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Zusammenfassung

Das kürzlich vorgeschlagene Effektivladungsmodell (ECM) ist ein neuartiger Ansatz, um
vollständig analytische Annäherungen an die beobachtbaren Eigenschaften von Mehrelek-
tronenatomen und -ionen zu erhalten. Es verwendet einen wasserstoffähnlichen Basissatz
mit einem einzigen Parameter, der als effektive Ladung bezeichnet wird, um eine Störungs-
theorie zu konstruieren. Die zugehörige Störungsreihe konvergiert schnell, berücksichtigt auf
natürliche Weise Korrelationseffekte und ermöglicht eine effiziente Berechnung aller nachfol-
genden Korrekturen. In dieser Arbeit vergleichen wir die Genauigkeit der durch das ECM
erzeugten analytischen Näherungen mit Ergebnissen anderer gebräuchlicher Methoden, wie
der Hartree-Fock-Methode und dem Thomas-Fermi-Modell, sowohl innerhalb der relativis-
tischen als auch der nicht-relativistischen Quantenmechanik. Zu diesem Zweck werten wir
Grundzustandsenergien, Energien angeregter Zustände und Ionisationsenergien sowie eine
Vielzahl anderer atomarer Eigenschaften wie Elektronendichten, Streufaktoren, Photoioni-
sationsquerschnitte und Übergangswahrscheinlichkeiten für ein breites Spektrum von Syste-
men, von neutralen Atome bis zu hochgeladenen Ionen, aus. Wir zeigen auch, wie die Green-
sche Funktion des Wasserstoffatoms analytisch integriert werden kann, um eine effiziente Be-
rechnung der ECM-Korrekturen zweiter Ordnung zu ermöglichen. Schließlich untersuchen
wir verschiedene zusätzliche Effekte, die die Genauigkeit der ECM-Näherungen korrigieren,
insbesondere solche, die durch die Breit-Wechselwirkung, durch endlichen-Kerngröße-Effekte
und durch die Vakuumpolarisation hervorgerufen werden. Da die Genauigkeit der ECM-
Approximationen zweiter Ordnung bereits mit Ergebnissen eines Hartree-Fock-Ansatzes mit
mehreren Konfigurationen vergleichbar ist, können wir uns vorstellen, dass das ECM das
Thomas-Fermi-Modell, für alle Anwendungen, in denen es noch verwendet wird ersetzen
kann.

Abstract

The recently proposed effective-charge model (ECM) is a novel approach to producing fully
analytical approximations to the observable characteristics of multi-electron atoms and ions.
It employs a hydrogen-like basis set with a single parameter, called effective charge, for
the construction of perturbation theory. The associated perturbation series converges fast,
includes correlation effects in a natural way and enables an efficient calculation of all sub-
sequent corrections. This work compares the accuracy of the analytical approximations
produced by the ECM to results of other commonly used methods, such as the Hartree-
Fock method and the Thomas-Fermi model, within both relativistic and non-relativistic
quantum mechanics. For this purpose, ground state, excited state and ionization energies
are evaluated, as well as a wide range of other atomic characteristics, such as electronic
densities, scattering factors, photoionization cross-sections and transition probabilities, for
a wide range of systems, from neutral atoms to highly charged ions. It is also shown how
the Green’s function of the hydrogen atom can be integrated analytically, allowing for an
efficient calculation of the second-order ECM corrections. Finally, various additional effects
that correct the accuracy of the ECM approximations are investigated, in particular those
originating from the Breit interaction, finite-nuclear-size effects and vacuum polarization.
Given that the accuracy of the second-order ECM approximations is already comparable
with results obtained using a multi-configuration Hartree-Fock approach, we envisage that
the ECM can replace the Thomas-Fermi model for all applications where it is still utilized.
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1 Introduction

1.1 Atoms

Atoms (from ancient Greek ατoµoς meaning uncutable) are the building blocks of
all chemical elements and among the most intensely studied systems in all of physics.
Their existence has been speculated since antiquity [1], but no testable atomic theory
existed until the early 19th century, when the law of definite proportions was laid out
in chemistry [2] and the relation between thermodynamics of gases and statistical
physics was realised [3]. The first experimental observation of atoms came in the form
of discrete absorption lines in the solar spectrum [4, 5] that could later be connected
to laboratory analysis of gases [6] to identify the signatures of specific chemical
elements. Similar experiments, including those conducted in Heidelberg [7, 8], led
to the development of spectroscopy which to this day remains a primary tool of
investigating physics at smallest scales [9].
Theoretical understanding of the mechanics of atoms and the origin of their spec-

tral lines was to prove more challenging. Despite the discovery of the electron in 1897
in cathode ray tube experiments [10], early attempts remained purely empirical, such
as the famous Rydberg formula for hydrogen [11]. It wasn’t until Rutherford showed
in 1911 that most of the mass of any atom is concentrated in the positively charged
nucleus [12], that physical models of the inner structure of atoms could be developed.
The first successful one, was the model of hydrogen by Bohr [13] and its subsequent
extension by proper quantization of angular momentum by Sommerfeld [14]. Gener-
alising these to multi-electron atoms only became possible in 1925 with the advent
of modern quantum mechanics in the form of the Schrödinger [15] and, later, Dirac
equations [16]. The latter was a particularly significant development, as by requir-
ing consistency with Einsteins theory of relativity [17] it naturally incorporated the
spin of the electron, which in turn explained [18] the splitting of absorption lines in
external field known as the Zeeman effect [19].
The next important development came with the experimental discovery of the

Lamb shift [20], that is, an energy difference between states predicted by the Dirac
equation to be degenerate, and its subsequent theoretical explanation within the
theory of quantum electrodynamics (QED) [21]. The latter eventually lead to some
of the most precise predictions in the history of physics, such as the value of the
g-factor of the electron, which has been calculated [22] and measured [23] to below
one-part-per-trillion accuracy.
To this day, atoms remain a vital tool in the study, both theoretically and exper-

imentally, of quantum field theories [24], light-matter interactions [25] and determi-
nation of physical constants, such as the fine structure constant [26, 27]. However,
despite great progress in their theoretical description, they represent some of the
simplest and most evident examples of physical systems that lack analytical solu-
tions. Only the smallest, hydrogen atom with its single electron orbiting the nucleus
can be solved exactly, as a two-body problem within both Schrödinger and Dirac
quantum theories. Adding one more electron to create helium already makes it im-

5



1 Introduction

possible, mirroring the inherent difficulty of three-body problems in other areas of
physics. However, while a system of two planets orbiting a star may not have an
analytic solution due to inherent chaos that prevents the existence of stable orbits,
all helium atoms in the universe have exactly the same physical properties indicating
the existence of some well-defined - even if too complex for us to express - solutions.
The computational complexity involved in describing multi-electron atoms can be

visualized by considering the maximum amount of information contained in an ar-
bitrary wavefunction. In general, an n-electron wavefunction in 3 dimesions is a
function of 3n variables that can involve arbitrary correlations. This means that
computational complexity increases exponentially with the number of electrons. For
a simplified illustrative example, while the hydrogen atom can be numerically de-
scribed on a 3D grid using 1 MB of data (50 points in each dimension with 2 bytes
each - 1 for the real part and 1 for the imaginary part), this number goes up to 1
TB for helium and 1 exabyte for Lithium, just to describe its three electrons. By
the time we reach silicon with its 13 electron, the volume of the required hard drive
exceeds 1040 sun volumes! 1

Since the advancement in computational power cannot on their own overcome
those difficulties, approximate methods remain the primary tool.

1.2 Atomic calculations

In the early days of quantum mechanics, multi-electron atoms were described using
empirical modifications to the Bohr model of hydrogen, such as quantum defects [28],
or Slater orbitals [29], with empirical principles such as the Moseley’s law [30] re-
maining popular.
One of the first successful ideas for describing multi-electron atoms ab-initio, that

is, without experimental input, was the semi-classical Thomas-Fermi (TF) model. It
was developed in 1927 [31], specifically as a method of approximating the distribution
of electrons in an atom. The main idea is to look for electron density, rather than
the wavefunction. If one can find a reasonable guess on the dependence of binding
energy on the electron density (known as the density functional), then the form of
the latter can be obtained by simply minimizing the energy. This effectively becomes
a 1-dimensional problem (assuming the nuclear potential is spherically symmetric),
rather than the 3n-dimensional problem of finding the multi-electron wavefunction.
Despite being rather inaccurate in its original form and failing to reproduce shell

structure of atoms or the molecular bonding, the model remained relevant due to
its simplicity. In subsequent decades, increasingly sophisticated arguments [31] have
refined the form of the kinetic energy functional, until in 1964 Kohn and Hohenberg
showed that the ground state of any electronic system is uniquely determined by
the corresponding electronic density [32]. This laid the foundations for Density
Functional Theory that has since found numerous applications, particularly in the
study of solids. Despite its problems, the Thomas-Fermi model is still used in modern
computer codes, for example for plasma simulations [33, 34, 35] where a large number
of repeated evaluations of electronic density need to be performed.
Obtaining a more accurate description of multi-electron atoms required methods

capable of approximating the entire multi-electron wavefunction. The most impor-

1The author is greatful to Z. Harman for this example.
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1.3 Analytical methods of atomic calculations

tant insight was proposed already in 1927 by D. R. Hartree [36], who suggested to
deal with the non-linear nature of the Schrödinger equation by an iterative process.
In 1935, it was reformulated into its modern form in terms of Slater determinants [37],
known as the Hartree-Fock (HF) method, but didn’t become popular until the ad-
vent of computers, as it requires comparatively intensive computations. The main
idea is to make an initial guess on the shape of occupied atomic orbitals, and then
use them to obtain an effective potential acting on each electron individually. This is
then used to find a new improved orbital occupied by each electron. This process is
repeated until the potential produced by the electrons is consistent with the one used
to find their distribution. For this reason it is often referred to as the self-consistent
field method.
The Hartree-Fock procedure has since been refined to include effects of electron-

electron correlation using a wide range of methods, known collectively as post-
Hartree-Fock methods. These include configuration interaction [38] and coupled
clusters [39] among others. Many of them have been incorporated into various soft-
ware packages such as GRASP2k [40, 41] and FAC [42], along with further corrections
coming from quantum electrodynamics and improved nuclear models. Furthermore,
methods based on the Hartree-Fock procedure can easily be adapted to solve a much
broader class of problems, and so they have found widespread use in describing not
only multi-electron atoms [43], but also molecules [44, 45] and atomic nuclei [46].
However, in practice the HF method is still too computationally intensive for many
practical applications and further approximations are often required - most impor-
tantly, the separate treatment of inner (core) and outer (valence) electrons [47].
After the Dirac equation was proposed in 1928, relativistic versions of both the

Thomas-Fermi and Hartree-Fock methods have been developed. These are referred
to as Thomas-Fermi-Dirac model (TFD) and Dirac-Hartree-Fock method (DHF)
respectively.

1.3 Analytical methods of atomic calculations

One important feature of the methods described in the previous section, is that they
rely heavily on numerical calculations and do not produce analytical expressions
for observable atomic properties. For this reason, simple analytical models are still
actively developed [48, 49, 50] for applications, where certain level of precision has
to be sacrificed for improved computation time, such as in computational plasma
physics [51, 52], X-ray scattering and diffraction [53, 54] or crystallography [55].
Most often these come in the form of semi-empirical models, such as those based on
quantum defects of Rydberg atoms [56], or screened hydrogen [53].
From a purely mathematical point of view, the main difficulty in describing multi-

electron atoms is that the corresponding equations are non-linear, preventing the
existence of closed-form solutions. Approximate analytical expressions can however
be obtained using perturbation theory, which is a formal way of quantifying the
difference between a complicated problem and a simplified, exactly solvable one.
In the case of multi-electron atoms, one can solve the non-interacting problem (i.e.
hydrogen-like) exactly and treat the electron-electron repulsion as a perturbation.
This is often referred to as the 1/Z expansion, where Z stands for the charge of the
nucleus. A variational procedure for a numerical computation of coefficients for two-
electron atoms within Schrödinger theory has been first developed by A. Hylleraas
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1 Introduction

in 1930 [57]. In subsequent decades his approach was greatly refined, with over 300
orders of perturbation computed within Schrd̈inger theory 2 for two-electron ions
with high accuracy by 1990 [58] .
The main drawback of the the 1/Z expansion, is that analytical expressions for

wavefunctions exist only in the zeroth order, which offers relatively low accuracy.
At the same time the calculation of higher orders quickly becomes computationally
expensive, especially for larger atoms. Both of these issues can be improved upon
with the use of the recently developed [59] Effective Charge Model (ECM). Its main
premise is an improvement of the convergence rate of the perturbation series by the
introduction of a single variational parameter - the effective nuclear charge Z∗. The
intuitive idea of an effective nuclear charge is based on the notion that electrons
“screen” each other from the nucleus thus lowering the Coulomb attraction to some
“effective” value. The numerical value of the effective charge can then be chosen
for any electronic configuration in a way that speeds up the convergence of the
perturbation series, thus greatly increasing the accuracy of the analytical zeroth-
order approximation.
The idea of an effective nuclear charge resulting from electronic screening is itself

not new. In fact, it was suggested by Slater already in 1930 [29]. It was originally en-
visioned as a way of approximating multi-electron atoms by adjusting hydrogen-like
wavefunctions of individual atomic orbitals according to a set of simple, empirically
motivated rules. In subsequent decades the effective nuclear charges were adjusted
from their original values proposed by Slater, in order to better reproduce experi-
mental data, or results of numerical calculations. In the 1960s they were calculated
for all orbitals of all neutral atoms by Clementi et al.[60, 61], by the best fit to the
results of a HF-like self-consistent numerical method. These are however crucially
distinct in both definition and numerical value, from the effective charge used in
ECM. The latter is introduced in a mathematically rigorous way as a parameter of
the model, with values determined purely from theoretical considerations, without
any empirical input.
In the context of the ECM, the introduction of effective charge means adjusting

the basis set in which the perturabative calculation is performed i.e. the set of
hydrogen-like functions. By keeping the value of Z∗ identical for all single-electron
wavefunctions of a given electronic configuration, the hydrogen-like basis remains or-
thonormal and the perturbation series well-defined. Furthermore, it allows all higher
orders of perturbation to be expressed in terms of the hydrogen-like Green’s function,
which has a known analytical closed form. Similar techniques have also been used
successfully to deal with other computationally challenging systems, e.g. to obtain
analytical approximations to eigenvalues of some non-hermitian Hamiltonians [62].
In this work, we show how the ECM can be used to obtain analytical approxima-

tions to both global and local atomic characteristics of all atoms and ions, in both
ground and excited states. In particular, we investigate electronic densities, scat-
tering factors, transition probabilities, ionization energies and photoionization cross-
sections within both Schrödinger and Dirac theories. We show that the leading-order
approximation is enough to obtain correct ordering of the energies of electronic con-
figurations for all atoms of the periodic table. Furthermore, we investigate to what
extent the accuracy can be improved, by the inclusion of higher order corrections to

2This approach doesn’t generalize naturally to the Dirac theory, as it requires explicit dependence
on nuclear charge.
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1.4 Outline

Unit Expression Value in SI
mass me 9.1094× 10−31 kg
action ~ 1.0546× 10−34 Js
charge e 1.6022× 10−19 C
permitivity 1/ke 1.1127× 10−10 F/m
length a0 5.2918× 10−11 m
energy Eh 27.211 eV
momentum ~/a0 1.9929× 10−24 kg m/s
electric dipole moment ea0 8.4784× 10−30 Cm
magnetic dipole moment e~/me 1.8548× 10−23 J/T
force α2mec

2/a0 8.2387× 10−8 N
time ~/(α2mec

2) 2.4189× 10−17 s

Table 1.1: Some of the most relevant atomic units. Five significant figures are given, but in most
cases many more digits are known [66]. Eh denotes the Hartree energy.

energies and wavefunctions.
We emphasize again that our aim is to keep the ECM an ab-initio theory, in

contrast to many modern approximation schemes that contain parameters fitted to
the results of HF calculations [63] or experimental data, such as the interpolation of
X-ray measurements [64]. It also means, that the ECM avoids a lot of the numerical
problems associated with local minima of the parameter space, that can make the
convergence of the semi-empirical methods dependent on starting conditions [65].
At the same time it is much simpler and less computationally intensive than the
standards methods used for high precision atomic calculations.
Most importantly, contrary to the TF model and methods based on the HF pro-

cedure, all expressions for atomic characteristics calculated with the ECM are fully
analytical. Therefore, we suggest that the ECM can replace the TF model in all
applications requiring rapid computations, including as an initial approximation for
the self-consistent field methods for which convergence is strongly dependent on the
choice of the trial wavefunctions.

1.4 Outline

This thesis is organised in the following way. In chapter 2, we discuss the theoretical
framework and practical realisation of the Thomas-Fermi model, the Hartree-Fock
method and the 1/Z perturbation expansion. In chapter 3, we outline the standard
approach to solving the Schrödinger and Dirac equations for the hydrogen atom and
provide all necessary formulas and definitions required for the consistency of subse-
quent chapters. In chapter 4, we define the hydrogen-like basis set and present the
leading-order relativistic and non-relativistic ECM approximation, along with the re-
spective calculations of effective charge. In chapter 5, we show how the Coulomb and
Dirac Green’s functions can be used to derive all formulas expressing second-order
corrections to the ECM, including those involving electron-electron correlation. In
chapter 6, we discuss the possibilities and limitations of the analytical and numerical
evaluation of second-order corrections and outline the derivation of corresponding
formulas related to the analytical integration of the Coulomb Green’s function. This

9



1 Introduction

chapter is heavily based on the research we previously published as [67]. In chapter
7, we discuss the accuracy of the ECM by evaluating analytical approximations to a
wide range of properties of atoms and ions and compare the results to the TF and
HF methods. Both this chapter, as well as chapter 4, present research we previously
published in [68]. In chapter 8, we show that the leading-order ECM can be used to
accurately estimate the most important QED and nuclear corrections to atomic en-
ergies. In particular, those related to the Breit interaction, finite-nuclear-size effect,
and vacuum polarization. In chapter 9, we provide conclusions and outlook.
Larger data tables, as well as the details of derivations of analytical formulas and

algorithms used in numerical computations, can be found in the Appendix.

1.5 Units and abbreviations

Atomic units are employed throughout this work. This means that the reduced
Planck constant, elementary charge, electron mass and the Coulomb constant are
set to unity:

~ = 1,

e = 1,

me = 1,

ke = 1.

Note that this also makes the Bohr radius equal to unity: a0 = 1 and the speed of
light becomes equal to the inverse of the fine structure constant c = 1

α ≈ 137.036.
The translation to SI units is given in table 1.1.
Major abbreviations used throughout this thesis:

ECM− effective charge model
D-ECM− relativistic effective charge model

HF−Hartree-Fock
DHF−Dirac-Hartree-Fock

TF− Thomas-Fermi
TFD− Thomas-Fermi-Dirac

CI− configuration interaction
DFS−Dirac-Fock-Sturm
HFS−Hartree-Fock-Slater

RCGF− reduced Coulomb Green’s function
RCDGF− reduced Coulomb-Dirac Green’s function

HCI− highly charged ions

10



2 Overview of existing methods

This chapter presents some of the well-established methods of approximating the
wavefunctions of multi-electron atoms. The Thomas-Fermi model that eventually
led to the development of Density Functional Theory, the Hartree-Fock method that
forms the basis of many modern high-precision atomic calculation schemes and the
perturbation series in the inverse of the nuclear charge.

2.1 The Thomas-Fermi model

The main idea of the TF model is to look for the form of electron density, as a
function of space n(~r), rather than the multi-electron wavefunction, as a function of
the positions of individual electrons: Ψ(~r1... ~rN ). This is done by writing the total
energy of the electron cloud as a functional of the electron density, and looking for
its minimum:

E[n(~r)] = Ekin[n(~r)] + UeN [n(~r)] + Uee[n(~r)], (2.1)

where UeN and Uee are the electron-nucleus and electron-electron potential energies
respectively.
Assuming that electrons are uniformly distributed in phase space up to the Fermi

momentum, with the classical expression for kinetic energy Ekin = p2/2, one can
obtain the density functional as [69]:

E[n(~r)] = Ckin

∫
n(~r)5/3d~r +

∫
VN (~r)n(~r)d~r +

1

2

∫
n(~r1)n(~r2)

|r1 − ~r2|
d~rd~r2, (2.2)

where VN is the nuclear potential and Ckin is a numerical constant related to the
volume of occupied phase space, in this case: Ckin ≈ 2.8712.

The task is then to minimize the energy, while keeping the number of electrons N
constant: ∫

n(~r)d~r = N. (2.3)

This can be achieved using a Lagrange multiplier µ, called chemical potential,
given by:

µ =
5

3
Ckinn(~r)2/3 + V (~r), (2.4)

where V is the total (effective) potential:

V (~r) = VN (~r) +

∫
n(~r2)

|~r2 − ~r|
d~r2, (2.5)

and looking for the form of V (~r) that corresponds to a stationary point. The nu-
merical value of µ is related to the difference between the nuclear charge and the
number of electrons, so that µ = 0 for neutral atoms and µ < 0 for positive ions.

11



2 Overview of existing methods

Figure 2.1: Pictorial representation of the numerical difficulties associated with finding normal-
izable solutions of the Thomas-Fermi equation. The initial value φ(0) is given, but the initial
slope φ′(0) needs to be found by trial and error. If the value is higher that the critical value α,
the numerically propagated solution diverges. If it is lower, the solution hits the real line and
becomes complex.

In the case of a spherically symmetric nucleus, the total potential becomes a one-
dimensional function V (~r) = V (r). For the case of a point-like nucleus VN = −Z

r ,
the effective potential can be expressed as:

V (r) = µ− Z

r
φ
(r
b

)
, b =

1

4

(
9π2

2Z

)1/3

. (2.6)

The potential V (r) is then a stationary point of (2.2) whenever the function φ(r)
satisfies the so-called Thomas-Fermi equation [70]:

∂2φ(r)

∂r2
=
φ3/2(r)√

r
, (2.7)

with boundary conditions φ(0) = 1 and φ(+∞) = 0.
This deceptively simple looking differential equation has no analytical solution

and is plagued by a somewhat famous numerical problem. In order to propagate a
numerical solution of (2.7) from the origin, it is necessary to know the initial slope
φ′(0), which cannot be calculated analytically. Furthermore, even slight deviation
from its critical value can lead to an entirely wrong behaviour. If the value of the
initial slope is bigger than the critical value, the numerically propagated φ(r) diverges
at a finite r and if it’s smaller, it crosses the real line whereby becoming complex
(see figure 2.1). An algorithm for calculating the critical value of φ′(0) was first
developed by Ettore Majorana in 1928 [71], and considerable effort has since gone
into improving it, including in recent years [72, 73, 74].

2.2 The Hartree-Fock method

The main idea of the HF method is to look for a distribution of electrons self-
consistent with a field that it generates. The first step is to specify the ground

12



2.2 The Hartree-Fock method

state configuration, that is, a set of occupied electron orbitals φi. Then an initial
approximation to the shape of all of those occupied single-electron orbitals is needed.
This can be done using the Thomas Fermi model, or by solving the corresponding
problem without the electron-electron interaction. In order to ensure anti-symmetry,
the total multi-electron wavefunction is represented by a Slater determinant of single-
electron orbitals:

Φ(~r1, ~r2... ~rN ) =
1√
N !

∣∣∣∣∣∣∣
φ1(~r1) φ2(~r1) . . . φ2(~r1)

...
. . .

φ1( ~rN ) φ2( ~rN ) . . . φN ( ~rN )

∣∣∣∣∣∣∣ . (2.8)

The influence of electron-electron interaction is then taken into account using the
mean-field approximation, meaning that any given electron is assumed to occupy a
bound state in the potential formed by all of the other electrons and the nucleus.
This means that for the ith electron we can find the so-called Fock operator F̂i given
by [75]:

F̂i = Ĥi +

n∑
j

(Ĵij − K̂ij), (2.9)

where Ĵij and K̂ij are the Coulomb and exchange operators describing the interaction
between the ith and jth electrons, and Ĥi is the single particle Hamiltonian of the
i electron, including it’s kinetic energy and interaction with the nucleus. If the
relativistic version of Hi is used, then the method is referred to as Dirac-Hartree-
Fock (DHF) procedure.
Each of the Fock operators can then be diagonalized:

F̂iφi = Eiφi, (2.10)

to obtain a new set of occupied orbitals φi. This process is repeated until a speci-
fied level of accuracy is reached. The schematic representation of this algorithm is
presented in figure 2.2.
When implementing the HF procedure in a computer program, in order to effi-

ciently diagonalize the set of Fock operators F̂i, the occupied orbitals φi are typically
expanded in a basis, that allows for rapid evaluation of Coulomb and exchange inte-
grals. This means that the whole computation is reduced to the repeated calculation
of the expansion coefficients of the orbitals. Popular choices of basis sets include
Gaussian functions, B-splines, [76] and Sturmian functions [77].
The variational principle [78] tells us, that the expectation value of the Hamiltonian

with any wavefunction is higher than the ground state energy, which means that the
Hartree-Fock procedure always provides an upper bound on the ground state energy
(this is not necessarily the case for excited states [79]).
Because of the mean-field approximation described above, all electron-electron

correlation beyond the anti-symmetry relation is neglected. This is typically the
main source of uncertainty in the Hartree-Fock procedure. Numerous approaches
have since been developed to incorporate the effects of correlation, collectively know
as post-Hartree-Fock methods. One of the most straightforward methods is the
configuration interaction (CI) [38]. It replaces the single Slater determinant with a
more general representation of a linear combination of multiple Slater determinants

13
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Specify an elec-

tronic configuration
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Figure 2.2: Pictorial representation of the basic algorithm behind using the HF method to cal-
culate properties of multi-electron atoms.

