natural to generalise such
high-frequency expansions to open systems, as it has
been done in various recent papers [25, 27–29, 33, 39].
However, it was observed that the corresponding expan-
sions usually do not provide time-independent Floquet
generators of Lindblad type [25, 26, 33]. Below we will
demonstrate this failure of the Magnus expansion for the
model used in Ref. [24], despite the fact that the Floquet
Lindbladian was explicitly shown to exist.

In this paper, we address the question, whether it is
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possible to construct a high-frequency expansion that is
consistent with respect to the expected Lindblad-type
stroboscopic evolution of the model. For this purpose,
we compare four different approaches. Firstly, they are
distinguished by the expansion technique they are based
on, (i) a Magnus expansion [38] or (ii) a van-Vleck-type
high-frequency expansion [34]. Secondly, they differ by
the reference frame, in which the model system is treated,
i.e., either (a) in the direct frame or (b) in a suitably cho-
sen rotating frame. We find that it is the appropriately
chosen rotating reference frame [approach (b)], which al-
lows to compute Lindblad-type Floquet generators in the
high-frequency limit for our model. As a second major
result, we find that the break-down of the existence of
a Floquet Lindbladian, which was found by using the
procedure described in Ref. [24], can be related to the
micromotion of the system [34]. This becomes appar-
ent when performing the van-Vleck type high-frequency
expansion [approach (ii)] in the rotating frame.

The remaining part of this paper is organized as fol-
lows. In Sec. II we summarize the results of Ref. [24] by
outlining the general concept of the Floquet Lindbladian
and applying this concept to a driven two-level system.
In Sec. III we introduce the Magnus expansion, as well as
the extended Floquet Hilbert space for the open system
and generalize the related van-Vleck high-frequency ex-
pansion to open quantum systems. In Sec. IV we study
the problems that arise, when the high-frequency expan-
sions are performed in the direct frame of reference. In
Sec. VI we show that both the Magnus and the van-Vleck
high-frequency expansions provide a valid Lindbladian in
the high-frequency limit, when applied in the rotating
frame that we introduce in Sec. V. Moreover, we discuss
the non-trivial role played by the micromotion.

II. THE FLOQUET LINDBLADIAN

In order to make the considerations self-consistent, we
start by briefly sumarizing the main findings of Ref. [24],
where the existence of the Floquet Lindbladian is dis-
cussed.

A. Definition of the Floquet Lindbladian and the
problem of its existence

We consider the time-dependent Markovian master
equation [40–43]

∂tρ = L(t)ρ = −i[H(t), ρ] +D(t)ρ, (1)

for the system’s density operator ρ, described by a time-
periodic Lindbladian generator L(t) = L(t + T ). In this
work we set h̵ = 1, therefore all energies are given in units
of frequency. The Lindbladian is characterized by a Her-
mitian time-periodic Hamiltonian H(t) and a dissipator

D(t)ρ =∑
i

γi(t)[Li(t)ρL
†
i(t) −

1

2
{L†

i(t)Li(t), ρ}], (2)

with jump operators Li(t) and non-negative rates γi(t),
which both, in general, are time periodic with the same
period T . Note that the time-dependent variation of
L(t) may be due to a time-periodic modulation of the
coherent evolution, governed by the Hamiltonian H(t),
and/or due to a time-periodic modulation of the dissi-
pative channels, represented by the rates γi(t) ⩾ 0 and
the jump operators Li(t). This time-local form guaran-
tees that the corresponding evolution – for any time t
— can described with a completely positive (CP) and
trace preserving (TP) map [40]. Following the termi-
nology of Ref. [44], such an evolution is called time-
dependent Markovian [44]. Correspondingly, the evo-
lution generated by a time-independent Lindbladian is
termed Markovian. We follow this nomenclature (note
that there are also alternative terminologies, e.g., time-
dependent and time-independent Markovian evolutions
can be combined together and simply called ”Marko-
vian” [41]).

The time-dependent Markovian evolution generated by
time-dependent Lindbladians is the subject of our anal-
ysis. Note that the non-negativity of the rates is only a
sufficient condition to produce an evolution in the form
of a CPTP map for any time t. There are cases when
the rates can acquire negative values but the resulting
map nevertheless remains completely positive and trace
preserving [45, 46]. We also consider such Lindbladians
as relevant evolution generators; important is that the
corresponding stroboscopic maps [see Eq. (7)] belong to
the CPTP class.

Let us briefly outline the Lindblad master equation for
the time-homogeneous case [47]. A quantum dynamical
semigroup is an evolution P(t, t0) of the density matrix
% in a Hilbert space H,

%(t) = P(t, t0)%(t0), (3)

where henceforth we use the shorthand P(t) = P(t,0).
The semi-group should obey several constraints: It is con-
tinuous, limt→0+ P(t)% = %, trace preserving, Tr(P(t)%) =
Tr(%), has the semigroup property, P(t + s) = P(t)P(s),
i.e. the evolution has no memory of its history (it is
Markovian), and is completely positive, P(t) ⊗ 1 ≥ 0,
where 1 is the identity on the space L(H) of linear oper-
ators acting in Hilbert space H.

As it was shown by Gorini, Kossakowski and Sudar-
shan [48] and Lindblad [49], the superoperator L that
generates this semi-group, i.e.

∂tρ(t) = Lρ(t), or equally P(t) = exp(Lt), (4)

has to be of the form

L = −i [H, ⋅] +
N2−1

∑
i,j=1

dij (Ai ⋅A
†
j −

1

2
{A†

jAi, ⋅}) , (5)

(henceforth refereed to as the Lindblad form), where H is
a Hermitian operator (Hamiltonian), {Ai} is a Schmidt-
Hilbert basis in L(H) (dim(H) = N) and d ⩾ 0 is a
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Hermitian and positive semidefinite Kossakowski matrix.
The corresponding jump operators Li and rates γi can
be found by diagonalizing the Kossakowski matrix.

Let us turn now to the superoperator P(t) describing
the map that is generated by a time-dependent Lindbla-
dian L(t), as in Eq. (1), which formally yields

P(t) = T exp(∫

t

0
dtL(t)) . (6)

where T is the time-ordering operator. By definition,
the map P(t) is completely positive and trace preserving,
i.e. it is a quantum channel [50].

Since the evolution is time periodic, it is interesting
to consider the stroboscopic dynamics, given by the one-
cycle evolution map [51, 52]

P(T ) = T exp [∫

T

0
dtL(t)]. (7)

The repeated application of it describes the stroboscopic
evolution of the system, i.e. for all ρ(0) one has

ρ(nT ) = P(T )
nρ(0). (8)

In analogy to the case of a closed system [53], we
can now formally define a Floquet generator, i.e. a time-
independent superoperator K, such that

P(T ) = exp (KT ) or K =
log(P)

T
(9)

for the open driven system described by Eq. (1). As it
was discussed in Ref. [24], it is not guaranteed that this
Floquet generator K is of Lindblad form. However, if it
is of Lindblad form, we will call it Floquet Lindbladian
and write

LF = K. (10)

At first glance, it may appear counter-intuitive that the
effective generator K is not of the Lindblad form. The
map P(T ) is time-dependent Markovian [54] and there-
fore is CP-divisible [41–44, 55]. I.e., for any t and t′,
0 < t′, t < T , the map can be split as P(t) = P(t, t′)P(t′),
with P(t, t′) being a CPTP map. Here, as a result of
time-inhomogeneity, P(t, t′) is not simply a function of
the time difference t−t′. The set of dynamical maps that
are time-dependent Markovian is larger than the set of
Markovian maps [54]. Hence, by implementing a time-
dependent protocol, one may end up with a CPTP map
that can only be obtain with a time-independent gener-
ator of a non-Lindblad form. Therefore, the existence of
a Floquet-Lindbladian is not guaranteed.

Whether the Floquet-generator is of the Lindblad form
or not is relevant for Floquet engineering. Namely, if
it is of the Lindblad form, the stroboscopic evolution
can be interpreted as the result of a time-independent
Lindblad-type master equation, which is just monitored
stroboscopically. If, in turn, no Floquet Lindbladian ex-
ists, the stroboscopic evolution, despite being Markovian

by construction, cannot be interpreted as a stroboscopi-
cally monitored continuous time-independent Markovian
process.

Note that, due to the multi-branch structure of the
complex logarithm, there is a whole family of Floquet
superoperators Kx, labeled by a set of integers x =

{x1, ..., xnc} that specifies a particular branch of the log-
arithm, where nc is the number of complex conjugated
pairs in the spectrum of P(T ). In order to find a Flo-
quet Lindbladian or refute its existence, we have to check
whether at least one of these candidates Kx is of the Lind-
blad form. Details on this procedure can be found in Ap-
pendix A. In short, the test is checking two conditions,
which require that Kx has to (i) preserve Hermiticity
and (ii) has to be conditionally completely positive [54].
Also note that, given that one has extracted operator Kx

from the matrix logarithm, one can always recast it in
a quasi-Lindblad form, formally given by Eq. (5), with
some operator H and Kossakowski matrix d. The im-
plementation of the test is then equivalent to testing H
for Hermiticity and d for positive semi-definiteness, d ⩾ 0.
We will use this test when performing the high-frequency
expansions in Sections IV and VI.

If there is no set of integers x such that condition (i)
and (ii) are fulfilled, then no Floquet Lindbladian ex-
ists. In this situation, it is instructive to quantify the
distance from Markovianity for the non-Lindbladian gen-
erator Kx, by picking the branch giving the minimal dis-
tance. For this purpose, we compute the measure for non-
Markovianity proposed by Wolf et al. [54]. This measure
is based on adding a noise term µN of strength µ to the
generator and determining the minimal strength required
to make at least one of the candidates Lindbladian, i.e.

µmin = min
x∈Znc

min{µ ≥ 0∣
Kx + µN is a valid
Lindblad generator

} . (11)

Here, N is the generator of the depolarizing channel
exp(TµN )ρ = e−µT ρ + [1 − e−µT ] 1

N
.

Various other measures for non-Markovianity have
been proposed in the literature [56, 57]. Besides the
one introduced above, in Ref. [24] we also calculated a
measure that qualifies the violation of the positivity of
the Choi representation of the map [58] and found that
for our specific model (up to a factor of 1/2) it coin-
cides with the measure of Ref. [54]. However, while these
measures might provide different values for the distance
from Markovianity in the regions where no Floquet Lind-
bladian exists, all of them will classify the same regions
in parameter space as Markovian (those where the Flo-
quet generator can be brought into the Lindblad form).
Thus, the phase diagram will be independent of the cho-
sen Markovianity measure.

B. Model

To illustrate the problem, we consider a driven
two-level system described by the master equation
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FIG. 1. Distance to Markovianity µmin of the Floquet gener-
ator K obtained from the one-cycle evolution superoperator
as a function of driving strength E and frequency ω, for weak
dissipation γ = 0.01 and two driving phases (a) ϕ = 0 and (b)
ϕ = π/2. In the white region, where µmin = 0, it is of Lindblad
type, so that a Floquet Lindbladian LF exists. On the dashed
line the Floquet map P(T ) pair of eigenvalues coincide when
crossing the negative real semi-axis.

∂τ%(τ) = L(τ)%(τ) with time-periodic Lindbladian gen-
erator L(τ) = −i[H(τ), ⋅] + κ (σ− ⋅ σ+ −

1
2
{σ+σ−, ⋅}) , with

H(τ) = ∆
2
σz + E cos(Ωτ − ϕ)σx. Here σx, σz, and σ−

are standard Pauli and lowering operators. After intro-
ducing t = τ∆, i.e. using 1/∆ as unit for time, we find
∂t%(t) = L(t)%(t) with

L(t) = −i[H(t), ⋅] + γ (σ− ⋅ σ+ −
1

2
{σ+σ−, ⋅}) , (12)

and

H(t) =
1

2
σz +E cos(ωt − ϕ)σx. (13)

This model is characterized by four dimensionless param-
eters: the relative dissipation strength γ = κ/∆ as well as
the relative strength E = E/∆, frequency ω = Ω/∆ and
phase ϕ of the driving.

