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We investigate rectified currents in response to oscillating electric fields in systems lacking in-
version and time-reversal symmetries. These currents, in second-order perturbation theory, are
inversely proportional to the relaxation rate, and, therefore, naively diverge in the ideal clean limit.
Employing a combination of the non-equilibrium Green function technique and Floquet theory, we
show that this is an artifact of perturbation theory, and that there is a well-defined periodic steady-
state akin to Rabi oscillations leading to finite rectified currents in the limit of weak coupling to a
thermal bath. In this Rabi regime the rectified current scales as the square root of the radiation
intensity, in contrast with the linear scaling of the perturbative regime, allowing to readily diagnose
it in experiments. More generally, our description provides a smooth interpolation from the ideal
Periodic Gibbs Ensemble describing the Rabi oscillations of a closed system to the perturbative
regime of rapid relaxation due to strong coupling to a thermal bath.

PACS numbers: 72.15.-v,72.20.My,73.43.-f,03.65.Vf

Introduction. Crystalline solids lacking inversion sym-
metry can display bulk photovoltaic effects (BPVE) [1–
3], namely macroscopic DC rectified currents in response
to spatially uniform AC electric fields. There is a long
tradition of studying these BPVE [4–9], but also a grow-
ing renewed interest in investigating their connections to
the Berry’s phase geometry and topology of electronic
bands [10–22], and their potential for novel photovoltaic
technologies [10, 17, 23–27].

Our study is motivated by the following question: what
is the ultimate fate of current rectification in Bloch bands
in the ideal limit where relaxation times become very
large? As we will demonstrate, there is in fact a well
defined periodic steady state in such a limit, that we
will refer to as the “Rabi regime”, in which the system
sustains a finite DC rectified current.

A useful starting point to appreciate the non-
trivialities of such a clean limit is to analyze the prob-
lem perturbatively in the amplitude of electric field, as
commonly done in most studies (see however Ref.[12, 28–
31]). Perturbation theory predicts a rectified current j,
that grows as the square of the amplitude of the field,
j ∝ ∣E∣2. For frequencies above the threshold for inter-
band transitions, such perturbative BPVE are often sep-
arated into two mechanisms known as the shift and the
injection current effects [3–10, 12–17, 23–26, 29–31]. The
injection current originates from difference of the band-
diagonal velocity of the empty and occupied bands at a
given crystal momentum k. The shift current, on the
other hand, originates from the difference of positions
of Bloch wave-functions between the empty and occu-
pied bands at a given k, and can be computed as the
contribution arising from the band-off-diagonal velocity
operator.

A crucial distinction between the shift and injection
currents is that, within perturbation theory, the shift
current appears to have a finite value in the “clean”
limit of vanishing relaxation rate, Γ → 0, while the in-

FIG. 1: a) Energy crossing between boosted valence and con-
duction bands in Floquet representation. b) Depiction of un-
derlying tight binding model with physical sites (red balls)
which are tunnel coupled (solid lines) among themselves and
with their own identical fermionic bath (blue balls).

jection current appears to diverge in such limit as 1/Γ,
which ultimately arises from the vanishing quasi-energy
denominators appearing at higher orders of the perturba-
tion theory for the rectified current (see Refs.[3–10, 12–
17, 23–26, 29–31] and S.I.I A). Such divergence is often
handled in an ad-hoc manner by computing the response
of the rate of change of the current, dj/dt, and assum-
ing that such growth leads to a current saturation to a
value proportional to the relaxation time τ ∼ h̵/Γ. How-
ever, recently an interesting non-perturbative study of
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the CPGE in Weyl semimetals [30] demonstrated that
the rectified current saturates to a finite value even in
the clean limit of vanishing relaxations (Γ → 0) within a
semiclassical kinetic framework. The underlying mech-
anism for such saturation is the Rabi dynamic broad-
ening of absorption [32–35], which occurs when the en-
ergy scale controlling the transitions between conduction
(c) and valence (v) bands exceeds the relaxation rate,
eE ⋅ ⟨c∣ r ∣v⟩ ≫ Γ, which we refer to as the Rabi regime.

In the present work we develop a microscopic descrip-
tion of the currents for arbitrary values of the non-
linearity parameter eE ⋅ ⟨c∣ r ∣v⟩ /Γ, that captures the per-
turbative and the Rabi regimes on an equal footing. To
do so, we employ a Keldysh-Floquet formalism [36–38] in
a generic two-band system coupled to an ideal fermionic
bath, following the pioneering approach of Ref.[12] (see
also Ref.[28]). As we will see, and contrary to the ex-
pectations of perturbation theory, in the Rabi regime,
the traditional resonant shift current contributions van-
ish, whereas the injection currents approach a finite limit
that scales as the square root of the radiation intensity
in a sharp contrast to the perturbation theory expecta-
tions. We will also demonstrate that the Rabi regime can
be viewed as an example of thermalizing synchronization
of a system under an external periodic drive that can be
described by the periodic Gibbs ensemble [39, 40].

Keldysh-Floquet Formalism. We derive the non-
perturbative expression for currents within a two-band
model (see Fig.1(a)). The electric current operator is

defined as: ĵ = ev̂/h̵ = ∂Ĥ0(k + eA(t)/h̵)/∂A(t), where

Ĥ0(k) is the 2x2 matrix Bloch Hamiltonian, and A(t)
is the vector potential from spatially uniform but time
dependent electric field. Since the crystal momentum k
is conserved, the problem is equivalent to a collection of
independent driven two-level systems. We restrict our
analysis to a monochromatic electric field with frequency
ω:

A0(t) = i
E

ω
eiωt − iE

∗

ω
e−iωt. (1)

Here E is a vector with complex entries, allowing us to
capture light of arbitrary degree of polarization, includ-
ing the case of linear polarization, when all components
can be chosen to be real, to fully circularly polarized
light, when two orthogonal components differ by a phase
of π/2. The periodicity in time allows to employ the Flo-
quet picture (for details see S.I.I B) where multiple Flo-
quet bands appear with a quasi-energy that is boosted
by multiples of the driving frequency (see FIG.1(a)). We
simplify the problem by truncating the Floquet Hamilto-
nian to two bands that are in resonance, in the spirit of a
rotating wave-approximation [13]. This approximation is
well justified when the off-diagonal terms in the Floquet
Hamiltonian are smaller in comparison to the Floquet
quasi-energy difference to other remote Floquet bands,
namely when e∣E ⋅ ⟨c∣ r ∣v⟩ ≪ h̵ω (see e.g. Ref.[41] and

S.I.I B). Thus the approximate Floquet Hamiltonian is:

HF =
⎛
⎜
⎝

ε1 + h̵ω i eE
h̵ω

⋅ (∂H0(k)
∂k

)
12

−i eE
∗

h̵ω
⋅ (∂H0(k)

∂k
)

21
ε2

⎞
⎟
⎠
= h0+h ⋅σ,

(2)
where 1 stands for valence, 2 for conduction and ε1,2 are
effective valence and conduction band energies respec-
tively (which could be dressed by higher order pertur-
bative corrections with respect to bare band energies, as
further discussed in S.I.I B). The subscript F stands for
the representation of the operator in the Floquet picture,
which is related to the ordinary Schrödinger picture as
follows:

ÔF = ( O22 O12

O21 O11
) , Ô(t) = ( O11 O21e

−iωt

O12e
iωt O22

) . (3)

In order to capture relaxation processes, we couple the
system to a bath and apply the non-equilibrium Green
function technique on the Keldysh contour (see S.I.I C
and Refs.[13, 36, 42–46]). We choose a simple model in
which each fermionic site in the system of interest is cou-
pled to its own fermionic bath, with a common hopping
amplitude Vmix (see Fig.1(b)). The temperature of the
bath is Tbath = 1/(kBβ) and the chemical potential is µ.
The effective density matrix of the system is given by
the lesser equal time Green Function G<(t, t), and can
be shown to be (see S.I.I C):

ρ̂F = −iĜ<
F = ( f1 0

0 f2
)+

+ f1 − f2

2(h2 + Γ2

4
)

⎛
⎜
⎝

−h2
x − h2

y h−(hz + iΓ
2
)

h+(hz − iΓ
2
) h2

x + h2
y

⎞
⎟
⎠
, (4)

where f1,2 = 1/(1 + exp(−β(ε1,2 − µ))) are valence and
conduction Fermi-Dirac occupation factors respectively,
h± = hx ± ihy and Γ = 2π∣Vmix∣2 is the relaxation rate.