(often also referred to as configurations):

Ψ(~r1, ~r2... ~rN ) =
∑
I

cIΦI(~r1, ~r2... ~rN ), (2.11)

where Φ0 is given by (2.8), and the remaining ΦI are formed by replacing some
number of the occupied orbitals by virtual orbitals. In order to save computational
time, the CI-space must be truncated, meaning that only determinants that differ
from Φ0 up to a certain number of orbitals are used. In general, the use of multiple
configurations, or other post-Hartree Fock methods, can greatly increase accuracy,
but also requires significantly larger computational time [80].

2.3 Perturbation theory of multi-electron atoms

The general setup of a perturbative calculation is to write the total Hamiltonian H
as a sum of the solvable unperturbed operator H0 and a perturbation operator W :

Ĥ = Ĥ0 + λŴ , (2.12)

where λ is a parameter characterising the strength of the perturbation. The solution
of the unperturbed problem is written as:

Ĥ0|ψ0
n〉 = E0

n|ψ0
n〉. (2.13)

Now, since the eigenvectors of a Hermitian operator form an orthonormal basis
〈ψ0

n|ψ0
k〉 = δkn, we can expand the full problem in that basis, i.e. write the full energy
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2.3 Perturbation theory of multi-electron atoms

as a power series in λ. The first two corrections read [81]:

En(λ) =E(0)
n + λ∆E(1)

n + λ2∆E(2)
n +O[λ3]

=〈ψ0
n|Ĥ0|ψ0

n〉+ λ〈ψ0
n|Ŵ |ψ0

n〉+ λ2
∑
k 6=n

|〈ψ0
n|Ŵ |ψ0

k〉|2
E0
n − E0

k

+O[λ3]. (2.14)

Similarly we can write the expansion of the eigenvectors as:

|ψn〉(λ) = |ψ0
n〉+ λ

∑
k 6=n

〈ψ0
k|Ŵ |ψ0

n〉
E0
n − E0

k

|ψ0
k〉+O[λ2]. (2.15)

In the particular case of multi-electron atoms, one traditionally takes the hydrogen
Hamiltonian as the unperturbed problem, and the electron-electron interaction as the
perturbation:

Ĥ0 =
∑
i

Ĥkin
i +

Z

ri
, Ŵ =

∑
i<j

1

|ri − rj |
, (2.16)

where the single-electron kinetic part Ĥkin
i can be given by either Schrödinger or

Dirac theories. This somewhat obvious choice leads to the so-called 1/Z expansion,
as subsequent corrections are proportional to the decreasing powers of Z.
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3 The hydrogen atom

This chapter explains how the Schrödinger and Dirac equations can be solved for
the hydrogen atom and define the angular and radial hydrogen wavefunctions, while
highlighting differences between the relativistic and non-relativistic calculations.

3.1 Hydrogen atom in the Schrödinger theory

In non-relativistic quantum mechanics the Hamiltonian of a hydrogen-like atom is
given by [79]:

Ĥ = Ĥkin + V̂ = −1

2
∇2 − Z

r
, (3.1)

where ∇2 is the Laplace operator and Z the nuclear charge. Expanding in spherical
coordinates, we get:

1

r2
∂r(r

2∂rψ) +
1

r2 sin θ
∂θ(sin θ∂θψ) +

1

r2 sin2 θ
∂2
ϕψ + 2

(
Z

r
+ E

)
ψ = 0. (3.2)

This equation can be separated into the radial and angular parts, i.e. the wavefunc-
tion can be written as:

ψ(r, θ, ϕ) = R(r)Y (θ, ϕ). (3.3)

This splits (3.2) into separate radial and angular equations. The details of solving
both of them are given in Appendix B.2, while here we simply present the conclusions.
The functions satisfying the angular equation are called spherical harmonics. They

are the eigenvectors of the angular momentum operator L̂ = −i~r × ~∇ squared and
its projection on the z axis [82]. They can be explicitly written, as:

Y m
l (θ, ϕ) = NlmP

m
l (cos θ)eimϕ, (3.4)

where Nlm are appropriate normalization constants, and Pml are associated Legendre
polynomials (see Appendix C.1 for details). The quantum number l represents the
value of angular momentum and m its projection on the z axis (see figure 3.1). They
are both integers, such that |m| ≤ l. Spherical harmonics form an orthonormal basis
of all scalar functions on the unit sphere so all angular functions can be expanded in
spherical harmonics, not unlike the Fourier series expansion in sines and cosines on
the unit circle.
For our purposes, their most important properties are:

1) orthonormality:
∫
Y m∗
l (Ω)Y m′

l′ (Ω)dΩ = δl,l′δm,m′ , (3.5)

where the solid angle dΩ = sin θdθdϕ,

2) conjugate reflection: Y m∗
l = (−1)mY −ml . (3.6)
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Lz

~L

ml = 2

ml = 1

ml = 0

ml = −1

ml = −2

Sz

~S

ms = 1
2

ms = − 1
2

Figure 3.1: Visual representations of the angular momentum (left) and spin (right) quantum
numbers. ml and ms represent projections on the z-axis of the angular momentum and spin
respectively.

and the fact that values of integrals of three spherical harmonics are tabulated using
the so-called 3-j symbols [83]:

3)
∫
Y m1
l1

(Ω)Y m2
l2

(Ω)Y m3
l3

(Ω)dΩ

=

√
(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π

(
l1 l2 l3
0 0 0

)(
l1 l2 l3
m1 m2 m3

)
. (3.7)

The functions satisfying the radial equation are in general expressed with Whit-
taker functions (see Appendix C.4 for details). The bound states of the hydrogen-like
atom, called hydrogen-like wavefunctions correspond to

E =
−Z2

2n2
, (3.8)

where n ∈ N is the principal quantum number. The whittaker functions at such res-
onant energies reduce to a product of an exponential and a Laguerre polynomial [79]:

Rn,l,Z(r) = Nn,lZ
3/2(Zr)lL2l+1

n−l−1

(
2Z

n
r

)
, (3.9)

where Nnl is a normalization constant ensuring that the radial wavefunctions are
orthonormal with respect to the principal quantum number:∫

Rn,l,Z(r)Rk,l,Z(r)r2dr = δn,k. (3.10)

Orthonormality is not preserved if the values of Z are different.
Explicitly, Laguerre polynomials are given, by [84]:

Lαn(x) =

n∑
i=0

(α+ i)!

(n− i)!(i+ α)!

(−x)i

i!
. (3.11)
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S = 1
2

L = 1

J = 3
2

κ = 2

S = 1
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J = 3
2
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Figure 3.2: Visual representation of the coupling of angular momentum ~L and spin ~S into the
total angular momentum ~J . Lengths of the corresponding vectors are given by

√
l(l + 1),√

s(s+ 1), and
√
j(j + 1) respectively. Different signs of the relativistic angular quantum

number κ represent different combinations of l and s into the same value of j.

Finally, to account for the spin degree of freedom, a separate orthonormal wave-
function χ is introduced, indexed by the spin quantum number s, with two possible
values s =↑↓. The total hydrogen-like wavefunction in Schrödinger theory is then
given by:

ψn,l,m,s,Z(r, θ, ϕ) = Rn,l,Z(r)Yl,m(θ, ϕ)χs. (3.12)

It is a well-established convention to refer to electronic states characterized by
hydrogen-like quantum numbers, using a letter from the set {s, p, d, f}1 to denote
the angular momentum quantum number l while keeping the numerical values of the
quantum numbers n and m. For example 2p−1 refers to a state characterized by
n = 2, l = 1, and m = −1.

3.2 Hydrogen atom in the Dirac theory

In 1928 Paul Dirac proposed a relativistic equivalent of the Schrödinger Hamiltonian:

Ĥ = ~α · ~∇+ α0c, (3.13)

where the four quantities {α0, α1, α2, α3} are required to satisfy the anticommutation
relations:

αµαν + αναµ = 2δµν . (3.14)

This condition cannot be satisfied by any set of complex numbers, so these quantities
must be more complicated objects. In fact their smallest possible representation uses
4× 4 matrices. The most commonly used one is:

αi =

(
0 σi

σi 0

)
, α0 =

(
I 0
0 −I

)
. (3.15)

where I is the identity matrix and σ denote the Pauli matrices:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (3.16)

1For purely historical reasons these letters are abbreviations of "sharp", "principal", "diffuse" and
"fundamental", which refer to the appearance of their observed fine structure [85].
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3 The hydrogen atom

We stress that this is just one of many possible representations, and in general any
set of objects satisfying (3.14) is equally valid. More importantly, it means that the
wavefunction of particles described by the Dirac equation must have four compo-
nents. This is related to the fact that spin−1/2 particles have two spin eigenstates
and distinct antimatter counterparts. Since antimatter was not yet discovered in
1928, this prediction is considered one of the greatest triumphs of theoretical physics.
The Dirac equation for a hydrogen-like atom reads:

~α · ~∇ψ + (α0c− E)ψ − Z

r
ψ = 0. (3.17)

It has been solved by Walter Gordon, already a few months after its original publi-
cation [86]. The details of the derivation can be found in [87], here we only present
the main conclusions.
The split into radial and angular components now takes the form:

ψ(r) =

(
gnk,κ(r)Ωκ,mj (θ, ϕ)
fnk,κ(r)Ω−κ,mj (θ, ϕ)

)
, (3.18)

where the relativistic angular quantum number is given by:

κ = (−1)j+l+1/2(j + 1/2). (3.19)

Here j is the total angular momentum quantum number, that is combining the orbital
angular momentum l with spin s, and m is its projection (see figure 3.2), so that
|m| ≤ j. The functions Ω are called spinor harmonics and are the eigenstates of the
total angular momentum operator squared [82]. They can be written in terms of
spherical harmonics as:

Ωκ,mj (θ, ϕ) =

 √
1
2 −

mj
2κ+1Y

mj−1/2
κ (θ, ϕ)

− |κ|κ
√

1
2 +

mj
2κ+1Y

mj+1/2
κ (θ, ϕ)

 , (3.20)

where we use the convention that Y m
k = Y m

−k−1 for any integer k.
The radial wavefunctions solving the Dirac equation for hydrogen can be written

in terms of their non-relativistic counterparts as:(
gn,κ,z(r)
fn,κ,z(r)

)
= Nn,κ

[
s

( √
κ+ γ

−√κ− γ

)
Rnk+γ,γ,εz(r)

−iρ
(√

γ − κ√
κ+ γ

)
Rnk+γ,γ−1,εz(r)

]
, (3.21)

where
√
κ− γ = ±i√γ − κ and for clarity we have written the coefficients as:

s =
√
n2
k + 2nkγ2, ρ =

nk + γ

αz

(
κ− γ

ε

)
, (3.22)

nk = n− |κ|, γ =
√
κ2 − α2Z2, ε = Eα2, (3.23)

where α is the fine-structure constant 2. The energy of the relativistic bound states
is given by:

En,κ =
c2√

1 +
α2Z2

(nk + γ)2

, (3.24)

2It appears here due to the speed of light c present in the Dirac Hamiltonian (recall that in atomic
units c = 1

α
).
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while the Normalization constant Nn,κ now ensures the normalization of the form:∫ (
gn,κ,z(r)
fn,κ,z(r)

)∗
·
(
gm,κ,z(r)
fm,κ,z(r)

)
r2dr

=

∫
(gn,κ,z(r)

∗gm,κ,z(r) + fn,κ,z(r)
∗fm,κ,z(r)) r

2dr = δn,m. (3.25)

Note that the energy is now dependent on κ, which leads to the appearance of the
fine structure, i.e. the difference in energy between states with the same principal
quantum number n, but different angular momentum j.

Note further, that even though γ is not an integer, the functions Rn,l in (3.21) are
still given by a product of an exponential and a polynomial, since the difference of
the arguments is always an integer:

(nk + γ)− γ = nk. (3.26)

Finally, the nonrelativistic limit corresponds to αZ � 1, which makes γ ≈ |κ| and
nk + γ ≈ n, so that one of the two terms in (3.21) vanishes (which one depends on
the sign of κ) and the radial wavefunction reduces to a single non-relativistc one.
Meanwhile the energy given by (3.24) becomes:

E = c2 − Z2

2n2
+O[α2]. (3.27)

The reason this appears different from (3.8) is that in solving the Schrödinger equa-
tion, we took the energy of a stationary electron at infinity to be zero. In Dirac
theory however, it is equal to c2 in agreement with the theory of relativity. We can
write informally that for electronic bound states: ESch → EDir − c2.
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4 Effective charge model

This chapter introduces the main ideas of the ECM. It discusses the hydrogen-like
basis with effective charge, as well as shows how to calculate the zeroth- and first-
order approximations to energy of an arbitrary electronic configuration. It also shows
how to choose the numerical value of effective charge to allow for maximum accuracy
in the leading-order. Finally, it discusses how the corresponding calculation can be
performed within the D-ECM.

4.1 The hydrogen-like basis set

We are now in a position to define the ECM.We start by introducing the perturbation
series in a way similar to the 1/Z expansion. However, in order to increase the
accuracy and convergence rate of the perturbation series, we take as the unperturbed
Hamiltonian the interaction between all electrons and a central nuclear potential,
but with an effective charge Z∗ instead of the the nuclear charge Z. The choice of
the numerical value of effective charge will be discussed later in this chapter. The
remaining electron-nuclear interaction is added to the electron-electron interaction
term to form the new perturbation term

Ĥ0 =
∑
i

Ĥkin
i − Z∗

ri
, Ŵ =

∑
i

Z∗ − Z
ri

+
∑
i<j

1

|ri − rj |
. (4.1)

Note that we did not alter the total Hamiltonian, merely added and subtracted the
effective charge term. This means that the resulting perturbation series is valid for
any value of Z∗, within the radius of convergence.
It may be somewhat counter-intuitive at first that including "less" of the physics

in the exactly solvable part of the Hamiltonian and "more" in the complications-
inducing perturbation can lead to more accuracy. It happens because the solutions of
such an effective Hamiltonian are dependent on the introduced parameter - effective
charge in the case of ECM - and can therefore be adjusted to align closer with
the solution of the full problem, even while being of a different (simpler) form (see
figure 4.1).
The main idea of the ECM is to perform perturbative calculations of atomic prop-

erties in the basis of hydrogen-like functions, that is eigenvectors of the hydrogen-like
Hamiltonian with the effective charge in place of the usual nuclear charge. Within
the Schrödinger theory this means that our unperturbed Hamiltonian takes the form
of

Ĥ0(Z∗) =
N∑
i=1

Ĥ0
i (Z∗) =

N∑
i=1

(
− p̂

2
i

2
− Z∗

ri

)
, (4.2)

while the perturbation operator Ŵ contains a single-electron and a two-electron parts
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Figure 4.1: An illustrative one-dimensional example is the anharmonic oscillator, where effective
mass can be introduced to align as closely as possible the unperturbed potential (a parabola)
with the full potential (a quatric). 1-dimensional quatric potential approximated by the full
quadratic part (left) and by the quadratic part with an effective parameter (right).

that we will refer to as Ŵ (1) and Ŵ (2) respectively

Ŵ = Ŵ (1) + Ŵ (2) =
N∑
i=1

Z∗ − Z
ri

+
∑
i<j

1

|~ri − ~rj |
, (4.3)

where the indices i, j run over the N electrons.
As long as the value of effective charge is fixed, hydrogen-like wavefunctions form

an orthonormal basis suitable for an expansion of the perturbation series. In the
following we will refer to it as a hydrogen-like basis and index the hydrogen-like
wavefunctions by a collective quantum number λ that encompasses all four quantum
numbers (n, l,m, s), that specify a given eigenvector of the hydrogen equation in
Schrödinger theory

Ĥ0
i |λi〉 = Eλi |λi〉, (4.4)
〈~r|λ〉 = ψλ(~r) = ψn,l,m,Z∗(~r). (4.5)

For example, the ground state of the helium atom is given by |λ1λ2〉 with λ1 = 1s↑
and λ2 = 1s↓.
Furthermore, as the initial approximation to the N-electron wavefunction, we take

a Slater determinant of hydrogen like wavefunctions to ensure the anti-symmetry
condition

〈~r1~r2 . . . ~rN |λ1λ2 . . . λN 〉 =
1√
N !

∣∣∣∣∣∣∣
ψλ1(~r1) ψλ2(~r1) . . . ψλ2(~r1)

...
. . .

ψλ1( ~rN ) ψλ2( ~rN ) . . . ψλN ( ~rN )

∣∣∣∣∣∣∣ , (4.6)

so that for example a two-electron wavefunction looks like

|λ1λ2〉 =
|λ1〉|λ2〉 − |λ2〉|λ1〉√

2
. (4.7)
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4.2 Leading-order approximation

Figure 4.2: Pictorial representation of hydrogen wave functions with effective nuclear charge.
Hydrogen atom on the left, as compared to an example of a multi-electron atom on the right.
White circles represent virtual orbitals and coloured ones are filled.

With this in mind, the Hamiltonian can be written in the secondary-quantized rep-
resentation [88], as

Ĥ0 =
∑
λ

〈λ|Ĥkin − Z∗

r
|λ〉a†λaλ, (4.8)

Ŵ =
∑
λλ1

〈λ|−(Z − Z∗)
r

|λ1〉a†λaλ1 +
1

2

∑
λλ1µµ1

〈λ|〈λ1|
1

|~r − ~r′| |µ1〉|µ〉a†λa
†
λ1
aµaµ1 ,

(4.9)

where aλ and a†λ denote fermionic (so anticommuting) anihilation and creation op-
erators, respectively, that create and destroy the state |λ〉.

An important property of the Schrödinger Hamiltonian (3.1) is the charge-scale
symmetry

ĤSch(λZ, r/λ) = λ2ĤSch(Z, r). (4.10)

For this reason, all its eigenvalues and scale as Eλ ∼ (Z∗)2 and it’s eigenvectors also
have simple scalings with effective charge

Eλ(Z∗) = (Z∗)2Eλ(Z∗ = 1) (4.11)

ψn,l,m,Z∗(~r) = (Z∗)3/2ψn,l,m,Z∗=1(Z∗~r). (4.12)

Importantly, this simple scaling carries over two multi-electron wavefunctions de-
fined by (4.6). This property will allow us to explicitly separate the dependence on
effective charge in all subsequent calculations. It is one of the main reasons why
the basis of hydrogen-like wavefunctions is particularly suited for deriving analytical
approximations to atomic properties.

4.2 Leading-order approximation

We now have all the tools needed to calculate a perturbation series for the energy of
a multi-electron atom. First step is to specify an electronic configuration described
by N collective quantum numbers λ. This defines an initial approximation of the
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4 Effective charge model

eigenvector of the system as |λ1 . . . λN 〉. The initial approximation to the energy is
meanwhile given by

E0 = 〈λ1λ2...λN |Ĥ0|λ1λ2...λN 〉 = AZ∗2, (4.13)

where A is a sum of hydrogen energies of all single-electron wave functions

A =
∑
i

Eλi =
∑
i

−1

2n2
i

, (4.14)

and we have explicitly separated the dependence on effective charge.
The first order correction to the energy of the system is given by an expectation

value of Ŵ (see. (2.14))

∆E(1) = 〈λ1λ2...λn|Ŵ (1) + Ŵ (2)|λ1λ2...λn〉 = ∆E
(1)
single + ∆E

(1)
double. (4.15)

The first term is a single sum over the residual nuclear interactions of all individual
electrons

∆E
(1)
single =

∑
i

∫ |ψλi(ri)|2
ri

d~ri = 2Z∗(Z − Z∗)A, (4.16)

where we have separated the dependence on effective charge, by the change of vari-
ables r → r/Z∗ and used (B.39).
The second term in (4.15) is a sum of the coulomb and exchange integrals

∆E
(1)
double =

∑
i<j

〈λiλj |
1

|~ri − ~rj |
|λiλj〉

=
∑
i<j

(
〈λi|〈λj |

1

|~ri − ~rj |
|λi〉|λj〉 − 〈λi|〈λj |

1

|~ri − ~rj |
|λj〉|λi〉

)

=
∑
i<j

∫ |ψi(~ri)|2|ψj(~rj)|2 − ψ∗i (~ri)ψ∗j (~ri)ψi(~rj)ψj(~rj)
|~ri − ~rj |

d~rid~rj . (4.17)

We can once again use the r → r/Z∗ change of variables to explicitly separate the
dependence on effective charge as

∆E
(1)
double =

∑
i<j

(Z∗BDir
λi,λj

− Z∗BEx
λi,λj

) = BZ∗, (4.18)

where B is now only dependent on the chosen configuration and not on Z or Z∗. It
can be calculated analytically for any configuration, by employing the expansion of
the electron-electron potential in spherical harmonics

1

|~ri − ~rj |
=

∞∑
l=0

l∑
m=−l

4π

2l + 1

min[r, r′]l

max[r, r′]l+1
Y m
l
∗(Ω)Y m

l (Ω′). (4.19)

We can then use (3.7) to analytically calculate the angular integrals and obtain:

BDir
λi,λj

= (−1)mi+mj (2li + 1)(2lj + 1)

li+lj∑
k=0

(
li li k
0 0 0

)(
lj lj k
0 0 0

)
×
(

li li k
−mi mi 0

)(
lj lj k
−mj mj 0

)
T
λi,λj
λi,λj

(k), (4.20)
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4.3 Closed and open shells

BEx
λi,λj

= (2li + 1)(2lj + 1)

li+lj∑
k=|li−lj |

∣∣∣∣(li lj k
0 0 0

)∣∣∣∣2

×
∣∣∣∣( li lj k
−mi mj mi −mj

)∣∣∣∣2 T λj ,λiλi,λj
(k), (4.21)

where we have used the triangular conditions of the 3-j symbols to restrict the sums
(see Appendix C.7). The general formula for the radial integral

T λ3,λ4λ1,λ2
(k) =

∫
Rλ1(r1)Rλ2(r2)Rλ3(r1)Rλ4(r2)

min[r1, r2]k

max[r1, r2]k+1
r2

1r
2
2dr1dr2, (4.22)

can also always be calculated analytically (see Appendix B.3). Finally the sum of
the zeroth- and first-order energies comes out as

E(0) + ∆E(1) = AZ∗(2Z − Z∗) +BZ∗. (4.23)

We have so far kept the value of effective charge arbitrary, since the perturbation
series is valid for all possible values of Z∗. We are now in a position to make a choice
of a specific value for the effective nuclear charge. In order to ensure the fastest
convergence rate of the perturbation series, we fix it by requiring the first-order
correction to vanish

∆E(1) = 0 ⇒ Z∗ = Z − B

2A
. (4.24)

Note that this also corresponds to the minimum of the energy calculated up to
first-order

∂Z∗(E
(0) + ∆E(1)) = 2A(Z − Z∗) +B, (4.25)

∂Z∗(E
(0) + ∆E(1)) = 0 ⇒ Z∗ = Z +

B

2A
. (4.26)

For example, for helium-like ions, we have

Z∗ = Z − 5

16
. (4.27)

From now on we will refer to such setup, that is the zeroth-order plus the vanishing
first-order, as the leading-order ECM. The values of effective charges for neutral
atoms along with the corresponding leading-order energies are given in Appendix A.1.
We emphasize again that the value of effective charge is the same for all elec-

trons of a given configuration, despite the intuitive picture where outer electrons are
screened more than those closer to the nucleus. This is necessary in order to ensure
orthonormality of the hydrogen-like basis.
Despite the simplicity of the above expressions, the zeroth-order calculation pro-

vides accuracy of the order of ∼ 5% as compared to the HF calculation independently
of the number of electrons (see Section 7.1).