In Fig. 1 we present the distance from Markovianity
for the effective time-independent Floquet generator of
our model, obtained using the procedure described in the
previous section. Note that the spectrum of a CPTP map
is invariant under complex conjugation. Thus for the
two-level system we have at most one pair of complex
eigenvalues and, therefore, have to check a single integer
x labelling the branches of the operator logarithm. If we
find a branch x0 with a generator of the Lindblad form,
then this would be our Floquet Lindbladian LF = Kx0 .
In Fig. 1(a), we mark the region where such a branch
was found and therefore the Floquet Lindbladian exists
with white color. In the region where no such branch
exists, we plot the distance from Markovianity µmin for
the closest branch. For weak dissipation γ = 0.01 and
ϕ = 0, an extended non-Lindbladian phase is surrounded
by a Lindbladian phase (white region) where µmin = 0 so
that LF can be constructed.

For sufficiently large and small driving frequencies ω
as well as for zero driving (E = 0) and in the regime of

strong driving amplitudes E, a Floquet Lindbladian is
found to exist. Only for intermediate driving frequencies
ω and sufficiently small (but finite) driving strengths E,
a lobe-shaped region exists, where the Floquet generator
is not markovian, i.e. not of Lindblad-type.

Figure 1(b) shows the phase diagram for another driv-
ing phase, ϕ = π/2. Remarkably, compared to ϕ = 0,
Fig. 1(a), the non-Lindbladian phase covers now a much
smaller region of the parameter space. In Fig. 2 we plot
the same phase diagram again, but for multiple interme-
diate values of the driving phase ϕ and observe how the
non-Lindbladian region continuously changes its shape
with driving phase and appears to be smallest for ϕ = π/2.
The phase boundaries therefore depend on the driving
phase or, in other words, on when during the driving pe-
riod we monitor the stroboscopic evolution of the system.

In the coherent case (γ = 0 for our model), we can de-
compose the time evolution operator of a Floquet system
from time t0 to time t like (see, e.g., Ref. [34])

U(t, t0) = UF (t) exp[−i(t − t0)Heff]U
†
F (t0), (14)

where UF (t) = U(t + T ) is a unitary operator describ-
ing the time-periodic micromotion of the Floquet states
of the system and Heff is a time-independent effective
Hamiltonian. The Floquet Hamiltonian HF

t0 , defined via

U(t0 +T, t0) = exp(−iTHF
t0) so that it describes the stro-

boscopic evolution of the system at times t0, t0 + T , . . . ,
is for general t0 then given by (see, e.g., Ref. [34])

HF
t0 = UF (t0)HeffU

†
F (t0). (15)

Thus the operator HF
t0 depends on the micromotion via a

t0-dependent unitary rotation. However, in the dissipa-
tive system the micromotion will no longer be captured
with a unitary operator. This explains why the effective
time-independent generator of the stroboscopic evolution
can change its character in a nontrivial fashion, e.g. from
Lindbladian to non-Lindbladian form, as a function of t0
(or, equivalently, of the driving phase ϕ). In Sec. VI, we
will present strong evidence for the fact that the break-
down of ‘Lindbladianity’ of the Floquet generator is en-
tirely due to the impact of the micromotion operator.

The fact that the Floquet generator for the strobo-
scopic evolution K is found to be of Lindblad form in
the high-frequency regime (Fig. 1), suggests that it is
possible to analytically approximate this Floquet Lind-
bladian by using systematic high-frequency expansions.
However, in the literature it was found that one of the
most conventional high-frequency expansions, the Mag-
nus expansion [38], generally does not produce a valid
Lindblad generator [25, 26]. Below, in Sec. IV we show
that this is also the case, when directly applying the Mag-
nus expansion to our model (12). We will then show how
a high-frequency expansion that is consistent with the
phase diagrams of Fig. 1 can still be obtained by con-
ducting it in a suitably chosen rotating frame. In the
rotating frame, it even explains the transition to the non-
Lindbladian phase as a consequence of the non-unitary
micromotion, when the frequency is lowered.
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(d) ϕ = 0.4π

FIG. 2. Distance to Markovianity µmin for different values of
the driving phase ϕ. Other parameters are as in Fig. 1.

III. HIGH-FREQUENCY EXPANSIONS AND
EXTENDED FLOQUET SPACE FOR OPEN

QUANTUM SYSTEMS

A standard tool to extract the Floquet Hamiltonian in
the high-frequency limit is the Magnus expansion [38].
In line with what has been developed in the literature
[25, 26] we apply the Magnus expansion to the special
case of a time-periodic Lindblad superoperator. For a
two-level system it takes the general form

L(H,d) = −i [H, ⋅] + ∑
n,m

dnm (σn ⋅ σm −
1

2
{σmσn, ⋅}) ,

(16)

with traceless HamiltonianH governing the coherent evo-
lution and Kossakowski matrix d governing the dissipa-
tive component of the evolution. Recall that for the evo-
lution to be physical, i.e. completely positive and trace-
preserving, the Kossakowski matrix has to be positive
semi-definite, d ⩾ 0. With this notation, commutators of
Lindblad superoperators can be evaluated by using the
general expressions for the commutators of two general
two-level system Lindblad superoperators (see Appendix
D).

As an alternative approach to compute the Floquet
generator of an open system, we will also work out a non-
Hermitian version of van-Vleck degenerate perturbation
theory in the Floquet space of time-periodic density ma-
trices. This extended Floquet state space is given by the
product space of the original state space of density matri-
ces with that of time-periodic functions. This approach
is a generalisation of the method described in Ref. [34]

for isolated driven quantum systems. It has the advan-
tage that it clearly isolates the effect of the micromotion.
Namely, it gives rise to an effective generator that is in-
dependent of the driving phase. Combining this object
with a driving-phase dependent micromotion operator,
then provides the Floquet generator for the stroboscopic
evolution.

A. The Magnus expansion

Because the Lindblad superoperator is time periodic,
we can expand it in the Fourier series,

L(t) = ∑
n∈Z

eiωntLn. (17)

The Magnus expansion [38] is a general high-frequency
expansion for linear differential equations with periodic
coefficients. Therefore it can be directly applied to our
problem. It gives rise to one candidate K for LF . Let us
denote this expansion of the generator by

KMag =
∞
∑
n=1

K
(n), (18)

which we approximate by truncating the series after some
order k, giving

KMag,k =
k

∑
n=1

K
(n). (19)

The leading coefficients read

K
(1)

=
1

T
∫

T

0
dtL(t) = L0 (20)

K
(2)

=
1

2T
∫

T

0
dt∫

t

0
dt′ [L(t),L(t′)] (21)

= i
∞
∑
n=1

[Ln,L−n] + [L0,Ln −L−n]

nω
, (22)

K
(3)

=
1

6T
∫

T

0
dt∫

t

0
dt′ ∫

t′

0
dt′′([L(t), [L(t′),L(t′′)]]

+ [L(t′′), [L(t′),L(t)]]).

(23)

For an expression of the third-order contribution in terms
of the Fourier components of L(t) see Appendix B.

B. Floquet space

Since L(t) is periodic, we can apply Floquet’s theorem
to Eq. (1) and find that the fundamental solutions of
Eq. (1) are Floquet states of the form

%a(t) = e
−iΩatΦa(t) (24)

where index a runs over all N2 fundamental solutions,
with complex numbers Ωa (replacing the quasienergies
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in the case of an isolated system) and time-periodic op-
erators Φa(t) = Φa(t+T ) (replacing the Floquet modes).
Note that the representation in Eq. (24) is not unique,
namely by setting

Ωa Ð→ Ωa +mω, m ∈ Z (25)

Φa(t)Ð→ eimωtΦa(t) (26)

we could find an equivalent representation of Eq. (24),
that will later appear as a (seemingly) independent solu-
tion in the Floquet space formalism.

We can expand the time-periodic operators Φa in a
Fourier series

Φa(t) = ∑
n∈Z

eiωntΦa,n. (27)

Plugging both Fourier expansions, Eq. (17) and Eq. (27),
into Eq. (1), we find

∑
n

(−iΩa + iωn)Φa,ne
iωnt

= ∑
k,m

LkΦa,m e
iω(k+m)t. (28)

Recall that the Ln are superoperators that act on the
Φa,n, which are linear operators on H, Φa,n ∈ L(H).

By comparing the prefactors of the exponential func-
tions, we find an eigenvalue equation in the ‘extended’
Hilbert space L(H)⊗ T , where T shall denote the space
of time-periodic functions with period T . It reads

ΩaΦa,n =∑
m

(iLn−m + δnmmω 1)Φa,m =∑
m

Q̄nmΦa,m,

(29)
where Q̄ is the extended-space representation of the su-
peroperator,

Q(t) = iL(t) − i∂t. (30)

This superoperator is the generalization of the
quasienergy operator H(t) − i∂t found for isolated sys-
tems to the open system.

Similar to the case of isolated systems, Eq. (29) pos-
sesses a transparent block structure

Ωa

⎛
⎜
⎜
⎜
⎜
⎜
⎝

. . .
Φa,−1

Φa,0
Φa,1
. . .

⎞
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎝

. . .
iL0 − ω 1 iL−1 iL−2

iL1 iL0 iL−1

iL2 iL1 iL0 + ω 1
. . .

⎞
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎝

. . .
Φa,−1

Φa,0
Φa,1
. . .

⎞
⎟
⎟
⎟
⎟
⎟
⎠

,

(31)

however the entries in the vectors are now operators
and the entries in the matrix are nonhermitian (but
Hermiticity-preserving) superoperators.

C. van-Vleck high-frequency expansion

The aim of the van-Vleck high-frequency expansion is
to find a rotation D̄ that block diagonalizes the problem
in the extended space,

Q̄
′
= D̄

−1
Q̄D̄, (32)

such that

Q̄
′
nm = δnm(iKeff + mω 1). (33)

This transformation to a block-diagonal form is desired,
since Eq. (31) is block diagonal for a time-independent
generator. As we will see, this transformation therefore
leads into a frame where the dynamics is governed by the
time-independent generator Keff . However, in contrast to
the closed system, Q̄ is not necessarily Hermitian, so the
rotation D is in general not a unitary transformation.
Still, the spectrum Ωa is of course invariant under this
transformation.

In analogy to the coherent case [34], it suffices to
take into account time-periodic transformations D(t) =

∑n e
iωntDn, therefore in extended space the operator

D̄nm may only depend on the difference of the phonon
indices D̄nm = Dn−m. First of all, we observe that for two
time-local time-periodic superoperators,

A(t) = ∑
n∈Z

eiωntAn and B(t) = ∑
n∈Z

eiωntBn, (34)

the product of both operators in the time domain

C(t) = A(t)B(t) = ∑
n,m∈Z

eiω(n+m)tAnBm (35)

= ∑
n,m∈Z

eiωntAn−mBm, (36)

leads in the extend space to

C̄nm = Cn−m = ∑
k∈Z
An−m−kBk (37)

= ∑
k∈Z
An−kBk−m = (ĀB̄)nm. (38)

Therefore, products in the time domain directly translate
into products in the extended space and vice versa. As
a result, the inverse transformation D̄−1 in the extended
space is just the representation of the inverse transfor-
mation in time,

D
−1

(t) =∑
n

eiωnt(D−1
)n with D

−1
(t)D(t) = 1, (39)

i.e. we have (D̄−1)nm = (D−1)n−m.
Thus, the transformation in Eq. (32) becomes Φ′

a(t) =
D−1(t)Φa(t), and therefore %′(t) = D−1(t)%(t). The
equation of motion in the transformed frame reads

∂t%
′
(t) = (∂tD

−1
(t))%(t) +D−1

(t)∂t%(t)

≡ L
′
(t)%′(t) (40)

Thus, much like to the coherent case, this transformation
is equivalent to

L
′
(t)[⋅] = (∂tD

−1
(t))D(t) ⋅ +D−1

(t)L(t)[D(t)⋅]. (41)

resembling a gauge transformation.
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As pointed out already in the literature [29] and in
analogy to the closed system, Eq. (14), the effective gen-
erator Keff appearing in Eq. (33) fulfills

P(t, t0) = D(t) exp[(t − t0)Keff]D
−1

(t0). (42)

It is the time-independent generator describing the evo-
lution in a “rotating frame of reference”. However, since
the dynamics is dissipative, the time-periodic “micromo-
tion” operator D(t) that describes this transformation,
is generally not unitary anymore. Defining a general Flo-
quet generator Kt0 via

P(t0 + T, t0) = exp (Kt0T ) , (43)

so that K = K0 corresponds to the Floquet generator de-
fined by Eq. (9) for the case of t0 = 0, it can be expressed
in terms of the effective generator Keff and the micromo-
tion operator D(t),

Kt0 = D(T + t0)KeffD
−1

(t0). (44)

Since the micromotion superoperator D(t0) is generically
non-unitary, it is possible that it maps a Lindbladian ef-
fective generator K to a non-Lindbladian Floquet gen-
erator Kt0 . This explains the driving-phase dependence
(which is equivalent to a dependence on t0) observed in
Fig. 1. Moreover, below we find strong evidence suggest-
ing that Keff is always of Lindblad type, so that the non-
Markovianity of K , as it is found in the non-Lindbladian
lobes of Fig. 1, must entirely entirely be to the micromo-
tion captured by D(t0).