The DC current of the system, Jα = −ieTr [Ĝ<
Fv̂

α
F] /h̵,

can be decomposed into three contributions:

Jα1 = e

h̵
∫

dk

(2π)3

Γ
2
(f1 − f2)
h2 + Γ2/4

(hyvαx − vαy hx), (5)

Jα2 = e

h̵
∫

dk

(2π)3

hz(f1 − f2)
h2 + Γ2/4

(hxvαx + hyvαy ), (6)

Jα3 = − e
h̵
∫

dk

(2π)3
(f1 − f2)vαz

h2
x + h2

y

h2 + Γ2

4

. (7)

Here α denotes the real space indices and the velocity
operator in Floquet representation v̂αF is decomposed in
the Pauli basis, namely v̂αF = ∑i=x,y,z vαi σi. In the sup-
plementary (see S.I.I E) we compare the currents Eq.(5-
7) with perturbation theory and show that Eq.(5) and
Eq.(7) recover the resonant behaviour of the shift and
injection currents respectively, whereas Eq.(6) becomes
the non-resonant component of the shift current in the
limit eE ⟨c∣ r ∣v⟩ ≪ Γ.
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Now, to analyse the clean limit behaviour of the injec-
tion current Eq.(7), it is useful to take the approximation
in which both the diagonal hz matrix elements in Eq.(2)
are greater than Γ and the off-diagonal elements hx,y.
This is typically well satisfied in most solids except in spe-
cial situations such as resonant absorption on extremely
flat bands, and we will demonstrate that this is a good
approximation by explicit calculations later on. There-
fore we replace 1/(h2 + Γ2/4) ≈ πδ(hz)/

√
h2
x + h2

y + Γ2/4,
which leads to the following expression:

Jα3 = π e
h̵
∫

dk

(2π)3
(f2 − f1)(vα1 − vα2 )×

×
∣ eE
h̵ω

⋅ (∂H0(k)
∂k

)
12
∣
2

√
∣ eE
h̵ω

⋅ (∂H0(k)
∂k

)
12
∣
2
+ Γ2

4

δ(ε1 − ε2 + h̵ω), (8)

where v1,2 are conduction and valence band velocities
respectively. We again see that in the limit of fast relax-
ation (eE ⋅ ⟨c∣ r ∣v⟩ ≪ Γ) Eq.(8) reproduces the behaviour
predicted by perturbation theory (see S.I.I A). Remark-
ably, however, in the clean limit (Γ → 0), the above
formula predicts a finite current, in sharp constrast to
the naive extrapolation of perturbative result. In other
words, the relaxation rate in the denominator of the per-
turbative expressions acquires a non-perturbative modi-
fication by the driving electric field of the form:

1

Γ
→ 1

√
4 ∣ eE
h̵ω

⋅ (∂H0(k)
∂k

)
12
∣
2
+ Γ2

(9)

Therefore in the clean limit, the injection current scales
as the absolute value of the electric field, J3 ∝ ∣E∣, and,
accordingly, it is proportional to the square root of the
radiation intensity. On the other hand, the term J1 from
Eq.(5), which reduces to the usual resonant shift current
from perturbation theory (see S.I.I A for details), can
be seen to vanish in the clean limit Γ → 0 from Eq.(5).
This is noteworthy because in the perturbative regime
(eE ⟨c∣ r ∣v⟩ ≪ Γ ) the shift current naively approaches a
finite value in the Γ→ 0 limit.

Synchronization and Rabi Limit of Rectification.
While the Keldysh formalism allows for a description
with arbitrary strength of coupling to the bath, there is a
simpler way to understand the ideal behavior in the limit
of vanishing coupling to the bath (Γ → 0). In fact, this
limit can be understood simply as a form of Rabi oscilla-
tions associated with the inter-band transitions driven by
the oscillating field. We will describe how to understand
this limit within the picture of the Periodic Gibbs En-
semble (PGE) [39, 47–49] that captures the steady state
synchronization of the system with the driving field.

Consider an initial state described by a density ma-
trix ρ0. This density matrix can be decomposed in the
eigenstates of the time dependent Hamiltonian, ψα(t),

and therefore the state at any later time t, is given by:

ρ(t) =∑
αβ

ραβψα(t)ψ†
β(t), (10)

where ραβ = Tr [ρ0ψα(t0)ψ†
β(t0)]. Now, the Floquet the-

orem implies that, barring accidental degeneracies, the
operators ψα(t)ψβ(t)† are only periodic when α = β. The
late-time synchronization associated with the PGE can
be understood as a process in which the memory of these
off-diagonal amplitudes of the density matrix in the Flo-
quet basis disappears in a kind of thermalization process,
leading to a steady state that is exactly periodic and syn-
chronized with the drive (see S.I.I G):

ρPGE =∑
α

ρααψα(t)ψ†
α(t). (11)

Remarkably the above ensemble is identical to the one
that we have obtained within the Keldysh formalism in
the limit of Γ → 0, when one chooses the initial state ρ0

to be the equilibrium Fermi-Dirac density matrix in the
absence of the periodic perturbation, with the chemical
potential and the temperature of the bath (see S.I.I E.
for more details). In fact, within the same rotating-wave
approximation used to solve the Floquet problem, this
density matrix is explicitly given by (see S.I.I G):

ρ̂PGE(t) = ( f2 0
0 f1

)+

+ f1 − f2

2h2

⎛
⎜
⎝

h2
x + h2

y hzh+e
−iωt

hzh−e
iωt −h2

x − h2
y

⎞
⎟
⎠
. (12)

This density matrix encodes the physics of Rabi oscil-
lations (see S.I.I F for details). The above reduces exactly
to the density matrix in Eq.(4) in the clean limit Γ → 0,
once it is expressed in the Floquet picture (see Eq.(3)),
and therefore predicts the same rectification currents that
we have previously described in the clean limit.

We would like to note that most studies of PGE to
date have focused on what might be called “internal”
synchronization, which considers a closed system acting
as its own bath. In this context, the initial condition,
ρ0, is freely chosen and it is not unique. In our context,
however, the emergence of the PGE follows from differ-
ent principles. Coupled to the bath, the system loses
memory of its initial state at late times. It does so by
flowing towards a unique stable periodic solution. Re-
markably, in the limit of weak coupling to the bath, this
steady state coincides exactly with one specifically cho-
sen PGE, whose initial condition is the one associated
with the thermal equilibrium system with an infinitesi-
mal coupling to the bath in the absence of the periodic
drive.

Therefore, although we have performed our calcula-
tions in a rather specific microscopic setting, we have
been able to recover the universality of the PGE in the
limit of weak coupling to the bath that we are using.
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FIG. 2: a) Rectified current dependence on frequency, and (b) on electric field amplitude for 3D Weyl fermion (E/∣E∣ =
(0, i sinπ/8 sinπ/4, cosπ/4+ i cosπ/8 sinπ/4)), c) Rectified current dependence on frequency, and (d) on electric field amplitude
for 2D Dirac fermion (E/∣E∣ = (1,0), ux/vx = 0.2,m = 0.5εF ).

Since the PGE can be justified under generalized entropy
maximixation principles [39, 47–49], this is a compelling
indication that our results describe the behavior of a large
class of systems coupled to ideal heat baths.

Photocurrents for 3D Weyl and 2D Dirac Fermions.
One important distinction between shift and injection
currents is their transformations under time-reversal
(TR) symmetry [50, 51]. The shift current can exist in
TR invariant materials illuminated with linearly polar-
ized light, whereas the injection current requires breaking
of TR symmetry, namely either by shining linearly polar-
ized light on a TR broken material [52, 53], or by shin-
ing circularly polarized light, also known as the circular-
photogalvanic-effect (CPGE), which has an interesting
manifestation in Weyl semimetals [16, 18, 31, 54–64].

We would like to illustrate this behavior for represen-
tative nodal fermions with Hamiltonians that are linear
in momentum. These linear in k Hamiltonians have neg-
ligible shift currents (see details in S.I.I J) and therefore
allow us to focus on the behavior of injection currents,
which we will consider from here on in this section. We
will consider two types of model that are relevant to a
large class of materials. The first is an ideal 3D Weyl
fermion, and our focus will be on the non-perturbative
modifications to the CPGE. As we will see, our results
are in perfect agreement with those obtained recently in
Ref.[30]. The second will be a 2D tilted Dirac massive
fermion, and our focus will be to investigate the non-
perturbative regime of rectification for linearly polarized
light in a time reversal breaking system.

The ideal 3D Weyl Hamiltonian is:

Ĥ0 = v0 ∑
α=x,y,z

kα ⋅ σ̂α. (13)

Here v0 is a Fermi velocity and σ̂α are Pauli matrices.
This model respects TR but breaks inversion symmetry.
When the system has a finite chemical potential, light
absorption occurs above a threshold frequency h̵ω > 2εF
(see Fig.2(a)). By using the formula from Eq.(8), one

obtains the following non-perturbative approximate ex-
pression of the injection current above such a threshold
(see S.I.I I for details):

J3 ≈
iπ2e2ω

v0(2π)3

[E∗ ×E]
60

√
∣E∣2 + Γ2h̵2ω2

4v2
0e

2

12∣E∣2 + 5Γ2h̵2ω2

v2
0e

2

∣E∣2 + Γ2h̵2ω2

4v2
0e

2

, (14)

where ∣E∣2 = E∗ ⋅ E, with E understood as the complex
vector defined in Eq.(1) (see S.I.I I for comparison of this
approximate formula against direct evaluation from the
integral in Eq.(8)). Eq.(14) in the perturbative regime
(e2v2

0 ∣E∣2 ≪ Γ2h̵2ω2) approaches the known result [16, 18]
J3 ≈ h̵β [E∗ ×E] /Γ, where β = iπe3/(3h2). However, in
the Rabi regime (e2v2

0 ∣E∣2 ≫ Γ2h̵2ω2) interestingly, the
injection current approaches a value that is independent
of the relaxation rate and it is given by:

J3 ≈ ζ
βh̵2ω

ev0∣E∣
[E∗ ×E] . (15)

Here ζ ≈ 0.3 is a numerical pre-factor with a weak depen-
dence on the degree of light polarization. Its value for
perfectly circularly-polarized light can be computed ex-
actly from Eq.(8) to be ζ = 1/(2

√
2), in agreement with

Ref.[30] (see S.I.I I for details). The behavior of the rec-
tified current in these two regimes and their crossovers
are shown in Fig.2(a,b).