4.3 Closed and open shells

Since neither the Schrödinger nor the Dirac Hamiltonians depend on the projections
of the angular orbital momentum, we do not expect any contributions to energy to
depend on the magnetic quantum numbers m. Therefore we need to sum over the
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4 Effective charge model

projections of each electrons angular momentum in all resulting formulas. We can
do this in closed form using properties of the 3-j symbols (see Appendix C.7):

∑
m

(−1)m
(

l l k
−m m 0

)
= (−1)lδk,0

√
2l + 1, (4.28)

∑
m1,m2

(
l l1 l2

m1 −m2 −m1 m2

)(
k l1 l2

m2 −m1 m1 −m2

)
=

δl,k
2l + 1

. (4.29)

For a closed shell (electrons with all ml present for a given l), we then get the B
values as:

BDir
λi,λj

= (2li + 1)(2lj + 1)T
λi,λj
λi,λj

(0), (4.30)

BEx
λi,λj

=

li+lj∑
k=|li−lj |

∣∣∣∣(li lj k
0 0 0

)∣∣∣∣2 T λj ,λiλi,λj
(k). (4.31)

For open shells the situation is more complicated. In order to describe an open
shell correctly, we need to use a linear combination of many basis state configurations.
In general, this requires a diagonalization of the total Hamiltonian in the basis of the
configurations comprising a given open shell. In many instances this can be replaced
by assuming a particular coupling (more details in Section 7.8).

4.4 Relativistic effective charge model

In order to derive the D-ECM within the Dirac theory, we proceed in exactly the
same way as above, but starting from the Dirac Hamiltonian with the effective charge
Z∗

H0 =

N∑
i=1

H0
i =

N∑
i=1

(
~α · ~∇i + α0c−

Z∗

ri

)
, (4.32)

with the same perturbation operator W given by (4.3).
The eigenvectors of (4.32) are the hydrogen-like Dirac wavefunctions given by (B.31)

but with effective charge Z∗ in place of the nuclear charge Z. As long as the value
of effective charge is fixed, they form an orthonormal basis in which we can per-
form a perturbation calculation. In order to compute the energy of the system we
specify a set of N collective quantum numbers λ1, . . . , λN , which characterizes the
state of N electrons |λ1, . . . , λN 〉 given by a Slater determinant of single-electron
wavefunctions (4.6).
In analogy to the non-relativistic case, the zeroth-order energy E(0)(Z∗) is a sum

of hydrogen-like Dirac energies over the occupied states

E(0)(Z∗) =
∑

λi=(nrκmj)i

Eλi(Z
∗). (4.33)

Notice that now λ refers to a collection of relativistic quantum numbers, specifying
a hydrogen-like wavefunction within the Dirac theory.
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4.4 Relativistic effective charge model

Evaluation of the first-order correction to the energy of the system is also straight-
forward

∆E
(1)
single =

∑
i

∫ |ψλi(ri)|2
ri

d~ri =
∑
i

Z∗(Z − Z∗)Tλi , (4.34)

with the analytic result for individual Tλ coefficients given by (see Appendix B.3)

Tλ =

(
(αZ∗)2

γ
+ nk

)(
ε

nk

)
, (4.35)

where nk and γ are defined as in (3.23) and α is the fine-structure constant.
The double-electron first order correction is still given by the sum of Coulomb and

exchange integrals (4.17), but now both angular and radial parts contain contribu-
tions from all four components of the wavefunction, making the resulting formulas
more complicated. Nevertheless, we can use the Wigner-Eckhart theorem [89] along
with (4.28) to find that for a closed shell the results read:

BDir
λ1,λ2 = 4|κ1κ2|T λ1,λ2λ1,λ2

, (4.36)

BEx
λ1,λ2 =

l1+l2∑
p=|l1−l2|

(κ1 + κ2 + p+ 1)(κ1 + κ2 − p)
∣∣∣∣(l1 l2 p

0 0 0

)∣∣∣∣2 T λ2,λ1λ1,λ2
(p), (4.37)

where the radial integrals are now given by

T λ3,λ4λ1,λ2
(k) =

∫
Rλ1,λ2(r1, r2)

min[r1, r2]k

max[r1, r2]k+1
Rλ3,λ4(r1, r2)r2

1r
2
2dr1dr2, (4.38)

and we have written

Rλ1,λ2(r1, r2) = gλ1(r1)∗gλ2(r2) + fλ1(r1)∗fλ2(r2). (4.39)

To find the effective charge we proceed in analogy with the non-relativistic case
and choose it from the condition that the first-order correction to the energy of the
system for a given state is vanishing, i.e.

∆E(1)(Z∗, Z,N) = 0. (4.40)

For this reason the expression for the energy of the system in the leading order is
given via a sum of hydrogen-like energies, Eq. (4.33) with the effective charge Z∗,
defined as a solution of Eq. (4.40).
It is worth noting here, that the nontrivial dependence of Dirac hydrogen wave

functions on the nuclear charge makes it impossible to separate the effective charge
from the above integrals. This means that contrary to the nonrelativistic case, Aλk
and Bλ1,λ3

λ2,λ4
are implicitly dependent on Z∗. This is related to the fact, that the Dirac

equation, unlike the Schrödinger equation, is not scale invariant. In fact, rescaling
the radial variable r in a Schrödinger hydrogen atom effectively changes its charge,
while in the Dirac hydrogen atom effectively changes both the mass of the electron
and the nuclear charge.
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4 Effective charge model

For this reason, solving Eq. (4.40) for Z∗ means finding a root of a transcendental
equation containing gamma functions. For example, the relativistic effective charge
Z∗ of a helium-like atom or ion with nuclear charge Z is found by solving

2(Z∗ − Z) + 1 =
Γ(2γ + 1/2)

Γ(2γ + 1)
√
π
, (4.41)

where γ =
√

1− (αZ∗)2. Such equation can be solved to any desired accuracy with
traditional iterative methods from numerical analysis or with analytical approxima-
tions. In the latter case, the Taylor series of the gamma function can be used to
approximate the effective charge to any order in α. Up to the second order in α it
reads

Z∗ = Z − 5

16
+ α2

(
Z − 5

16

)2 12 log(2)− 7

32
+O[α4].

Analogously, similar expressions can be written for any other atom or ion. Values
of effective charges for neutral atoms along with the corresponding leading-order
energies are given in the Appendix B.3.
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5 Second-order effective charge model

This chapter explains how to use the Green’s function of the hydrogen equation to
calculate second-order corrections to energies in the ECM. This includes corrections
coming from adjusting the shapes of single-electron orbitals, as well as from electron-
electron correlations. It also shows how to mitigate the divergences coming from
the degeneracy of the hydrogen-like basis. Just like in the leading-order we avoid
making any approximations beyond limiting the discussion to the second order of
perturbation.

5.1 Green’s functions

Second order correction to energy is given by the sum over all virtual multi-particle
virtual states ψk

∆E(2) =
∑
k

|〈ψ(0)|Ŵ |ψk〉|2
E(0) − Ek

(5.1)

where the sum runs over all discrete and continuous states in the hydrogen-like basis
(see (2.14)).
Since W is a two-electron operator, only virtual states that differ by at most two

single-electron orbitals contribute to the above sum. Hence for |ψ0〉 = |λ1...λn〉, we
have

∆E(2) =

n∑
k 6=l

∑
σ

|〈λkλl|Ŵ |λkσ〉|2
Eλl − Eσ

+
∑
σ,σ′

|〈λkλl|Ŵ |σσ′〉|2
Eλk + Eλl − Eσ − Eσ′

 (5.2)

where σ denotes the single-electron virtual states of the hydrogen-like basis.
We will refer to the first of these two terms as the single-electron second-order

correction, denoted ∆E
(2)
single and to the second as the double-electron second-order

correction, denoted ∆E
(2)
double. Physically, the single-electron correction represents

the adjustment of the shapes of single-electron orbitals, while the double-electron
correction is related to the correlations between electrons.
At a first glance these corrections may seem complicated, but all of the above sums

can be expressed in terms of the Green’s function 1

GE =
∑
k

|ψk〉〈ψk|
E − Ek

, (5.3)

which in practice can often be found for a basis generated by H0 by using the Laplace
transform [90] to solve the difing equation

(H0 − E0)GE0 = δ. (5.4)
1This is a slight abuse of notation, as the sum includes all discrete and continuous spectra of the
given basis. For example, in the case of hydrogen wavefunctions, we can write more explicitly
GE =

∑∞
n=1

|ψn〉〈ψn|
E−En

+
∫ |ψp〉〈ψp|

E−Ep
dp.
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5 Second-order effective charge model

In the particular case of the non-relativistic hydrogen basis the Green’s function is
known analytically and can be written as [91]

GE(r, r′) =
∞∑
l=0

l∑
m=−l

Gl,E(r, r′)Y ∗l,m(Ω)Yl,m(Ω′),

Gl,E(r, r′) =
(−1)1−l−νν3π

Z2 sin((ν − l)π)
Rν,l (Zr<)Uν,l (Zr>) , (5.5)

where ν = Z/
√
−2E, while R and U are the two solutions of the Schrödinger radial

hydrogen equation (see Appendix B.2 for details).
In the relativistic case meanwhile, the Green’s function of the hydrogen basis is

given, by

GE(r, r′) =
∑
κ,m

Gκ,E(r, r′)

(
Ωκ,m(Ω)

Ω−κ,m(Ω)

)†
⊗
(

Ωκ,m(Ω′)
Ω−κ,m(Ω′)

)
,

Gκ,E(r, r′) =
(−1)|κ|−νZπ

ω3 sin((|κ| − ν)π)

(
θ(r′ − r)Rν,κ,Z(r)† ⊗ Uν,κ,Z(r′)

+ θ(r − r′)Uν,κ,Z(r)† ⊗Rν,κ,Z(r′)
)
, (5.6)

where ν is the solution of E = EDirac
ν,κ defined by (3.24), while R and U are the

two solutions of the Dirac radial hydrogen equation (see Appendix B.2 for details).
Notice that combining the two 4-component spinors with an outer product means
that the Dirac hydrogen Green’s function is a 4× 4 matrix.

5.2 Reduced Green’s functions

It is clear from both the spectral representation (5.3), as well as the explicit for-
mulas (5.5) and (5.6), that the Green’s functions have poles at the values of energy
corresponding to the bound states. For this reason, we cannot directly use them to
evaluate the second-order energy corrections. In fact, we need the reduced Green’s
function defined as the limit

G̃n = lim
δ→0

GEn+iδ −
|ψn〉〈ψn|

iδ
. (5.7)

We will subsequently denote the reduced Green’s functions with an overhead tilde
G̃ in order to distinguish from full Green’s functions G. The explicit form of the
reduced Schrödinger (RCGF) and Dirac (RCDGF) Green’s functions is discussed in
chapter 6.
In terms of the reduced Green’s function, the corrections to energies and wave-

functions in a general perturbation series read

∆E
(2)
single = 〈ψ0

n|Ŵ G̃EnŴ |ψ0
n〉, (5.8)

∆|ψ(1)
n 〉 = G̃EnŴ |ψ0

n〉, (5.9)

and we can use the hydrogen Green’s function in particular to write the single-
electron second-order correction, as

∆E
(2)
single =

∑
m,k,l

〈λkλl|Ŵ |λkG̃λlλm|Ŵ |λlλm〉. (5.10)
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× ×× ×× ××
E−Eλk

Eλl

it

Figure 5.1: Diagram of the integration contour used in (5.12). Crosses represent poles corre-
sponding to bound states, while red dashed lines represent branch cuts corresponding to the
continuous spectrum of free states. There are no poles at t = 0, as the λk and λl states are
omitted in the spectral representations of the corresponding reduced Green’s functions

In order to express the double-electron correction however, we need the two-
electron reduced hydrogen Green’s function with spectral representation of

G̃2
λk,λl

=
∑
σ1 6=λk
σ2 6=λl

|σ1〉|σ2〉〈σ1|〈σ2|
Eλk + Eλl − Eσ1 − Eσ2

. (5.11)

Unfortunately, it does not have a closed form, but borrowing a clever trick from
complex analysis we can express it as a convolution over the energy of two single-
electron Green’s functions

G̃
(2)
λk,λl

(r1, r2, r3, r4) =

∫
G̃Eλk+it(r1, r2)G̃Eλl−it(r3, r4)

dt

2πi
. (5.12)

This somewhat surprising formula follows immediately from applying the following
identity, which is simply a residue theorem for a product of simple poles, directly to
the above spectral representation of the Green’s function∫

1

a+ it

1

b− itdt =
−2π

a+ b
, (5.13)

which is valid, provided that both a and b are negative, which will always be the case
in the ground state, as they stand for differences between the ground state energy
and intermediate energies.
With that in mind, the single-electron second order correction can simply be cal-

culated, as
∆E

(2)
double =

∑
k 6=l
〈λkλl|Ŵ G̃

(2)
λk,λl

Ŵ |λkλl〉, (5.14)

where exchange elements are implied according to (4.7).
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5 Second-order effective charge model

5.3 Subtractions

At this point, we still need to take into account the Pauli exclusion principle. It
manifests itself in the fact that sums over σ in (5.2), do not include occupied single-
electron orbitals. This means that despite using reduced Greens functions we still
need to subtract all other occupied states.
This means subtracting the following sum from the single-electron second order

correction ∑
m6=k 6=l

|〈λkλl|Ŵ |λkλm〉|2
Eλl − Eλm

. (5.15)

And from the double-electron one∑
n6=m,k 6=l

|〈λkλl|Ŵ |λmλn〉|2
Eλl + Eλk − Eλm − Eλn

. (5.16)

However note that all terms in the above sums are anti-symmetric with respect to
the l→ m and (k, l)→ (m,n) exchanges respectively, so the total amount subtracted
from the correction to any multi-electron configuration is equal to zero. This can
also serve as a useful check of the consistency of all calculations.

5.4 Effects of degeneracy

Naive application of the above formulas will lead to divergent results for many elec-
tronic configurations, even including some of the ground states of neutral atoms.
This is because of the high degeneracy of the hydrogen-like basis, in particular the
lack of energy dependence on the angular momentum quantum number. It can be
readily seen from the formula for the reduced Greens function used in the derivation
of the second order energy corrections

Gψ0 =
∑
k

|ψk〉〈ψk|
Eψ0 − Eψk

. (5.17)

This leads to a divergence whenever for any of the virtual states ψk we have Eψk =
Eψ0 . It is never the case when calculating single-electron corrections as there are no
elements 〈ψk|Ŵ |ψl〉 with non-zero amplitudes, that change the angular momentum
quantum number of exactly one electron. However, it does happen when calculating
the double electron correction, for example to the ground state of beryllium, as
〈2s2s|Ŵ |2p2p〉 6= 0 (see Figure 5.2).
In order to mitigate this, whenever there are multiple configurations with equal

zeroth-order energy, we have to diagonalize the Hamiltonian in the subspace spanned
by those configurations and consider it’s eigenvectors as the new zeroth-order ap-
proximations. On top of regularizing divergences, this further increases the accuracy
of the ECM calculation as it effectively includes corrections of all orders coming
from those configurations. The resulting zeroth-order wavefunction is then a lin-
ear combination of those degenerate configurations. For example the ground state
configuration of berylium becomes2 0.9743|1s22s2〉+ 0.2252|1s22p2〉.

2We show approximate coefficients for clarity, but they can be calculated as exact analytical
numbers within the ECM.
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5.4 Effects of degeneracy

Figure 5.2: Pictorial representation of an example of an intermediate state with degenerate energy,
causing a divergence in the double-electron second order correction to the energy of beryllium.
Such transitions do not happen in elements that have at least half-filled outer shells or only a
single valance electron e.g. lithium.

This means that we have more contributions to the second-order correction in
such cases, as now transitions to all virtual states that differ by no more than two
electrons from any of the zeroth order degenerate basis states have to be taken into
account. It is important to note, that all of those configurations differ by exactly
two electrons (for reasons mentioned above). So for a wavenuction

|ψ〉 =
∑
i

αi|λi1...λin〉 =
∑
i

αi|λ1...λn−2χ
i
1χ

i
2〉, (5.18)

we get the correction

∆E
(2)
single =

n∑
m6=l 6=k

∑
i

α2
i 〈λikλil|Ŵ |λikG̃λilλ

i
m|Ŵ |λilλim〉

+
∑
i,j

∑
k

αiαj〈λkχi1|Ŵ |λkG̃λχi2|Ŵ |χj1χj2〉

+
∑
i,j

∑
k

αiαj〈λkχi1|Ŵ |χj1G̃λχi2|Ŵ |χj2λk〉

+
∑
i,j

∑
k 6=l

αiαj
〈λkλl|Ŵ |χi1χi2〉〈λkλl|Ŵ |χj1χj2〉

Ek + El − 2Eχ
. (5.19)

Similarly, the double electron correction becomes

∆E
(2)
double =

∑
i

∑
k 6=l

α2
i 〈λikλil|Ŵ G̃

(2)

λik,λ
i
l

Ŵ |λikλil〉

+
∑
i 6=j

αiαj〈χi1χi2|Ŵ G̃
(2)

χi1,χ
i
2
Ŵ |χj1χ2

j 〉, (5.20)

where the subtractions in all Greens functions now include all states contained in
any of the degenerate configurations.
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5 Second-order effective charge model

5.5 Closed subshells

Finally we want to show closed form formulas for the summation over projections of
angular momenta. Using the generalized orthogonality relation of 3-j symbols [83]∑

m

(−1)m
(

l l k
−m m 0

)
= (−1)lδk,0

√
2l + 1, (5.21)

∑
m1,m2

(
l l1 l2

m1 −m2 −m1 m2

)(
k l1 l2

m2 −m1 m1 −m2

)
=

δl,k
2l + 1

, (5.22)

we can immediately obtain the formula for the direct term of the single-electron
second-order correction:∑

mk,ml,mm

〈λk|〈λl|Ŵ |λkG̃λlλm|Ŵ |λl〉|λm〉

= (2lk + 1)(2lm + 1)(2ll + 1)Iλk,λl,λk,λm,λl,λmll,0,0
, (5.23)

and the two distinct exchange terms:∑
mk,ml,mm

〈λl|〈λk|Ŵ |λkG̃λlλm|Ŵ |λl〉|λm〉

=
∑
p

(2lk + 1)(2lm + 1)(2ll + 1)×
(
lk ll p
0 0 0

)2

Iλl,λk,λk,λm,λl,λmll,p,0
, (5.24)

∑
mk,ml,mm

〈λl|〈λk|Ŵ |λkG̃λlλm|Ŵ |λm〉|λl〉

=
∑
p1,p2

(2lk + 1)(2lm + 1)

(
lk ll p1

0 0 0

)2(
lm ll p2

0 0 0

)2

Iλl,λk,λk,λm,λl,λmll,p1,p2
,

(5.25)

where the radial integrals are of the form

Iλ1,λ2,λ3,λ4,λ5,λ6
p,k,k′ =

∫
Rλ2(r)Rλ5(r′)W k

λ1,λ3(r)W k′
λ4,λ6(r′)Gλ2,p(r, r

′)drdr′, (5.26)

with the potential generated by the electron-electron repulsion defined as

W k
λ1,λ2(r) =

∫
Rλ1(r′)Rλ2(r′)

min[r, r′]k

max[r, r′]k+1
dr′. (5.27)

The analogous calculation for the double-electron contribution is only slightly more
involved. Lets first consider an exchange energy between two subshells. For closed
subshells λ 6= λ′

∆E
(2)
double =

∑
m,m′

(〈λ〈λ′|ŴGGŴ |λ〉λ′〉 − δs,s′〈λ〈λ′|ŴGGŴ |λ′〉λ〉), (5.28)

where the Kronecker delta is 1 if the spins are aligned and 0 otherwise, and we have
explicitly expanded the exchange symmetry.
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5.5 Closed subshells

For the case of λ = λ′ we have

∆E
(2)
double =

∑
m>m′

(〈λmλm′ |ŴGGŴ |λmλm′〉 − 〈λmλm′ |ŴGGŴ |λm′λm〉)

=
1

2

∑
m,m′

(〈λmλm′ |ŴGGŴ |λmλm′〉 − 〈λmλm′ |ŴGGŴ |λm′λm〉). (5.29)

where we have used them↔ m′ symmetry and the fact that the casem = m′ cancels
out. Therefore we can see that the only difference between those cases is the factor
of 1/2, wchich is related to the exchange antisymmetry of single-electron states.

Using (5.21) we get the sum over projections in the direct term as

∑
m,m′

〈λλ′|ŴGGŴ |λλ′〉

=
∑
p,q,k

(2l + 1)(2l′ + 1)(2p+ 1)(2q + 1)

(2k + 1)2

(
l p k
0 0 0

)2(
l′ q k
0 0 0

)2

Iλ,λ
′,λ,λ′

p,q,k,k , (5.30)

where the radial integrals are of the form

Iλ1,λ2,λ3,λ4
p,q,k,k′ =

∫
Rλ1(r1)Rλ2(r2)Rλ3(r3)Rλ4(r4)Gλp,t(r1, r3)Gλ

′
q,−t(r2, r4)

× min[r1, r2]k

max[r1, r2]k+1

min[r3, r4]k
′

max[r3, r4]k′+1
dr1dr2dr3dr4dt. (5.31)

Similarly, we can sum over projections in the calculation of the exchange element,
using the definition of the 6-j symbol [83]

∑
m1...m6

(−1)ξ
(

j1 j2 j3
−m1 −m2 −m3

)(
j1 j5 j6
m1 −m5 m6

)
×
(
j4 j2 j6
m4 m2 −m6

)(
j4 j5 j3
−m4 m5 m3

)
=

{
j1 j2 j3
j4 j5 j6

}
, (5.32)

where ξ =
∑

i(ji −mi). The final expression comes out as

∑
m,m′

〈λλ′|ŴGGŴ |λ′λ〉 =
∑

p,q,k,k′

(2l + 1)(2l′ + 1)(2p+ 1)(2q + 1)

×
(
l p k
0 0 0

)(
l q k′

0 0 0

)(
l′ p k′

0 0 0

)
×
(
l′ q k
0 0 0

){
l p k
l′ q k′

}
Iλ,λ

′,λ′,λ
p,q,k,k′ . (5.33)

Since the resulting formulas are somewhat involved, it is instructive to look at the
first few examples. For the case of λ 6= λ′ we get the correlations between the s and
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5 Second-order effective charge model

p shells:

λs, λ
′
s : ∆E

(2)
double =

∑
a

2a+ 1

16π2
(Iλ,λ

′,λ,λ′
a,a,a,a − Iλ,λ′,λ′,λa,a,a,a ) (5.34)

λs, λ
′
p : ∆E

(2)
double =

∑
a

3(a+ 1)

16π2
(Iλ,λ

′,λ,λ′

a,a+1,a,a + Iλ,λ
′,λ,λ′

a+1,a,a,a (5.35)

+ Iλ,λ
′,λ,λ′

a+1,a,a+1,a+1 + Iλ,λ
′,λ,λ′

a,a+1,a+1,a+1 − Iλ,λ
′,λ′,λ

a+1,a,a+1,a − Iλ,λ
′,λ′,λ

a,a+1,a,a+1) (5.36)

λp, λ
′
p : ∆E

(2)
double =

9

16π2

∑
a

[
(a+ 1)2

(2a+ 1)
Iλ,λ

′,λ,λ′

a+1,a+1,a,a +
(a+ 1)2

(2a+ 3)
Iλ,λ

′,λ,λ′

a,a,a+1,a+1 (5.37)

− a+ 1

(2a+ 1)(2a+ 3)
(Iλ,λ

′,λ′,λ
a+1,a+1,a,a + Iλ,λ

′,λ′,λ
a,a,a+1,a+1) (5.38)

+ 2
(a+ 1)(a+ 2)

(2a+ 3)
(Iλ,λ

′,λ,λ′

a,a+2,a+1,a+1 − Iλ,λ
′,λ′,λ

a+1,a+1,a,a+2 − Iλ,λ
′,λ′,λ

a,a+2,a+1,a+1)] (5.39)

where the exchange parts should be skipped if λ and λ′ have opposite spins.
On the other hand when λ = λ′ the same terms read:

λs, λs : ∆E
(2)
double = 0 (5.40)

λp, λp : ∆E
(2)
double =

9

32π2

∑
a

(a+ 1)[
a

2a+ 1
Iλ,λ

′,λ,λ′

a,a,a+1,a+1

+
(a+ 2)

(2a+ 3)
(Iλ,λ

′,λ,λ′

a+1,a+1,a,a − 2Iλ,λ
′,λ′,λ

a+1,a+1,a,a+2)] (5.41)

Since these are independent of charge in the Schrödinger theory, the values of I
integrals can easily be tabulated for all possible parameters.
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6 Analytical evaluation of second-order
corrections

Formulas presented in the previous section may be sufficient for numerical evaluation
of the second-order corrections, provided one is careful in avoiding the numerical
instabilities in evaluating the limit in (5.7). However, since our main aim is the
derivation of analytical approximations, we need to investigate ways of performing
the radial integration analytically.