In Ref. [29] a high-frequency expansion for both the
effective generator Keff and the micromotion superoper-
ator D(t) were derived. Here we present an alternative
derivation of such a high-frequency expansion by apply-
ing van-Vleck-type degenerate perturbation theory the
extended Floquet space. Genealizing the reasoning of
Ref. [34] to the non-Hermitian problem of the open sys-
tem, we decompose Q into an unperturbed blockdiago-
nal part Q̄0 and a perturbation V̄ that can also contain
block-off-diagonal terms,

Q̄ = Q̄0 + λV̄, (45)

with (Q̄0)nm = δnmmω1. Applying van Vleck perturba-
tion theory, we obtain (Appendix C)

Keff =
∞
∑
n=1

K
(n)
eff (46)

D(t) = exp(G(t)) with G(t) =
∞
∑
n=1

G
(n)

(t), (47)

where (see also [29])

K
(1)
eff = L0, (48)

K
(2)
eff = i

∞
∑
n=1

[Ln,L−n]

nω
, (49)

K
(3)
eff = −∑

n≠0

⎛
⎜
⎜
⎝

[Ln, [L0,L−n]]

2n2ω2
+ ∑
m≠0,
m≠n

[Lm, [Ln−m,L−n]]

3nmω2

⎞
⎟
⎟
⎠

.

(50)

and

G
(1)

(t) = −i∑
n≠0

einωt
Ln

nω
, (51)

G
(2)

(t) = −∑
n≠0

einωt
⎛
⎜
⎜
⎝

[L0,Ln]

n2ω2
+ ∑
m≠0,
m≠n

[Ln−m,Lm]

2mnω2

⎞
⎟
⎟
⎠

.

(52)

These expressions take exactly the same structure as
those found for isolated systems [34].

IV. HIGH-FREQUENCY EXPANSION: DIRECT
FRAME

Let us now apply both types of high-frequency ex-
pansion described in the previous section to our model
system. Although a Lindblad-type Floquet generator is
found numerically to exist in the high-frequency regime,
this behaviour is not reproduced by both the Magnus
and the van-Vleck-type expansion when directly applied
to the model (12).

A. Emergence of non-Lindbladian terms in the
Magnus expansion

Let us compute the leading terms of the Magnus expan-
sion for the effective Floquet generator for the two-level
system defined in Eq. (12) with driving phase ϕ = 0.
The Fourier-expansion of our model yields three non-
vanishing terms,

L0 = −i [
σz
2
, ⋅] + γ (σ− ⋅ σ+ −

1

2
{σ+σ−, ⋅}) (53)

and

L1 = L−1 = −i
E

2
[σx, ⋅] . (54)

The second order of the expansion drops out, K(2) = 0,
(as well as all other even orders). Using Eq. (23), up to
the third order we, therefore, find

KMag,3 = L0 +
2

ω2
[L0, [L0,L1]] −

1

ω2
[L1, [L0,L1]] .

(55)

By using the general expressions for the commutator
of two general two-level system Lindblad superoperators
that we present in Appendix D, we compute

[L0,L1] = L(Ha, da), (56)

with

with Ha =
E

2
σy and da = γE

⎛
⎜
⎝

0 0 −i
0 0 −1
i −1 0

⎞
⎟
⎠
, (57)
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where L(H,d) is defined in Eq. (16). Similarly, we find

[L0, [L0,L1]] = L(Hb, db), (58)

with

Hb = −
E

2
σx and db = 2γE

⎛
⎜
⎝

0 0 1
0 0 −i
1 i 0

⎞
⎟
⎠
, (59)

as well as

[L1, [L0,L1]] = L(Hc, dc), (60)

with

Hc =
E2

2
σz +O(γ2

) and dc = γE
2
⎛
⎜
⎝

0 i 0
−i 2 0
0 0 −2

⎞
⎟
⎠
+O(γ2

).

(61)

Altogether, in third order Magnus expansion (and first
order in γ), the Floquet generator is approximated by

KMag,3 = L(HMag,3, dMag,3), (62)

with

HMag,3 = −
ε

ω
σx +

1

2
(1 − ε2)σz (63)

and

dMag,3 = γ
⎛
⎜
⎝

1 i(1 − ε2) 4ε/ω
−i(1 − ε2) 1 − 2ε2 −4iε/ω

4ε/ω 4iε/ω 2ε2

⎞
⎟
⎠
, (64)

where ε = E/ω.
The matrix distance of the matrix representation of the

superoperator KMag,3 to the matrix representation of the
exact Floquet generator K is shown in Fig. 3(a). Note
that although for high frequencies, ω →∞, this distance
approaches zero, for any finite γ ≠ 0 the generator KMag,3

is not a valid Lindbladian generator in the whole region of
the parameters. This can be seen from the characteristic
polynomial of its dissipator matrix dMag,3, which apart
from the prefactor γ reads

f(λ) = det(dMag,3/γ − λ1) (65)

= −λ3
+ 2λ2

− λ(4ε2
− 5ε4

−
32ε2

ω2
) − 2ε6. (66)

As illustrated in Fig. 3(b), for λ → −∞ we have f(λ) →
∞, but at the same time one finds f(0) = −2ε6 < 0.
Therefore there will always be a negative eigenvalue λ
and the Kossakowski matrix dMag,3 is not positive semi-
definite. As a result, the third-order Magnus approxima-
tion of the Floquet generator KMag,3 is not of Lindblad
form. This is unsatisfactory, since the Floquet generator
has been shown to be of Lindblad form numerically in
the limit of large driving frequencies.

0 1 2

2

4

6

E

ω

log10(d)

−2

0

2

(a)

0.5 1.0 1.5−0.5−1.0−0.5

−1.0

0.5

1.0

1.5

ε = 0.6
ω = 8

f

(b)

FIG. 3. (a) Distance (the Frobenius norm) d = ∣∣KMag,3 −

Kx0 ∣∣F between the generator KMag,3 obtained with the third-
order Magnus expansion in the direct frame and the exact
generator Kx0 ∈ log(P(T ))/T from branch closest to a Lind-
blad generator. (b) Typical graph f(λ) of the characteristic
polynomial of matrix dMag,3/γ of the third order Magnus ex-
pansion KMag,3 of the Floquet generator. The matrix dMag,3

therefore has one negative eigenvalue for all parameters ε,ω
and γ > 0.

As was already pointed out in the literature [25], the
negative eigenvalue emerges due to the fact that the char-
acteristic polynomial has terms that are of higher order
than 1/ω2 up to which the Magnus expansion was per-
formed. It is indeed expected, that the characteristic
polynomial is correct only up to this order,

f(λ) = −λ3
+ 2λ2

− 4ε2λ, (67)

and that the next higher order will only be revealed af-
ter evaluating the Magnus expansion up to fourth order
and so on. Note that if we only take into account the
terms up to order 1/ω2, Eq. (67), indeed, the character-
istic polynomial only has nonnegative eigenvalues, so one
could argue that complete positivity is only violated in
orders higher than 1/ω2. However, if one would want to
find a generator that is a valid Lindbladian in this order
1/ω2, there is no well-defined procedure on how to mod-
ify the terms in the dissipator matrix d, such that its
characteristic polynomial is exactly the one in Eq. (67).

The problem of an non-Lindbladian generator KMag is
not originating from a wrong choice of branch for KMag.
We have also checked the other branches of KMag nu-
merically and they also do not yield a valid Lindbladian
generator. In the high-frequency limit ω → ∞, we gen-
erally expect that it suffices to investigate the principal
branch. This is because for the high-frequency expansion
KMag(ω) one has (cf. Appendix A)

KMag,x(ω) = KMag(ω) + iω
nc

∑
c=1

xc (Pc(ω) − Pc∗(ω)) .

(68)

In the high-frequency limit, the principal branch
KMag(ω) converges to the diabatic (or rotating-wave)
Lindbladian KMag(ω) → L0, therefore all the projectors
will also converge, Pc(ω)→ Pc(∞). As long as

Φ⊥(Pc(∞) − Pc∗(∞))
ΓΦ⊥ ≠ 0 (69)
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the matrices Vc in the Markovianity test, Eq. (A11), will
scale linearly with ω in that limit. Therefore, for ω →∞

all matrices Vx(ω) for branches different from x = 0 will
diverge, leaving only the principal branch as a candidate.

B. Non-Lindbladian terms in the van-Vleck
high-frequency expansion

Let us now investigate the effective generator Keff using
the van-Vleck high-frequency expansion. Since again the
second order vanishes, it provides in third-order high-
frequency approximation and first order with respect to γ

Keff,3 = L0 −
1

ω2
[L1, [L0,L1]] . (70)

Employing Eq. (61), we obtain

Keff,3 = L(Heff,3, deff,3), (71)

with

Heff,3 =
1

2
(1 − ε2)σz, (72)

and

deff,3 = γ
⎛
⎜
⎝

1 i(1 − ε2) 0
−i(1 − ε2) 1 − 2ε2 0

0 0 2ε2

⎞
⎟
⎠
. (73)

Here we may directly read off one eigenvalue of deff,3/γ

λ3 = 2ε2. (74)

The other eigenvalues follow from solving

0 = f̃(λ) = λ2
− 2(1 − ε2

)λ − ε4. (75)

Again, f̃(0) = −ε4 < 0 while asymptotically f̃ is posi-
tive, therefore there must be one negative eigenvalue, and
also the effective generator is non-Lindbladian. Thus, the
van-Vleck high-frequency expansion shares the problems
of the Magnus expansion that it does not provide an ef-
fective generator of Lindblad form in the high-frequency
limit.

V. ROTATING FRAME OF REFERENCE

When considering Floquet engineering in the high-
frequency limit, we know from isolated systems that of-
ten the regime of strong driving, with the driving ampli-
tude comparable to ω (which is large compared to other
relevant system parameters), is of special interest, since
here the driving leads to a noticeable modification of the
system properties. A prominent example is coherent de-
struction of tunneling [59–61], occurring when the am-
plitude of the energy modulation between two tunnel-
coupled states is equal to about 2.4ω. To, neverthe-
less, be able to treat this regime using high-frequency

expansions, typically a gauge transformation to a rotat-
ing frame of reference is performed, before conducting the
high-frequency expansion. This frame is defined so that it
integrates out the strong driving term, corresponding to
the transition to the interaction picture with the driving
term playing the role of the unperturbed Hamiltonian.
Comparing the results of a high-frequency expansion in
the original frame with those obtained in the rotating
frame, the terms of the latter correspond to a partial
resummation of infinitely many terms of the previous.
Namely, while in the original frame, the nth order con-
tains powers of the driving amplitude ≤ n, each order of
the rotating-frame expansion can contain arbitrary pow-
ers of the driving amplitude. The rotating frame expan-
sion is, thus, non-perturbative with respect to the driving
amplitude.