We will now consider a 2D Dirac Hamiltonian given
by:

Ĥ = uxkx1̂ + vxkxσ̂x + vykyσ̂y +mσ̂z, (16)

where m is the mass which breaks time-reversal symme-
try, vx, vy are anisotropic Fermi velocities, and ux > 0
is the tilt term that breaks inversion. The above model
features absorbtion within a window of frequency given

by (2εF − 2α
√
ε2F −m2 + α2m2)/(1 − α2) < h̵ω < (2εF +

2α
√
ε2F −m2 + α2m2)/(1−α2) (see Fig.2(c)). In this win-

dow the maximum current occurs when h̵ω ≈ 2εF (see
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Fig.2(c)), and for the electric field along the tilt direc-
tion. From Eq.(8), the corresponding component of the
injection current can be approximated as (see S.I.I I):

Jx3,max ≈
e2vx
h̵vy

√
ε2F −m2

60π

∣E∣2
ε2
F√

∣E∣2
ε2
F

+ Γ2

e2v2
x

×

×
5 Γ2

e2v2
x
(1 + 2m

2

ε2
F

) + ∣E∣
2

ε2
F

(6 + 13m
2

ε2
F

− 4m
4

ε4
F

)
∣E∣2
ε2
F

+ Γ2

e2v2
x

. (17)

Within perturbation theory this current would be Jx3,p =
e3v2

x

√
ε2F −m2(1 + 2m2/ε2F )∣E∣2/(12πh̵vyΓε2F ). We use

Jx3,p to normalise the numerical non-pertubative results
shown in Figs.2(c)-(d), so that deviations from 1 signal
deviations from the perturbative regime.

Summary and experimental outlook. We have devel-
oped a formalism which captures on equal footing the
perturbative regime of fast relaxation (eE ⟨c∣ r ∣v⟩ ≪ Γ)
and the non-perturbative regime of strong light intensity
(eE ⟨c∣ r ∣v⟩ ≫ Γ) of current rectification for interband
transitions. In the perturbative regime, we recover the
well-known behavior according to which shift currents
approach a value that is independent of the relaxation
rate Γ, while injection currents scale as 1/Γ. Interestingly
in the opposite non-perturbative clean limit of slow relax-
ation (Γ → 0) the shift current vanishes, while the injec-
tion current approaches a finite value independent of Γ,
but with a net current that scales as the square root of the
radiation intensity, which can guide its identification in
experiments. We have shown that this non-perturbative
clean limit can be understood as optical Rabi oscillations
synchronized with the incident radiation that realizes a
time dependent generalized periodic Gibbs ensemble in a
setting very different from its initial proposal.

Nodal Weyl semi-metals are promising platforms to re-
alize the Rabi regime because their inter-band dipole ma-
trix element diverges when approaching the Weyl node
as ⟨c∣ r ∣v⟩ ∝ 1/k. As a consequence, they can access this
non-perturbative regime above a light intensity that de-
creases with frequency, namely when ev0∣E∣ > h̵Γω. For
RhSi [65, 66], using h̵Γ−1 ≈ 10ps [58] we estimate that the
non-perturbative Rabi regime will be accessed at light
intensities above 4 × 105 W/cm2 for a photon energy of
h̵ω ≈ 0.5eV, but this required light intensity can be de-
creased as ω2 at lower photon energies.
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I. Supplementary Information

A. Perturbation theory at small relaxations

As discussed in Refs.[14, 17] the second order rectifi-
cation conductivity in general can be separated into the
following contributions:

σγβα(2) (−ω,ω) = σγβαJ (−ω,ω) + σγβαBCD(−ω,ω)+

+ σγβαI (−ω,ω) + σγβαS (−ω,ω), (18)

where J stands for “Jerk”, BCD for “Berry curvature
dipole”, I for “injection” and S for “shift current” respec-
tively. We consider band structure with small relaxations
(∀n,m,n ≠ m ∶ Γ ≪ εn − εm). Each contribution is given
by [14, 17]:

σγβαJ (−ω,ω) = e3

h̵2 ∫
dk

(2π)3 ∑
nm

∂εn
∂kγ

∂2

∂kα∂kβ
fnδnm

ω2 + Γ2
, (19)

σγβαBCD(−ω,ω) = −1

2

e3

h̵2

1

ω + iΓ ∫
dk

(2π)3
×

×∑
nm

ÂγmnÂ
α
nm

∂

∂kβ
(fm − fn)+

+ ( α↔ β
ω↔ −ω ) . (20)

σγβαI (−ω,ω) = e3

h̵2 ∫
dk

(2π)3
×

×∑
nm

(fm − fn)ÂβnmÂαmn( ∂
∂kγ

εn − ∂
∂kγ

εm)
(ω − εn + εm)2 + Γ2

+

+ ( α↔ β
ω↔ −ω ) , (21)

σγβαS (−ω,ω) = 1

2

e3

h̵2 ∫
dk

(2π)3
×

×∑
nm

⎧⎪⎪⎨⎪⎪⎩
Âγmn

∂

∂kα
(fn − fm)Âβnm
ω − εn + εm + iΓ

+

+ i (fn − fm)Âβnm
ω − εn + εm + iΓ∑c

[Âαmc ˆ̄Aγcn − ˆ̄AγmcÂ
α
cn]

⎫⎪⎪⎬⎪⎪⎭
+

+ ( α↔ β
ω↔ −ω ) , (22)

where ˆ̄Aαnm = Âαnm(1− δnm) is off-diagonal Berry connec-
tion.

We split the conductivity above into resonant and
non-resonant parts by separating the contributions into
those that require a resonant condition that matches the
light frequency with an energy difference in the limit
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Γ→ 0 (namely those containing delta functions enforcing
a Fermi’s Golden rule), from those that are non-resonant
and contain the principal parts where the frequency is
not forced to match an energy difference. The “BCD”
and “Shift” conductivity have both resonant and non-
resonant parts, which we label by “R” and “NR” addi-
tional subscripts and are given by:

σγβαBCD,R(−ω,ω) = π
2

e3

h̵2
δ(ω)∫

dk

(2π)3
×

×∑
n

Ωγαn
∂

∂kβ
fn + ( α↔ β ) . (23)

σγβαS,R (−ω,ω) = π
2

e3

h̵2 ∫
dk

(2π)3
δ(ω − εn + εm)×

×∑
nm

⎧⎪⎪⎨⎪⎪⎩
(fn − fm)Âβnmi

∂

∂kα
Âγmn+

+ (fn − fm)Âβnm∑
c

[Âαmc ˆ̄Aγcn − ˆ̄AγmcÂ
α
cn]

⎫⎪⎪⎬⎪⎪⎭
+

+ ( α↔ β
ω↔ −ω ) , (24)

where Ωαβn = ∂Aβn/∂kα − ∂Aαn/∂kβ = i[Aα,Aβ]n is the
Berry curvature of n-th band.

Now, their non-resonant part is:

σγβαBCD,NR(−ω,ω) = i

2

e3

h̵2
P.v.{ 1

ω
}∫

dk

(2π)3
×

×∑
n

Ωγαn
∂

∂kβ
fn + ( α↔ β

ω↔ −ω ) . (25)

σγβαS,NR(−ω,ω) = 1

2

e3

h̵2 ∫
dk

(2π)3
P.v.{ 1

ω − εn + εm
}×

×∑
nm

⎧⎪⎪⎨⎪⎪⎩
(fm − fn)Âβnm

∂

∂kα
Âγmn−

− i(fm − fn)Âβnm∑
c

[Âαmc ˆ̄Aγcn − ˆ̄AγmcÂ
α
cn]

⎫⎪⎪⎬⎪⎪⎭
+

+ ( α↔ β
ω↔ −ω ) . (26)

“Jerk” and “injection” components can be viewed as
purely resonant, and are given by the following expres-
sions:

σγβαJ (−ω,ω) = π
Γ

e3

h̵2
δ(ω)∫

dk

(2π)3 ∑
n

∂εn
∂kγ

∂2fn
∂kα∂kβ

, (27)

σγβαI (−ω,ω) = 2π

Γ

e3

h̵2 ∫
dk

(2π)3 ∑
nm

(fm − fn)×

× ÂβnmÂαmn(
∂

∂kγ
εn −

∂

∂kγ
εm)δ(ω − εn + εm). (28)

For purposes of comparing with the current non-
perturbative formalism, we write the injection and shift
currents of two-band systems system predicted by per-
turbation theory for the monochromatic electric field of
the following form:

Etotal(ω′) = Eδ(ω + ω′) +E∗δ(ω − ω′). (29)

Where DC current is defined as:

jγ2,DC = ∫
∞

−∞
dωEβ(−ω)Eα(ω)σγβα(2) (−ω,ω), (30)

the injection and shift currents are:

jγS,R = 2π
e3

h̵2 ∫
dk

(2π)3
(f1 − f2)δ(ω + ε1 − ε2)×

× Im [E∗β
0 Eα0 A

β
21 (∂αAγ12 − i [A

α, Āγ]
12
)] (31)

jγS,NR = 2
e3

h̵2 ∫
dk

(2π)3

(ω + ε1 − ε2)(f1 − f2)
(ω + ε1 − ε2)2 + Γ2

×

×Re [E∗β
0 Eα0 A

β
21 (∂αAγ12 − i [A

α, Āγ]
12
)] , (32)

jγI = e3

h̵2

2π

Γ
∫

dk

(2π)3
×

× (f1 − f2)(vγ2 − v
γ
1 )∣E ⋅A12∣2δ(ω + ε1 − ε2). (33)

BCD and Jerk rectification conductivities are low fre-
quency Fermi surface terms, namely they vanish in the
absence of Fermi surface at zero temperature and are as-
sociated with pole singularities at ω = 0, and therefore
they are not described by the non-perturbative formal-
ism of the main text that focuses on interband transi-
tions. On the other hand, shift and injection can be non-
zero for inter-band transitions. Notice that, interestingly,
taken at face value, perturbation theory appears to pre-
dict that in the limit of small Γ the shift terms remain
finite while injection diverges.