6.1 Closed form of the reduced Coulomb Green’s function

Following Johnson and Hirschfelder [92] we turn the limit in (5.7) into a derivative

G̃n = lim
δ→0

GEn+iδ −
|ψn〉〈ψn|

iδ
= [∂E(E − En)GE |E=En

. (6.1)

Since the hydrogen Green’s function can be expressed in terms of hydrogen bound
states according to (5.5) and (5.6), and the energy is only dependent on the principal
quantum number n, all that is required are the derivatives of the functions Rn,l,Z(r)
and Un,l,Z(r) over the first parameter. Differentiating the corresponding infinite
series representation1 gives

∂νRν,l,Z(r)|ν=n =
√
Z(n+ l)!(n− l − 1)!2

(−1)l

n2λ

×
[

(−1)l
l∑

i=−l
(λ)i

(l − i)!
(l + i)!

(
eλ/2

(n+ i− 1)!

(n+ l)!(n− l − 1)!
− e−λ/2

(n− i)!

)

+
n∑

i=l+1

(−λ)i

(
eλ/2Bi − e−λ/2

Ai + λ
2Ci + log(λ)− Ei(λ)

(l + j)!(n− j)!

)]
,

(6.2)

∂νUν,l,Z(r)|ν=n =−
√
Z(n+ l)!(n− l − 1)!2

e−λ/2

n2λ

[
l∑

i=−l
(λ)i

(l − i)!
(n− i)!(l + i)!

− (−1)l
n∑

i=l+1

(−λ)i
Ai + λ

2Ci + log(λ)

(l + j)!(n− j)!

]
, (6.3)

1A general series representation can be obtained by using (C.13) to expand (B.29).
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6 Analytical evaluation of second-order corrections

where λ = 2Zr/n and we have defined the numerical coefficients:

Ai =
Ψ(n− l) + Ψ(n+ l + 1)

2
−Ψ(i− l)−Ψ(l + i+ 1)− l + 2

n
, (6.4)

Bi =

n−1∑
j=i

(−1)j+i(j − i)!
(j − l)!(j + l + 1)!(n− j − 1)!

, (6.5)

Ci =
1− i+ l + 2n

n(i+ l + 1)
, (6.6)

using the polygamma function Ψ(x), defined as

Ψ(x) = ∂x log(Γ(x)). (6.7)

Plugging those derivatives into (6.1) produces a closed form of the RCGF

Gnl(r1, r2) =
4Z

n

(n− l − 1)!

(n+ l)!

(
G

(sg)
nl (r1, r2) +G

(nsg)
nl (r1, r2)

)
, (6.8)

where G(sg)
nl contains all terms that are singular around the origin and G(nsg)

nl those
that are not

G
(sg)
nl (r1, r2) =(−1)le

−λ1−λ2
2

n−1∑
i1=l

1+l∑
i2=1−l

βi1
(l + i2 − 1)!

(l + 1− i2)!

×
[

(n− i2)!

(n− l − 1)!
eλ<

λi1>

λi2<
− (n+ l)!

(n− 1 + i2)!

(
λi11
λi22

+
λi12
λi21

)]
, (6.9)

G
(nsg)
nl (r1, r2) = −e

−λ1−λ2
2

n−1∑
i1=l

n−1∑
i2=l

βi1βi2

[
(i2 − l)!(i2 + l + 1)!Bi2λ

i1
>λ

i2
<e

λ<

− λi11 λi22 (log (λ>)− Ein (λ<) + Ai1(λ1) + Ai2(λ2) + C)
]
, (6.10)

where λ = 2Zr/n, Ein(x) is the Einstein function (see Appendix C.6) and we have

n l q q′ Analytic time Numeric time δ

3 1 2 0 8×10−3 s 3.83 s 10−4

7 5 4 1 0.128 s 2.39 s 10−4

16 15 10 10 0.188 s NaN NaN
37 1 1 0 8.38 s 39.6 s 10−7

Table 6.1: Comparison of computational times of the generating integral of the RCGF given
by (6.9) for different values of the parameters n, l, q and q′ of analytical expressions [67] with
the direct numerical integration using Mathematica [93]. The last column shows the value of δ
required to obtain results accurate to four significant figures. NaN means that the integral did
not converge to the correct value for any value of δ.
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6.2 Integrating the Reduced Coulomb Green’s function

defined:

Ai(x) =
2n+ l − i
i+ l + 2

x

2n
−Ψ(1 + i− l)−Ψ(2 + i+ l), (6.11)

Bi =
n−i−1∑
k=1

(n− i− 1)!(−1)k(k − 1)!

(k + i− l)!(k + i+ l + 1)!(n− i− k − 1)!
, (6.12)

C = −4l + 5

2n
+ Ψ(n+ l + 1) + Ψ(n− l)− γ, (6.13)

βi = (−1)i
(n+ l)!

(n− i− 1)!(l + i+ 1)!(i− l)! , (6.14)

where the Euler-Mascheroni constant is γ ≈ 0.57722. As expected this is equivalent
to the form originally found by Johnson and Hirschfelder [92].

6.2 Integrating the Reduced Coulomb Green’s function

The generating integral of the RCGF

Knl(λ, λ
′) =

∫
e−λx−λ

′x′Gnl(x, x
′)xqx′q

′
dxdx′, (6.15)

is convergent for q ≥ 0 and q′ ≥ 0. The main difficulty in performing such integration
analytically is the fact, that integrals of individual terms in (6.9) may not converge,
even though the full integral (6.15) converges overall. For this reason, the strategy
employed in our work [67] was to first derive expressions valid for non-integer values
of q and q′, then find the Laurent series of (6.15) around q = m + δ, q′ = m′ + δ,
where m and m′ are non-negative integers and finally show that for q, q′ ≥ 0 the
divergent parts (terms proportional to δ−1 and δ−2) always vanish.
This is done most conveniently by expressing the integral in terms of the generating

integrals of the Heaviside step function

uba(x, y) =

∫ ∞
0

∫ ∞
0

e−λr−λ
′r′ra−1r′

b−1
θ(r′ − r)dr′dr

=

∫ ∞
0

∫ ∞
r

e−λr−λ
′r′ra−1r′

b−1
dr′dr, (6.16)

convergent whenever Re(a) > 0, Re(a + b) > 0 and Re(λ + λ′) > 0. In general it is

n l q Analytic time Numeric time δ

1 0 0 0.19 s 21.7 s 10−4

2 4 3 0.01 s 32.2 s 10−4

5 4 7 3.89 s 68.1 s 10−5

6 8 8 0.05 s 53.5 s 10−6

Table 6.2: Comparison of computational times of the integral moments (6.19) for different
values of parameters n, l, q and λ of analytical expressions from [67] with the direct numerical
integration of using Mathematica [93] at 100 different values of x. The last column shows the
value of δ required to obtain the results accurate to four significant figures.
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6 Analytical evaluation of second-order corrections

given by

uba(x, y) =
∞∑
i=0

Γ(a+ b+ i)

(a+ i)xa+b+i

(−y)i

i!
. (6.17)

In the case when a and b are positive integers it simplifies to a finite sum

uba(x, y) =
Γ(a)

ya

(
Γ(b)

xb
− (x+ y)−b

a−1∑
i=0

Γ(b+ i)

i!

(
y

y + x

)i)
. (6.18)

Equations (6.17) and (6.18) are convenient for deriving the Laurent series of u
and subsequently, the closed form of (6.15). The resulting expression is somewhat
involved, so we avoid writing it out here, but it can be found along with all corre-
sponding derivations in [67].
In table 6.1 we compare the evaluation times of the generating integral for different

values of parameters n, l, q and q′ between the analytical expression given in [67] and
a direct numerical integration of (6.9) with a fixed value of δ. As can be observed
from the table the numerical evaluation is several orders of magnitude slower than our
analytical expressions. It is also clear that the evaluation time increases significantly
when n � l. We have found out that in all relevant cases the total evaluation time
through analytical expressions is of the order of 0.001-0.1 seconds on Intel 2600k
3.4GHz processor.
On the other hand, the direct numerical integration of the Green’s function for

some finite values of δ becomes very inefficient for large values of n and l. This hap-
pens due to the increasing number of nodes of the integrand, resulting in oscillatory
behavior. Consequently, the accurate evaluation of the integral demands the smaller
and smaller values of δ to keep the constant accuracy, since in many cases large
positive values are almost completely cancelled by large negative values. Therefore,
the precise result would require a forbiddingly accurate evaluation of the integrand
at every point. Consequently, the evaluation time of some high-n Rydberg states is
still large and requires further optimization, for example, by expanding the analytic
results in an asymptotic series in n.
For the purpose of obtaining analytical corrections to hydrogen-like wavefunctions,

one also needs to consider the integral moments of the RCGF

Jnl(λ, x
′) =

∫
e−λxGnl(x, x

′)xqdx. (6.19)

In table 6.2 we compare the evaluation time of analytically computed integral mo-
ments with the numerically computed ones for some values of the parameters q, n,

Element Atomic number Analytic time Numeric time δ

Li 3 3.26 s 29.3 s 10−3

F 9 14.2 s 261 s 10−4

Ne 10 29.3 s 321 s 10−4

Table 6.3: Comparison of computational times of second order single-electron correction to
ground state energies of some example neutral atoms. The last column shows the value of
δ required to obtain the results accurate to four significant figures.
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6.3 The Reduced Dirac-Coulomb Green’s function

l and λ. In this simulation, we numerically evaluated the integral moments at one
hundred different values of r in order to compare with an analytically calculated
curve. As in the situation of the generating integral, the evaluation time of the
direct numerical integration is a few orders of magnitude slower.
We also compare a few cases of the second-order single-electron correction evalu-

ation times between our analytical and numerical approaches. The result is given in
table 6.3. Typically a fully sequential version of an ECM program implemented in
Mathematica requires one order of magnitude larger times for the direct numerical
evaluation, as compared to the analytical expressions.

6.3 The Reduced Dirac-Coulomb Green’s function

The RDCGF can be handled in an analogous way to the RCGF, since (6.1) is equally
valid in the relativistic case. If the relativistic Green’s function is expressed in terms
of the Dirac hydrogen wavefunctions according to (5.6), then all that is needed are the
derivatives of the Dirac wavefunctions over the principal quantum number n. This
can be achieved by expressing the Dirac wavefunctions in terms of the Schrödinger
ones according to (B.31). The additional complication however, comes from the fact,
that the relativistic calculation requires evaluating the derivatives of the Rn,l and
Un,l functions at non-integer values of n and l, in which case they cannot be expressed
as a finite series. In terms of the regularized hypergeometric functions pF̃q, we can
write:

∂νRν,γ,Z(r) =
√
Zq!Γ(p+ 1)2

e−λ/2

n2λ

×
[

q∑
i=0

(−λ)i

i!

(λ)γ+1Ai
(q − i)!Γ(i+ 2γ + 2)

+
(−1)qq

(q + 1)!

p

Γ(p+ 2)

(λ)ν+1

2ν

− (−1)qλν+2
2F̃2[1, 2; q + 3, p+ 3;λ]

]
, (6.20)

∂νUν,γ,Z(r) = ∂νRν,γ,Z(r) +
√
Zq!Γ(p+ 1)

2

n2λ

×
[
e−λ/2

q∑
i=0

(−λ)i

i!

(λ)γ+1(Ψ(−1− p)−Ψ(p))

(q − i)!Γ(i+ 2γ + 2)

− (−1)qeλ/2
Γ(−p)
λγ

1F̃1[q + 1,−2γ,−λ]

]
, (6.21)

where and we have defined the coefficients:

p = ν + γ, q = ν − γ − 1, λ = 2rZ/n, (6.22)

Ai =
Ψ(q) + Ψ(p)

2
−Ψ(q − i) +

i− 1− 2ν

2ν

i

q + 1− i −
γ + 2

ν
. (6.23)

Note that these formulae assume that q is a non-negative integer, but p isn’t, as is
always the case when evaluating the Dirac hydrogen-like wavefunctions in terms of
the Schrödinger ones (see (B.31)).
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6 Analytical evaluation of second-order corrections

The relativistic description also poses a more complex dependence on effective
charge. Due to the mass term of the Dirac equation, it is impossible to separate ex-
plicitly the dependence of the matrix elements on the effective charge. For this reason,
results of the D-ECM calculations presented in this thesis focus on the leading-order
approximation.
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7 Atomic calculations with the effective charge
model

This chapter presents how the ECM can be used to calculate various atomic charac-
teristics of atoms and ions. This includes global features, like binding energies and
ionization cross-sections, as well as local ones, like electronic densities and scattering
factors. The accuracy of the leading- and second-order ECM is investigated, as well
as the appearance of key features, like the shell structure. The results obtained using
the ECM are compared to ones coming from the TF and HF calculations in order to
asses the practical usefulness of the ECM for atomic calculations.

7.1 Ground state energies of neutral atoms

The first step in the ECM energy calculation is the choice of a particular electronic
configuration, characterized by a set of occupied single-electron orbitals: |λ1...λN 〉.
We emphasize again, that the effective nuclear charge Z∗ is identical for all single
particle states in a given basis set, but we can choose different values of Z∗ (and
so different basis sets) for the description of different electronic configurations. The
value of Z∗ for each electronic configuration can be calculated according to

∆E(1)(Z,Z∗) = 〈λ1λ2...λn|Ŵ (1)(Z,Z∗) + Ŵ (2)(Z∗)|λ1λ2...λn〉 = 0, (7.1)

which is required to obtain the value of the leading-order energy, as

E(0)(Z,Z∗) = 〈λ1λ2...λn|Ĥ0|λ1λ2...λn〉. (7.2)

For an illustrative example we investigated three different electronic configurations
of the neutral cesium atom 55Cs: [Xe]6s1, [Xe]4f1 and [Xe]5d1. The corresponding val-
ues of the effective charge were calculated as: Z∗[Xe]6s1 = 43.9986, Z∗[Xe]4f1 = 43.8569

and Z∗[Xe]5d1 = 43.9444 giving the leading-order energies: E[Xe]6s1 = −7361.18,
E[Xe]4f1 = −7346.19 and E[Xe]5d1 = −7354.40. Since the first one of these has
the lowest energy, we expect it to correspond to the ground state and the other two
to describe low-laying excited states. Indeed, the [Xe]6s1 configuration describes the
ground state of 55Cs in agreement with the so-called “Aufbau” principle or Madelung-
Janet-Klechkovskii rule [94, 95, 96]. The same is true for all atoms of the periodic
table providing a simple and consistent choice of electronic configurations for any
number of electrons. The fact that the extremely simple leading-order approxima-
tion is sufficient to describe correct fillings of atomic orbitals demonstrates a signif-
icant advantage of ECM over other single-parametric models such as the TFD or
1/Z-expansion.
The values of total binding energies of the first 100 neutral atoms calculated with

the ECM are compared to the values of highly accurate HF and DHF calculations on
figure 7.1. It can be readily seen that both the ECM and D-ECM lead to a uniform
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Figure 7.1: Relative errors of the total binding energies calculated with the ECM as compared
to the HF and DHF results (7.3). Left figure compares leading-order (blue) and single-electron
second-order (green) ECM with the results of HF calculations [97]. Right figure compares
the leading-order D-ECM (blue) and first-order 1/Z expansion (green) to the results of DHF
calculations [98]. The corresponding numerical values of both non-relativistic and relativistic
total binding energies are given in the Appendix A.1. This figure has been published as figure 1
in [68].

approximation i.e. with accuracy of:

EECM − EHF
EHF

≈ 5%− 6%, (7.3)

independently of the number of electrons, already in the leading order. On the other
hand, the 1/Z expansion calculated up to first-order, only provides accuracy on the
order of about 12%. Furthermore, the inclusion of the single-electron second-order
corrections to the ECM is enough to improve the accuracy to well below 1%, as
compared to the HF method, for all neutral atoms.
This shows that the leading-order ECM and D-ECM give a particularly useful ini-

tial approximation to the orbitals of multi-electron atoms, and can be used a starting
point for high-precision calculations, including those based on the HF method.
Following the considerations of section 5.1, we can include electron-electron corre-

lations, that is the double-electron second-order correction to the ECM. The resulting
values of binding energy are in some cases already more accurate than the ones com-

Z Element E
(2)
single E(2) ∆Ecorr HF MCHF SDTQ

2 He -2.861 -2.907 0.046 -2.862 -2.903 0.041
3 Li -7.411 -7.462 0.051 -7.433 -7.477 0.044
4 Be -14.52 -14.69 0.165 -14.57 -14.67 0.093
5 B -24.41 -24.57 0.159 -24.53 -24.65 0.121
6 C -37.49 -37.64 0.148 -37.69 -37.84 0.150
7 N -54.11 -54.31 0.195 -54.40 -54.58 0.180
8 O -74.38 -74.65 0.268 -74.81 -75.05 0.245
9 F -98.82 -99.16 0.343 -99.41 -99.72 0.308

Table 7.1: Comparison of the second order single electron and double electron ground state ener-
gies with the single-configuration and multi-configuration numerical Hartree-Fock results. ∆Ecorr

represent the electron-electron correlation energy calculated as the difference between the E(2)
single

and E(2), while SDTQ lists the corresponding Hartree-Fock result.
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7.2 Ionization energies

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12

∆
E

Z

Eion, Exp
Eion, HF

Eion, ECM

Figure 7.2: Comparison of the first ionization energies of low-Z neutral atoms, calculated with
the full second-order ECM (red) with HF values [97] (green) and experimental values from the
NIST database [99] (yellow).

ing from the HF method and so have to be compared to the much more sophisticated
MCFH procedure. Results for the first 10 neutral atoms are presented in table 7.1.
Nevertheless, despite the promising accuracy of the second-order ECM, the largest
source of uncertainty remains the neglect of higher orders of perturbation.

7.2 Ionization energies

Since the number of electrons and the full nuclear charge Z are independent pa-
rameters in the ECM, it can also be used for the description of ions. By fixing Z
and calculating the effective charge Z∗ for electronic configurations with different
numbers of electrons, we can describe positively-charged ions and find correspond-
ing ionization energies. The first ionization energies for all atoms up to magnesium
have been plotted in figure 7.2. The comparison to the HF calculation and exper-
imental values shows that the relative error is larger than for energies themselves
(as should be expected, since the errors have the same magnitude while values are

Z Element ∆E
(2)
aff ∆EDFT

aff ∆Eexp
aff

1 H 0.87 0.84 0.75
2 He -1.27 0.03 -
3 Li 0.89 0.50 0.62
4 Be -4.23 0.03 -
5 B -4.30 0.43 0.28
6 C -2.81 1.39 1.26
7 N -6.64 0.23 -
8 O -6.19 1.83 1.46
9 F -5.3 3.74 3.40

Table 7.2: Comparison of electron affinities of neutral atoms, between the full second-order ECM,
DFT calculations [100], and experimental measurements.
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Figure 7.3: Total radial electronic densities (left) and densities composed from the small com-
ponents of the Dirac wave functions (right) of neutral xenon 54Xe (top) and neutral uranium
92U (bottom). Dashed, red line is the leading-order effective charge approximation, blue line
represents the results of the numerical solution of DHF (obtained via GRASP2k [40, 41]) and
green, long-dashed line stands for the TFD model. This figure has been published as figure 2
in [68].

much smaller), but the shape and general features of the ionization curve are well
represented. This is not the case for other analytical approximations such as the TF
model.
Furthermore, by setting the full nuclear charge smaller than the number of elec-

trons we can also investigate negative ions and their ionization energies, often referred
to as electron affinities. This is a particularly interesting test of any computation
scheme, as the extra electron of a negative ion is bound primarily by electron-electron
correlation rather than the Coulomb force. Electron affinities of the first nine neutral
atoms are presented in table 7.2.

7.3 Electron densities

In this section we demonstrate that the presented approach is suitable to provide
useful approximations not only to the integral characteristics of the atom, but also
to local ones, by investigating the ECM approximation to electron densities.

7.3.1 Zeroth-order densities

In the secondary-quantized representation, the density operator is given by

ρ̂(r) =
∑
λ,λ′

ψ†λ(r)ψλ′(r)â
†
λâλ′ . (7.4)
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Figure 7.4: Comparison of electron density of neutral neon using the zeroth-order and first-
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results [40] and the TF model [79] (right). Red and blue are the zeroth- and first-order ECM
calculations respectively. Yellow and green represent either the 1/Z expansion (left) or the TF
and HF results (right).

Taking the expectation value of ρ̂ with the leading-order wavefunctions of the ECM
we get the leading order density

〈Ψ(0)|ρ̂(r)|Ψ(0)〉 =
∑
k

〈λk|~r〉〈~r|λk〉, (7.5)

as a a sum of squares of hydrogen-like bound states. This means that the leading-
order density is given by a simple combination of exponentials and polynomials,
allowing its use in numerical plasma [52] or description of ionization in particle-in-
cell (PIC) computer codes for laser-matter interactions [101]. Furthermore, since
the ECM, unlike the DHF and TF calculations, provides fully analytical expressions
for electronic densities and is therefore particularly useful for applications requiring
repeated calculations. Relatively simple expressions resulting from our model can
be incorporated into existing software, used in the description of X-ray scattering on
Mössbauer crystals [102]. Explicit expressions are provided in Appendix A.3.
In figure 7.3 we plot the resulting dependence of electronic densities on the radial

coordinate r for selected neutral atoms. Despite the fact that the effective charge
model underestimates the density for high r, it agrees well with the DHF result
already in the leading-order approximation. Contrary to the TFD model, it correctly
reproduces all of the qualitative features, including all density oscillations and the
overall asymptotic behavior. In addition, we point out that the TFD model, unlike
the non-relativistic TF, does not have a universal dependence on the charge of the
nucleus [103]. For this reason, in order to obtain the electronic density, the TFD
equation needs to be repeatedly solved numerically, which is a nontrivial procedure.

7.3.2 First-order densities

Using the the same approach as for energies, we can also easily derive analytical ex-
pressions for the first-order electron densities. Let’s recall the perturbative expansion
due to the operator W of our multi-electron wave function

|Ψ〉 = |Ψ(0)〉+ |Ψ(1)〉+ ... = |Ψ(0)〉+
∑
σ

|σ〉〈σ|Ŵ |Ψ
(0)〉

E0 − Eσ
+ ... , (7.6)
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Figure 7.5: Atomic scattering factors of neutral xenon 54Xe, gold 79Au, lead 82Pb and ura-
nium 92U atoms, as a function of the scattering parameter s = sin θ/λ, [Å−1], with θ be-
ing Bragg’s angle. The quantity s is related to the absolute value of q from Eq. (7.14) as
q = 4πs · 0.529177. Dashed, green line is the analytic result via Eq. (7.14) of the ECM, while
the solid blue curve is a Gaussian fit of DHF from [104]. This figure has been published as
figure 4 in [68].

and split the intermediate states into single-electron and double-electron contribu-
tions just like in the calculation of energies

|Ψ〉 = |Ψ(0)〉+ |Ψ(1)
single〉+ |Ψ(1)

double〉... . (7.7)

Since ρ̂(r) it is a single-particle operator, only the single-electron part of Ψ(1) will
contribute to its expectation value, so that we have

ρ̂(r)
(1)
Ψ = 〈Ψ(0) + Ψ

(1)
single|ρ̂(r)|Ψ(0) + Ψ

(1)
single〉

= 〈Ψ(0)|ρ̂(r)|Ψ(0)〉+ 2〈Ψ(0)|ρ̂(r)|Ψ(1)
single〉+ 〈Ψ(1)

single|ρ̂(r)|Ψ(1)
single〉

=
∑
k

〈λk|~r〉〈~r|λk〉+ 2
∑
l,k

〈λk(r)|Ψ(1)
single,λl

(r)〉. (7.8)

Just as for energies, we can make use of the RCGF, to get the explicit expression
for the first order wave function, as

|Ψ(1)
single〉 =

∑
k

|Ψ(1)
single,λk

〉 =
∑
k

G̃λkŴ
(1)|λk〉+

∑
k,l 6=k

G̃λk〈λl|Ŵ (2)|λkλl〉, (7.9)

with implied exchange integrals.
As an example, we have plotted the radial dependence of the electronic density of

the neutral neon atom in figure 7.4. The left plot compares the ECM with the 1/Z

50



7.4 Atomic scattering factors

expansion (wchich corresponds to setting Z = Z∗). We can see that the difference
between them is significant and that the effective charge adjusts the width and height
of the density plot. However, it also shows, that the relative height of subsequent
density maxima can only be obtained with first order corrections. The right plot
meanwhile compares the ECM to the results of HF and TF calculations. It is clear
that unlike the TF model, the ECM reproduces the full shell structure with correct
number of density maxima already in the zeroth-order. Furthermore, the first-order
density aligns very well with the results of the HF calculation, except for large radial
distances, where the ECM slightly underestimates the decay rate.
It is instructive to consider, how each of the terms in (7.8) scales with the effective

nuclear charge, to see that subsequent terms do indeed get smaller rather quickly,
ensuring fast convergence of the perturbation series. As explained in chapter 4,
the charge/scale invariance of the Schrödinger equation leads to simple scaling of
wavefunctions and potentials:

Ψλ(r) ∝ (Z∗)
3
2 , G(x, y) ∝ Z∗, Wk,λ,λ ∝ Z∗. (7.10)

This in tern translates to scaling of density elements containing Ŵ (2), as

〈Ψ(0)|ρ̂(r)|Ψ(0)〉 ∝ (Z∗)3, (7.11)

〈Ψ(0)|ρ̂(r)|Ψ(1)〉 ∝ (Z∗)2, (7.12)

〈Ψ(1)|ρ̂(r)|Ψ(1)〉 ∝ Z∗. (7.13)

Elements containing Ŵ (1) scale in the same way, with an extra factor of (Z − Z∗).