We will now perform such a transformation to a rotat-
ing frame also for the open quantum system. However,
differently from the case of isolated systems, it will now
not only improve the convergence properties of the high-
frequency expansion for strong driving. Rather remark-
ably, it also ensures that the leading orders of the expan-
sion give rise to approximations to the Floquet generator
that can be of Lindblad type. Thus, the problem dis-
cussed in the previous section, namely that the Magnus
and the van-Vleck expansion do not provide Lindblad-
type generators when directly applied to our model sys-
tem, is cured when conducting the high-frequency expan-
sions in the rotating frame of reference.

A. Rotating frame of reference

We decompose the time-dependent Lindbladian into
its time-average and a driving term,

L(t) = L0 +Ld(t), (76)

with

Ld(t) = ∑
n≠0

einωtLn. (77)

Let us, for the sake of simplicity, assume that Ld(t) com-
mutes with itself at different times,

[Ld(t),Ld(t
′
)] = 0, ∀t, t′, (78)

which is equivalent to [Ln,Lm] = 0, ∀n,m ≠ 0. In anal-
ogy to the coherent case of isolated systems, we consider
the transformation generated by the driving term,

%̃(t) = Λ−1
(t)%(t), (79)

with

Λ−1
(t) = exp(−∫

t

0
dt′Ld(t

′
)) . (80)

We denote operators in the rotating frame with a tilde.
In case that only the coherent part of the Lindbladian
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(i.e. the Hamiltonian) is driven, Ld(t) = −i [Hd(t), ⋅], this
transformation reduces to a unitary rotation of the den-
sity matrix,

%̃(t) = U †
(t)%(t)U(t), (81)

with

U(t) = exp(−i∫
t

0
dt′Hd(t

′
)) . (82)

The equation of motion in the rotating frame reads

∂t%̃(t) = (∂tΛ
−1

(t))%(t) +Λ−1
(t)∂t%(t) ≡ L̃(t)%̃(t) (83)

with gauge-transformed Lindbladian

L̃(t)[⋅] = (∂tΛ
−1

(t))Λ(t) ⋅ +Λ−1
(t)L(t)[Λ(t)⋅]. (84)

Now, because Ld(t) commutes with itself at different
times, also Λ(t) commutes with Ld(t), therefore we find

L̃(t)[⋅] = −Ld(t) ⋅ +Λ−1
(t)Ld(t)[Λ(t)⋅] +Λ−1

(t)L0[Λ(t)⋅]
(85)

= Λ−1
(t)L0[Λ(t)⋅]. (86)

By construction, we have eliminated the driving term,
at the expense that the transformed static term has now
acquired a periodic time-dependence.

From the time evolution operator in the rotating frame,
P̃(t) (where here and in the following the initial time of
the evolution is always understood to be t = 0), we can

define the Floquet Lindbladian K̃ in the rotating frame
in analogy to Eq. (9),

P̃(T ) = exp(K̃T ). (87)

Since for our choice of the driving term Ld(t), one has

∫
νT

0 dtLd(t) = 0, ν ∈ N0, the transformation Λ(t) be-
comes the identity at stroboscopic times t = νT . Thus, at
stroboscopic times the rest frame and the rotating frame
coincide, so that

%̃(νT ) = %(νT ) (88)

as well as

P̃(νT ) = P(νT ). (89)

In particular, one has P̃(T ) = P(T ), which implies that

K̃ = K. (90)

Note that this is not true for a general choice of Ld(t),
e.g., if Ld(t) does not commute with itself at different
times.

B. Explicit transformation for our model system

We now work out the transformation to the rotating
frame for our model system [Eq. (12)]. Since only the
Hamiltonian is driven, the transformation is unitary,

%̃(t) = U †
(t)%(t)U(t), (91)

where

U(t) = exp (−iχ(t)σx) , with χ(t) =
E

ω
sin(ωt). (92)

We again consider driving phase ϕ = 0 only. We find

L̃(t)[⋅] = − i [
1

2
σ̃z(t), ⋅]

+ γ (σ̃−(t) ⋅ σ̃+(t) −
1

2
{σ̃+(t)σ̃−(t), ⋅}) .

(93)

Here the rotated Pauli operators read

σ̃z(t) = U
†
(t)σzU(t)

= cos(2χ(t))σz + sin(2χ(t))σy,
(94)

σ̃±(t) = U
†
(t)σ±U(t)

= σx ± i [cos(2χ(t))σy − sin(2χ(t))σz] .
(95)

In order to perform the high-frequency expansions in
the rotating frame, let us now determine the Fourier com-
ponents of the transformed Lindbladian L̃(t), Eq. (93).
Using the definition z = 2E/ω, we may rewrite the Fourier
transform

Fn[cos(2χ(t))] ≡
1

T
∫

T

0
cos(2χ(t))e−inωtdt (96)

=
1

T
∫

T

0

1

2
(eiz sin(ωt)

+ e−iz sin(ωt)) e−inωtdt (97)

=
1

2
[Jn(z) + J−n(z)] = enJn(z). (98)

Here Jn(z) is the n-th Bessel function of the first kind,
we have used J−n(z) = (−1)nJn(z) and defined

en = {
1, n even,
0, n odd,

and on = {
0, n even,
1, n odd.

(99)

Similarly, we find

Fn[sin(2χ(t))] = −ionJn(z), (100)

Fn[sin(2χ(t)) cos(2χ(t))] = −i
on
2
Jn(2z), (101)

Fn[cos(2χ(t))2
] =

1

2
[δn0 + enJn(2z)] , (102)

Fn[sin(2χ(t))
2
] =

1

2
[δn0 − enJn(2z)] , (103)

so that the Fourier components of the Lindblad generator
in the rotating frame read

L̃n = L(Hn, dn), (104)
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FIG. 4. (a) Distance to Markovianity µmin of the Floquet

generator K̃Mag,1(= K̃eff,1 = K̃vV,1) obtained with the first-
order Magnus expansion in the rotating frame for the same
model and parameter γ = 0.01 as in Fig. 1(a). The generator is
a valid Lindbladian for for all parameters (E,ω). (b) Distance

(the Frobenius norm) d = ∣∣K̃ −Kx0 ∣∣F between the generator

K̃ obtained by the first-order Magnus expansion K̃Mag,1 in the
rotating frame and the candidate Kx0 ∈ log(P(T ))/T for the
Floquet-Lindbladian LF of branch x0, which is closest to the
valid Lindbladian generator.

with

Hn =
Jn(z)

2
(enσz − ionσy) (105)

and

dn = γ

⎛
⎜
⎜
⎝

δn0 ienJn(z) −onJn(z)

−ienJn(z)
δn0+enJn(2z)

2
i
2
onJn(2z)

onJn(z)
i
2
onJn(2z)

δn0−enJn(2z)
2

⎞
⎟
⎟
⎠

. (106)

(Note that each of the individual Fourier-components L̃n
can be brought to Lindblad form simply by the multipli-
cation with a suitable phase factor.)

VI. HIGH-FREQUENCY EXPANSION:
ROTATING FRAME

Let us now perform both types of high-frequency ex-
pansion in the rotating frame of reference.

A. Magnus expansion in the rotating frame

1. First order Magnus expansion in the rotating frame

The lowest order of the Magnus expansion in the ro-
tating frame reads

K̃Mag,1 = L̃0 = L(HMag,1, dMag,1), (107)

with

HMag,1 =
J0(z)

2
σz (108)

and

dMag,1 = γ
⎛
⎜
⎝

1 iJ0(z) 0
−iJ0(z)

1
2
[1 + J0(2z)] 0

0 0 1
2
[1 − J0(2z)]

⎞
⎟
⎠
.

(109)

where, again, z = 2E/ω. Note that for z → 0, i.e. for
E → 0 or ω → ∞ (such that J0(z) → 1) we recover
the static Hamiltonian and dissipator, as expected. In
Fig. 4(b) we plot the distance of the matrix representa-

tion of the superoperator of this approximation K̃ to the
exact Floquet generator and see a much better agree-
ment than what one finds for the lowest order in the
direct frame [cf. Fig. 3(a)], especially for smaller values
of ω. This is expected because the transformation to
the rotating frame integrates out the driving term which
corresponds to a partial resummation of infinitely many
orders in E/ω, here entering via the nonlinear function
Bessel function J0. In the direct frame, however, the
leading order correction in the Magnus expansion only
captures terms up to order (E/ω)2.

The eigenvalues of the coefficient matrix dMag,1 read

λ1/2 = γ

⎡
⎢
⎢
⎢
⎢
⎣

µ(z) ±

√

µ(z)2 + J0(z)2 −
1

2
[1 + J0(2z)]

⎤
⎥
⎥
⎥
⎥
⎦

,

(110)

λ3 =
γ

2
[1 − J0(2z)], (111)

with µ(z) = [3+J0(2z)]/4. The corresponding generator
is a valid Lindbladian generator only if all three eigen-
values are non-negative. This is generally the case, since

J0(z)
2
−

1

2
[1 + J0(2z)] (112)

= J0(z)
2
−

1

2
∑
k∈Z

Jk(z)
2
−

1

2
∑
k∈Z

Jk(z)J−k(z) (113)

= J0(z)
2
−∑
k∈Z

J2k(z)
2
= −∑

k≠0

J2k(z)
2
≤ 0, (114)

In the first step we have used the identity Jn(y + z) =

∑k∈Z Jk(y)Jn−k(z) and that 1 = ∑k∈Z Jk(z)
2. This shows

that the values that the square root in Eq. (110) takes will
be smaller than µ(z). Therefore, the first order expan-
sion in the rotating frame produces a nontrivial generator
K̃Mag,1 that is a valid Lindbladian for all parameter val-
ues [Fig. 4(a)].

When comparing the result that we obtain in the ro-
tating frame, Eq. (107), to the one that we obtain when
directly performing the Magnus expansion, Eq. (62), we
find that by expanding the Bessel function to second or-
der, J0(z) ≈ 1−z2/4, by using z = 2ε we recover the terms
∝ ε2 in Eq. (62), while the terms ∝ ε/ω will be found in
the next order of the rotating-frame Magnus expansion.
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2. Second order Magnus expansion in the rotating frame

The second order term of the rotating-frame Magnus
expansion reads

K̃
(2)

= i∑
n>0

[L̃n, L̃−n] + [L̃0, L̃n − L̃−n]

nω
= ∑
n>0

2on
[L̃0, iL̃n]

nω
,

(115)

where in the second step we have used that for the Fourier
components in Eq. (104) we have L̃−n = (−1)nL̃n.

By employing the general expressions derived in Ap-
pendix D, we find that for odd n

[L̃0, iL̃n] = L(Hn, dn), (116)

with

Hn = −
J0(z)Jn(z)

2
σx, (117)

and

dn =
γ

2

⎛
⎜
⎝

0 0 fn(z)
0 0 −4iJ0(z)Jn(z)

fn(z) 4iJ0(z)Jn(z) 0

⎞
⎟
⎠
, (118)

where fn(z) = Jn(z)[1+J0(2z)]+Jn(2z)J0(z). Moreover,
we ignored terms of second or higher order in γ. Thus,
up to second order, the Magnus expansion in the rotating
frame reads

K̃Mag,2 = L(HMag,2, dMag,2), (119)

with

HMag,2 = J0(z) [
1

2
σz −

ν(z)

ω
σx] (120)

and

dMag,2 = γ
⎛
⎜
⎝

1 iJ0(z)
1
ω
[ν(z)(1 + J0(2z)) + J0(z)ν(2z)]

−iJ0(z)
1
2
[1 + J0(2z)] − 4i

ω
J0(z)ν(z)

1
ω
[ν(z)(1 + J0(2z)) + J0(z)ν(2z)]

4i
ω
J0(z)ν(z)

1
2
[1 − J0(2z)]

⎞
⎟
⎠
, (121)

where we have introduced ν(z) = ∑n>0[onJn(z)/n].
Since in leading order order ν(z) ≃ z/2, we also recover
the terms ∝ ε/ω in Eq. (62).