B. Floquet Formalism

We use Floquet theory to determine the non-
perturbative effect of the electric field and couple the
system to a bath that allows to sensibly describe steady
state in the presence of relaxation processes. The mi-
croscopic Hamiltonian has the form (h̵ = e = 1, unless
otherwise is stated):

H =H0(k) +
∂H0(k)
∂kα

Aα0 (t) +
1

2

∂2H0(k)
∂kα∂kβ

Aα0 (t)A
β
0 (t)+

+ 1

3!

∂3H0(k)
∂kα∂kβ∂kγ

Aα0 (t)A
β
0 (t)A

γ
0(t) +O(E4). (34)

Expansion to 3rd order in vector potentials is neces-
sary to compute electric currents correctly to order E2

0 ,
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since the current is the expectation value of the velocity
operator:

vλ = ∂H0

∂kλ
+ ∂

2H0(k)
∂kα∂kλ

Aα0 (t)+

+ 1

2

∂3H0(k)
∂kα∂kβ∂kλ

Aα0 (t)A
β
0 (t) +O(E3). (35)

We assume that the electric field is a general periodic
function with frequency ω:

A0(t) = i
E

ω
eiωt − iE

∗

ω
e−iωt, (36)

Etotal(t) = −
∂A(t)
∂t

= Eeiωt +E∗e−iωt. (37)

Since the Hamiltonian is periodic (ω = 2π/T ), we apply
discrete Fourier transform and now the Hamiltonian in
Floquet picture has the following components:

H(t) =
∞
∑
n=−∞

Hf
ne

inωt, Hf
n = 1

T
∫

T

0
He−inωtdt, (38)

Hf
0 =H0(k) + e2Re [E

αE∗β

ω2
] ∂

2H0(k)
∂kα∂kβ

, (39)

Hf
1 = iE

α

ω

∂H0(k)
∂kα

+ i ∂3H0(k)
∂kα∂kβ∂kλ

Eλ0
ω

Re [E
αE∗β

ω2
] (40)

Hf
−1 = −i

E∗α

ω

∂H0(k)
∂kα

−

− i ∂3H0(k)
∂kα∂kβ∂kλ

E∗λ

ω
Re [E

αE∗β

ω2
] , (41)

Hf
2 = −E

αEβ

ω2

1

2

∂2H0(k)
∂kα∂kβ

, (42)

Hf
−2 = −

E∗αE∗β

ω2

1

2

∂2H0(k)
∂kα∂kβ

, (43)

Hf
3 = −iE

αEβEλ

ω3

1

3!

∂3H0(k)
∂kα∂kβ∂kλ

, (44)

Hf
−3 = i

E∗αE∗βE∗λ

ω3

1

3!

∂3H0(k)
∂kα∂kβ∂kλ

. (45)

Thus the Hamiltonian structure in Floquet picture is:

ĤF =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⋱ ⋮ ⋮ ⋮ ⋮ ⋮
⋯ H0 + 2ω H1 H2 H3 0 ⋯
⋯ H−1 H0 + ω H1 H2 H3 ⋯
⋯ H−2 H−1 H0 H1 H2 ⋯
⋯ H−3 H−2 H−1 H0 − ω H1 ⋯
⋯ 0 H−3 H−2 H−1 H0 − 2ω ⋯

⋮ ⋮ ⋮ ⋮ ⋮ ⋱

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(46)

Additionally, one can show that in Floquet represen-
tation the velocity operator has the following form:

vλ0 = ∂H0

∂kλ
+ ∂3H0(k)
∂kα∂kβ∂kλ

Re [E
αE∗β

ω2
] , (47)

vλ1 = iE
α

ω

∂2H0(k)
∂kα∂kλ

, vλ−1 = −i
E∗α

ω

∂2H0(k)
∂kα∂kλ

(48)

vλ2 = −1

2

∂3H0(k)
∂kα∂kβ∂kλ

EαEβ , (49)

vλ−2 = −
1

2

∂3H0(k)
∂kα∂kβ∂kλ

E∗αE∗β . (50)

We follow the approach of Ref.[12] and take a simplified
2 band model. We focus on inter-band resonant processes
between the conduction and valence bands. The matrix
elements highlighted by the rectangular box in Eq.(46)
are the ones that we keep within the “rotating wave”
two band truncation, and ignore contributions of order
E3 and higher. Therefore, the Floquet Hamiltonian and
velocity operator can be truncated to an effective 2 band
model, which reads as:

HF
T = ( ε1 + ω i(A ⋅ v12)

−i(A∗ ⋅ v21) ε2
) = h0 + h ⋅ σ, (51)

vF,αT =
⎛
⎜
⎝

∂αE1 iA ⋅ (∂
2H0(k)
∂kα∂k

)
12

−iA∗ ⋅ (∂H0(k)
∂kα∂k

)
21

∂αE2

⎞
⎟
⎠
+ vαE2 ,

(52)

(vλE2)i,j = ( ∂3H0(k)
∂kα∂kβ∂kλ

)
ij

Re [E
αE∗β

ω2
] , (53)

h0 =
1

2
(ε1 + ε2 + ω), hx = Re[i(A∗ ⋅ v21)], (54)

hy = Im[i(A∗ ⋅ v21)], hz =
1

2
(ε1 − ε2 + ω), (55)

ε1 = E1 +Re [E
αE∗β

ω2
]( ∂2H0

∂kα∂kβ
)

11

, (56)

ε2 = E2 +Re [E
αE∗β

ω2
]( ∂2H0

∂kα∂kβ
)

22

, (57)

v12 = (∂H0(k)
∂k

)
12

, v21 = (∂H0(k)
∂k

)
21

, (58)

where 1 stands for “valence”, 2 for “conduction ”, (i, j)
denotes the band index, E1,2 are unperturbed band ener-
gies, ε1,2 are dressed effective band energies and A = E/ω.
The above formalism is a slight generalization of that in
Ref.[12], that adds some dressing of the band energies by
the drive, although this ingredient is not crucial for the
key quantitative predictions made in the main text.

Within our current notation, the following is the con-
vention to convert a matrix from Floquet picture into the
usual Schrödinger picture:

ÔF = ( O22 O12

O21 O11
) , Ô(t) = ( O11 O21e

−iωt

O12e
iωt O22

) .

(59)
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And for the states (eigenvectors of the Hamilto-
nian from Eq.(52)), the Floquet representation and the
Schrödinger picture are related as:

ψjF = ( u
j
1

uj2
) Ð→ ψj(t) = e−iεjt (

uj2
uj1e

iωt ) . (60)

C. General Keldysh Formalism

To model relaxation we couple our system to a simple
Fermion bath at temperature T and chemical potential
εF . The bath couples uniformly to each site of the lattice
sites where the fermions hop, as depicted in Fig.1(b). The
partition function and Lagrangian of the system are given
by:

Z = Tr[ρUc]
Tr[ρ]

= ∫ D[a, a†, c, c†]ρ0e
iS , (61)

S = ∫
C
dt{LTB +Lmix +Lbath} , (62)

LTB =∑
i≠j
c†i(i∂t −H

ij)cj , (63)

Lmix =∑
k,i

V kmix [a†
kci + h.c.] , (64)

Lbath =∑
k

a†
k(i∂t − ε

bath
k )ak, (65)

⟨a†
kak⟩ = n(k) = f(ε

bath
k ) = [1 + eβ(ε

bath
k −εF )]−1, (66)

where LTB describes the tight binding model of the sys-
tem without the bath, Lmix the tunneling from the sys-
tem sites to the states in the bath, and Lbath describes
the bath. We will take ρ0 to be the initial density ma-

trix of the whole system plus bath, (ak, a
†
k) are creation

and annihilation operators of the bath states labeled by

k, (ci, c
†
i ) is creation and annihilation operator of the

fermion on the site “i”, Hij is the tight-binding Hamil-
tonian of the system, εbath

k is the energy of the k-th state

of the bath, β = 1/(kBT ), V kmix is the coupling of the sys-
tem site (all sites of the physical system are coupled to
identical and independent baths, as depicted in Fig.1(b))
to the k-th state of the bath and f(ω) is the Fermi-Dirac
distribution. C is the closed contour for the time integra-
tion of the Keldysh approach [42].

We can split the closed contour of time integration into
two parts:

∫
C
= ∫

∞

−∞
dt [(⋯)+ − (⋯)−] , (67)

the sub-script “+” or “-” denote the forward and back-
ward parts of the contour and plays the role of an ad-
ditional effective internal degree of freedom [38]. From
this one can write the action describing the system-bath

coupling as follows:

Smix =

= ∫
∞

−∞
dt∑

k,i

V kmix[(a
†
k,+ci,+ + h.c.) − (a†

k,−ci,− + h.c.)] =

= ∫
∞

−∞
dt∑

k,i

V kmix [( a†
k,+ a†

k,− )( 1 0
0 −1

)( ci,+
ci,−

) + h.c]

(68)

Now we apply the standard Keldysh fermionic rota-
tion:

( ci,+
ci,−

) = 1√
2
( 1 1

1 −1
)( ci,1

ci,2
) , (69)

( a†
k,+ a†

k,− ) = ( a†
k,1 a†

k,2 ) 1√
2
( 1 −1

1 1
) . (70)

After Fourier transforming the above we get:

Smix = ∫
∞

−∞
dω∑

k,i

V kmix [( a†
k,1 a†

k,2 )( ci,1
ci,2

) + h.c] .