7.4 Atomic scattering factors

Another example of a useful observable characteristic that can be easily approximated
using the ECM, are the atomic scattering factors. They are usually expressed [53]
as the Fourier transforms of electronic density

f(~q) =

∫
ρ(~r)ei~q·~rd~r, (7.14)

which in the leading-order can be easily be calculated analytically (see Appendix B.4
for further details).
The atomic scattering factors are very important for crystallography and X-ray

physics, since the crystal polarizability χ as the function of X-ray frequency ωr, can
be evaluated by employing the following relation [105]

χ(~g, ωr) =
4πS(~g)

Ω0ω2
r

f(~g), (7.15)

where Ω0 is the volume of a crystal cell, ~g the reciprocal lattice vector and S(~g) the
structure factor of the crystal.
In figure 7.5 we present the results for neutral xenon 54Xe, gold 79Au, lead 82Pb

and uranium 92U atoms. Our analytical expressions for atomic scattering factors
are comparable to the DHF calculation to within 25%. At the same time, they are
much more convenient to work with, being composed of finite sums of elementary
functions rather than Gaussian fits to specific pre-calculated points.
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Figure 7.6: Total and small component electronic densities of highly charged uranium 92U90+

and 92U87+. Red (total) and purple (small) lines are the leading-order ECM densities, black
circles (total) and black triangles (small) represent results of the DHF densities (obtained via
GRASP2k [40, 41]), and the solid green stands for TFD model. This figure has been published
as figure 3 in [68].

7.5 Highly charged ions

In recent years there has been particular interest [106] in the study both theoret-
ical [107] and experimental [108] of highly charged ions (HCI). Applications have
been found in many different areas of modern physics, from optical clocks [109] to
fundamental physics [110]. Since higher orders of the ECM are proportional to de-
creasing powers of Z and Z∗, it naturally becomes more accurate in describing HCI,
as compared to neutral atoms.
The results of the calculation of leading-order electronic densities of HCI are pre-

sented in figure 7.6. The electronic densities calculated using the ECM, despite being
very simple analytical expressions, coincide remarkably well with the ones obtained
from numerical solutions of the DHF equations.

7.6 Photoionization cross-section

As one more practical application of the ECM, we present the calculation of the total
cross section for the photoionization of a multi-electron atom. From first principles
it can be shown [111], that within the dipole approximation, the differential cross-
section for a photon with momentum k to overcome an ionization energy E0 and
produce an outgoing electron with momentum p can be calculated according to [112]

dσ

dΩ
=
αp(k + E0)

2πk

∣∣∣∣∫ ψ†f (~r)~αψi(~r)d~r

∣∣∣∣2 , (7.16)

where ψi is the initial bound-state wave function and the final wave function can be
described, as

ψf (~r) = 4π
∑
κ′,m′

ξκ′,m′

(
~p

p

)
e−iδκ′ψfree(~r), (7.17)

where ξ are normalized spinors [113], describing the angular distribution and polar-
ization of the outgoing electrons, and δκ′ are phase shifts, ensuring outgoing solutions.
Within the ECM, ψi and ψfree are described by negative and positive-energy so-

lutions to the Dirac equation for hydrogen with relevant effective charge. Summing
over all electrons in a given atom or ion allows us then to analytically calculate the
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Figure 7.7: Comparison of the ECM (circles) and D-ECM (solid) calculation of the total pho-
toionization cross-section for neon 10Ne (left) and calcium 20Ca (right). Hartree-Fock-Slater
calculation results are marked with red triangles and taken from [114].Experimental data are
taken from [115] for neon and from [116] for calcium. This figure has been published as figure
5 in [68].

total effective cross-section for the photoionization process within the leading-order
ECM (see Appendix B.5 for details).
In the presented calculation both initial and final wave functions have been de-

scribed using the same value of effective charge, so that they correspond to the same
effective potential. It is possible because the total cross-section includes the sum-
mation over a full set of intermediate electron excitations. The same approximation
was employed in [114]. On the other hand, the ionization energies Ek are calculated
separately for each electron, by finding the "valence effective charge" Z∗k , defined by
requiring the first order correction to Ek to vanish. Hence it can be found by solving

∆E
(1)
λ0

(Z∗k)−∆E
(1)
λk

(Z∗k) = 0, (7.18)

where λ0 is the ground state configuration and λk the final configuration, i. e. with-
out the ionised electron. Figure 7.7 presents the comparison of the results for two
example atoms with the analogous non-relativistic calculation, as well as results of
the Hartree-Fock-Slater (HFS) calculations [114]. It can be seen that shifting to a rel-
ativistic description improves the accuracy of such calculation. The results show that
the ECM gives reasonable qualitative description and can be used for approximating
physical characteristics dependent on transition matrix elements.

7.7 Transition probabilities

Transitions between electronic states are observed as emission lines in the spectrum
of a given atom or molecule. The observed intensity is related to the probability of
the transition, which is usually expressed per unit time (sec−1). For the purposes
of theoretical analysis it is more convenient to analyse atomic transitions in terms
of corresponding dimensionless quantities called oscillator strengths, which can be
defined mathematically, as [117]

f =
1

8π2
gλA2, (7.19)

where g is the ratio of statistical weights of the involved atomic states, λ the corre-
sponding wavelength and A the Einstein coefficient [118].
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The corresponding cross-section is then given by [118]

σ =
απ

2
fφω, (7.20)

where φω is the normalized angular frequency distribution 1.

7.7.1 Non-relativistic calculation of transition probabilities

Using the Schrödinger Hamiltonian, the oscillator strength of E1 transitions in the
dipole representation between states described by the wavefunctions ψi and ψf can
be calculated according to [120]

f = 2(Ef − Ei) |〈ψi|~r|ψf 〉|2 , (7.21)

where ~r is a vector of all of the spatial coordinates involved (and so dimension 3N).
Within the leading-order ECM, we have:

∆E(Z∗) ∼ (Z∗)2∆E (7.22)

ψ(r) ∼ (Z∗)3/2ψ(Z∗r), (7.23)

which makes the leading order oscillator strengths independent of effective charge

f (0) ∼ (Z∗)0, (7.24)

and by extension independent of the total charge Z. For these reason ECM can only
be used to approximate oscillator strengths when higher orders are included. The
first order correction to the wavefunctions is given by

ψ(1)(r) = ψ0WG̃ψ0 , (7.25)

where the Greens function sums over all virtual states differing from ψ(0) by at most
two electrons. However since ~r is a single-electron operator, only states that differ
by one electron from either ψi or ψf will contribute in the first order. That is, for a
transition

|λ1...λn−1, λ〉 → |λ1...λn, χ〉, (7.26)

the first order correction to 〈ψ(0)
i |~r|ψ

(0)
f 〉 is given in its entirety by:

∆f (1) =
∑
i

〈λλi|Ŵ |λi〉G̃λ~r|χ〉+ 〈χλi|Ŵ |λi〉G̃χ~r|λ〉

+
∑
i,j

〈λλi|Ŵ |χ〉G̃λi~r|λj〉+ 〈χλi|Ŵ |λ〉G̃λi~r|λj〉 (7.27)

with implied anti-symmetric exchange.
Corresponding results of the oscillator strengths for the two primary transitions

in the low-Z helium-like ions, namely 1s2 → (1s2p)1P1 and 1s2 → (1s3p)1P1 are
presented in figure 7.8. We can see that the dependence on nuclear charge, absent
from the zeroth-order result, is correctly reproduced in first order, with the accuracy
improving with increasing charge.

1Even though oscillator strengths are defined so as to represent the normalized probability of
transition, they can in some special cases be larger that unity [119].
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Figure 7.8: Comparison of the zeroth-order (green) and first-order (red) oscillator strengths
for the 1s2 → 1s2p (left) and 1s2 → 1s3p (right) transitions in helium-like ions with the
corresponding reference values from the NIST database [99].

7.7.2 Gauge invariance of matrix elements

Oscillator strengths can be expressed in terms of position matrix elements as [120]

fi→j =
2

3

∆Eij
gi
|〈ψi|~r|ψj〉|2, (7.28)

or in terms of momentum matrix elements as

fi→j =
2

3

1

gi∆Eij
|〈ψi|~p|ψj〉|2, (7.29)

where ∆Eij is the energy difference between the two states between which the tran-
sition occurs, and gi is the statistical weight of the state i.

In principle, the two formulas above should be consistent (that is produce the
same f), however this is often not the case for many calculation schemes, because of
incompatible numerical approximations. In fact, the equation obtained by equating
the above two

|〈ψi|~p|ψj〉| = ∆Eij |〈ψi|~r|ψj〉|, (7.30)

is sometimes used as an accuracy check of the approach used. In our case, it is
trivially satisfied in the zeroth order, since by ground rules of quantum mechanics
we always have

p̂ = i[Ĥ0, r̂] = i(Ĥ0r̂ − r̂Ĥ0), (7.31)

and if we multiply this relation by |λ〉 states on both sides (which are exact eigen-
functions of Ĥ0), we immediately get (7.30). The question of whether it is satisfied
in the full second order energy calculation is less obvious, but can relatively easily
be verified numerically.

7.7.3 Relativistic calculation of transition probabilities

For high-Z atoms and ions the relativistic corrections to transition probabilities be-
come important. An even more pronounced feature of the Dirac theory is that many
of the non-relativistically forbidden transitions become possible. In particular, the
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so-called magnetic transitions, that is those where the multipole of the photon field
causing the transition is not equal to the change in the angular momentum quan-
tum number. The full relativistic calculation is somewhat more involved due to the
non-diagonal interaction between electron spinors and the photon field. Neverthe-
less, using the Dirac Hamiltonian, the transition cross-section between the states
described by ψi and ψf can be found according to [112]

dσ

dΩ
=

α

2π
∆Eij |〈ψi|~α · ~eei~k·~r|ψf 〉|2, (7.32)

where ~e is the polarization vector of the photon field and the Dirac vector of matrices
is given by [113]

~α =

(
0 ~σ
~σ 0

)
. (7.33)

The simplest way to evaluate the above equation in practice is by expanding the
plane-wave photon field in Bessel functions [84]

e
~k·~r = 4π

∑
m,l

iljl (kr)Y
∗
l
m

(
~k

k

)
Y m
l

(
~r

r

)
, (7.34)

and after averaging over polarizations, we eventually arrive at

α∆Eij
|κ|

(2J + 1)(J + 1)

J
|τJ |2, (7.35)

where for magnetic transitions we get

τ = i
κi + κf√
J(J + 1)

CJ

∫
(G̃b(r)fa(r) + fb(r)G̃a(r))jJ(kr)r2dr, (7.36)

while for electric ones

τ = i

√
J(J + 1)

2J + 1
CJ

×
∫ ([

1 +
κa − κb
J + 1

]
G̃ffijJ+1(kr)−

[
1− κa − κb

J + 1

]
G̃iff jJ+1(kr)

−
[
1 +

κa − κb
J

]
G̃ffijJ−1(kr) +

[
1− κa − κb

J

]
G̃iff jJ−1(kr)

)
r2dr, (7.37)

where the matrix elements of the total angular momentum operator are given by

CJ(−1)ji−J−1/2
√

(2ji + 1)(2jf + 1)

(
ji jf J

1/2 1/2 0

)
(7.38)

7.8 Energies of excited states

There remains one more question to be discussed - how to efficiently calculate excited
energies. Excited states of atoms and ions tend to have much more degeneracy than
the ground state and so one needs to be particularly careful about the definition of
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Figure 7.9: The probabilities of the 1s2 → (1s2p)3P1 and 1s2 → (1s1/22p3/2)1 transitions are
compared to the corresponding transition with exact coupling. It can be readily seen that LS-
coupling is accurate for small Z, while jj-coupling becomes more accurate as the nuclear charge
increases. All data calculated with leading-order D-ECM.

the specific zeroth-order electronic configurations. As mentioned in chapter 5, in the
case of multiple degenerate configurations, the multi-electron wavefunction can be
obtained by diagonalizing the total Hamiltonian in the finite subspace spanned by
the degenerate states. However since the number of possible configurations generally
grows exponentially with the number of electrons, for the purpose of easy identifi-
cation of states, approximate coupling schemes are often employed. In practice this
means finding linear combinations of single-electron orbitals that result in definite
values of the total quantum numbers of the multi-electron wavefunction.

7.8.1 LS- vs. jj-coupling

The two simplest and most commonly used angular momentum coupling schemes
are called LS-coupling and jj-coupling, referring to the specific quantum numbers
that are fixed in the resulting configuration2.
In the case of LS-coupling the l and s quantum numbers of individual electrons

add up to the total L and S of the multi-electron configuration respectively. For
the purpose of evaluating relativistic corrections those can be further coupled to the
total J quantum number. For example, in the case of two-electron ions with one
electron in the 1s subshell and another in 2p, the possible LS−coupled states are:

(1s2p)1P1, (1s2p)3P1, (1s2p)3P2. (7.39)

On the other hand, in the jj-coupling scheme, the j quantum numbers of individual
electrons add up to the total J quantum number of the multi-electron configuration.
In the same example as above the three possible jj-coupled states are:

(1s1/22p1/2)1, (1s1/22p3/2)1, (1s1/22p3/2)2. (7.40)
2By convention, small letters refer to quantum numbers of single-electron orbitals, while capital
letters describe the total multi-electron wavefunction.

57



7 Atomic calculations with the effective charge model

0

1

2

3

4

5

6

7

8

0 0.5 1 1.5 2 2.5

(2s2) 3S0

(2s2p)3P0
(2s2p)3P1

(2s2p)3P2

(2s2p)1P1

(2p2)3P0
(2p2)3P1 (2p2)3P2

(2p2)1D2

(2p2)1S0
E

F
e2

2
+

J

3500

3600

3700

3800

3900

4000

4100

4200

4300

0 0.5 1 1.5 2 2.5

(1s2s)3S1(1s2p)3P0 (1s2p)3P1 (1s2p)3P2

(1s2s)1S0 (1s2p)1P1

(1s3s)3S1(1s3s)1S0

E
U
90
+

J

Figure 7.10: Comparison of excited energies of 26Fe22+ (left) and 92U90+ (right), calculated by
diagonalizing a finite matrix in the leading-order ECM (blue) with references values (red). The
reference values for 26Fe22+ are taken from the NIST database [99] and for 92U90+ calculated
with the CI-DFS method [38]. The scale is fixed so that the energy of the ground state (pink) is
equal to zero. Horizontal axis corresponds to total angular momentum quantum number of the
multi-electron wavefunction. Numerical values given in Appendix A.2.

It is not always readily seen whether the LS- and jj-coupling scheme describe
the same configurations. In this specific example only the third state is the same.
The other two are related by the so-called LS-jj recoupling, which in this example
happens to be (

(1s2p)1P1

(1s2p)3P1

)
=

1√
3

(√
2 1

1 −
√

2

)(
(1s1/22p1/2)1

(1s1/22p3/2)1

)
. (7.41)

In general, the LS-jj recoupling is given by

RLS→jj =
√

(2L+ 1)(2S + 1)(2j1 + 1)(2j2 + 1)


l1 l2 L
s1 s2 S
j1 j2 J

 , (7.42)

with the 9j−symbol defined in [121].

7.8.2 State mixing

It is important to emphasize that both of the above coupling schemes are approxima-
tions and the exact coupling can always be obtained by diagonalizing the Hamiltonian
in the corresponding subspace. However, the resulting coefficients of the linear com-
bination of single-electron orbitals, the so-called state mixing, depends on the nuclear
charge Z and in the case of the ECM also influences the effective charge Z∗. In prac-
tice, the LS-coupling gives accurate predictions for low-Z ions, while the jj-coupling
becomes more accurate as the nuclear charge increases. The transition cross-section
calculation can be an interesting way of demonstrating that. As an example, in fig-
ure 7.9 the probabilities of the 1s2 → (1s2p)3P1 and 1s2 → (1s1/22p3/2)1 transitions
are compared to the corresponding transition with exact coupling for different values
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7.8 Energies of excited states

of Z. It can be seen that the correct physical state, obtained from subspace diago-
nalization, corresponds to the LS-coupled state only for Z ∼ 2, and then gradually
gets closer to the jj-coupled state as Z increases.
Despite the fact that the subspace diagonalization procedure is only necessary

for degenerate states, it can also be useful in accounting for the mixing between
states with small energy separation, that are nevertheless not strictly degenerate.
This is because the perturbative corrections that these states contribute to each
others values of energy are correspondingly larger. Since the subspace diagonalization
procedure effectively accounts for all orders of perturbation coming from these states,
it can describe low laying excited states of multi-electron atoms with good accuracy
already in the leading-order. In figure 7.10 we show the result of diagonalizing
the 1s2{2s, 2p, 3s, 3p}2 subspace for be-like iron and the 1s{2s, 2p, 3s} subspace for
he-like uranium. Despite using very small subspaces, both examples result in correct
ordering of excited states already in the leading order, including all fine-structure
states.
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8 QED and nuclear corrections

This chapter presents the calculation of the leading-order contributions of the most
important effects previously neglected in our formulation of the ECM. Specifically,
the corrections to bound state energies coming from the Breit interaction, finite-
nuclear-size effect and vacuum polarization. The results show good agreement with
reference values already in the leading order.

8.1 Relativistic potentials

The potentials used in our derivation of the ECM and D-ECMwere all non-relativistic,
that is, of the form 1

r . This makes them instantaneous and so a good description only
of the interaction with the nucleus (since it is assumed stationary), but not of the
interaction between electrons, when they are moving with relativistic velocities. A
more accurate, fully relativistic form of the interaction between two charged particles
can be derived using the theory of quantum electrodynamics (QED). The equations
describing QED however, cannot be solved exactly, so in practice the resulting cor-
rections have to be treated perturbatively.
In order to improve the form of the potential, one needs to understand which

corrections are most relevant. For this reason let us first examine the scaling of
different interactions and their respective corrections. In Schrödinger theory the
interaction between the electrons and nucleus is proportional to the nuclear charge
squared Z2 (see (4.16)), while the first-order interaction between pairs of electrons
(see (4.18)) is proportional to Z (in the case of Z∗ = Z)1. The difference between the
Schrödinger and Dirac descriptions scales to leading order as (αZ)2 (see (4.35)), so
we can say that the relativistic corrections are of the order Z(αZ)2. Notice however
that, by using the fully relativistic D-ECM wavefunctions we have accounted for the
electron-nucleus interactions to all orders in (αZ).

Interactions in QED are conveniently represented using Feynmann diagrams [122],
where the leading-order interactions correspond to the exchange of a single virtual
photon. In the case of two electrons, such interaction is described (in the limit of
low frequency) by a potential of the form:

V (r) =
1

rij
+Bij , (8.1)

where Bij is an off-diagonal operator of the order Z(αZ)2, called the Breit opera-
tor [123]. It contains magnetic interaction coming from electron’s spin, as well as
leading-order retardation effects (both electric and magnetic). A similar correction
term can be written for the electron-nucleus interaction, but since we assume the
nucleus to be stationary, the is no retardation and only the magnetic effect remains.
Both of these are presented in figure 8.1.

1It is conventional to factor out the powers of Z and refer to the relative scaling of the electron-
electron interaction to the electron nuclear interaction, as 1/Z
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8 QED and nuclear corrections

Bγ γ

Figure 8.1: Feynman diagrams of the leading-order magnetic interaction between an electron and
the nucleus (left) and of the Breit interaction between two electrons (right). The double lines
represent bound states of electrons in the field of the nucleus. The wiggly line is the photon
propagator and triangle represents the interaction with the magnetic field of the nucleus.

8.2 Breit interaction

Using the Dirac matrices, defined by (3.15), we can write the Breit operator as [123]2

Bij =
1

2

(
~αi · ~αj
|~rij |

+
(~αi · rij)(~αj · ~rij)

|~rij |3
)
, (8.2)

where the indices i, j label a pair of electrons, and the inner product runs through
the three Dirac matrices ~α = (α1, α2, α3).
The operator Bij contains the 1

rij
potential, as well as leading-order retardation ef-

fects and the magnetic interaction coming from electron’s spin (notice that it involves
off-diagonal elements in the standard representation). Similarly there is a magnetic
interaction between the spin of the nucleus and that of the electrons, which in the
leading order is described by an exchange of a single virtual photon. Both of these
presented in figure 8.1.
Since the two terms in the Breit operator are similar in magnitude [125], for our

purposes we approximate the Breit operator as

Bij ≈
~αi · ~αj
|~rij |

. (8.3)

We can then apply the Wigner-Eckhart theorem [89] to the general case to get

〈λ1λ2|
~αi · ~αj
|ri − rj |

|λ3λ4〉 =
∑
i

〈λ1|αi|λ3〉〈λ2|αi|λ4〉
|r1 − r2|

= 2
∑
p,J

MpJ(λ3, λ1)MpJ(λ2, λ4)RP (g1g2f3f4)

+ 2
∑
p,J

MpJ(λ3, λ1)MpJ(λ2, λ4)RP (g1f2f3g4)

+ 2
∑
p,J

MpJ(λ3, λ1)MpJ(λ2, λ4)RP (f1g2g3f4)

+ 2
∑
p,J

MV (λ3, λ1)MpJ(λ2, λ4)RP (f1f2g3g4), (8.4)

2This is the low frequency limit of the Breit operator. The full frequency dependent version - as
implemented for example in the GRASP2k package - can be found in [124].

62



8.2 Breit interaction

with the angular part given by [126]

MJp(λ1, λ2) =
√

3(2l1 + 1)(2l2 + 1)(2J + 1)(2j1 + 1)(2j2 + 1) (8.5)

×
(

j1 j2 J
−m1 m2 m1 −m2

)(
l1 l2 p
0 0 0

)
l1 1/2 j1
l1 1/2 j1
k 1 k

 , (8.6)

and the radial by

Rp(ψ1ψ2ψ3ψ4) =

∫
ψ1(r1)ψ2(r2)ψ3(r1)ψ4(r2)

rp<

rp+1
>

r2
1r

2
2dr1dr2, (8.7)

where the overline indicates a flip of the sign of the relativistic quantum number κ.
Like in the Coulomb case, for a two-electron Slater determinant, we get a difference

between direct and exchange terms

〈λ1λ2|
~αi · ~αj
|ri − rj |

|λ1λ2〉 = 〈λ1|〈λ2|
~αi · ~αj
|ri − rj |

|λ1〉|λ2〉 − 〈λ1|〈λ2|
~αi · ~αj
|ri − rj |

|λ2〉|λ1〉, (8.8)

while the total contribution to the energy of a multi-electron atom can be written as

〈λ1...λn|
α1 · α2

r12
|λ1...λn〉 =

n∑
i<j

〈λiλj |
α1 · α2

|r1 − r2|
|λiλj〉

=
1

2

n∑
i,j

〈λiλj |
α1 · α2

|r1 − r2|
|λiλj〉, (8.9)

where the final form on the right hand side is most useful for deriving formulas for
closed shells.
Plugging in (8.4), we get the direct term as

〈λ1|〈λ2|
αi · αj
|ri − rj |

|λ1〉|λ2〉 = 8
∑
p

Mpp(λ1, λ1)Mpp(λ2, λ2)Rp(g1g2f1f2). (8.10)

However since ∑
m

(
j j J
−m m 0

)
= 0, (8.11)

the sum over projections vanishes in this case for any value of p∑
m

Mpp(λ, λ) = 0, (8.12)

so the direct term is zero for a closed shell. The exchange term on the other hand
becomes

Mλ1λ2 =〈λ1|〈λ2|
αi · αj
|ri − rj |

|λ2〉|λ1〉

=2
∑
p

[
εp(λ1, λ2)Rp(g1g1f2f2) + εp(λ1, λ2)Rp(f1f1g2g2)2

+ fp(λ1, λ2)Rp(g1g2f1f2)
]
. (8.13)
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8 QED and nuclear corrections

Element Z EBr
D−ECM(Z) EBr

D−ECM(Z∗) EBr
DHF ∆EBr

He 2 0.00005 0.00003 0.00006 50%
Be 4 0.00056 0.00034 0.00071 52%
C 6 0.00571 0.00312 0.00283 10%
Ne 10 0.0377 0.0179 0.0175 2%
Mg 12 0.0674 0.0334 0.0339 1%
Si 14 0.124 0.0623 0.0588 6%
S 18 0.290 0.146 0.143 2%
Ar 20 0.404 0.209 0.208 0%
Zn 30 1.74 0.831 0.838 1%
Kr 36 3.27 1.58 1.58 0%
Cd 48 8.73 4.25 4.28 1%

Table 8.1: Comparison of the magnetic Breit correction to the energy of closed-shell neutral atoms
between the 1/Z expansion up to first order (∆EBr(Z)), leading-order D-ECM (∆EBr(Z∗)) and
a full perturbative solution of the DHF equations (∆EBr

DHF ). Reference data from [98]. Last
column gives the relative difference between the leading-order D-ECM and DHF results.