In Fig. 5(b) we show the distance of the matrix repre-

sentation of the superoperator of K̃Mag,2 to the exact Flo-
quet generator and see a small improvement compared
to the first-order result in Fig. 4(b). However, the dis-
tance from Markovianity, which is plotted in Fig. 4(a),
acquires qualitatively different behaviour in second order.
While the Floquet generator was always Markovian (i.e.
of Lindblad form) in first order, in second order we can
now distinguish parameter regions, where it is of Lind-
blad type, from others, where it is not. Remarkably, the
map shown in Fig. 5(a) resembles very much the exact
phase diagram of Fig. 1(a). Namely, we can clearly ob-
serve a lobe-shape region, where the Floquet generator
is non-Markovian. While this region is larger than in
the exact phase diagram, the transition between Lind-
bladian and non-Lindbladian Floquet generator is qual-
itatively captured correctly by the Floquet-Mangus ex-
pansion. Only at very low frequencies, where we cannot
expect the high-frequency expansion to provide meaning-
ful results, we find as an artifact a thin non-Markovian
stripe, which is not present in the exact phase diagram.

B. Van-Vleck high-frequency expansion in the
rotating frame

After having seen that, starting from the rotating
frame of reference, the Magnus expansion qualitatively
reproduces the exact phase diagram, let us now also eval-

0 1 2 3 4
0.0

2.5

5.0

7.5

10.0

E

ω

log10(µmin)

LF

no LF

−10.0

−7.5

−5.0

−2.5

(a)

0 1 2

2

4

6

E
ω

log10(d)

−2

0

2

(b)

FIG. 5. (a) Distance to Markovianity µmin of the Floquet gen-

erator K̃Mag,2 obtained with the second-order Magnus expan-
sion in the rotating frame for the same model and parameter
γ = 0.01 as in Fig. 1. Note that we only calculate distances for
ω ≥ 0.3, values below this are drawn in white. (b) Matrix dis-

tance d of the candidate K̃Mag,2 to the candidate K obtained
from the logarithm of P(T ).

uate the leading orders of the van-Vleck expansion. Dif-
ferent, however, from the previous section, where we were
able to derive analytic expressions for the Magnus expan-
sion, here calculations get quite involved and so we treat
this expansion numerically. For this purpose, it is conve-
nient to first discuss the action of the transformation to
the rotating frame, Λ(t) in the extended Floquet space.
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1. Floquet-space formalism

Both the rotating-frame transformation Λ(t) and the
micromotion D(t) are generalized gauge transformations.
Instead of finding D(t) directly, however, we may first
perform a transformation to the rotating frame, %̃(t) =

Λ−1(t)%(t), and then find the micromotion transforma-
tion there. Since Λ(t) is periodic, we have

Λ(t) =∑
n

einωtΛn, (122)

so we also may represent it in extended space Λ̄nm =

Λn−m. Note that this representation is only possible since
we assume the driving term Ld(t) to commute with itself
at different times, so that no time-ordering is needed. As
a result Λ(t) is a time-local, and thus also time-periodic,
superoperator.

As a result, in the rotating frame the generalized quasi-
energy operator reads

¯̃
Q = Λ̄−1

Q̄Λ̄. (123)

Like in the direct frame, the goal is to find a transforma-
tion D̃ such that

Q̄
′
=

¯̃
D
−1 ¯̃
Q

¯̃
D (124)

where Q̄′ is block diagonal.
With respect to the original frame of reference, the

micromotion operator is given by the combination

D(t) = Λ(t)D̃(t). (125)

From this expression, we can once more directly see that
for strong driving the high-frequency expansion in the
direct frame will at least have a slow convergence only.
Namely, the transformation Λ involves a summation of
infinitely many terms in E/ω.

In the regular (non-extended) superoperator-space, the
rotating-frame quasienergy operator, reads

Q̃(t) = iL̃(t) − i∂t. (126)

Here the time-periodic Lindbladian generator in the ro-
tating frame, L̃, is given by Eq. (86). Its Fourier-

components L̃n are directly related to its Floquet-space
representation,

¯̃
L = Λ̄−1

L̄0Λ̄ i.e. ¯̃
Lnm = L̃n−m =∑

k

Λ−1
n−kL0Λk−m,

(127)

which allows for their efficient numerical calculation. To
this end let us determine the coefficients Λn. In Appendix
F we show that for driving terms of the form

Ld(t) = φ(t)L
′
d, (128)

with scalar function φ(t) = ∑m≠0 e
imωtφm, one finds the

explicit Floquet-space expression:

Λ̄ = ∏
m≠0

f̄ (m) (
φmL

′
d

imω
) ḡ(m) (

φmL
′
d

imω
) . (129)

Here we have introduced f̄
(m)
nl = f

(m)
n−l , ḡ

(m)
nl = g

(m)
n−l as well

as

f (m)n (x) = {
Jk(x) if n = km,k ∈ Z,

0 else.
(130)

g(m)n (x) = {
e−xIk(x) if n = km,k ∈ Z,

0 else,
(131)

with Bessel functions of first kind, Jk, and modified
Bessel functions of first kind, Ik,. Since Λ−1(t) is di-
rectly obtained from Λ(t) by setting φ(t) → −φ(t), we
find Λ̄−1 from Eq. (129) by setting φm → −φm.

For our example system we have

φ(t) = 2 cos(ωt), L
′
d = L1 = L−1 = −i [

E

2
σx, ⋅] (132)

From Eq. (129) (or an explicit calculation) we find

Λn = Jn (
2L1

iω
) , (133)

which finally yields

L̃n =∑
k

Jn−k (−
2L1

iω
)L0Jk (

2L1

iω
) . (134)

By translating superoperators into N2 ×N2-dimensional
matrices as shown in Appendix E, we therefore have an
alternative procedure to the one we obtained in Section
V B to calculate the operators L̃n and from this the van-
Vleck high-frequency expansion. An explicit calculation
of L̃n using this matrix representation is given in Ap-
pendix G. [Plugging this result into the first order of the

Magnus expansion, Eq. (20), one recovers K̃Mag,1 of Sec-
tion VI A 1.]

Equation (134) is a good starting point for numer-
ical investigations, because it can be evaluated easily,
after having represented the superoperators L0,L1 by
N2 ×N2-dimensional matrices. From the expressions in
Section III C we can then compute the terms of the van-
Vleck high-frequency expansion in the rotating frame.
We compute both the approximate effective generator,

K̃eff,n = ∑
n
k=1 K̃

(k)
eff , as well as the approximate micromo-

tion operator D̃n(t) = exp(∑
n
k=1 Gk(t)). Note that for the

latter, the expansion of the exponent is truncated, rather
than that of the full exponential function. For isolated
systems, this makes sure that the micromotion opera-
tor is unitary also in finite orders of the approximation
[34]. Combining both approximations, we can compute
the nth order approximation to the Floquet generator

K̃vV,n = D̃n−1(0)K̃eff,nD̃
−1
n−1(0). (135)

Here we only need to consider the micromotion correc-
tion up to the order of n − 1, since all terms contained
in K̃eff,n are of order one or higher. The approximation
(135) is generally different from the one obtained from
the truncated Magnus expansion in the rotating frame.
If, instead, we had expanded and truncated D̃n(t) di-
rectly, rather than its exponent, we would have recovered
the Magnus approximation.
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2. First order van-Vleck high-frequency expansion in the
rotating frame

Note that from comparing Eq. (20) to Eq. (48) we learn
that in the leading first order (i.e. zeroth order in 1/ω),
the van-Vleck high-frequency expansion of the effective
generator K̃eff and the Magnus expansion K̃Mag coincide,

K̃eff,1 = K̃Mag,1, therefore in first order also the effective
generator exists for all parameter values. Additionally, in
leading (zeroth) order the micromotion operator is simply

the identiy, D̃0(0) = 1, so that in leading (first) order, the
Floquet generator is equal to the effective generator,

K̃vV,1 = K̃eff,1 = K̃Mag,1. (136)

Thus, in the rotating frame for the first-order van-Vleck
Floquet generator K̃vV,1 both the distance to Markovian-
ity as well as the distance from the exact Floquet gener-
ator are identical to the ones shown in Fig. 4. In partic-
ular, K̃vV,1 is of Lindblad type in the whole parameter
plane (E,ω) [cf. Fig. 4(a)].

3. Second order van-Vleck high-frequency expansion in the
rotating frame

From the second order on, the truncated van-Vleck ex-
pansion for the Floquet generator, K̃vV,n, deviates both

from the effective generator K̃eff,n and from the truncated

Magnus expansion of the Floquet generator, K̃Mag,n.

However, since for our model we have L̃−n = (−1)nL̃n
and, therefore, [L̃n, L̃−n] = 0, the second-order contribu-
tion to the effective generator vanishes, so that

K̃eff,2 = K̃eff,1. (137)

Thus, the only new contribution to the Floquet generator

K̃vV,2 = D̃1(0)K̃eff,2D̃
−1
1 (0) = D̃1(0)K̃eff,1D̃

−1
1 (0) (138)

stems from the micromoton operator D̃1(0).
In Fig. 6, we plot the distance from Markovianity (a)

[as well as the distance from the exact Floquet gener-

ator for K̃vV,2 (b)]. Apart from some artifacts at very
low frequencies, we find a lobe-shaped non-Markovian re-
gion, where no Floquet-Lindbladian can be found. Thus,
like the Magnus expansion, also the van-Vleck expan-
sion explains the structure of the exact phase diagram
shown in Fig. 1(a). However, the phase boundaries ob-
tained within the second-order van-Vleck approximation
[Fig. 6(a)] are closer to the exact ones [Fig. 1(a)] than
those obtained with the Magnus expansion [Fig 4(a)].

Apart from providing a quantitatively better approxi-
mation to the exact results, the van-Vleck expansion has
another (and more important) advantage compared to
the Magnus expansion. Namely, it disentangles effects
that result from the micromotion, which are contained
in D̃(t0), from those contained in the t0-independent ef-

fective generator K̃eff . Since K̃eff,2 is Markovian in the

whole parameter plane (E,ω), we can now clearly see
that for our model system the origin of the region with
non-Markovian Floquet generator lies (entirely) in the
non-unitary micromotion. While this statement is ob-
tained from a second-order high-frequency van-Vleck ex-
pansion only, the very good agreement with the exact
phase diagram, strongly suggests that this statement re-
mains true also beyond this approximation. This is con-
firmed also by the third order van-Vleck approximation,
which is discussed below. Note that the phase diagram
will not be changed further, when transforming from the
rotating to the direct frame of reference, because both
are related by a unitary transformation for our model
system, since the driving term is hermitian.

The relation of regions with non-Markovian Floquet
generator with the non-unitary micromotion of the sys-
tem, is consistent also with the strong dependence of the
phase diagram on the driving phase, which is equivalent
to a variation of the time t0, with t0 = ϕT /2π. Compare
Figs. 1(a) and (b) corresponding to ϕ = 0 and ϕ = π/2,
respectively or the subfigures of Fig. 2. In order to ex-
plain why the non-Markovian lobe in the phase diagram
is largest for ϕ = t0 = 0 and shrinks with increasing ϕ,
until it finds its smallest extent for ϕ = π/2 or t0 = T /4,
let us inspect the first-order van-Vleck approximation of
the micromotion operator (which describes the role of
the micromotion in the second-order approximation of
the Floquet generator). It reads

D̃1(t0) = exp(−i∑
n≠0

einωt0
L̃n

nω
) (139)

= exp(−i
∞
∑
k=1

2 [ok cos(kωt0) + eki sin(kωt0)]
L̃k

kω
) ,

(140)

where in the second step we have employed that for our
model L̃−n = (−1)nL̃n. When the exponent of this ex-
pression becomes small, the micromotion operator ap-
proaches the identity, which describes a unitary rota-
tion that does not induce any non-Markovian behavior.
The largest contribution to the exponent stems from the
k = 1 term, which vanishes precisely when t0 = T /4 cor-
responding to the driving phase ϕ = π/2 at which the
non-Markovian region is smallest. Thus, the van-Vleck
expansion provides analytical insight into the origin of
the phase dependence of the phase diagram.