(71)
Applying the same procedure to the rest of the action

brings us to the following result:

Sbath = ∫
∞

−∞
dω∑

k

( a†
k,1 a†

k,2 )×

× ( G
R(k,ω) GK(k,ω)

0 GA(k,ω) )
−1

( ak,1
ak,2

) , (72)

STB =∑
ij
∫

∞

−∞
dω ( c†i,1 c†i,2 )×

× ( ω −H
ij(ω) + iε 2iεfe(ω)
0 ω −Hij(ω) − iε )( cj,1

cj,2
) , (73)

where GA/R are advanced and retarded Green functions
respectively and GK stands for the Keldysh Green func-
tion. They are given by:

GR(k,ω) = (ω − εbath
k + i0)−1, (74)

GA(k,ω) = (ω − εbath
k − i0)−1, (75)

GK(k,ω) = −2πi(1 − 2f(ω))δ(ω − εbath
k ), (76)

where f(ω) = (1 + eβ(ω−εF ))−1.
After integrating out the fermionic bath, we obtain the

following effective action for the system:

Seff = STB + Sint. (77)

Sint = −∫
∞

−∞
dω∑

k,i

∣V kmix∣2×

× ( c†i,1 c†i,2 )( G
R(k,ω) GK(k,ω)

0 GA(k,ω) )( ci,1
ci,2

) . (78)
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In order to obtain the equal time lesser GF:

G< = G
K +GA −GR

2
, (79)

we can focus on the imaginary parts of the Green func-
tions:

GR(k,ω) = −iπδ(ω − εbath
k ), (80)

GA(k,ω) = iπδ(ω − εbath
k )k), (81)

GK(k,ω) = −2πi(1 − 2f(ω))δ(ω − εbath
k ), (82)

which leads us to the following form of effective interac-
tion:

Sint = ∫
∞

−∞
dω∑

i

×

× ( c†i,1 c†i,2 )( iΓ(ω)/2 iΓ(ω)(1 − 2f(ω))
0 −iΓ(ω)/2 )( ci,1

ci,2
) ,

(83)

where Γ(ω) is an effective imaginary self-energy or relax-
ation rate, that captures the relaxation processes and it
is explicitly given by:

Γ(ω) = 2π∑
k

∣V kmix∣2δ(ω − εbath
k ). (84)

D. Keldysh Floquet Formalism

In the case of a periodically driven system the action
satisfies:

STB =∑
ij
∫ dtc†i(t)(i∂t −H

ij(t) ± i0)cj(t), (85)

Hij(t) =Hij(t + T ). (86)

Therefore we can expand it with a the discrete Fourier
transform:

Hij(t) =
∞
∑

m=−∞
Hij
me

−imωt, (87)

Hij
m = 1

T
∫

T

0
dtHij(t)eimωt, (88)

and arrive to the following action:

STB =∑
ij

∞
∑

m′=−∞
∫

∞

−∞
dω×

× c†i(ω)(ωδm′,0 −Hij
m′ ± i0)cj(ω +m′ω). (89)

Additionally, after splitting the frequency integration
into segments:

∫
∞

−∞
dω′f(ω′) =

∞
∑
n=−∞

∫
ω/2

−ω/2
dω′f(ω′ + nω), (90)

where ω = 2π/T , and relabeling the summation index
(n +m′ =m), one obtains the result:

STB =∑
ij

∞
∑

n,m=−∞
∫

ω/2

−ω/2
dω′c†i(ω

′ + nω)×

× ((ω′ + nω)δn,m −Hij
m−n ± i0)cj(ω′ +mω). (91)

And analogous procedure can be performed with the
tight binding part of the action, yielding:

STB =∑
ij

∞
∑

n,m=−∞
∫

ω/2

−ω/2
dω′ ( c†i,1,n c†i,2,n )×

(δnmω′1̂ − ĤF,ij
mn ) ( ci,1,m

ci,2,m
) , (92)

ĤF,ij
mn = ( H

ij
m−n − nωδnm 2iεfe(ω′ + nω)

0 Hij
m−n − nωδnm

) , (93)

Sint =∑
i

∞
∑
n=−∞

∫
ω/2

−ω/2
dω∑

i

( c†i,1,n c†i,2,n )×

× ( iΓ(ω′ + nω)/2 iΓ(ω′ + nω)(1 − 2f(ω′ + nω))
0 −iΓ(ω′ + nω)/2 )×

× ( ci,1,n
ci,2,n

) , (94)

where ci,a,n = ci,a(ω + nω).
Now the system’s full Green function, after integrating

out the bath, is given by:

G−1 = ( G
R GK

0 GA )
−1

ij,nm

=

( (ω′ + nω)δijnm −Hij
m−n 2iεfe(ω)

0 (ω′ + nω)δijnm −Hij
m−n

)+

δijnm ( iΓ(ω′ + nω)/2 iΓ(ω′ + nω)(1 − 2f(ω′ + nω))
0 −iΓ(ω′ + nω)/2 ) ,

(95)

where δijnm = δijδnm are Kronecker deltas.
The lesser Green Function G< is the one we need in

order to obtain the density matrix of the system, which
can related to advanced GA and retarded GR Greens
functions, as follows:

G−1 = G−1
0 −Σ, (96)

Σ = ( ΣR ΣK

0 ΣA
) , Σ< = ΣK +ΣA −ΣR

2
, (97)

G< = GRΣ<GA. (98)

We have:

Σ<,ij
nm (ω′) = δijδnmf(ω′ + nω). (99)

Therefore the technical task is reduced to finding the
advanced and retarded green functions of the system.
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E. Truncated Green Functions

For the special choice of bath in Fig.1(b) in which each
site couples to an identical bath, the self energy from
Eq.(99) is independent of the system site indices “ij”. To
obtain the same truncation, in the spirit of the rotating
wave approximation, as we had before for Eq.(52), here
we need to restrict to the indices (n = 0, n = −1). Thus
effectively, after truncation we have:

Σ<(ω′) = iΓ(ω′) ( f1(ω′ − ω) 0
0 f2(ω′)

) , (100)

Σ<
v(ω′) = iΓ(ω′) ( f1(ω′ − ω) 0

0 0
) , (101)

Σ<
c(ω′) = iΓ(ω′) ( 0 0

0 f2(ω′)
) , (102)

and

GR−1

S = (ω′ + iΓ(ω′)/2 − h0)I − h ⋅ σ, (103)

GA−1

S = (ω′ − iΓ(ω′)/2 − h0)I − h ⋅ σ, (104)

all the notations are defined in Eq.(52-57).
After inverting we have:

GR
T (ω′) = (ω′ + iΓ(ω′)/2 − h0)I + h ⋅ σ

(ω + iΓ(ω′)/2 − h0)2 − h2
, (105)

GA
T (ω′) = (ω′ − iΓ(ω′)/2 − h0)I + h ⋅ σ

(ω′ − iΓ(ω′)/2 − h0)2 − h2
(106)

The lesser GFs associated with “valence” and “con-
duction” bands are given by:

G<
v = GRΣ<

vG
A, G<

c = GR
S Σ<

cG
A
S . (107)

Or explicitly:

G<
v(ω′) = f1(ω′ − ω)Γ(ω′)×

( i(ω′ − h0 + hz)2 + iΓ2/4 h−(ihz − Γ/2 + i(ω′ − h0))
h+(ihz + Γ/2 + i(ω′ − h0)) i(h2

x + h2
y)

)

((ω′ + iΓ/2 − h0)2 − h2)((ω′ − iΓ/2 − h0)2 − h2)
,

(108)

G<
c(ω′) = f2(ω′)Γ(ω′)×

( i(h2
x + h2

y) h−(Γ/2 − ihz + i(ω′ − h0))
h+(−Γ/2 − ihz + i(ω′ − h0)) i(ω′ − h0 − hz)2 + iΓ2/4 )

((ω′ + iΓ/2 − h0)2 − h2)((ω′ − iΓ/2 − h0)2 − h2)
.