After a trivial summation over m1,m2 and a complicated summation over J we
get the coefficients in closed form as

fp(λ1, λ2) = 2|κ1κ2|
(

j1 j2 p
−1/2 1/2 0

)2

(8.14)

εp(λ1, λ2) =
2|κ1κ2|
κ2 + 1/2

[
(κ2 − 1/2)

(
j1 j2 p
−1/2 1/2 0

)2

+ 2(κ2 + 1)

(
j1 |κ2 + 1| − 1/2 p

1/2 −1/2 0

)2 ]
. (8.15)

The corresponding magnetic correction to the electron-nuclear interaction can be
treated in an analogous way and the contribution of the direct term is similarly equal
to zero. However, in this case there is no exchange contribution, since the nucleus is
a distinguishable particle from the electron. This means there is no Breit correction
to the electron-nucleus interaction.
In table 8.1 we present the leading order ECM calculation of the Breit operator

contribution to energy of some closed-shell neutral atoms. We see that the accuracy
is of the order of 1% even for large atoms. In calculating the Breit correction, we
have used the value of effective charge found for the pure Dirac equation. One could
instead include the Breit term in the Hamiltonian to begin with, in order to find a
"self-consistent" value of effective charge. However, we found no significant difference
in the final result.

8.3 Finite-nuclear-size effect

Another class of corrections to the energy of atoms are those coming from the prop-
erties of the nucleus. So far we have been describing the nucleus, as a point particle
which is a good approximation only for small nuclei. For heavier ones, properties
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8.3 Finite-nuclear-size effect

Element Z rRMS ∆EFNS
1/Z ∆EFNS

D−ECM ∆EFNS
DHF

He 2 3.72 ×10−5 2.96 ×10−8 1.78 ×10−8 1.94 ×10−8

Be 4 4.36 ×10−5 7.36 ×10−7 4.40 ×10−7 5.69 ×10−7

C 6 4.67 ×10−5 4.31 ×10−8 2.35 ×10−8 3.59 ×10−6

Ne 10 5.75 ×10−5 5.19 ×10−5 2.43 ×10−5 3.90 ×10−5

Mg 12 5.78 ×10−5 1.14 ×10−4 5.55 ×10−5 9.25 ×10−5

Si 14 6.16 ×10−5 2.23 ×10−4 1.09 ×10−4 1.93 ×10−4

Ar 18 6.33 ×10−5 7.47 ×10−4 3.59 ×10−4 6.88 ×10−4

Zn 30 7.43 ×10−5 9.97 ×10−4 4.14 ×10−4 8.73 ×10−3

Kr 36 7.86 ×10−5 2.66 ×10−2 1.09 ×10−2 2.43 ×10−2

Cd 48 8.47 ×10−5 1.40 ×10−1 5.12 ×10−2 1.27 ×10−1

Table 8.2: Finite-nuclear-size corrections to energy of closed-shell neutral atoms calculated with
leading-order D-ECM and with the first-order 1/Z expansion compared to results of a DHF
calculation. Nuclear radii (rRMS) taken from [127]. Reference data taken from [128].

like size, shape and magnetic moment can have noticeable contributions to bind-
ing energies. In general, the most significant contribution comes from the size of
the nucleus [129]. For this reason, for the purpose of estimating the size of nuclear
corrections, we model the nucleus as a uniformly charged sphere

ρ(r) =
3Z

4πr3
0

θ(r0 − r), (8.16)

where r0 is the effective nuclear radius, related to the root-mean-square of the nuclear
charge distribution as

r0 =

√
5

3
〈r2〉. (8.17)

This leads to a nuclear potential of the form

VFNS =

{
r < r0 − Z

2r0

(
3− r2

r20

)
r > r0 −Z

r

(8.18)

The correction to total energy is given by the expectation value of the difference
between the finite-sized nuclear and point-like nuclear potentials

∆EFNS =
∑
λ

〈λ|δVFNS(r)|λ〉 =
∑
λ

〈λ|VFNS + Z/r|λ〉. (8.19)

The generating integral of the potential difference can easily be found analytically

Iλq (r0) =

∫ ∞
0

e−λrrqδVFNS(r) =

∫ r0

0
e−λrrq

Z

2r0

(
2r0

r
− 3 +

r2

r2
0

)
=
Z

λq

(
γq+3(λr0)

2λ3r3
0

− 3γq+1(λr0)

2λr0
− γq(λr0)

)
(8.20)

where γs(x) is the lower incomplete gamma function (see Appendix C.5).
Finally, since hydrogen-like wavefunctions are composed of elementary functions,

we can easily calculate the finite-nuclear-size correction for any configuration as a
finite sum of Iλq (r0) terms with corresponding powers. The results for some neutral
atoms are presented in table 8.2.

65



8 QED and nuclear corrections

γ γ

e−

e+

Figure 8.2: Feynman diagram of the leading-order vacuum polarization contribution to the
electron-nucleus interaction. The double lines represent bound states of electrons in the field of
the nucleus. Wiggly line is the photon propagator and cross represents the interaction with the
field of the nucleus. The double line represents a bound state of the electron and circle a free
electron-positron loop.

8.4 Vacuum polarization

With the Breit operator, we have included all QED corrections to the electron-
electron interaction up to the order of Z(αZ)2, with further corrections being at
least of order Z(αZ)3. There is however a correction to the nuclear-electron interac-
tion that is of the order α(αZ), corresponding to the simplest vacuum polarization
diagram, as shown in figure 8.2. The contribution of such interaction to the nuclear
potential is called the Uehling potential. It has been derived for an arbitrary nuclear
charge distribution ρN as [130]

VUe(r) = −8

3
α2

∫
r′ρN (r′)

e−2t|r−r′| − e−2t(r+r′)

4rt

(
1 +

1

2t2

) √
1− t2
t2

dtdr′. (8.21)

Using the charge distribution of (8.18), we get the generating integral of the
Uehling potential as∫

e−λrVUe(r)r
qdr = −2α2Z

πr3
0

∫
e−2r0t

(
Kλ,q(t) + Sλ,q(t)

− Sλ,q(−t)
)(

1 +
1

2t2

) √
1− t2
16t5

dt, (8.22)

and we have defined:

Sλ,q(t) =(1 + 2r0t)
γq((2t+ λ)r0)

(2t+ λ)q
, (8.23)

Kλ,q(t) =(1 + 2r0t+ e4r0t(2r0t− 1))
Γq((2t+ λ)r0)

(2t+ λ)q
, (8.24)

where γq and Γg are the lower and upper incomplete gamma functions respectively
(see Appendix C.5). Closed form of this expression can be found in the limit of small
nuclear radius

Iλq (r0) =

∫
e−λrVUe(r)r

qdr = −α
2Z

12π
(Jq,1(λ)− λJq+1,3(λ)) +O[r2

0], (8.25)
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8.4 Vacuum polarization

Element Z rRMS ∆EUe
1/Z ∆EUe

D−ECM

He 2 3.72 ×10−5 3.42 ×10−5 2.39 ×10−5

Be 4 4.36 ×10−5 2.92 ×10−4 2.13 ×10−4

C 6 4.67 ×10−5 9.37 ×10−4 6.55 ×10−4

Ne 10 5.75 ×10−5 4.12 ×10−3 2.69 ×10−3

Mg 12 5.78 ×10−5 6.89 ×10−3 4.64 ×10−3

Si 14 6.16 ×10−5 1.05 ×10−2 7.18 ×10−3

Ar 18 6.33 ×10−5 2.10 ×10−2 1.45 ×10−2

Zn 30 7.43 ×10−5 8.55 ×10−4 5.70 ×10−4

Kr 36 7.86 ×10−5 1.41 ×10−1 9.55 ×10−2

Cd 48 8.47 ×10−5 3.13 ×10−1 2.12 ×10−1

Table 8.3: Uehling corrections to energy of closed-shell neutral atoms calculated with leading-
order D-ECM compared to the first-order 1/Z expansion. Nuclear radii (rRMS) taken from [127].

where

Jq,i(λ) = Γ
(q

2

)2
(

q

(q + 1)(q + 3)
3F2

[
q

2
,
q + 1

2
,
q

2
+ 1;

q + 5

2
,
i

2
;
λ2

4

]

+
2

q + 1
3F2

[
q

2
,
q + 1

2
,
q

2
;
q + 3

2
,
i

2
;
λ2

4

])
, (8.26)

and 3F2 are the generalized hypergeometric functions.
Once again, we can calculate the resulting correction for any configuration as a

finite sum of Iλq (r0) terms with corresponding powers. The results for some neutral
atoms are presented in table 8.3.
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9 Conclusions and outlook

9.1 Conclusions

We have investigated the accuracy and efficiency of the ECM and D-ECM in describ-
ing multi-electron atoms and ions. We have shown, that despite being extremely sim-
ple, the analytical approximations produced by the leading-order ECM and D-ECM
nevertheless provide accuracy sufficient to obtain correct energy ordering of different
electronic configurations, both in ground and excited states. They are also useful in
approximating a wide range of other atomic properties. They provide accuracy no
worse that ∼ 20% in approximating electronic densities, scattering cross-sections and
photoionization cross-sections, and can correctly reproduce the main features, such
as electron density maxima coming from the shell structure. Moreover, the accuracy
is independent of the number of electrons in an atom, with no more than ∼ 6% error
of the total energy for any neutral atom, and significantly better for HCI.
We have also investigated the feasibility of an analytical calculation of second-

order corrections. We have shown how the single-electron second-order corrections to
energies and first-order corrections to electron densities can be performed analytically
in both ECM and D-ECM, by finding generating integrals of the RCGF and RCDGF.
These increase the accuracy of the energy calculation to below ∼ 1% for all neutral
atoms of the periodic table. We have also numerically evaluated the double-electron
corrections to energy, that include the effects of electron-electron correlations, and
shown that they correctly reproduce correlation-caused atomic properties, such as
electron affinities.
Finally, we have investigated the evaluation of other types of energy corrections

within the D-ECM. In particular, those related to the Breit interaction, finite-
nuclear-size and vacuum polarization. The accuracy is no worse than ∼ 5% in the
leading-order approximation in all of the above, even for atoms with a large num-
ber of electrons, and can be significantly improved, by evaluating the second-order
corrections.
We have shown that ECM is superior to the TF model in approximating both

electronic wavefunctions and energies, already in the leading order. It also posses
well-defined higher order corrections, that can be used to further increase it’s accu-
racy, and can easily be incorporated, as an initial approximation of other methods,
such as the HF method. We therefore expect that the ECM can replace the TF
model for all applications were the latter is currently utilised.
We would like to stress, that the introduction of the effective charge Z∗, instead

of the usage of the nuclear charge Z, i.e. Z∗ 6= Z, is exactly the key idea, that sig-
nificantly increases the accuracy of the leading-order approximation, while rendering
the complexity of all calculations low.
Finally, we would like to emphasize that even though our analytical expressions

are sometimes complex, all special functions in the presented calculations reduce to
expressions containing gamma functions and/or elementary functions only. There-
fore, all relevant evaluations of energies, electron densities and scattering factors can
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9 Conclusions and outlook

be performed without any numerical or convergence issues.

9.2 Outlook

So far we have calculated ground state energies up to second order and the wave
functions up to first order of perturbation theory. However, the ECM and D-ECM
might just as easily be extended to higher orders. The third order energy correction
is defined as a double series over intermediate states:

∆E
(3)
λ =

∑
σ1,σ2 6=λ

〈λ|Ŵ |σ1〉〈σ1|Ŵ |σ2〉〈σ2|Ŵ |λ〉
(Eλ − Eσ1)(Eλ − Eσ2)

− 〈λ|Ŵ |λ〉
∑
σ

|〈λ|Ŵ |σ〉|2
(Eλ − Eσ)2

. (9.1)

This can again be split into a single-electron and a double-electron part and evalu-
ated with a pair of hydrogen Green’s functions G or double Green’s functions G(2). It
is worth investigating, whether the procedure outlined in chapter 6 allows for a fully
analytical calculation of ∆E

(3)
single, with multiple convolution integrals over Whitaker

functions to express ∆E
(3)
double.

On the other hand, the derivatives of Dirac hydrogen-like wavefunctions presented
in chapter 6, can be used to derive analytical approximations to atomic properties up
to second order in Dirac theory. This will allow for improved accuracy off all results
presented in chapters 7 and 8, especially in the high-Z examples. Of particular
interest is the calculation of transition probabilities outlined in section 7.7, where the
relativistic second-order expressions could be employed to study examples difficult
to calculate with other methods, such as the Fe XVII and Ni XIX lines observed in
solar corona [131].
Furthermore, the leading-order approximation can easily be modified to include

interactions with external fields. Since the ECM and D-ECM provides the analytic
calculation of matrix elements, it is particularly suited for problems, where tradi-
tionally it is necessary to use large databases of numerical solutions obtained with
indirect optimization procedures such as the HF method or estimational analytical
models such as the semi-classical TF model. One such problem may be the time
emission of the system, which is periodically driven with a strong field [54]. The
Hamiltonian of such system is composed of three parts:

Ĥ(t) = Ĥa + ĤSF(t) + ĤQEM, (9.2)

where ĤSF is the strong time-dependent classical field, and HQEM is the vacuum
electromagnetic field, interaction with which can be treated perturbatively.
Another example might be the process of Bremsstrahlung, which is important for

many areas, such as crystallography and approaching it with the HF method becomes
inefficient for heavy atoms [132].
Finally, we are working towards releasing a complete software package, capable of

automated and efficient calculation of all observables of interest for many-electron
atoms and ions (electron densities, scattering factors, ionization energies etc.). As
previously mentioned, a first version capable of performing the calculations in the
zeroth order is already available (https://github.com/tupos/effz), and we are working
towards extending it to second order.
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A Data tables

A.1 Ground state energies of the first 100 neutral atoms

In table A.1 we present the values of ground state energies for neutral atoms in
the range Z = 1 − 100, calculated with leading-order ECM, second-order ECM
and leading-order D-ECM, together with the corresponding non-ralativistic Z∗ and
relativistic Z∗R. For comparison we also provide HF results from [97] and DHF
results from [98] 1.

1In the referenced DHF calculation, the Breit interaction and the nuclear size effect were taken
into account and the approximation of the center of gravity of the configuration was used. For the
purpose of comparison with D-ECM, we have subtracted the Breit interaction corrections from
the reference values, however kept the finite nuclear size correction included, since this effect was
not listed explicitly.
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A Data tables

Z Z∗ E
(0)
ECM E

(2)
single EHF Z∗R E(0)

D−ECM EDHF

1 1 -0.5 -0.5 -0.5 1 -0.5 -0.5
2 1.68750 -2.84766 -2.86100 -2.86168 1.68749 -2.84777 -2.86169
3 2.54542 -7.28906 -7.41135 -7.43273 2.54544 -7.28980 -7.43301
4 3.37160 -14.2096 -14.5212 -14.5730 3.37164 -14.2122 -14.5745
5 4.15111 -23.6936 -24.4115 -24.5291 4.15118 -23.7002 -24.5335
6 4.91268 -36.2016 -37.4927 -37.6886 4.90695 -36.1297 -37.6704
7 5.66045 -52.0662 -54.1107 -54.4009 5.64990 -51.8947 -54.3181
8 6.38231 -71.2844 -74.3812 -74.8094 6.38076 -71.2870 -74.8094
9 7.09751 -94.4525 -98.8188 -99.4093 7.09822 -94.5296 -99.4778
10 7.80729 -121.908 -127.769 -128.547 7.80832 -122.026 -128.656
11 8.65613 -154.020 -160.894 -161.859 8.65748 -154.203 -162.028
12 9.49720 -190.415 -198.448 -199.615 9.49893 -190.687 -199.867
13 10.3161 -230.579 -240.453 -241.877 10.3182 -230.966 -242.241
14 11.1294 -275.254 -287.171 -288.854 11.1305 -275.710 -289.344
15 11.9377 -324.603 -338.769 -340.719 11.9379 -325.155 -341.345
16 12.7366 -378.517 -395.236 -397.505 12.7402 -379.438 -398.409
17 13.5314 -437.400 -456.884 -459.482 13.5365 -438.645 -460.704
18 14.3222 -501.418 -523.879 -526.818 14.3285 -503.010 -528.397
19 15.1910 -571.305 -595.918 -599.165 15.1983 -573.335 -601.178
20 16.0556 -646.244 -673.183 -676.758 16.0641 -648.800 -679.224
21 16.8063 -723.779 -755.341 -759.736 16.8163 -726.911 -762.887
22 17.5526 -806.609 -843.167 -848.406 17.5638 -810.364 -852.242
23 18.2939 -894.773 -936.754 -942.884 18.3057 -899.166 -947.515
24 18.9135 -984.973 -1035.65 -1043.36 19.0435 -993.582 -1048.82
25 19.7636 -1087.71 -1141.81 -1149.87 19.7767 -1093.63 -1156.42
26 20.4882 -1192.25 -1253.26 -1262.44 20.5065 -1199.57 -1270.37
27 21.2099 -1302.72 -1371.06 -1381.41 21.2325 -1311.48 -1390.84
28 21.9279 -1419.13 -1495.28 -1506.87 21.9541 -1429.38 -1517.98
29 22.5146 -1536.57 -1625.17 -1638.96 22.6724 -1553.52 -1651.96
30 23.3548 -1670.43 -1763.60 -1777.85 23.3881 -1684.11 -1792.94
31 24.1826 -1809.22 -1908.47 -1923.26 24.2190 -1825.05 -1940.69
32 25.0083 -1954.42 -2060.00 -2075.36 25.0473 -1972.55 -2095.37
33 25.8319 -2106.13 -2218.27 -2234.24 25.8742 -2126.78 -2257.11
34 26.6516 -2264.11 -2383.19 -2399.87 26.6990 -2287.85 -2426.01
35 27.4694 -2428.77 -2555.03 -2572.44 27.5214 -2455.76 -2602.16
36 28.2853 -2600.19 -2733.88 -2752.05 28.3419 -2630.73 -2785.70
37 29.1585 -2780.21 -2919.52 -2938.36 29.2196 -2814.78 -2976.33
38 30.0296 -2966.85 -3111.99 -3131.55 30.0955 -3005.84 -3174.28
39 30.8213 -3155.02 -3310.59 -3331.68 30.8926 -3198.62 -3379.60
40 31.6110 -3350.00 -3516.37 -3539.00 31.6879 -3398.57 -3592.53
41 32.3199 -3546.33 -3728.64 -3753.60 32.4810 -3605.69 -3813.19
42 33.1052 -3755.01 -3949.05 -3975.55 33.2724 -3820.19 -4041.76
43 33.9674 -3976.23 -4177.47 -4204.79 34.0622 -4042.09 -4278.27
44 34.6664 -4192.63 -4411.72 -4441.54 34.8505 -4271.60 -4522.95
45 35.4442 -4422.14 -4654.37 -4685.88 35.6371 -4508.76 -4775.81
46 36.1379 -4652.44 -4903.88 -4937.92 36.4218 -4753.60 -5037.02
47 36.9945 -4902.97 -5162.74 -5197.70 37.2051 -5006.32 -5306.69
48 37.8493 -5160.83 -5429.17 -5465.13 37.9870 -5267.08 -5584.77
49 38.6966 -5424.43 -5703.19 -5740.17 38.8426 -5540.99 -5871.25
50 39.5426 -5695.47 -5984.91 -6022.93 39.6968 -5823.00 -6166.28
51 40.3872 -5974.00 -6274.40 -6313.49 40.5507 -6113.22 -6469.96
52 41.2295 -6259.79 -6571.53 -6611.78 41.4036 -6411.79 -6782.41
53 42.0706 -6553.19 -6876.53 -6917.98 42.2552 -6718.70 -7103.73
54 42.9104 -6854.26 -7189.47 -7232.14 43.1059 -7034.15 -7434.02
55 43.7925 -7165.57 -7510.20 -7553.93 43.9986 -7361.18 -7773.04
56 44.6732 -7484.40 -7838.70 -7883.54 44.8903 -7696.76 -8121.03
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Z Z∗ E
(0)
ECM E

(2)
single EHF Z∗R E

(0)
D−ECM EDHF

57 45.4977 -7804.64 -8174.35 -8221.07 45.6404 -8026.58 -8478.09
58 46.2332 -8125.81 -8516.62 -8566.87 46.3891 -8365.02 -8844.56
59 46.8783 -8447.55 -8865.53 -8921.18 47.1364 -8712.08 -9220.65
60 47.6094 -8783.92 -9224.48 -9283.88 47.8818 -9067.72 -9606.58
61 48.3384 -9127.99 -9591.84 -9655.10 48.6258 -9432.19 -10002.5
62 49.0657 -9479.96 -9967.76 -10035.0 49.3687 -9805.72 -10408.4
63 49.7914 -9839.95 -10352.3 -10423.5 50.1103 -10188.1 -10824.5
64 50.6075 -10216.4 -10747.6 -10820.7 50.8510 -10579.7 -11251.0
65 51.2340 -10582.4 -11146.7 -11226.6 51.5906 -10980.7 -11688.1
66 51.9530 -10965.9 -11557.2 -11641.5 52.3290 -11391.0 -12135.8
67 52.6702 -11357.4 -11976.5 -12065.3 53.0660 -11810.6 -12594.2
68 53.3856 -11757.1 -12404.7 -12498.2 53.8019 -12239.8 -13063.7
69 54.0996 -12165.2 -12841.9 -12940.2 54.5370 -12678.8 -13544.3
70 54.8124 -12581.8 -13288.3 -13391.5 55.2714 -13127.8 -14036.1
71 55.6210 -13017.6 -13746.6 -13851.8 56.1005 -13599.6 -14539.3
72 56.4286 -13462.0 -14213.9 -14321.2 56.9293 -14081.8 -15053.8
73 57.2350 -13915.1 -14690.2 -14799.8 57.7574 -14574.5 -15580.0
74 58.0403 -14376.8 -15175.6 -15287.5 58.5853 -15077.9 -16117.7
75 58.8447 -14847.3 -15670.3 -15784.5 59.4133 -15592.1 -16667.2
76 59.6472 -15326.2 -16173.9 -16290.6 60.2412 -16117.2 -17228.8
77 60.4487 -15813.9 -16686.8 -16806.1 61.0688 -16653.3 -17802.5
78 61.1879 -16300.8 -17208.2 -17331.1 61.8960 -17200.6 -18377.5
79 61.9874 -16806.4 -17739.9 -17865.4 62.7230 -17759.2 -18987.1
80 62.8473 -17330.8 -18281.7 -18409.0 63.5500 -18329.3 -19598.1
81 63.7020 -17861.7 -18832.7 -18961.8 64.4318 -18920.7 -20221.8
82 64.5560 -18401.7 -19393.0 -19524.0 65.3135 -19523.9 -20858.3
83 65.4092 -18950.8 -19962.7 -20095.6 66.1966 -20138.7 -21507.8
84 66.2610 -19508.5 -20541.5 -20676.5 67.0798 -20765.8 -22170.5
85 67.1120 -20075.4 -21129.8 -21266.9 67.9631 -21405.1 -22846.7
86 67.9623 -20651.5 -21727.6 -21866.8 68.8465 -22056.9 -23528.2
87 68.8470 -21241.1 -22334.9 -22475.9 69.7641 -22727.3 -24203.5
88 69.7309 -21839.6 -22951.5 -23094.3 70.6819 -23410.6 -24956.6
89 70.5707 -22437.9 -23576.6 -23722.2 71.4937 -24081.0 -25687.7
90 71.4096 -23045.4 -24211.2 -24359.6 72.3057 -24764.2 -26433.1
91 72.1161 -23639.5 -24850.7 -25007.1 73.1179 -25460.3 -27193.3
92 72.8875 -24254.1 -25502.5 -25664.3 73.9302 -26169.3 -27968.5
93 73.6578 -24878.0 -26164.2 -26331.5 74.7427 -26891.7 -28759.2
94 74.3604 -25499.2 -26833.3 -27008.7 75.5556 -27627.7 -29565.3
95 75.1286 -26141.7 -27515.0 -27695.9 76.3696 -28377.3 -30387.6
96 75.9626 -26805.4 -28209.0 -28392.8 77.1841 -29141.0 -31226.0
97 76.7280 -27466.1 -28910.3 -29099.8 77.9993 -29918.8 -32081.0
98 77.4251 -28124.0 -29619.4 -29817.4 78.8149 -30711.0 -32953.0
99 78.1888 -28803.8 -30341.2 -30545.0 79.6310 -31517.7 -33842.1
100 78.9514 -29493.1 -31073.2 -31282.8 80.4478 -32339.2 -34749.1

Table A.1: Comparison of the values of the total energy of the ground state of neutral atoms be-
tween the ECM and the HF method. In order from the left: total nuclear charge Z, non-relativistic
effective charge Z∗, leading-order ECM energy (E(0)

ECM ), single-electron second-order ECM en-
ergy (E(0)

single), numerical solutions of HF equations (EHF) [97], relativistic effective charge Z∗R,

leading-order D-ECM energy E(0)
D−ECM , numerical solutions of DHF equations (EDHF) [98].
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A.2 Excited energies

In tables A.2 and A.3 we provide the numerical values of excitation energies used for
the comparison on figure 7.10. The results have been obtained by diagonalizing the
Hamiltonian in a finite subspace within the leading order D-ECM. See section 7.8
for details.