4. Third order van-Vleck high-frequency expansion in the
rotating frame

In order to support the conclusions drawn from the
second-order van-Vleck expansion in the previous section,
let us now briefly disucuss the third order. Calculating
numerically the effective generator K̃eff,3, in Figure 7 we
show the resulting distance from Markovianity. Apart
from artifacts appearing at very small frequencies, K̃eff,3
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FIG. 6. (a) Distance to Markovianity µmin of the Floquet
generator K obtained with the second-order van-Vleck high-
frequency expansion K̃vV,2 in the rotating frame, where we do
not expand the exponential in D̃(t) = exp(G̃(t)). We present
the same model and parameter γ = 0.01 as in Fig. 1(a). Note
that we only calculate distances for ω ≥ 0.3, values below this
are drawn in white. (b) Distance d of the candidate K̃vV,2 to
the exact candidate K obtained from the logarithm of P(T ).
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FIG. 7. Distance to Markovianity µmin of the candidate K̃eff,3

for the effective generator obtained from a third order van-
Vleck high-frequency expansion in the rotating frame for the
same model and parameter γ = 0.01 as in Fig. 1. We only
calculate for ω ≥ 0.1, values below this are drawn in white.

is of Lindblad form essentially everywhere in the param-
eter plane (E,ω). This confirms that non-Markovian be-
havior must be an effect of the micromotion.

It is interesting to see that the high-frequency expan-
sion is able to capture the transition between the two
phases and it is remarkable that rather good agreement
with the exact phase diagram is found also down to quite
low frequencies. But for very low frequencies, eventually
also qualitative deviations from the exact result become
visible. This is not surprising, since the high-frequency
expansion cannot be expected to converge in this regime.
For the Magnus expansion (and thus also for the van-
Vleck expansion), convergence is guaranteed as long as
[38, 62]

∫

T

0
∣∣L(t)∣∣2dt < π. (141)

Here, ∣∣A∣∣2 = max∣∣x∣∣2=1 ∣∣Ax∣∣2 is the induced 2-norm.
We can gain a very rough estimate for the region of

convergence by discussing the undriven limit of E = 0
and γ = 0. As shown in Appendix G, the matrix
representation of the generator then reads L∣E=0,γ=0 =

diag(0,−i, i,0), therefore ∣∣(L∣E=0,γ=0)∣∣2 = 1. Thus, for
E = 0 and γ = 0 we find that the Magnus expansion is
only expected to converge for ω > 2. For finite values of
the driving strength E the norm of L(t) will increase and
thus the radius of convergence will decrease even further.

As a result, Figure 7 shows that within the region of
convergence of the Magnus expansion, K̃eff,3 is a valid
Lindbladian. Our hypothesis, that the effective Lindbla-
dian could exist for all parameters, is therefore not vio-
lated by the third order of the van-Vleck high-frequency
expansion in the rotating frame.

VII. SUMMARY AND OUTLOOK

In this paper, we have studied the description of a time-
periodically driven open quantum system using high-
frequency expansions (Magnus- or van-Vleck-type). In
particular, we have focused on the resulting approxima-
tions for the effective time-independent Floquet genera-
tor, which is defined so that it describes the stroboscopic
evolution of the system in steps of the driving period.
Our work is generally motivated by the interesting per-
spective to apply the concepts of Floquet engineering also
to open quantum systems. More specifically, it was initi-
ated by a discrepancy that arose from two observations:
On the one hand we found in previous work that the
Floquet generator of a simple open periodically driven
Markovian two-level system is of Lindblad type in the
high-frequency regime [24]. On the other hand it was
pointed out that the Floquet generator resulting from
a high-frequency expansion is generally not of Lindblad
type [25, 26, 33]. We have found that high-frequency
expansions can correctly describe the behaviour of the
system, when applied in a rotating frame of reference.
Moreover, by going beyond the leading first order, the
high-frequency expansion can even explain the transition
to another regime, where the Floquet generator is not of
Lindblad type. By isolating the effect of the micromo-
tion within the van Vleck approach, this transition can be
attributed entirely to the properties of the non-unitary
micromotion of the system, and its dependence on the
driving phase can be explained.

Our analysis emphasizes that the approach that some
recent works [33] take to argue about the non-existence
of a Floquet Lindbladian in an interacting system on the
basis of the performance of high-frequency expansions
might not be conclusive.

We hope that our results will stimulate further research
of periodically driven open quantum systems. Since we
focused on a specific model, it is, for instance, a very
natural question under what conditions our findings can
be generalized to other models. For instance, to the case
of non-Markovian completely positive stroboscopic evo-
lution when time-dependent rates γi(t) can become neg-
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ative [45, 46]. Such behaviour may arise from a mi-
croscopic derivation of the equation of motion of a (Flo-
quet) system coupled to a heat bath [63, 64] and is typ-
ically neglected in the Floquet-Born-Markov secular for-
malism [65, 66]. Applying our approach to such micro-
scopically derived master equations is, therefore, another
interesting perspective.

Finally, it is an open question, whether the observa-
tion that the origin of the non-Markovianity of the Flo-
quet generator lies in the micromotion, which was made
here based on a high-frequency expansion of a specific
model, generalizes to all or a subclass of time-periodically
Markovian quantum systems.
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Appendix A: Finding the Floquet generator from
the exact map P(T )

Here, we summarize the results of Ref. [24] concern-
ing the question of the existence of a Floquet Lindbla-
dian. In the time-periodically modulated isolated sys-
tem, i.e. in our notation Eq. (1) with γi(t) = 0 for all i, it
is well known that there always exists an effective time-
independent Hamiltonian HF , the Floquet Hamiltonian,
such that

P(T ) = exp (−i [HF , ⋅]T ) . (A1)

How can one see that such a Floquet Hamiltonian HF ex-
ists? For the coherent dynamics, the evolution operator
reduces to a unitary rotation of the density matrix

P(T ) = U(T ) ⋅U(T )
†. (A2)

The unitary one-cycle evolution operator U(T ),

U(T ) = T exp [ − i∫
T

0
dt′H(t′)] (A3)

yields a countably infinite set of Hermitian generators,
HU,{x1,...,xN}, xa ∈ Z, U(T ) = e−iHUT , parametrized by a
choice of a branch of the logarithm logU(T ). This can be
seen most easily by representing the evolution operator
U(T ), Eq. (A3), in its spectral decomposition. Since it
is unitary we may represent it as

U(T ) =
N

∑
a=1

e−iεaTPa (A4)

with real numbers εa and (Hermitian) orthogonal projec-
tors Pa onto the eigenspace a. Now it becomes apparent
that, when computing the logarithm of U(T ), for every
subspace a there is a freedom to pick a branch of the
complex logarithm giving a whole set

log [U(T )]{x1,...,xN} = −i
N

∑
a=1

(εaT + 2πxa)Pa. (A5)

parameterized by N integer numbers xa ∈ Z. For the
corresponding Hermitian generator,

HU,{x1,...,xN} =
N

∑
a=1

(εa + ωxa)Pa, (A6)

this change of branch corresponds to a redefinition of the
‘energy’ εa → εa + ωxa, where ω = 2π/T is the driving
frequency. That means, the ‘energies’ εa are only defined
up to integer multiples of ω, which is why they are typi-
cally referred to as quasi-energies. Note that in the case
of the coherent dynamics, any of these generators can be
chosen as Floquet Hamiltonian HF , since all of the gen-
erators HU,{x1,...,xN} are Hermitian. This choice can be
made, e.g, by using the principal branch, ∀xs ≡ 0, or the

branch closest to the time-averaged Hamiltonian H(t).
Since P(T ) is a hermiticity-preserving map, its spec-

trum is invariant under complex conjugation. Thus, its
N2 eigenvalues are either real or appear as complex con-
jugated pairs (we denote the numbers of real eigenval-
ues and complex pairs by nr and nc, respectively). The
Jordan normal form of the map P(T ) can thus be repre-
sented as

P(T ) =
nr

∑
r=1

λrPr +
nc

∑
c=1

(λcPc + λ
∗
cPc∗) , (A7)

where λr are the real eigenvalues, λc, λ
∗
c the pairs of com-

plex eigenvalues, and Px the corresponding (not necessar-
ily Hermitian) orthogonal projectors on the correspond-
ing subspaces.

Again, due to the nature of the complex logarithm, the
Floquet generator K in Eq. (9) is not uniquely defined,
but for every branch of the logarithm we get a different
operator. A straight-forward procedure to test whether
a given candidate K is a valid Lindblad generator is the
Markovianity test proposed by Wolf et al. in Refs. [54,
67], which is based on two conditions: (i) The operator
K must perserve Hermiticity, i.e.

Kσ = Kσ†

for all σ ∈ L(H) that are Hermitian, σ = σ†. (ii) For
the second test, the operator K has to be conditionally
completely positive [54], i.e. it has to fulfill

Φ⊥K
ΓΦ⊥ ≥ 0. (A8)

Here Φ⊥ = 1 − ∣Φ⟩⟨Φ∣ is the projector on the orthorg-
onal complement of the maximally entangled state ∣Φ⟩ =
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∑
N
i=1 (∣i⟩⊗ ∣i⟩) /

√
N with {∣i⟩} denoting the canonical ba-

sis ofH. Moreover, KΓ = N(K⊗1)[∣Φ⟩⟨Φ∣] ∈ L(H2) is the
Choi matrix of K. If one of the branches of the operator
logarithm obeys both conditions it can be called Floquet
Lindblaian LF . Already here the contrast with the uni-
tary case becomes apparent: it is not guaranteed that
such branch exists and if it exists, the other branches do
typically not provide a Lindbladian Floquet generator as
well.

Condition (i) simply demands that the spectrum of
the candidate K has to be invariant under complex con-
jugation. This means, in turn, that the spectrum of the
map P(T ) should not contain negative real eigenvalues
λr = −∣λr ∣ (strictly speaking, there must be no nega-
tive eigenvalues of odd degeneracy). That is, because
if one would set the logarithm of such an occasion e.g. to
log(λr) = iπ+ log(∣λr ∣), the spectrum is not invariant un-
der conjugation anymore. In this case there is no Floquet
Lindbladian.

If P(T ) has no negative real eigenvalues, we find that
we may represent the family of all candidates K{x1,...,xnc}
as

K{x1,...,xnc} = K0 + iω
nc

∑
c=1

xc (Pc − Pc∗) , (A9)

where K0 is the generator that follows from the principal
branch of the logarithm of P(T ). We have the freedom to
pick integer numbers x = {xc} ∈ Znc that determine the
branch of the logarithm for every pair of complex eigen-
values. Note that for the isolated system all eigenvalues
of P(T ) lie on the unit circle, therefore all eigenvalues
of K are purely imaginary (or zero). In the isolated sys-
tem, with the freedom in Eq. (A9) we recover that the
eigenvalues of the Floquet Hamiltonian HF , the quasi-
energies, are only defined up to multiples of the driving
frequency ω, so all branches lead to a valid Lindbladian
evolution. For the open system, typically only a few,
sometimes even none of the branches lead to a generator
that is of Lindblad form.

For that, we need to check condition (ii), which is more
complicated and involves properties of the eigenelements
of the Floquet map. As coined in Refs. [54, 67], by plug-
ging the candidates, Eq. (A9), into the test for condi-
tional complete positivity, Eq. (A8), it comes in handy
to define a set of nc + 1 Hermitian matrices

V0 = Φ⊥K
Γ
0 Φ⊥, Vc = iωΦ⊥(Pc − Pc∗)

ΓΦ⊥, c = 1, . . . , nc.
(A10)

The condition is fulfilled, if there is a set of nc integers,
x ∈ Znc , such that

Vx = V0 +
nc

∑
c=1

xcVc ≥ 0. (A11)

Finally, when the test is successful for one branch, the
Floquet Lindbladian LF is found, and we can extract
from it the corresponding time-independent Hamiltonian
and jump operators.

Appendix B: Discrepancy to the Magnus expansions
presented in the literature

Here, we discuss a discrepancy in the general expres-
sions of the second order of the Magnus expansion (in
terms of the Fourier components of the generator) that
are presented in Refs. [25, 68]. One should therefore be
cautious when using these expressions.