(109)

In general, the time average density matrix is given by:

ρ̂DC = −i∫
∞

−∞

dω′

2π
(G<

c(ω′) +G<
v(ω′)) . (110)

To proceed analytically, we assume a bath with a broad
and flat density of states over the system’s energy states,

which allows us to neglect the frequency dependence of
relaxation rate in Eq.(84), and therefore we take Γ as
a constant. Additionally, we assume that the dressed
band energies are above or below Fermi energy, which
allows us to take the occupation numbers as frequency
independent (this is rigorously justified only in insulators,
but in the case of metals, it can be viewed as a reasonable
approximation that will captures the essence of the Pauli
blocking effect of optical transitions). After frequency
integration we have:

G<
v = f1

( ih
2 + ih2

z + iΓ2/2 h−(ihz − Γ/2)
h+(ihz + Γ/2) i(h2

x + h2
y)

)

2(h2 + Γ2

4
)

(111)

G<
c = f2

( i(h2
x + h2

y) −h−(ihz − Γ/2)
−h+(ihz + Γ/2) ih2 + ih2

z + iΓ2/2 )

2(h2 + Γ2

4
)

(112)

The DC current is:

J = −iTr(v̂FG
<), G< = G<

c +G<
v, (113)

where the velocity operator is:

vF,αT =
⎛
⎜
⎝

∂αE1 −iA ⋅ (∂
2H0(k)
∂kα∂k

)
12

iA∗ ⋅ (∂H0(k)
∂kα∂k

)
21

∂αE2

⎞
⎟
⎠
+ vαE2 ,

(114)

(vαE2)ij = ( ∂3H0(k)
∂kα∂kβ∂kλ

)
ij

Re [E
αE∗β

ω2
] . (115)

Thus the explicit result is given by:

Jα = −iTr(v̂αFG<) =

= −iTr((vα0 + vα ⋅ σ)G<) =∑
k

(f1 − f2)
h2 + Γ2

4

×

×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Γ

2
(hyvαx − vαy hx)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
J1

+hz(vαxhx + vαy hy)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

J2

+ vαz (h2
z +

Γ2

4
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
J3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

+ v0(f1 + f2), (116)

where ∑k = ∫ ddk/(2π)d and the lower (x, y, z) index de-
notes the decomposition of the matrix in σ-basis. The
last term in the expression above is effectively an aver-
age of the velocity operator in the quasi-equilibrium state
with dressed energies, and can be seen to identically van-
ish.
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Now, we split the current into on three contributions:

Jα1 =∑
k

Γ
2
(f1 − f2)
h2 + Γ2/4

(hyvαx − vαy hx), (117)

Jα2 =∑
k

hz(f1 − f2)
h2 + Γ2/4

(hxvαx + hyvαy ), (118)

Jα3 = −∑
k

(f1 − f2)vαz
h2
x + h2

y

h2 + Γ2

4

, (119)

where v2 = v0 − vz, v1 = v0 + vz. Note that hx,y ∼ E0,
which means that in order to compute the currents
(J1, J2, J3) with accuracy O(E2

0), we can safely assume

that v̂αF = ∂Ĥ/∂kα and ignore the vαE2 contribution. Fi-
nally, the velocity operator (with restored units) can be
approximated as:

vF,αT =
⎛
⎜
⎝

∂αE1 i e
h̵
A ⋅ (∂

2H0(k)
∂kα∂k

)
12

−i e
h̵
A∗ ⋅ (∂H0(k)

∂kα∂k
)

21
∂αE2

⎞
⎟
⎠
+

e2Re [E
αE∗β

h̵2ω2
]
⎛
⎜
⎝

( ∂3H0(k)
∂kα∂kβ∂kλ

)
11

0

0 ( ∂3H0(k)
∂kα∂kβ∂kλ

)
22

⎞
⎟
⎠
.

(120)

Or in the Schrödinger picture:

vα(t) =

⎛
⎜
⎝

∂αE2 −i e
h̵
A∗ ⋅ (∂

2H0(k)
∂kα∂k

)
21
e−iωt

i e
h̵
A ⋅ (∂

2H0(k)
∂kα∂k

)
12
eiωt ∂αE1

⎞
⎟
⎠
+

e2Re [E
αE∗β

h̵2ω2
]
⎛
⎜
⎝

( ∂3H0(k)
∂kα∂kβ∂kλ

)
22

0

0 ( ∂3H0(k)
∂kα∂kβ∂kλ

)
11

⎞
⎟
⎠
,

(121)

For future comparison let us write the density matrix
derived from the Keldysh-Floquet approach (−iG<) in the
Schrödinger picture:

ρ̂K−F(t) = ( f2 0
0 f1

)+

+ f1 − f2

2(h2 + Γ2

4
)

⎛
⎜
⎝

h2
x + h2

y h+(hz − iΓ
2
)e−iωt

h−(hz + iΓ
2
)eiωt −h2

x − h2
y

⎞
⎟
⎠
,

(122)

where h± = hx ± ihy.

F. The DC current in a clean limit

In this section we will focus on the clean limit of the
current Eqs.(117-119). If the electric field and Γ are

small, we can use the following approximation:

1

h2 + Γ2

4

≈ 2πδΛ(ε12 + ω)
Λ

, (123)

where Λ =
√

∣E ⋅A12∣2 + Γ2

4
is the effective width of the

Lorentzian and ε12 = ε1 − ε2.
By noticing that:

hyv
α
x − vαy hx = Im [(hx + ihy)(vαx − ivαy )] , (124)

hxv
α
x + vαy hy = Re [(hx + ihy)(vαx − ivαy )] , (125)

we can write this as:

(hx + ihy)(vαx − ivαy ) =

= AβA∗γvγ21 (∂v
β

∂kα
)

12

= E
βE∗γ

ω2
vγ21 (∂v

β

∂kα
)

12

, (126)

where:

(∂v
β

∂kα
)

12

= ∂αvβ12 + i[v
β ,Aα]12. (127)

Now we can write the components of the current
(J1, J2, J3) as:

Jγ1 = π∑
k

Γ
√

∣E ⋅A12∣2 + Γ2

4

(f1 − f2)×

× δΛ(ω + ε1 − ε2)Im [E
αE∗β

ω2
vβ21 (∂v

α

∂kγ
)

12
] , (128)

Jγ2 =∑
k

1
2
(ω + ε1 − ε2)(f1 − f2)

1
4
(ω + ε1 − ε2)2 + (ε1−ε2)

2

ω2 ∣E ⋅A12∣2 + Γ2/4
×

×Re [E
αE∗β

ω2
vβ21 (∂v

α

∂kγ
)

12
] , (129)

Jγ3 = π∑
k

(f2 − f1)(vγ1 − v
γ
2 )×

× ∣E ⋅A12∣2δΛ(ω + ε1 − ε2)√
∣E ⋅A12∣2 + Γ2

4

. (130)

On resonance (ω ≈ ε12) we can use the following ap-
proximation:

vβ21

ω2
(∂v

α

∂kγ
)

12
≈ Aβ21(∂

γAα12 − iAα12(A
γ
11 −A

γ
22)). (131)

The expression above combined with the identity:

∂αAβnm − i[Aα, Āβ]nm =
= ∂βAαnm − iAαnm(Aβnn −Aβmm), (132)
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recovers the perturbation results Eqs.(31-33). The iden-
tification is the following: J1 is the resonant shift current,
J2 is the non-resonant shift current, J3 is the injection
current, that in the clean limit (Γ = 0) are:

Jγ1 = 0, (133)

Jγ2 = e∑
k

1
2
(ω + ε1 − ε2)(f1 − f2)

1
4
(ω + ε1 − ε2)2 + (ε1−ε2)

2

ω2 ∣E ⋅A12∣2
×

×Re [E
αE∗β

ω2
vβ21 (∂v

α

∂kγ
)

12
] (134)

Jγ3 = e∑
k

(f2 − f1)(vγ1 − v
γ
2 )
(ε1−ε2)2
ω2 ∣E ⋅A12∣2

(ω + ε1 − ε2)2 + 4 (ε1−ε2)
2

ω2 ∣E ⋅A12∣2
. (135)

G. Periodic Gibbs Ensemble

In the spirit of the rotating-wave approximation, and
in order to consider the same level of approximation in
which Keldysh-Floquet formalism is developed, we take
the evolution is defined by the following truncated Hamil-
tonian:

HF
T = ( ε1 + ω i(A ⋅ v12)

−i(A∗ ⋅ v21) ε2
) = h0 + h ⋅ σ. (136)

We can parametrize Hamiltonian vector in spherical
coordinates, namely h = h(cosϕ sin θ, sinϕ sin θ, cos θ).
Using the Hamiltonian above one can find the evolution
operator in the Schrödinger picture:

U(tfin, tin) = ψv(tfin)ψ†
v(tin) + ψc(tfin)ψ†

c(tin), (137)

ψv(tfin)ψ†
v(tin) = eiEv(tin−tfin)×

( cos2 θ
2

− sin θ
2

cos θ
2
eiϕ−iωtin

− sin θ
2

cos θ
2
e−iϕ+iωtfin sin2 θ

2
e−iω(tin−tfin)

) , (138)

ψc(tfin)ψ†
c(tin) = eiEc(tin−tfin)×

( sin2 θ
2

sin θ
2

cos θ
2
eiϕ−iωtin

sin θ
2

cos θ
2
e−iϕ+iωtfin cos2 θ

2
e−iω(tin−tfin)

) , (139)

where the first argument of the evolution operator is the
final time and the second - the initial one:

ψ(tfin) = U(tfin, tin)ψ(tin). (140)

Now we follow the PGE procedure [39, 47–49]. The
system of interest has a conserved quantity that is the
total number of particles. We construct the PGE den-
sity matrix in a way that it conserves the given quantity

during the evolution. Initially occupations are given by:

ψv(0)ψ†
v(0) = ( cos2 θ

2
− 1

2
sin θeiϕ

− 1
2

sin θe−iϕ sin2 θ
2

) , (141)

ψc(0)ψ†
c(0) = ( sin2 θ

2
1
2

sin θeiϕ
1
2

sin θe−iϕ cos2 θ
2

) . (142)

The time evolution of occupation numbers above is:

Iv/c(t) = U(0, t)ψv/c(0)ψ†
v/c(0)U

†(0, t), (143)

Ic(t) + Iv(t) = 1. (144)

Now we can can construct the PGE density matrix
that satisfies the initial condition:

ρ̂PGE(t) = Z−1 exp (−λcIc(t) − λvIv(t)) , (145)

Tr [ρS(0)Iv/c(0)] = Tr [ρ̂PGE(0)Iv/c(0)] , (146)

The initial state of the system is chosen to be the ther-
mal state (see the discussion in the main text) with the
temperature and chemical potential of the bath:

ρS(0) = ( f2 0
0 f1

) . (147)

Solving Eq.(146) one can obtain:

λc − λv = ln [ 1

f2 − (f2 − f1) cos2 θ
2

− 1] . (148)

Using Eq.(144) and Eq.(148) one can rewrite the PGE
density matrix from Eq.(145) as:

ρ̂PGE(t) = (
1
2

0
0 1

2

)+

⎛
⎜⎜
⎝

(f2−f1)
2

cos2 θ (f1−f2)
2

sin θ cos θeiϕ−iωt

(f1−f2)
2

sin θ cos θe−iϕ+iωt − (f2−f1)
2

cos2 θ

⎞
⎟⎟
⎠
.