Configuration J± Z∗ ED−ECM CI-DFS ED−ECM/CI-DFS · 100%

1s2 0+ 91.80 -9651.37 -9651.45 0.001%
1s12s1 1+ 91.92 3554.40 3554.44 0.001%

1s12p1
1/2 0− 91.82 3561.28 3561.23 -0.001%

1s12p1
1/2 1− 91.82 3561.32 3561.28 -0.001%

1s12p1
3/2 2− 91.82 3562.41 3562.34 -0.002%

1s12s1 0+ 91.90 3723.01 3723.01 0%
1s12p1

3/2 1− 91.89 3724.83 3724.77 -0.002%

1s13s1 1+ 91.89 4261.56 4261.57 0%
1s13s1 0+ 91.83 4263.38 4263.31 -0.002%

Table A.2: Comparison of the first few excited energies of he-like uranium ions 92U90+, calculated
with a finite subset diagonalization within the leading-order D-ECM, with the results obtained by
the configuration-interaction Dirac-Fock-Sturm method [38] (∆E/EDHF ·100%) and the relative
difference between these two in percentages.

Configuration J± Z∗ ED−ECM Eexp ED−ECM/Eexp · 100%

1s22s2 0+ 25.519 -812.6 - -
1s22s12p1 0+ 25.513 1.618 1.586 2.0%

1s22s12p1
1/2 1− 25.509 1.767 1.727 2.3%

1s22s12p1
3/2 2− 25.509 2.201 2.150 2.3%

1s22s12p1
3/2 1+ 25.504 3.521 3.428 2.6%

1s22p2
1/2 0+ 25.314 4.764 4.356 8.6%

1s22p2
1/2 1+ 25.319 5.092 4.680 8.1%

1s22p1
1/22p1

3/2 2+ 25.317 5.181 4.883 5.8%

1s22p2
3/2 2− 25.321 5.846 5.487 6.1%

1s22p2
3/2 0+ 25.309 6.994 6.482 7.3%

Table A.3: Comparison of the first few excited energies of be-like iron ions 26Fe
22+, calcu-

lated with a finite subset diagonalization within the leading-order D-ECM, with experimental
values taken from the NIST database(Eexp) and the relative difference between these two in
percentages.
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A.3 Zeroth order D-ECM densities

Here we give the full expressions for electron densities of few-electron atoms and ions
calculated within the leading-order D-ECM as a function of u = 2Z∗r, using the
notation:

h =

√
γ + 1

2
, γ =

√
1− (αZ∗)2. (A.1)

For the ions with up to 10 electrons we can write compactly:

ρ
(0)
D−ECM(r, Z∗) =

4(Z∗)3

Γ(2γ + 1)

(
4e−uu2γ−2 +

e−
u
2h

(
u
2h

)2γ−2

(γ + 1)2
Qelement

( u
2h

))
, (A.2)

where the polynomials Q are calculated separately for each ion 2:

QHe(x) = 0 (A.3a)

QLi(x) =
1

4(2h− 1)
x2 − h+ 1

2
x+

h+ 1

2
(2h− 1) (A.3b)

QBe(x) =
1

2(2h− 1)
x2 − (h+ 1)x+ (h+ 1)(2h− 1) (A.3c)

QB(x) =

(
(2h− 1)

4(2γ + 1)
+

1

2(2h− 1)

)
x2 − 3h+ 1

2
x+ 1/2(h− γ) + (h+ 1)(2h− 1)

(A.3d)

QC(x) =

(
(2h− 1)

2(2γ + 1)
+

1

2(2h− 1)

)
x2 − 2cx+ (h− γ) + (h+ 1)(2h− 1) (A.3e)

QN(x) =

(
3(2h− 1)

4(2γ + 1)
+

1

2(2h− 1)

)
x2 − 5h− 1

2
x+ 3/2(h− γ) + (h+ 1)(2h− 1)

(A.3f)

QO(x) =

(
(2h− 1)

(2γ + 1)
+

1

2(2h− 1)

)
x2 − (3h− 1)x+ 2(h− γ) + (h+ 1)(2h− 1)

(A.3g)

QF(x) =

(
5(2h− 1)

4(2γ + 1)
+

1

2(2h− 1)

)
x2 − 7h− 3

2
x+ 5/2(h− γ) + (h+ 1)(2h− 1)

(A.3h)

QNe(x) =

(
3(2h− 1)

2(2γ + 1)
+

1

2(2h− 1)

)
x2 + 2(1− 2c)x+ 3(h− γ) + (h+ 1)(2h− 1)

(A.3i)

2Here the atomic symbol refers to the number of electrons. The nuclear charge only influences the
value of the effective charge Z∗.
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A.4 First order ECM densities

Here we give the full expressions for electron densities of few-electron neutral atoms
calculated with the ECM up to the first order, using analytic integration of the
RCGF. As a function of u = Z∗r we can write:

ρ(1)(r, Z∗) =e−u
(
QEl1 (u) + Z∗QEl2 (u) + ξ1Q

El
3 (u) + ξ2Q

El
4 (u) + ξ3Q

El
4 (u)

)
+ e−2u

(
QEl6 (u) + Z∗QEl7 (u) + ξ1Q

El
8 (u) + ξ2Q

El
9 (u) + ξ3Q

El
10 (u)

)
+ e−3uQEl11 (u) + e−4uQEl12 (u) + e−3/2uQEl13 (u), (A.4)

where the ξ coefficients can be written in terms of the Einstein function (see Ap-
pendix) as:

ξ1 = Ein(−u) + log(2), ξ2 = Ein(−2u) + log(3),

ξ3 = Ein(−u/2) + log(3/2), ξ4 = Ein(−2u) + log(2),

ξ5 = Ein(−u) + log(3/2), ξ6 = Ein(u/2)− log(4/3).

The polynomials Q(u) have to be calculated separately for each atom 3:

QHe
6 (u) = 3u+

73

2
u2 − 22u3 (A.5a)

QHe
7 (u) = 16u2(u− 1) (A.5b)

QHe
8 (u) = 3u2 (A.5c)

QHe
12 (u) = −u(4u+ 3); (A.5d)

QLi
1 (u) = −1027u5

5832
+

31789u4

17496
− 16783u3

4374
+

7045u2

4374
+

298u

729
(A.6a)

QLi
2 (u) = u2

(
u3

8
− u2 + 2u− 1

)
(A.6b)

QLi
4 (u) =

149

729
(u− 2)2u2 (A.6c)

QLi
6 (u) = −25382u3

729
+

297763u2

4374
+

6859u

729
(A.6d)

QLi
7 (u) = 16(u− 1)u2 (A.6e)

QLi
8 (u) = 6u2 (A.6f)

QLi
9 (u) =

9344

729
(u2) (A.6g)

QLi
11(u) = −19u4

18
− 4475u3

729
− 1607u2

81
− 4970u

729
(A.6h)

QLi
12(u) = −3u− 4u2; (A.6i)

3Polynomilas that are not provided are equal to zero.
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QBe
1 (u) = 2(u− 2)u2

(
−168635u2

373248
+

8950903u

2239488
− 75323

93312u
− 2192035

1119744

)
(A.7a)

QBe
2 (u) =

u2

4
(u− 2)

(
u2 − 6u+ 4

)
(A.7b)

QBe
3 (u) =

51

128
(u− 2)2u2 (A.7c)

QBe
4 (u) =

298

729
(u− 2)2u2 (A.7d)

QBe
5 (u) = 0 (A.7e)

QBe
6 (u) = −u

6

16
− 3u5

16
− 7u4

32
− 4296941u3

93312
+

28064399u2

279936
+

700805u

46656
(A.7f)

QBe
7 (u) = 16u2(u− 1) (A.7g)

QBe
8 (u) = 6u2 (A.7h)

QBe
9 (u) =

18688

729
u2 (A.7i)

QBe
11 (u) = −19u3

9
+

8950u2

729
+

3214u

81
+

9940

729
(A.7j)

QBe
12 (u) = −u (4u+ 3) ; (A.7k)

QN
1 (u) = −3656977u5

3359232
+

78700147u4

6718464
− 21160081u3

1119744
+

2453083u2

373248
+

1557457u

419904
(A.8a)

QN
2 (u) =

3u5

8
− 5u4

2
+ 4u3 − 2u2 (A.8b)

QN
3 (u) =

305u4

128
− 417u3

64
+

417u2

64
(A.8c)

QN
4 (u) =

2071u4

6561
− 1192u3

729
+

1192u2

729
(A.8d)

QN
5 (u) =

1024u4

6561
(A.8e)

QN
6 (u) = −u

6

8
− 5u5

8
− 19u4

16
− 22117093u3

279936
+

151975661u2

839808
+

4399141u

139968
(A.8f)

QN
7 (u) = 16u2(u− 1) (A.8g)

QN
8 (u) = 6u2 (A.8h)

QN
9 (u) =

132352u2

2187
(A.8i)

QN
10(u) =

4096u2

2187
(A.8j)

QN
11(u) = −19u4

6
− 149503u3

6561
− 532969u2

6561
− 202670u

6561
(A.8k)

QN
12(u) = −4u2 − 3u (A.8l)

QN
13(u) =

2048u3

6561
− 4096u2

6561
− 8192u

6561
; (A.8m)
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QNe
1 (u) = −810643u5

419904
+

1056691u4

52488
− 87721u3

3456
+

3498481u2

279936
+

390739u

52488
(A.9a)

QNe
2 (u) =

u5

2
− 3u4 + 4u3 − 2u2 (A.9b)

QNe
3 (u) =

83u4

16
− 183u3

16
+

183u2

16
(A.9c)

QNe
4 (u) =

1460u4

6561
− 1192u3

729
+

1192u2

729
(A.9d)

QNe
5 (u) =

2048u4

6561
(A.9e)

QNe
6 (u) = −u

6

4
− 7u5

4
− 43u4

8
− 4118851u3

34992
+

1689950u2

6561
+

808279u

17496
(A.9f)

QNe
7 (u) = −16u2(1− u) (A.9g)

QNe
8 (u) = 6u2 (A.9h)

QNe
9 (u) =

208640u2

2187
(A.9i)

QNe
10 (u) =

8192u2

2187
(A.9j)

QNe
11 (u) = −38u4

9
− 218456u3

6561
− 805604u2

6561
− 315880u

6561
(A.9k)

QNe
12 (u) = −u(4u+ 3) (A.9l)

QNe
13 (u) =

4096u3

6561
− 8192u2

6561
− 16384u

6561
; (A.9m)
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B Details of the calculations

This chapter provides more details of the calculations performed throughout the
main body of the thesis (in order of appearance).

B.1 Details of solving the TFD model

Section 2.1 describes how the TF model requires a numerical solution of a differential
equation known as the TF equation. It has been known since at least 1954 [133] that
the relativistic version of this equation can be formally derived in an analogous way
by starting from the Dirac Hamiltonian. The result, written in atomic units reads
[134]

χ′′(x) = x−1/2

(
χ(x) +

Z

bc2
χ′(x)

(
χ(x)− 1

2
xχ′(x)

))3/2

, (B.1)

where c is the speed of light,

x =
r

b
, b =

(
9π2

128Z

)1/3

, (B.2)

and the dimensionless self-consistent potential χ(x) is related to the self-consistent
potential of the TF model as

φ(r) = Zχ(x)− φ0, (B.3)

with the constant φ0 determined from the normalization condition. For neutral
atoms φ0 equals zero.
Equation (B.1) will be referred to as the TFD equation. Note, that in the non-

relativistic limit, i.e., when the speed of light tends to infinity, it reduces to the TF
equation (2.7).
The boundary conditions for the TFD equation in the case of neutral atoms are

given by [134]

χ(0) = 1, χ(∞) = 0. (B.4)

As mentioned in section 2.1, in order to solve such equation, one needs to use the
shooting method. This means reformulating the boundary value problem as an initial
value one

χ0 = 0, χ′(0) = µ, (B.5)

and seeking a value of µ that leads to the correct behaviour at infinity. For this
purpose the value of xc needs to be varied from some small value, to a very large
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one (80 was sufficient for our purposes), and looked for a value of µ that leads to
χ(xc) = 0. The case of the atoms presented in figure 7.3, results in

µXe = −1.50965873266, χXe(80) < 10−6, (B.6)

µU = −1.49103044294, χU(80) < 10−6. (B.7)

The high precision required of the µ values means that this procedure can require
significant computation time.
In the case of ions the situation is slightly different. The boundary conditions take

the form [135]

χ(0) = 1, −xcχ′(xc) = 1−N/Z, (B.8)

where N is the number of electrons and xc is the value at which the potential reaches
zero: χ(xc) = 0. A similar strategy to neutral atoms can be used here, however one
needs to “shoot” from infinity. In this case the boundary value problem is already
written as the initial value one

χ(xc) = 0, χ′(xc) = −1−N/Z
xc

, (B.9)

and all that is required, is to vary the value of xc, till the value of χ(0) becomes one.
The two cases of HCI shown in figure 7.6 give

xc = 0.34635, χ(10−6) ≈ 1, (B.10)

xc = 0.47890, χ(10−6) ≈ 1. (B.11)

Finally, the density of the atom or ion is expressed through the self-consistent
potential as

ρ(r) =
8
√

2

3π

(
Zχ(x)

r
− φ0

)3/2(
1 +

Z

bc2
χ′(x)

(
1− xχ′(x)

2χ(x)

))3/2

. (B.12)

B.2 Details of the solving the hydrogen atom

This section provides a more detailed derivation of the hydrogen-like wavefunctions
within both Schrödinger and Dirac theories.

B.2.1 Schrödinger equation for hydrogen

In order to solve the Schrödinger equation for the hydrogen atom (3.2) one uses the
ansatz

ψ(r, θ, ϕ) = R(r)Y (θ, ϕ), (B.13)

where both parts are required to be separately normalized∫
R2r2dr =

∫
Y 2 sin(θ)dθdϕ = 1. (B.14)

Moreover, since Y is a function on the unit sphere, it also needs to be periodic

Y (θ, ϕ) = Y (θ, ϕ+ 2πk) for k ∈ Z, (B.15)
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B.2 Details of the solving the hydrogen atom

and regular at the poles (as coordinate singularities should not cause physical singu-
larities)

Y (θ0, ϕ) = const, where θ0 ∈ {0, π}. (B.16)

Using (B.13) splits (3.2) into the separate radial and angular equations:

d

dr

(
r2dR

dr

)
+ 2r(Er + Z)R = AR, (B.17)

(1− q2)∂2
qY − 2q∂qY +

1

1− q2
∂2
ϕY = −AY, (B.18)

where q = cos(θ) and A is the separation constant.
Let’s first solve the angular equation. It is easy to see that the dependence on ϕ

is simple exponential that is traditionally indexed by a parameter m

Y (q, ϕ) = eimϕY (q) =⇒ (1−q2)∂2
qY −2q∂qY =

(
m2

q2 − 1
−A

)
Y. (B.19)

The dependence on q can be found by expanding Y in a power series to obtain a
recursion relation

Y (q) =
∑
i=0

aiq
i (B.20)

(2i2 −m2 −A)ai − (i+ 2)(i+ 1)ai+2 + (A− (i− 1)(i− 2))ai−2 = 0. (B.21)

In order for (B.16) to be satisfied the recursion must terminate, which happens
whenever A = l(l + 1) for some integer l ≥ 0. This makes Y a polynomial in q,
called associated Legendre polynomial, denoted Pml (see Appendix C.1). Finally the
angular solutions come out as

Y m
l (θ, ϕ) = (−1)m

√
(2l + 1)

4π

(l −m)!

(l +m)!
Pml (cos(θ))eimϕ, (B.22)

where the normalization constant is chosen to satisfy (B.14).
In order to solve the radial equation, one uses the ansatz

R(r) = e−r
√
−2Erl−1g(2

√
−2Er). (B.23)

Plugging in (B.17) it gives

r∂2
rg + (2l + 2− r)∂rg +

(
Z√
−2E

− l − 1

)
g = 0, (B.24)

where the A = l(l + 1) value has been used. One can again expand a series in the
powers of r to get

g(r) =
∑
i=0

air
i (B.25)(

Z√
−2E

− l − 1− i
)
ai + (2l + 2 + i)(i+ 1)ai+1 = 0. (B.26)
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The normalization condition (B.14) requires the recurrence to terminate. This hap-
pens when and only when

Z√
−2E

= n, (B.27)

for dome natural number n > l. This is the principal quantum number and (B.27)
gives the hydrogen spectrum (3.8). In that case the function g is a polynomial, called
Laguerre polynomial, defined by (3.11). Finally the bound states come out as

Rn,l,Z(r) =

√
(n+ l)!

(n− l − 1)!

Z1/2

2rn

(
2Z

n
r

)l
L2l+1
n−l−1

(
2Z

n
r

)
, (B.28)

When the energy is not at a resonant value given by (B.27), the radial equation
has two general solutions:

Rν,l,Z =

√
(ν + l)!

(ν − l − 1)!

√
Z

2rν
M

[
ν, l +

1

2
,
2Z

ν
r

]
(B.29)

Uν,l,Z =

√
(ν + l)!

(ν − l − 1)!

√
Z

2rν
W

[
ν, l +

1

2
,
2Z

ν
r

]
, (B.30)

where ν = Z/
√
−2E and the functions M and W are the two kinds of Whittaker

functions (see Appendix C.4).
On the other hand, the free states, that is states with E > 0, are required to

satisfy R(∞) = eikr instead of are given by ν = −i/k and E = k2/2. Note that this
produces a discrete spectrum for E < 0 and a continuous one for E > 0, as expected.

B.2.2 Dirac equation for hydrogen

The relativistic case can be approached in an analogous way. Requiring the wave-
functions to be eigenvactors of the total momentum operator and the spin operator,
leads to the ansatz [136]

ψ(r) =

(
gnk,κ(r)Ωκ,mj (θ, ϕ)
fnk,κ(r)Ω−κ,mj (θ, ϕ)

)
, (B.31)

This splits the Dirac equation for hydrogen into the radial and angular equations.
The angular equation does not admit a simple form, but it can be solved, by simply
using the properties of the angular momentum operator [136]. The result comes out
as

Ωκ,m(θ, ϕ) =

 √
1
2 − m

2κ+1Y
m−1/2
κ (θ, ϕ)

−
√

1
2 + m

2κ+1Y
m+1/2
κ (θ, ϕ)

 , (B.32)

where κ is the relativistic angular quantum number defined by (3.19).
The radial wavefunctions meanwhile satisfy the system of coupled equations:

∂rg +
1 + κ

r
g − i

(
α
(
E +

z

r

)
+ c
)
f = 0 (B.33)

∂rf +
1− κ
r

f − i
(
α
(
E +

z

r

)
+ c
)
g = 0 (B.34)
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Plugging one into the other gives an equation of the same class as (B.17) which
means that f and g can be written as combinations of the non-relativistic radial
solutions. Using the notation of section (3.2) the result becomes(

gn,κ,z(r)
fn,κ,z(r)

)
= Nn,κ

[
s

( √
κ+ γ

−√κ− γ

)
Rnk+γ,γ,εz(r)

−iρ
(√

γ − κ√
κ+ γ

)
Rnk+γ,γ−1,εz(r)

]
, (B.35)

where the normalization constant comes out, as

Nn,κ =
1√√√√(2γ

κε
− 1

)
s2 + ρ2

,

where En,κ is the energy of a bound state given by (3.24).
It is worth mentioning here that for the convenience of presentation, the Dirac

wavefunctions have been expressed through the Schrödinger wavefunctions and not
through more commonly used hypergeometric functions [84]. However, our defini-
tion in (B.35) is completely equivalent to other representations commonly used in
literature [136].
Furthermore, the relation between Schrödinger and Dirac wavefunctions given

by (B.35) is also valid for arbitrary energies, with n→ ν and can express the second
solution of the radial equation under R(r)→ U(r), which is particularly useful when
dealing with the Coulomb Green’s functions, allowing for a uniform treatment of
RCGF and RCDGF.

B.3 Details of the leading-order calculation

As shown in chapter 4 the leading-order calculation reduces to evaluating two kinds
of radial integrals:

Tλ =

∫ |ψλ(r)|2
r

dr, (B.36)

T λ3,λ4λ1,λ2
(k) =

∫
ψλ1(r1)∗ψ∗λ2(r2)ψλ3(r1)ψλ4(r2)

min[r1, r2]k

max[r1, r2]k+1
r2

1r
2
2dr1dr2, (B.37)

with the angular part handled by the closed form formula (3.7).
In order to evaluate Tλ, note that for any natural number a, we have:∫

Ma+b,b−1/2(r)Ma+b,b−1/2(r)
dr

r
=

Γ(2b)2(a)!

Γ(a+ 2b)
, (B.38a)∫

Ma+b,b+1/2(r)Ma+b,b+1/2(r)
dr

r
=

Γ(2b+ 2)2(a− 1)!

Γ(a+ 2b+ 1)
, (B.38b)∫

Ma+b,b+1/2(r)Ma+b,b−1/2(r)
dr

r
=

Γ(2b)Γ(2b+ 2)(a)!

Γ(a+ 2b+ 1)
, (B.38c)
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and using the general formula (B.29) we get in the non-relativistic case

Tλ =
Z∗

n2
. (B.39)

Similarly, using (B.35) we get the relativistic case, as

Tλ =

(
(αZ∗)2

γ
+ nk

)(
ε

nk

)
, (B.40)

For the purpose of subset diagonalization the off-diagonal Tλ integrals are also
needed. In particular

Tλ1,λ2 =

∫
ψλ1(r)∗ψλ2(r)

r
dr, (B.41)

can be evaluated using:∫
Ma1+b,b−1/2(k1r)Ma2+b,b−1/2(k2r)

dr

r

= Γ(2b)xbya1+a2+2b
2F1[−a1,−a2, 2b,−x], (B.42)∫

Ma1+b,b+1/2(k1r)Ma2+b,b+1/2(k2r)
dr

r

= Γ(2b+ 2)xb+1ya1+a2+2b
2F1[1− a1, 1− a2, 2b+ 2,−x], (B.43)

where
x =

4k1k2

(k1 − k2)2
y =
|k1 − k2|
k1 + k2

, (B.44)

and 2F1 is the Gauss hypergeometric function.
Furthermore, in order to evaluate T ν1,ν3ν2,ν4 , we employ the integral∫ ∞

0
e−λr−λ

′r′rqr′
q′
rp<r

p′

>drdr
′ =

∫ ∞
0

∫ ∞
r

e−λr−λ
′r′rq+pr′

q′+p′
dr′dr

+

∫ ∞
0

∫ ∞
r′

e−λ
′r′−λrrq+p

′
r′
q′+p

drdr′

= uq
′+p′+1
q+p+1 (λ′, λ) + uq+p

′+1
q′+p+1(λ, λ′). (B.45)

where uba(λ, λ′) is the generating integral of the Heaviside theta function, and as
such can be evaluated using (6.17) and (6.18). Since in the case of bound states,
the Whittaker functions can be expanded as a product of an exponential and a
polynomial, the required integral becomes∫

Ma1+b1,b1−1/2(q1r)Ma2+b2,b2−1/2(q2r)

×Ma3+b3,b3−1/2(q3r
′)Ma4+b4,b4−1/2(q4r

′)
rl<

rl+1
>

drdr′

=

a1∑
i1=0

a2∑
i2=0

a3∑
i3=0

a4∑
i4=0

T
~a,~b,~q

(~i)
(
ui3+i4+b3+b4−l
i1+i2+b1+b2+l+1

(
q3 + q4

2
,
q1 + q2

2

)
+ ui1+i2+b1+b2−l

i3+i4+b3+b4+l+1

(
q1 + q2

2
,
q3 + q4

2

))
, (B.46)
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where

T
~a,~b,~q

(~i) =
4∏

k=1

Γ(2bk)

Γ(2bk + ik)
(−1)ikqbk+ik

k .