As it was shown in the literature [25, 68], by plugging
the Fourier expansion, Eq. (17), into the conventional
Magnus expansion [38] one finds on the lowest orders

K
(1)

= L0, (B1)

K
(2)

=
∞
∑
n=1

[Ln,L−n] + [L0,Ln −L−n]

nω
. (B2)

However on third order there is a discrepancy between
the results in the different works. In Ref. [25] it is pre-
sented

K
(3)
FCM =∑

n≠0
∑
m≠0

(
[[Ln,L−n] ,Lm]

2nmω2
−

[Ln, [Lm,L−n−m]]

3nmω2
)

− ∑
n≠0

∑
m≠0,m≠n

[Ln, [L0,Lm]]

2nmω2

+
∞
∑
n=1

∑
m≠0,m≠−n

[[Ln,Lm] + [L−n,L−m] ,L0]

2n(n +m)ω2
,

(B3)

while in Ref. [68] it was found

K
(3)
LMV = − ∑

n≠0
∑
m≠0

(
[Lm, [L−m,Ln]]

nmω2
+

[Lm, [Ln,L0]]

2nmω2
)

− ∑
n≠0

∑
m≠0,m≠n

[Lm, [Ln−m,L−n]]

3nmω2

+ ∑
n≠0

(
[L0, [L0,Ln]]

2n2ω2
−

[Ln, [L0,L−n]]

2n2ω2
) ,

(B4)

where we have adapted the expression to our notation for
the dissipative Floquet system. Here, by n ≠ 0 we denote
the sum over n ∈ Z ∖ {0}.

Note that with these expressions for our two-level sys-
tem model with ϕ = 0 we find

K
(3)
FCM =

1

ω2
[L0, [L0,L1]] +

1

3ω2
[L1, [L0,L1]] , (B5)

K
(3)
LMV =

1

ω2
[L0, [L0,L1]] −

1

ω2
[L1, [L0,L1]] , (B6)

which differ by the prefactors of both terms from the
direct calculation

K
(3)

=
2

ω2
[L0, [L0,L1]] −

1

ω2
[L1, [L0,L1]] . (B7)

This is worrisome because the result of the direct cal-
culation was obtained in the same way, but for a special
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choice of the driving, so in principle all expressions should
coincide.

However, in Ref. [68] another expression for the second
order term is presented. This expression was obtained by
performing the Floquet-Magnus expansion, yielding an
effective Hamiltonian/generator in the rotated basis (the
basis rotation DF is unitary, if the dynamics is coherent)

Λ(t) =DF e
L̄F tD−1

F ≡ eLF t. (B8)

The Floquet Lindbladian LF can then be obtained in
second order in 1/ω by finding L̄F up to second order
combined with the second order of the expansion of the
rotation matrix

DF = exp [i(S(1)/ω + S(2)/ω2
)] . (B9)

With this identification it is found

K
(1)′

= K
(1), K

(2)′
= K

(2), (B10)

K
(3)′
LMV = K

(3)
LMV − ∑

n≠0
∑
m≠0

[L0, [Lm,Ln−m]]

nmω2
(B11)

and argued that the difference between the both expres-
sions is due to approximations in the derivation of the
Floquet-Magnus expansion [68].

Interestingly, in our case of the driven two-level system,
by calculating

K
(3)′
LMV =

2

ω2
[L0, [L0,L1]] −

1

ω2
[L1, [L0,L1]] (B12)

we recover the expression in Eq. (B7) that we found by
directly performing the conventional Magnus expansion.
We therefore expect that there could be a small error in

the direct derivation of K
(3)
LMV via the Magnus expansion

and that it maybe also holds that K
(3)
LMV = K

(3)′
LMV.

As a result, the only expression that could be correct

is K
(3)′
LMV.

Appendix C: Degenerate perturbation theory in
extended space for the dissipative system

For the coherent system, it was shown [34] that a high-
frequency expansion can be derived from a canonical van-
Vleck degenerate perturbation theory in the extended
Hilbert space. Here we list the steps that are necessary
to generalize this ansatz to the open system.

To this end, let us suppose that we may divide the
quasienergy superoperator in the following fashion

Q̄ = Q̄0 + λV̄ (C1)

where the spectrum of the operator Q̄0 is known. Note
that since the system is dissipative, we need to consider
the right eigenvectors

Q̄0∣a,m⟫ = Ω(0)a,m∣a,m⟫ (C2)

as well as the left eigenvectors

⟪ã,m∣Q̄0 = ⟪ã,m∣Ω(0)a,m (C3)

since for non-hermitian operators these will differ in gen-
eral. Here we split the photon index m from the eigenin-
dex, since the spectrum will obey

Ω
(0)
a,m+n = Ω(0)a,m + nω. (C4)

It holds the orthogonality relation

⟪ã,m ∣b, n⟫ = δabδmn. (C5)

Note that even though we denote the eigenvectors as ket-
and bra-vectors, they are actually density matrices, so
e.g. in Eq. (C5) the inner product that is occurring is
actually relying on the Frobenius inner product

(A,B)F = tr(A†B). (C6)

Let us elaborate a bit on this point. The eigenvectors
have the form

∣a,m⟫ ≡

⎛
⎜
⎜
⎜
⎜
⎜
⎝

. . .
Φa,m,−1

Φa,m,0
Φa,m,1
. . .

⎞
⎟
⎟
⎟
⎟
⎟
⎠

, (C7)

⟪ã,m∣ ≡ (. . . Φ̃a,m,−1 Φ̃a,m,0 Φ̃a,m,1 . . .) , (C8)

As we show in Appendix E as an example for the two-
level system, it is possible to map density matrices Φij
(here, i, j are the matrix indices) in the N -dimensional
Hilbert space H onto N2-dimensional vectors ∣Φ⟩ =

∣Φ11, . . .Φ1N ,Φ21, . . . ,ΦNN ⟩. Then, superoperators are
just (non-hermitian) matrices of shape N2 ×N2. We can
then use standard linear algebra to diagonalize the ma-
trix representation of the superoperator. For this matrix
we find eigenvectors ∣Φb⟩, ⟨Φ̃a∣ fulfilling ⟨Φ̃a ∣Φb⟩ = δab.
Translating it back to density matrices we find

δab = ⟨Φ̃a ∣Φb⟩ =∑
i,j

(Φ̃a)
∗
ij

(Φb)ij = tr(Φ̃†
aΦb) = (Φ̃a,Φb)F .

(C9)

Therefore, the inner product in the extended Hilbert
space, Eq. (C5), reads

⟪ã,m ∣b, n⟫ =∑
k

(Φ̃a,m,k,Φb,n,k)F . (C10)

Remarkably, using this language, one is able to gen-
eralize the perturbative procedure that was found in
Ref. [34]. The aim is to find a transformation to the
new basis states of the perturbed problem,

∣a,m⟫B = D̄∣a,m⟫, B⟪ã,m∣ = ⟪ã,m∣D̄
−1, (C11)

such that in the transformed basis the quasi-energy op-
erator is block diagonal,

B⟪b̃,m∣Q̄∣a,n⟫B = 0, ∀m ≠ n. (C12)
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It is clear that the left eigenvectors have to transform
with D̄−1, because also in the transformed basis, it has
to hold B⟪ã,m ∣b, n⟫B = δabδmn.

Now, like in the coherent case [34], we can separate the
block-diagonal part of this equation

[D̄
−1

(Q̄0 + λV̄D + λV̄X)D̄]
D
= Q̄0 + W̄D, (C13)

from the block-off-diagonal part

[D̄
−1

(Q̄0 + λV̄D + λV̄X)D̄]
X
= 0. (C14)

with some block diagonal operator W̄ = W̄D. Here, we
use the convention

ĀD =∑
m

P̄mĀP̄m, ĀX = ∑
m≠n
P̄mĀP̄n (C15)

with projector P̄m = ∑a ∣a,m⟫⟪ã,m∣. By representing
the rotation as

D̄ = exp(ḠX) it directly follows D̄
−1

= exp(−ḠX).
(C16)

Here the rotation Ḡ = ḠX is chosen such that it does not
affect the blocks with the same photon number m. We
then can expand the operators

ḠX =
∞
∑
n=1

λnḠ
(n)
X , W̄D =

∞
∑
n=1

λnW̄
(n)
D , (C17)

plug this into Eq. (C13) and Eq. (C14), sort it by orders
of λ and find exactly the same expressions as in Appendix
C of Ref. [34]. Let us just present the first nontrivial order
∝ λ1, where it has to hold

W̄
(1)
D = V̄D, as well as [Ḡ

(1)
X , Q̄0] = V̄X . (C18)

Very similar to the coherent case, the occurring com-

mutators [Ḡ
(n)
X , Q̄0] may be unraveled by taking matrix

elements of the form

⟪ã,m∣ [Ḡ
(1)
X , Q̄0] ∣b, n⟫ = (Ωa,m −Ωb,n)⟪ã,m∣Ḡ

(1)
X ∣b, n⟫

(C19)

= ⟪ã,m∣V̄X ∣b, n⟫, (C20)

with m ≠ n. Therefore, we see that the argumentation for
the closed system can be directly translated to the open

system by replacing the real quasienergies ε
(0)
a,m with the

complex eigenvalues Ω
(0)
a,m, the bra-vectos ⟪a,m∣ with left

eigenvectors ⟪ã,m∣ and the rotation Ū with D̄ as well as
Ū † with D̄−1.

Thus, like in the coherent case, we may find a high-
frequency expansion of the superoperator by taking

Q0 = −i∂t, such that Q0∣a,m⟫ =mω∣a,m⟫ (C21)

and with the natural basis ∣a,m⟫. Note that Q0 is her-
mitian, therefore the left eigenvectors are just ⟪a,m∣.

Appendix D: Commutator of two general two-level
system Lindblad superoperators

Here we derive general expressions for the commutator
of two arbitrary Lindbladians L(1) and L(2) for a two-
level system system.

The Lindbladians L(1) and L(2) can be represented as

L
(i)

= −i[H(i), ⋅] +∑
nm

d(i)nm (σn ⋅ σm −
1

2
{σmσn, ⋅}) ,

(D1)

where the indices n,m in the following run over 1,2,3.
Their commutator therefore reads

[L
(1),L(2)] = − [H(1), [H(2), ⋅]] + [H(2), [H(1), ⋅]]

−i∑
nm

d(1)nm (σn [H(2), ⋅]σm −
1

2
{σmσn, [H

(2), ⋅]}

− [H(2), σn ⋅ σm] +
1

2
[H(2),{σmσn, ⋅}])

+i∑
nm

d(2)nm (σn [H(1), ⋅]σm −
1

2
{σmσn, [H

(1), ⋅]}

− [H(1), σn ⋅ σm] +
1

2
[H(1),{σmσn, ⋅}])

+ ∑
nm,kl

(d(1)nmd
(2)
kl − d

(1)
kl d

(2)
nm) [σn (σk ⋅ σl −

1

2
{σlσk, ⋅})σm

−
1

2
{σmσn, σk ⋅ σl −

1

2
{σlσk, ⋅}}] .

(D2)

This can be simplified to read

[L
(1),L(2)] = −i [Hcoh, ⋅] + i∑

nm

d(1)nm ([H(2), σn] ⋅ σm

+σn ⋅ [H
(2), σm] −

1

2
{[H(2), σmσn] , ⋅})

−i∑
nm

d(2)nm ([H(1), σn] ⋅ σm + σn ⋅ [H
(1), σm] −

1

2
{[H(1), σmσn] , ⋅})

+ ∑
nm,kl

(d(1)nmd
(2)
kl − d

(1)
kl d

(2)
nm) [σn (σk ⋅ σl −

1

2
{σlσk, ⋅})σm

−
1

2
{σmσn, σk ⋅ σl −

1

2
{σlσk, ⋅}}] .