(149)

Using the following relations:

sin θeiϕ =
hx + ihy

h
= h+
h
, sin θe−iϕ = h−

h
, (150)

cos θ = hz
h
, h2 = h2

x + h2
y + h2

z, (151)

one can show that the PGE density matrix is:

ρ̂PGE(t) = ( f2 0
0 f1

)+

+ f1 − f2

2h2

⎛
⎜
⎝

h2
x + h2

y hzh+e
−iωt

hzh−e
iωt −h2

x − h2
y

⎞
⎟
⎠
. (152)

Which is the same matrix introduced in Eq.(12) of the
main text.
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H. Rabi oscillations

We consider the 2 band system with the evolution op-
erator from Eq.(137). We assume the system initially to
be thermal with the temperature and chemical potential
of the bath, namely:

ρS(0) = ( f2 0
0 f1

) . (153)

One can show that the evolution of the conduction and
valence bands are given by:

∣v(t)⟩ = e−ih0t ( −i sin θ sin(ht)eiϕ
(cos(ht) − i cos θ sin(ht))eiωt ) , (154)

∣c(t)⟩ = e−ih0t ( cos(ht) + i cos θ sin(ht)
−i sin θ sin(ht)eiωt−iϕ ) , (155)

Now we can construct the Rabi density matrix as fol-
lows:

ρRabi(t) = f1 ∣v(t)⟩ ⟨v(t)∣ + f2 ∣c(t)⟩ ⟨c(t)∣ . (156)

To phenomenologically capture the synchronization of
the system with drive, we perform a time average of the
terms that have a frequencies different from the drive
frequency ω, in the above the density matrix, as follows:

sin(ht)2 = 1

2
, cos(ht)2 = 1

2
, sin(ht) = 0, (157)

cos(ht) = 0, sin(ht) cos(ht) = 0. (158)

Which leads to the following synchronized Rabi density
matrix:

ρ̂Rabi(t) = (
1
2

0
0 1

2

)+

⎛
⎜⎜
⎝

(f2−f1)
2

cos2 θ (f1−f2)
2

sin θ cos θeiϕ−iωt

(f1−f2)
2

sin θ cos θe−iϕ+iωt − (f2−f1)
2

cos2 θ

⎞
⎟⎟
⎠
,

(159)

which also can be simplified to:

ρ̂Rabi(t) = ( f2 0
0 f1

)+

+ f1 − f2

2h2

⎛
⎜
⎝

h2
x + h2

y hzh+e
−iωt

hzh−e
iωt −h2

x − h2
y

⎞
⎟
⎠
. (160)

Which is the same matrix as that obtained from the PGE
in Eq.(152) and introduced in Eq.(12) of the main text.

I. Injection current for 3D Weyl and 2D Dirac
Fermions

Here we derive the approximate analytic expression of
the injection current. The resonant injection current is
given by:

Jα3 = π e
h̵
∫

dk

(2π)3
(f2 − f1)(vα1 − vα2 )×

× ∣eE ⋅A12∣2√
∣eE ⋅A12∣2 + Γ2

4

δ(ε1 − ε2 + h̵ω). (161)

In the T → 0 limit, the valence/conduction band occu-
pation difference is f1 − f2 = Θ(εc − εF ), where Θ is the
Heaviside theta function and εF is the Fermi energy.

1. 3D Weyl fermions

The Hamiltonian of 3D Weyl fermions is given by:

Ĥ0 = ∑
α=x,y,z

kα ⋅ σ̂α, (162)

here we have re-scaled the momentum v0k → k, to sim-
plify the final expression. The components of the momen-
tum vector are k = kn = k(cosφ sin θ, sinφ sin θ, cos θ).
Consequently, the off-diagonal Berry connections and
band energy difference of the Hamiltonian Eq.(162) are
given by:

Ax12 =
sinφ

2k
− icosφ cos θ

2k
, Ay12 = −

cosφ

2k
− i sinφ cos θ

2k
(163)

Az12 = i
sin θ

2k
, ε2 − ε1 = 2k, vγ2 − v

γ
1 = 2nγ . (164)

Note that A∗
12 = A21. The direction of the injection

current behaves as J3 ∼ [E ×E∗]. We consider the fre-
quency of the drive to be ω > 2εF , which sets f1 − f2 = 1.
The injection current can be then approximated as:

Jγ3 = πω
√

∣E∣2 + Γ2ω2

4

∫
∣E ⋅A12∣2δΛ(ω − 2k)
√

1 + ω2∣E⋅A12∣2−∣E∣2

∣E∣2+Γ2ω2

4

nγd3k

(2π)3
.

(165)
The term containing the square root inside the integral
is of the form (1 + X)−1/2, with ∣X ∣ < 1. We therefore

expand this term as (1 +X)−1/2 ≈ 1 −X/2, and obtain:

J3 ≈
π2iω

(2π)3

[E∗ ×E]

60
√

∣E∣2 + Γ2ω2

4

12∣E∣2 + 5Γ2ω2

∣E∣2 + Γ2ω2

4

, (166)

which after units restoring is:

J3 ≈
iπ2e2ω

v0(2π)3

[E∗ ×E]
60

√
∣E∣2 + Γ2h̵2ω2

4v2
0e

2

12∣E∣2 + 5Γ2h̵2ω2

v2
0e

2

∣E∣2 + Γ2h̵2ω2

4v2
0e

2

. (167)
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FIG. 3: Comparison of exact evaluation of the integral from
Eq.(165) and the approximate expression from Eq.(167) for
the injection current for 3D Weyl fermion as a function of a
polarisation s, such that s→ 0 for linearly polarizes light and
s → 1 for perfectly circularly polarized light (see Eq.171) in
the Rabi regime ev0∣E∣≫ Γh̵ω.

The above expansion can only be justified parametrically
either when Γh̵ω ≫ ev0∣E∣ or when the light is almost lin-
early polarized at arbitrary Γ, however, as we will show
by explicit numerical evaluation of the integral, the ap-
proximation still works to about 17% even for perfectly
circularly polarized light.

If the electric field is perfectly circularly polarised, the
injection current of ideal Weyl model can be evaluated
from the full integral in Eq.(161) and yields the following
expression:

J3 =
ie3[E∗ ×E]

12πΓh̵
×

× 8 − 8
√
E2 + 1 + E2

√
1 + E2 + 3EArcSinh(E)
E2

, (168)

where E = 2
√

2 e∣E∣v0

h̵ωΓ
. This expression is in fact exactly

identical to that derived in Ref.[30] in the limit of τε/τp →
0, where τε,p are the energy and momentum relaxation
times introduced in Ref.[30]. The expression above in the
limit of a large electric field E →∞ can be approximated
as:

Jexact
3 ≈ 1

24
√

2π
[E∗ ×E] ie

2ω

∣E∣v0
. (169)

On the other hand the approximation from Eq.(167)
gives:

Japprox
3 ≈ 1

40π
[E∗ ×E] ie

2ω

∣E∣v0
. (170)

Despite the fact that we see a small discrepancy between
approximation and exact calculation (Jexact

3 /Japprox
3 ≈

1.17), formula Eq.(167) displays good agreement with
the exact evaluation of the integral in Eq.(165) for light
that is not perfectly circularly polarized. To illustrate
this we consider light with elliptical polarization that in-
terpolates from perfectly linearly polarized to perfectly
circularly polarized as follows:

E = (0, is E0√
2
,
E0√

2
), s ∈ [0,1]. (171)

Parameters are chosen outside of the regime in which
the approximation of Eq.(167) is expected to be justified,
namely ev0∣E∣ ≫ Γh̵ω (h̵ω = 2.5εF ,Γ = 0.01h̵ω, ev0E0 =
10Γh̵ω). The result of comparison can be seen on
FIG.I I 1. We see that Eq.(167) matches the exact in-
tegral from Eq.(165) for light that is almost linearly po-
larized (s ≈ 0) and deviates from it the most in the case
of perfect circularly polarized light (s = 1), but only by
about 17%. Therefore, we conclude that Eq.(167) pro-
duces a good approximation of the photocurrent current
over different regimes.