(D3)

with resulting Hamiltonian due to the coherent parts

Hcoh
= −i [H(1),H(2)] = 2∑

kql

εkqlh
(1)
k h(2)q σl. (D4)

In the last step we have represented the Hamiltonians in
the Pauli basis,

H(i) = h
(i)
0 1 +∑

k

h
(i)
k σk. (D5)

Note that the first three lines of Eq. (D3) are already
in Lindblad form. The third line, however, needs more
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work, but one can show that it can be brought to Lind-
blad form

∑
nm,kl

(d(1)nmd
(2)
kl − d

(1)
kl d

(2)
nm) [σn (σk ⋅ σl −

1

2
{σlσk, ⋅})σm

−
1

2
{σmσn, σk ⋅ σl −

1

2
{σlσk, ⋅}}]

(D6)

= −i [Hdiss, ⋅] +∑
mn

ddiss
mn (σm ⋅ σn −

1

2
{σmσn, ⋅})

(D7)

with resulting hamiltonian due to the dissipative parts,

Hdiss
= −2 ∑

nmkq

εnmqRe(d
(1)
nk )Re(d

(2)
mk)σq, (D8)

as well as

ddiss
nm = 2i∑

k

Im(d
(1)
nk d

(2)
mk − d

(1)
mkd

(2)
nk ). (D9)

Therefore, in total the commutator reads

[L
(1),L(2)] = −i [Hcoh

+Hdiss, ⋅]

+∑
nm

(dc−d
nm + ddiss

nm ) [σn ⋅ σm −
1

2
{σmσn, ⋅}]

(D10)

where we have also evaluated the terms coming from the
mixed coherent and dissipative terms

dc−d
nm = 2∑

kl

[(d
(1)
lmh

(2)
k − d

(2)
lmh

(1)
k ) εknl

+ (d
(1)
nl h

(2)
k − d

(2)
nl h

(1)
k ) εkml] .

(D11)

Appendix E: Matrix representation of the most
general two-level system Lindbladian

For the two-level system the Hilbert space is H = C2.
Under the identification

% = (
a b
c d

) → ∣%⟩ =

⎛
⎜
⎜
⎜
⎝

a
b
c
d

⎞
⎟
⎟
⎟
⎠

(E1)

we may represent density matrices as vectors and super-
operators as matrices. Here we provide an explicit trans-
lation table of the superoperator into matrix notation for
the most general static two-level system Lindbladian.

The most general Lindbladian has the form

L = −i [∑
k

hkσk, ⋅] +∑
mn

dmn (σm ⋅ σn −
1

2
{σnσm, ⋅})

(E2)

with coefficient matrix

d =
⎛
⎜
⎝

a d + ie f + ig
d − ie b s + it
f − ig s + it c

⎞
⎟
⎠
. (E3)

After some algebra one finds its matrix form as

L =

⎛
⎜
⎜
⎜
⎝

−a − b − 2e ih1 − h2 + f + is −ih1 − h2 + f − is a + b − 2e
ih1 + h2 + f − is − 2ig − 2t −2ih3 − a − b − 2c a − b − 2id −ih1 − h2 − f + is − 2ig − 2t
−ih1 + h2 + f + is + 2ig − 2t a − b + 2id 2ih3 − a − b − 2c ih1 − h2 − f − is + 2ig − 2t

a + b + 2e −ih1 + h2 − f − is ih1 + h2 − f + is −a − b + 2e

⎞
⎟
⎟
⎟
⎠

. (E4)

Appendix F: Fourier components of the
superoperator generating the rotating frame

transformation

Here we prove Eq. (129) which provides an explicit
expression of the extended-space superoperator Λ̄ gener-
ating the (generalized) rotating frame transformation for
an operator of the form of Eq. (128).

By definition

Λn =
1

T
∫

T

0
dte−inωt exp(∫

t

0
dt′Ld(t

′
)) . (F1)

We can further evaluate this expression if we assume that,
like for our model system, it holds that

Ld(t) = φ(t)L
′
d (F2)

with some periodic scalar function φ(t) = ∑m≠0 e
imωtφm.

Then we may evaluate

∫

t

0
dt′Ld(t

′
) = χ(t)L′d (F3)

with

χ(t) = ∫
t

0
dt′φ(t′) = ∑

m≠0

eimωt − 1

imω
φm. (F4)

We may rewrite eimωt − 1 = cos(mωt) − 1 + i sin(mωt).
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This gives

Λn =
1

T
∫

T

0
dte−inωt exp(∑

m≠0

sin(mωt)

mω
φmL

′
d

+ ∑
m≠0

cos(mωt) − 1

imω
φmL

′
d)

(F5)

=
1

T
∫

T

0
dte−inωt ∏

m≠0

exp(
sin(mωt)

mω
φmL

′
d)

exp(
cos(mωt) − 1

imω
φmL

′
d)

(F6)

We may now represent L′d using its spectral decomposi-
tion

L
′
d =∑

a

λa∣Φ
(d)
a ⟫⟪Φ̃(d)a ∣ (F7)

and may use the Bessel functions of first kind Jn to eval-
uate

f (m)n (x) =
1

T
∫

T

0
dte−inωt+ix sin(mωt) (F8)

=
1

T
∫

T

0
dte−inωt∑

k∈Z
Jk(x)e

ikmωt (F9)

= {
Jn/m(x) if n = km,k ∈ Z

0 else.
(F10)

Similarly, with the modified Bessel functions of first kind
In we find

g(m)n (x) =
1

T
e−x ∫

T

0
dte−inωt+x cos(mωt) (F11)

= {
e−xIn/m(x) if n = km,k ∈ Z

0 else.
(F12)

Note that in Eq. (F6) occurs the Fourier transform of
a product of the functions that we transformed above,
which gives rise to a relatively involved structure. A
compact form can be obtained in extended Hilbert space
where it holds

Λ̄ =∑
a
∏
m≠0

f̄ (m) (
φmλa
imω

) ḡ(m) (
φmλa
imω

) ∣Φ(d)a ⟫⟪Φ̃(d)a ∣

(F13)

= ∏
m≠0

f̄ (m) (
φmL

′
d

imω
) ḡ(m) (

φmL
′
d

imω
) . (F14)

Appendix G: Explicit calculation of the perturbative
expansion in extended space for the
driven-dissipative two-level system

Instead of the explicit rotating-frame transformation
on the level of the superoperator, as presented in
Sec. (V B) for the driven-dissipative two-level system,

here we calculate the components L̃n in matrix repre-
sentation by using Eq. (134). This matrix representation
can be used to evaluate the Floquet-Magnus expansion
numerically.

For our model system, by using Eq. (E4) we find the
matrix representations

A = iL1 = iL−1 =
E

2

⎛
⎜
⎜
⎜
⎝

0 −1 1 0
−1 0 0 1

1 0 0 −1
0 1 −1 0

⎞
⎟
⎟
⎟
⎠

(G1)

and

L0 =

⎛
⎜
⎜
⎜
⎝

−4γ 0 0 0
0 −i − 2γ 0 0
0 0 i − 2γ 0

4γ 0 0 0

⎞
⎟
⎟
⎟
⎠

. (G2)

We start by diagonalizing the Hermitian matrix A. One
can show that A = UDU † with

U =
1

2

⎛
⎜
⎜
⎜
⎜
⎝

−1 0
√

2 −1

−1
√

2 0 1

1
√

2 0 −1

1 0
√

2 1

⎞
⎟
⎟
⎟
⎟
⎠

and D =

⎛
⎜
⎜
⎜
⎝

−E 0 0 0
0 0 0 0
0 0 0 0
0 0 0 E

⎞
⎟
⎟
⎟
⎠

. (G3)

As can be seen from the power series of Jk it holds that
Jk(−2A/ω) = UJk(−2D/ω)U † yielding

Jk (−
2A

ω
) =

1

2

⎛
⎜
⎜
⎜
⎝

ak ck −ck bk
ck ak bk −ck
−ck bk ak ck
bk −ck ck ak

⎞
⎟
⎟
⎟
⎠

(z). (G4)

where we set z = 2E/ω and define the functions

ak(z) = ekJk(z) + δk0, (G5)

bk(z) = −ekJk(z) + δk0, (G6)

ck(z) = okJk(z) (G7)

Here we have used that Jk(0) = δk0, Jk(−z) = (−1)kJk(z)
and the definitions

ek = {
1, k even,
0, k odd,

and ok = {
0, k even,
1, k odd.

(G8)

With this, we evaluate

L0Jk (−
2A

ω
) =

⎛
⎜
⎜
⎜
⎝

−4γak −4γck −4γck 4γbk
(−i − 2γ)ck (−i − 2γ)ak (−i − 2γ)bk (i + 2γ)ck
(−i + 2γ)ck (i − 2γ)bk (i − 2γ)ak (i − 2γ)ck

4γak 4γck −4γck 4γbk

⎞
⎟
⎟
⎟
⎠

(z),

(G9)

and
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L̃n = ∑
k∈Z

Jk−n (−
2A

ω
)L0Jk (−

2A

ω
)

= −γ∑
k∈Z

Jk−n (z)Jk (z)

⎛
⎜
⎜
⎜
⎝

enpk onqk −onqk −enpk
onpk enqk −enqk −onpk
−onpk −enqk enqk onpk
−enpk −onqk onqk enpk

⎞
⎟
⎟
⎟
⎠

− γδn0

⎛
⎜
⎜
⎜
⎝

0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

⎞
⎟
⎟
⎟
⎠

+
1

2

⎛
⎜
⎜
⎜
⎝

−4γenJ0 −ionJ0 −ionJ0 −4γenJ0

on(−4γJ0 − iJn) −ien(J0 + Jn) −ien(J0 − Jn) on(−4γJ0 + iJn)
on(4γJ0 + Jn) −ien(−J0 + Jn) −ien(−J0 − Jn) on(4γJ0 + iJn)

4γenJ0 ionJ0 ionJ0 4γenJ0

⎞
⎟
⎟
⎟
⎠

(z) ,

(G10)

with pk = 2ek + ok, as well as qk = 2ok + ek. Therefore, we finally find the representation of the zeroth order expansion

K
(1)

= L̃0 =

⎛
⎜
⎜
⎜
⎝

−γ[2J0 + 2f + g] 0 0 −γ[2J0 − 2f − g]
0 −iJ0 − γ[1 + f + 2g] −γ[1 − f − 2g] 0
0 −γ[1 − f − 2g] iJ0 − γ[1 + f + 2g] 0

γ[2J0 + 2f + g] 0 0 γ[2J0 − 2f − g]

⎞
⎟
⎟
⎟
⎠

(z) (G11)

where we define f(z) = ∑k∈Z ekJk(z)
2 as well as g(z) = ∑k∈Z okJk(z)

2. Note that it holds,

f(z) + g(z) = ∑
k∈Z

Jk(z)
2
= 1, (G12)

which allows to express K(1) in terms of J0(z) and g(z) only

K
(1)

=

⎛
⎜
⎜
⎜
⎝

−γ[2J0 + 2 − g] 0 0 −γ[2J0 − 2 + g]
0 −iJ0 − γ[2 + g] γg 0
0 γg iJ0 − γ[2 + g] 0

γ[2J0 + 2 − g] 0 0 γ[2J0 − 2 + g]

⎞
⎟
⎟
⎟
⎠

(z). (G13)

By comparing the matrix representation K(1) to the
most general form of the two-level system Lindbladian,

Eq. (E4), we find the Hamiltonian and the dissipator
matrix,

K
(0)

= L(H,d), with H =
J0(z)

2
σz and d = γ

⎛
⎜
⎝

1 iJ0(z) 0
−iJ0(z) 1 − g(z) 0

0 0 g(z)

⎞
⎟
⎠
. (G14)

Note that this is exactly the same result that we obtained
in Eq. (107). To see this, we use the Bessel function

identity Jn(y + z) = ∑k∈Z Jk(y)Jn−k(z) to rewrite

J0(2z) = ∑
k∈Z

Jk(z)J−k(z) = ∑
k∈Z

(−1)kJk(z)
2 (G15)

= ∑
k∈Z

ekJk(z)
2
−∑
k∈Z

okJk(z)
2
= f(z) − g(z).

Together with f(z) + g(z) = 1 we find that

g(z) =
1

2
[1 − J0(2z)] . (G16)
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[7] M. Tarnowski, F. N. Ünal, N. Fläschner, B. S. Rem,
A. Eckardt, K. Sengstock, and C. Weitenberg, Nature
Communications 10, 1 (2019).

[8] K. Viebahn, J. Minguzzi, K. Sandholzer, A.-S. Walter,
M. Sajnani, F. Görg, and T. Esslinger, Phys. Rev. X
11, 011057 (2021).
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