2. 2D Dirac fermions

After the analogous momentum rescaling the Hamilto-
nian of 2D tilted Dirac fermions is given by:

Ĥ = αkx1̂ + kxσ̂x + kyσ̂y +mσ̂z, (172)

where α = ux/vx. The momentum vector is two dimen-
tional k = kn = k(cosφ, sinφ). The off-diagonal berry
connections, band energies and velocity differences are:

Ax12 =
√
k2 +m2 sinφ + im cosφ

2(k2 +m2)
, (173)

Ay12 = −
√
k2 +m2 cosφ − im sinφ

2(k2 +m2)
, (174)

ε2 − ε1 = 2
√
k2 +m2, v2 − v1 =

2k√
k2 +m2

n. (175)

Assuming ω = 2εF , we see that f1−f2 = Θ(αk cosφ)→ φ ∈
[−π/2, π/2]. For simplicity we assume that the electric
field is along the tilt so that the corresponding component
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of the injection current can be approximated as:

Jx3 = k0

2π

1
√
∣E∣2
ε2
F

+ Γ2

×

× ∫
π/2

−π/2
∫

∞

0
nx

∣(E ⋅A12)∣2¿
ÁÁÁÀ1 +

4∣(E⋅A12)∣2− ∣E∣
2

ε2
F

∣E2 ∣
ε2
F

+Γ2

δ(k − k0)dkdφ ≈

≈
√
ε2F −m2

60π

∣E∣2
ε2
F√

∣E∣2
ε2
F

+ Γ2

×

×
5Γ(1 + 2m

2

ε2
F

) + ∣E∣
2

ε2
F

(6 + 13m
2

ε2
F

− 4m
4

ε4
F

)
∣E∣2
ε2
F

+ Γ2
, (176)

which after units restoring is:

Jx3 ≈ e
2vx
h̵vy

√
ε2F −m2

60π

∣E∣2
ε2
F√

∣E∣2
ε2
F

+ Γ2

e2v2
x

×

×
5 Γ2

e2v2
x
(1 + 2m

2

ε2
F

) + ∣E∣
2

ε2
F

(6 + 13m
2

ε2
F

− 4m
4

ε4
F

)
∣E∣2
ε2
F

+ Γ2

e2v2
x

. (177)

J. The shift current for linear in momentum
models

This section focuses on contributions of shift current in
models that are linear in momentum k. We demonstrate
why the contribution of shift currents is neglible in such
models and the rectification response is dominated by
the the injection current in the limit where the two band
approximation is valid.

1. Two-band Keldysh-Floquet formalism

In the Keldysh-Floquet formalism employed in the
main text, the velocity operator from Eq.(120) for the
linear in momentum model simplifies to the following ex-
pression:

vαF = ( ∂
αε1 0
0 ∂αε2

) , (178)

which is a time-independent operator in Schrödinger’s
picture. Therefore, we see that there are no associated
off-diagonal components of the velocity operator, which
are the ones that would give rise to shift currents. After
averaging of the density matrix from Eq.(4) of the main
text with the velocity operator written above, the resul-
tant expression of the current picks only the contribution

from the injection current:

Jα = −iTr [Ĝ<
Fv̂

α
F] =

= −∫
dk

(2π)3
(f1 − f2)vαz

h2
x + h2

y

h2 + Γ2

4

= Jα3 , (179)

which means that in the two-band approximation of the
linear in momentum model k the shift current is absent.

2. 3D Weyl model’s shift current from the perturbation
theory

Now, let’s consider the prediction of the perturbation
theory for the 3D Weyl fermion model, which Hamilto-
nian is:

H = σ ⋅ k. (180)

According to the perturbation theory, the following ex-
pression gives the shift current part of the rectification
conductivity:

σγβαS (−ω,ω) = 1

2
∫

dk

(2π)3
×

×∑
nm

⎧⎪⎪⎨⎪⎪⎩
Âγmn

∂

∂kα
(fn − fm)Âβnm
ω − εn + εm + iΓ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
contribution 1

+

+ i (fn − fm)Âβnm
ω − εn + εm + iΓ∑c

[Âαmc ˆ̄Aγcn − ˆ̄AγmcÂ
α
cn]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
contribution 2

⎫⎪⎪⎬⎪⎪⎭
+

+ ( α↔ β
ω↔ −ω ) . (181)

Both contributions can be analytically computed within
this model, and are given by:

σγβαcontribution 1(ω) =
2

(2π)3
(Φγβα(I11(ω) + c.c.)+

+ iπΓεγβα

6
(I12(ω) − c.c.)), (182)

σγβαcontribution 2(ω) =
−2

(2π)3
Φγβα(I11(ω) + c.c.), (183)

where

Iab(ω) = i∫
∞

εF

dE

(ω − 2E + iΓ)a(−2E + iΓ)b
(184)

and

Φxβα =
⎛
⎜
⎝

0 0 0
0 0 −π

3
0 −π

3
0

⎞
⎟
⎠
, (185)

Φyβα =
⎛
⎜
⎝

0 0 π
3

0 0 0
π
3

0 0

⎞
⎟
⎠
, Φzβα =

⎛
⎜
⎝

0 0 0
0 0 0
0 0 0

⎞
⎟
⎠
. (186)
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After adding these two contributions we obtain:

σγβαS (−ω,ω) = iπΓεγβα

3(2π)3
(I12(ω) − c.c.). (187)

As one can see, the shift current contribution of 3D ideal
Weyl fermion is of order Γ and can be neglected in a clean
limit.

Alternatively, one could use the time-reversal and rota-
tional symmetry argument to show that the perturbative
shift current vanishes for the Hamiltonian of Eq.(180) in
the clean limit (Γ → 0). First, the shift conductivity
from Eq.(181) of Hamiltonian Eq.(180) has to be a three
index tensor, that is symmetric under SO(3) transforma-
tions. π rotational symmetry around x, y, z axes limits
only those components of the tensor Eq.(181) to be fi-
nite, which all three indices are distinct. Additionally,
the tensor must be symmetric under cyclic permutations
of (x, y, z) labels, as these can be implemented as a sub-
group of SO(3). These properties force the tensor to be
proportional to the Levi-Civita tensor, and we conclude
that the shift conductivity from Eq.(181) of Hamiltonian
Eq.(180) has to be proportional to it. On the other hand,
it can be shown that in the clean limit the resonant part
of the shift current is even under time reversal symmetry
(see table 1 of Ref.[50]). Nevertheless the part of bilinear
of electric fields that contracts with the Levi-Civita ten-
sor is its circularly polarized component, which is a time-
reversal-odd, and thus such components must be absent
from the perturbative expressions of the shift current in
the clean limit [50]. In summary, the combination of
three ingredients: time-reversal symmetry, SO(3) sym-
metry and the clean limit (Γ→ 0), force the shift current
of the ideal Weyl models to vanish.

3. 2D Dirac model’s shift current from the perturbation
theory

Next, we focus on another linear momentum model -
the 2D Dirac model. The Hamiltonian of this model is:

Ĥ = ux
vx
kx1̂ + kxσ̂x + kyσ̂y +mσ̂z. (188)

According to the perturbation theory, the resonant part
of the shift conductivity is:

σγβαS,R (−ω,ω) = π
2

e3

h̵2 ∫
dk

(2π)2
δ(ω − εn + εm)×

×∑
nm

⎧⎪⎪⎨⎪⎪⎩
(fn − fm)Âβnmi

∂

∂kα
Âγmn+

+ (fn − fm)Âβnm∑
c

[Âαmc ˆ̄Aγcn − ˆ̄AγmcÂ
α
cn]

⎫⎪⎪⎬⎪⎪⎭
+

+ ( α↔ β
ω↔ −ω ) . (189)

It turns out that in this model the shift current is finite.
The value of the tilt, ux/vx, determines the frequency
window of non-zero resonant shift current, and the maxi-
mum value of the conductivity for small tilts occurs near
the middle of this window at a frequency ω ≈ 2εF (see
Fig.2(c) of the main text). The peak values of the con-
ductivity can be analytically computed and are given by
(here h̵ = e = vx = vy = 1):

σxβαS,R (−ω,ω) = 1

8π

⎛
⎜⎜
⎝

0
im
√
ε2
F
−m2

ε4
F

im
√
ε2
F
−m2

ε4
F

0

⎞
⎟⎟
⎠
, (190)

σyβαS,R (−ω,ω) = 1

8π

⎛
⎜⎜
⎝

−2im

√
ε2
F
−m2

ε4
F

−
√
ε2
F
−m2

ε3
F√

ε2
F
−m2

ε3
F

0

⎞
⎟⎟
⎠
, (191)

whereas the injection part is:

σxβαI,R (−ω,ω) =

= 1

8πΓ

⎛
⎜⎜
⎝

√
ε2
F
−m2(2m2+ε2F )

3ε4
F

im
√
ε2
F
−m2

ε3
F

−
im
√
ε2
F
−m2

ε3
F

√
ε2
F
−m2(2m2+ε2F )

3ε4
F

⎞
⎟⎟
⎠
, (192)

σyβαI,R (−ω,ω) = 1

8πΓ

⎛
⎜⎜⎜
⎝

0 −
m(
√
ε2
F
−m2)

3/2

3ε4
F

−
m(
√
ε2
F
−m2)

3/2

3ε4
F

0

⎞
⎟⎟⎟
⎠
,

(193)
We see that the resonant shift currents do not vanish ex-
actly for linear in k models of 2D Dirac fermions from
perturbation theory. However, the injection conductiv-
ity is typically parametrically larger than the shift con-
ductivity in the limit in which one is justified to focus
only on the two bands (Γ2 ≪ ε2F −m2 ≪ ε2F ), which is
the same regime in which our rotating-wave two-band
truncation of the Floquet-Keldysh formalism is justi-
fied. In this limit the dominant contribution of the
shift conductivity typically scales as σS,R ∼

√
ε2F −m2/ε3F ,

while the injection conductivity typically scales as σI,R ∼√
ε2F −m2/(ε2FΓ), and the ratio of them is σI,R/σS,R ∼

εF /Γ. Consequently, the shift current contribution can
be neglected.
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