The bold ~a, ~b, ~q and ~i are lists of four values, i. e., ~a = {a1, a2, a3, a4} with similar
expressions for ~b, ~q and ~i.

B.4 Details of the scattering factors calculation

This section presents the calculation of atomic scattering factors, as Fourier trans-
forms of electronic density

fnr,κ(q, Z∗) =

∫
ρnr,κ(r, Z∗)ei~q·~rd~r. (B.47)

Integrating out the angular dependence in (7.5), we get the radial density as

ρ(r, Z∗) =
∑
λ

|gλ(r, Z∗)|2 + |fλ(r, Z∗)|2, (B.48)

Now, expanding the Dirac wavefunctions, as exponentials and polynomilas and
using [137] ∫

e−λrrn−2ei~q·~rd~r = 4πΓ(n)
sin(n tan−1( qλ))√

(λ2 + q2)n
, (B.49)

we get

fnr,κ(q, Z∗) =(N(2γ + 1)Γ(2γ))2

×
(

2κ(κ− γ)n2
rσ1 + 4(κ− γ)ρnrσ2 +

2κ

κ+ γ
ρ2σ3

)
, (B.50)

where

σ1 =

nr∑
i=1
j=1

(
nr − 1

i− 1

)(
nr − 1

j − 1

)
Γ(i+ j + 2γ)

Γ(2γ + i+ 1)!Γ(2γ + j + 1)!
ξi,j(q, Z

∗),

σ2 =

nr∑
i=1
j=0

(
nr − 1

i− 1

)(
nr
j

)
Γ(i+ j + 2γ)

Γ(2γ + i+ 1)!Γ(2γ + j)!
ξi,j(q, Z

∗),

σ3 =

nr∑
i=0
j=0

(
nr
i

)(
nr
j

)
Γ(i+ j + 2γ)

Γ(2γ + i)!Γ(2γ + j)!
ξi,j(q, Z

∗),

ξi,j(q, Z
∗) =

(−1)i+j

q
sin

(
(i+ j + 2γ) tan−1

(
q

2χZ∗

))(
2χZ∗√

(2χZ∗)2 + q2

)i+j+2γ

.
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B.5 Details of the photoionization calculation

This section presents the details of the calculation of Eq. (7.16). Within the frame-
work of the D-ECM, ψf is described as a free-state solution to the Dirac equation,
with energy E, momentum p and efffective charge Z∗. It can be written compactly,
as [111]

ψfree =

(
gp,κ′(r, Z

∗) Ωκ′,m′

fp,κ′(r, Z
∗) Ω−κ′,m′

)
=

1

2
√
pr

|Γ(1 + γ + iν)|
Γ(2γ + 1)

( √
1/ε+ 1Im(Ψ(r, Z∗)) Ωκ′,m′√

1/ε− 1Re(Ψ(r, Z∗)) Ω−κ′,m′

)
, (B.51)

with ν = Z∗ε/p and

Ψ(r, Z∗) = (1 + i)

√
κ− iZ∗/p
γ − iν eπ/2(ν+iγ)M1/2+iν,γ(−2ipr). (B.52)

Using the orthogonality ∫
ξκ,mξκ′,m′dΩ =

1

2
δκ,κ′δm,m′ , (B.53)

equation (7.16) can be integrated to obtain the total photoionization cross section,
as

σtot =
αpε

k
4π
∑
κ′,m′

∣∣∣ ~J∣∣∣2 , (B.54)

where

~J =

∫ (
gp,κ′(r, Z

∗) Ωκ′,m′

fp,κ′(r, Z
∗) Ω−κ′,m′

)†(
0 ~σ
~σ 0

)(
gn,κ(r, Z∗) Ωκ,m

fn,κ(r, Z∗) Ω−κ,m

)
d~r, (B.55)

with different Pauli matrices σcorresponding to different polarization directions. Di-
recting the photon momentum along the z axis of our coordinate system (~e1, ~e2,~k)
and summing over photon polarization states, we get [113]

∑
i,j,s

J∗i Jje
s
i e
s
j =

1

2

(
| ~J |2 − ( ~J · ~k)( ~J∗ · ~k)

k2

)
=
|Jx|2 + |Jy|2

2
= |Jx|2, (B.56)

where in the last step the symmetry of the remaining two directions has been ex-
ploited. This means that the total photoionization cross-section can be calculated
as

σtot =
αpε

k
4π
∑
κ′,m′

∣∣∣∣∣
∫ (

gp,κ′(r, Z
∗) Ωκ′,m′

fp,κ′(r, Z
∗) Ω−κ′,m′

)†

×
(

0 σ1

σ1 0

)(
gn,κ(r, Z∗) Ωκ,m

fn,κ(r, Z∗) Ω−κ,m

)
d~r

∣∣∣∣∣
2

. (B.57)

Now, using the orthogonality of spherical harmonics, one can see that∫
Ω†κ′,m′σ1Ωκ,mdΩ = (δκ′,κ + δκ′,−1−κ)(δm′,m+1Cκ′,m′Dκ,m + δm′,m−1Dκ′,m′Cκ,m),

(B.58)
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where Cκ,m =
√

1
2 − m

2κ+1 and Dκ,m =
√

1
2 + m

2κ+1 are numerical coefficients of
spherical harmonics, see Eq. (B.32). This gives us∣∣∣∣∣
∫ (

gp,κ′(r, Z
∗) Ωκ′,m′

fp,κ′(r, Z
∗) Ω−κ′,m′

)†(
0 σ1

σ1 0

)(
gn,κ(r, Z∗) Ωκ,m

fn,κ(r, Z∗) Ω−κ,m

)
d~r

∣∣∣∣∣
= Jκ′(δκ′,−κ + δκ′,−1+κ)(δκ′m′,m+1Cκ′,m′D−κ,m + δm′,m−1Dκ′,m′C−κ,m)

+ I−κ′(δ−κ′κ + δ−κ′,−1−κ)(δm′,m+1C−κ′,m′Dκ,m + δm′,m−1D−κ′,m′Cκ,m), (B.59)

where the radial integrals read:(
Iκ′

Jκ′

)
=

∫ (
gn,κ(r, Z∗) f∗p,κ′(r, Z

∗)

fn,κ(r, Z∗) g∗p,κ′(r, Z
∗)

)
r2dr (B.60)

and can always be performed analytically within the ECM. Finally, the result comes
out as

σtot =
αpε

k
4π
[
|I−κ|2Aκ,κ + |J−κ|2A−κ,−κ

+ 2Re(I∗−κJ−κBκ) + |Iκ+1|2A−κ−1,κ + |Jκ−1|2Aκ−1,−κ

]
, (B.61)

where:

Aκ,κ′ =
∣∣Cκ,m+1Dκ′,m

∣∣2 +
∣∣Cκ′,mDκ,m−1

∣∣2 (B.62)
Bκ = Cκ,m+1Dκ,mC−κ,m+1D−κ,m + Cκ,mDκ,m−1C−κ,mD−κ,m−1. (B.63)

For the purpose of estimating the relevance of relativistic corrections, one can
take the low p limit in (B.61) and average over the m quantum number to obtain a
non-relativistic formula

σtot =
4π2α(Z∗)2

3pω(2l + 1)

(
1

l

∣∣∣∣∫ Rn,l,Z∗(r)Rp,l−1,Z∗(r)r
2dr

∣∣∣∣2 (B.64)

+
1

l + 1

∣∣∣∣∫ Rn,l,Z∗(r)Rp,l+1,Z∗(r)r
2dr

∣∣∣∣2
)
, (B.65)

or equivalently

σtot =
4π2α

3p(2l + 1)

(
1 +

E − E0

ω

)(
l

∣∣∣∣∫ Rn,l,z(r)Rp,l−1,z(r)r
3dr

∣∣∣∣2 (B.66)

+ (l + 1)

∣∣∣∣∫ Rn,l,z(r)Rp,l+1,z(r)r
3dr

∣∣∣∣2
)
, (B.67)

where E and E0 are the ionization energy and the leading-order energy of the bound
state wave function. For the case of E = E0 it reduces to the standard formula [114].
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C Special functions

This chapter provides formulas defining some of the special functions used throughout
this thesis, as well as relations between them.

C.1 Legendre polynomials

Despite the name, Legendre polynomials Pmn (x) are in fact polynomials only for odd
values of m. For even m the involve square roots. They can be defined, as

Pmn (x) = (1− x)m
(√

1− x2
)m n∑

i=m

(n+ i)!

(n− i)!

(
z−1

2

)i
(i−m)!i!

. (C.1)

Since they appear in the study of angular momentum, it is useful to write x = cos(θ),
to get

Pmn (cos(θ)) = (2 sin(θ))m
n∑

i=m

(n+ i)!

(n− i)!
(−1)i

i!

(
sin( θ2)

)2i+2m

(i−m)!
. (C.2)

For an explicit form of the first few Laguerre’s, see C.3.
Legendre polynomials are orthogonal for a fixed value of m, as∫ 1

−1
Pmn (x)Pmk (x)dx =

2

2n+ 1

(n+m)!

(n−m)!
δnk, (C.3)

and for a fixed value of n, as∫ 1

−1
Pmn (x)P kn (x)

dx

1− x2
=

1

m

(n+m)!

(n−m)!
δmk. (C.4)

C.2 Laguerre polynomials

Laguerre polynomials are polynomials defined, as

Lmn (x) =
n∑

i=m

(n+m)!

(n− i)!(m+ i)!

(−x)i

i!
. (C.5)

The first few are explicitly, given by:

Lm0 (x) = 1, (C.6a)
Lm1 (x) = 1 +m− x, (C.6b)

Lm2 (x) =
(1 +m)(2 +m)

2
− (m+ 2)x+

x2

2
, (C.6c)

Lm3 (x) =
(1 +m)(2 +m)(3 +m)

6
− (2 +m)(3 +m)

2
x+

m+ 3

2
x2 − x3

2
. (C.6d)
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Laguerre polynomials are orthogonal for a fixed value of m with a weight of e−xxm,
as ∫ ∞

0
e−xxmLmn (x)Lmk (x)dx =

(n+m)!

n!
δnk. (C.7)

Since they appear in the representation of radial hydrogen wavefunctions, it is useful
to have a closed form of the generating integral of a product of two Lmn (x) with a
fixed m. Accoring to [79], we have∫ ∞

0
e−λxxmLmn1

(k1x)Lmn2
(k2x)dx =

(n1 +m)!

n1!tn1
1

(n2 +m)!

n2!tn2
2

× λ−m−1
2F̃1 [−n1,−n2,m+ 1, (t1 − 1)(t2 − 1)] , (C.8)

where 2F̃1 is the regularized Gauss hypergeometric function [84], and I have defined

t1 =
λ

λ− k1
, t2 =

λ

λ− k2
. (C.9)

C.3 Spherical harmonics

Spherical can be written in terms of the Laguerre polynomials, as

Y m
l (θ, ϕ) = (−1)m

√
(2l + 1)

4π

(l −m)!

(l +m)!
Pml (cos(θ))eimϕ. (C.10)

Their properties have already been described in the main body of the thesis, so here
I only present the explicit form of the first few spherical harmonics:

Y 0
0 (x) =

1√
4π

(C.11a)

Y −1
1 (θ, ϕ) =

√
3

8π
sin(θ)e−iϕ, (C.11b)

Y 0
1 (θ, ϕ) =

√
3

4π
cos(θ), (C.11c)

Y 1
1 (θ, ϕ) = −

√
3

8π
sin(θ)e−iϕ, (C.11d)

Y −2
2 (θ, ϕ) =

√
15

128π
(1− cos(2θ))e−2iϕ, (C.11e)

Y −1
2 (θ, ϕ) =

√
15

32π
sin(2θ)e−iϕ, (C.11f)

Y 0
2 (θ, ϕ) =

√
5

64π
(3 cos(2θ) + 1), (C.11g)

Y −1
2 (θ, ϕ) =

√
15

32π
sin(2θ)e−iϕ, (C.11h)

Y 2
2 (θ, ϕ) =

√
15

128π
(1− cos(2θ))e−2iϕ. (C.11i)
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C.4 Whittaker functions

C.4 Whittaker functions

Whitteker functions are defined as solutions of the Whittaker equation, which can
be written as [138]

∂2
xy +

(
λ(1− λ)

x2
+
κ

x
− 1

4

)
y = 0, (C.12)

where λ = µ + 1
2 . Solutions that are regular at the origin, are called first-kind

and usually denoted Mκ,µ(x), while those regular at infinity are called second-kind
and usually denoted Wκ,µ(x). We can write both of these using an infinite series
representation as

Mκ,µ(x) = e−
x
2 xλ

∞∑
i=0

Γ(λ− κ+ i)

Γ(µ− κ+ 1
2)

Γ(2λ)

Γ(2λ+ i)

xi+λ

i!
, (C.13a)

Wκ,µ(x) =
Γ(1− 2λ)

Γ(1− λ− κ)
Mκ,µ(x) +

Γ(2λ− 1)

Γ(λ− κ)
Mκ,−µ(x), (C.13b)

or equivalently using integral representations as [84]

Mκ,µ(x) =
Γ(2λ)xλ

Γ(λ− κ)Γ(λ+ κ)

∫ 1
2

− 1
2

e−tx
(

1

2
− t
)λ−1−κ(1

2
+ t

)λ−1+κ

dt, (C.14a)

Wκ,µ(x) =
xλ

Γ(λ− κ)

∫ ∞
1
2

e−tx
(
t− 1

2

)λ−1−κ(
t+

1

2

)λ−1+κ

dt. (C.14b)

Notice that the above formulas for Wκ,µ contain divergences whenever κ−λ or κ−λ
are a positive integer. It those cases it has to be understood as a limit. In particular,
in the case of hydrogen-like bound states |nlms〉, we have κ = n and µ = l + 1

2 and
taking the limit makes the two kinds of Whittaker functions coincide, so that we can
write

Wn,l+ 1
2
(x) = Mn,l+ 1

2
(x) n > l. (C.15)

The generating integral of the Whittaker function can be written using the Gauss
hypergeometric function 2F1 as∫ ∞

0
e−cxxα−1Mκ,µ(−x)dt = (−1)λdα+λγ(α+λ)2F1 [λ− κ, λ+ α, 2λ,−2d] , (C.16)

where

d =
1

2c− 1
. (C.17)

The analogous generating integral over the positive values of the argument can be
obtain by the transformation

Mκ,µ(−x) = (−1)sλM−κ,µ(x), (C.18)

where s is the sign of the imaginary part of x, with s = 1 for x ∈ R.
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C.5 Incomplete gamma functions

The upper and lower incomplete gamma functions can be defined using the respective
integral representations:

Γκ(x) =

∫ ∞
x

e−ttκ−1, (C.19a)

γκ(x) =

∫ x

0
e−ttκ−1. (C.19b)

Notice that this makes them add up to the usual gamma function

Γκ(x) + γκ(x) = Γ(κ). (C.20)

The Taylor series of the lower incomplete gamma works out to be

γκ(x) = Γ(κ)e−x
∞∑
i=0

xi+κ

Γ(κ+ i+ 1)
, (C.21)

with the expression for upper obtained using (C.20). In the case of an integer pa-
rameter, the upper incomplete gamma function is given by a finite series

Γn(x) = Γ(n)e−x
n−1∑
i=0

xi

i!
. (C.22)

The generating integral of the upper incomplete gamma, can be written using the
Gauss hypergeometric function 2F1 as∫

e−λxxq−1Γκ(x)dx =
Γ(q + κ)

q
2F1[q, q + κ, q + 1,−λ], (C.23)

with the analogous integral for γ obtained using (C.20).

C.6 Einstein function

The Einstein function can be defined using the integral representation as

Ein(x) =

∫ x

0

1− e−t
t

dt, (C.24)

or as a an infinite series

Ein(x) = −
∞∑
i=0

(−x)i

i!i
. (C.25)

For integer powers, it’s generating integral takes a particularly simple form∫ ∞
0

e−λxxnEin(x) = − n!

λn+1

(
log

(
λ

λ− 1

)
+ Pn

(
λ

λ− 1

))
, (C.26)

where Pn are an original class of polynomials, that can be defined in two alternative
simple ways:

Pn(x) =
n∑

j≥i=1

xi

j
=

n∑
j=1

x

j

xj − 1

x− 1
. (C.27)
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C.7 3j-symbols

j1

j2

j1

j2

j3 j4

Figure C.1: Pictorial representation of the summation over projections. 3-j-symbols correspond
to vertices, while angular momentum vectors are represented by edges. Left diagram corre-
sponds to (C.29), where collapsing a 1-loop gives a factor of

√
(2j + 1), while the right diagram

corresponds to (C.31), where collapsing a 2-loop produces a Kronecker delta function.

C.7 3j-symbols

Wigner 3-j symbols are the coefficients with which three angular momenta must be
added so that the resultant is zero. Most importantly for our purposes, they appear
in the integral of three spherical harmonics (3.7). For angular momentum vectors
j1, j2, j3 and their projections m1,m2,m3, the 3-j symbols are usually written in the
form (

j1 j2 j3
m1 m2 m3

)
(C.28)

The closed-form expression evaluating a general 3-j symbol is rather involved, but
tabulate values can be found for example in []. The necessary condition for a non-zero
value are as follows:

• m1 +m2 +m3 = 0,

• j1, j2, j3 satisfy the triangle condition,

• j1 + j2 + j3 is an integer (even integer if m1 = m2 = m3 = 0).

Furthermore, permutation of any of the columns gives a factor of (−1)j1+j2+j3 .
Summation over the projections in a product of 3-j symbols can be conveniently

represented graphically, with momenta j represented by edges and 3-j symbols by
nodes. A shared edge denotes a shared value of j with an opposite value of m. The
summing over all m then corresponds to collapsing subsequent loops in the resulting
diagram. Each 1-loop gives a factor of

√
2j + 1 and forces the remaining edge to be

zero, while each 2-loop gives a Kronecker delta of the two outgoing edges. In the
following we present the first few distinct cases. The sum over m denotes summation
over all mi indices..
Summing a single 3-j symbol connected to itself, means collapsing a single 1-loop.

The result is

∑
m

(−1)j1−m1

(
j1 j1 j2
−m1 m1 m2

)
= δj2,0

√
2j1 + 1. (C.29)
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j1 j2

j3 j4

j5

j6

j1
j2

j3
j4

j5

j6

j7

j8

j9

Figure C.2: Pictorial representation of (C.32) resulting in a 6j−symbol (left) and of (C.33)
resulting in a 9-j symbol (right). In the right diagram there is no vertex in the middle1. Notice
that no 1-loops or 2-loops are present and so both of these do not simplify to combinations of
Kronecker delta functions.

Summing over a pair of 3-j symbols results in a product of two 1-loops or a single
2-loop:∑

m

(−1)m1+m2+m3

(
j1 j1 j3
−m1 m1 −m3

)(
j2 j2 j4
−m2 m2 m4

)
= δj3,0δj4,0

√
(2j1 + 1)(2j2 + 1), (C.30)∑

m

(−1)m1+m2+m3

(
j1 j2 j3
−m1 −m2 −m3

)(
j1 j2 j4
m1 m2 m4

)
= δj3,j4 . (C.31)

The two situations (C.29) and (C.31) are presented in figure C.1.
Summation of three 3-j symbols can always be performed by collapsing 1- and

2-loops, since the total number of legs is odd. The first non-trivial case happens
with four interconnected 3-j symbols in the form∑

m

(−1)ξ
(

j1 j2 j3
−m1 −m2 −m3

)(
j1 j5 j6
m1 −m5 m6

)
×
(
j4 j2 j6
m4 m2 −m6

)(
j4 j5 j3
−m4 m5 m3

)
=

{
j1 j2 j3
j4 j5 j6

}
. (C.32)

where ξ =
∑

i(ji − mi). This quantity is called a 6-j symbol for the purpose of
tabulating values, as it does not reduce to a simple expression [82]. Similarly a
product of 6 3-j symbols can produce a 9-j symbol∑

m

(−1)ξ
(

j1 j2 j3
−m1 −m2 −m3

)(
j4 j5 j6
−m4 −m5 −m6

)
×
(

j7 j8 j9
−m7 −m8 −m9

)(
j1 j4 j7
m1 m4 m7

)

×
(
j2 j5 j8
m2 m5 m8

)(
j3 j6 j9
m3 m6 m9

)
=


j1 j2 j3
j4 j5 j6
j7 j8 j9

 . (C.33)

Both of these are illustrated in figure C.2. The exist for evaluating the 6j− and 9-j
symbols can be performed with recursive algorithms analogous to the one used for
3-j symbols [140].

1There is no planar representation of such a graph, as it is isomorphic to the utility graphK3,3 [139].
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D Evaluating Hypergeometric Functions

In this section we provide more technical details on evaluating the required hyper-
geometric functions, especially for the purpose of the convolution integral in the
double-electron contribution to energy. It is generally difficult to find software capa-
ble of performing this accurately and efficiently, with all parameters being arbitrary
complex numbers. One can use technical computing systems such as Mathematica,
but these rely on arbitrary precission arithmetics, which is significantly less time-
efficient, and details of the algorithms used are often not publicly available. For the
purpose of producing the results presented here, we have written an original C++
library, designed specifically for the purpose of evaluating hypergeometric functions.

D.1 Confluent hypergeometric functions

Here we outline basic ideas used in developing our C++ library. First, let us note
how the Whittaker functions appearing in the formula for hydrogen Green’s function
of arbitrary energy (5.5) can be expressed by confluent hypergeometric functions
[84]:

Mκ,µ(z) = e−
z
2 zµ+ 1

2 1F1(µ− κ+
1

2
, 1 + 2µ, z), (D.1)

Wκ,µ(z) = e−
z
2 zµ+ 1

2U(µ− κ+
1

2
, 1 + 2µ, z). (D.2)

Kummer’s confluent hypergeometric function is defined for arbitrary complex num-
bers by a power series expansion:

1F1(a, b, z) =
∑
i

(a)i
(b)i

zi

i!
, (D.3)

where (a)i is a Pochhamer symbol defined, as:

(a)i = a(a+ 1)(a+ 2)...(a+ i). (D.4)

The series expansion (D.3) is used to evaluate the confluent hypergeometric func-
tion in the region of small |z|, provided that the imaginary part of a is also small.
However, it has to be noted that it diverges whenever b is a negative integer. Further-
more, truncating this series at desired accuracy requires considering the magnitude
of two subsequent terms (as has been noted in [141]).
Confluent hypergeometric function satisfies the following differential equation (also

referred to as confluent hypergeometric equation):

z
d2w

dz2
+ (b− z)dw

dz
− aw = 0, (D.5)

and can be defined as its solution analytic at z = 0. The corresponding solution that
diverges at 0 as ∝ z−a is precisely the function U(a, b, z).
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D Evaluating Hypergeometric Functions

D.2 Algorithms for evaluating 1F1

As noted above the defining power series is not always the optimal way of evaluating
the confluent hypergeometric function. For large values of |z| it is much more efficient
to use the asymptotic expansion given by [142]:

1F1(a, b, z) =
∑
i

(a)i(1 + a− b)i
(i+ 1)!

−1

zi
. (D.6)

This is however a divergent series and therefore special care needs to be taken when
determining when it should be truncated. The simple investigation of relative mag-
nitudes of each component shows that terms in this sum only get smaller, as long as
the term number is smaller than the modulus of the argument (i < |z|) and so it is
not correct to go beyond this point even if more accuracy is desired.
Furthermore, to limit critical cancellation it is convenient to ensure that Re(z) > 0

by using the linear Kummers transformation [84]:

1F1(a, b, z) = ez1F1(b− a, b,−z) (D.7)

The regime that causes the most problems is a large value of the imaginary part
of a. There is however an approach that is often helpful in this case based on the
expansion in terms of Bessel functions Jν(z):

1F1(a, b, z) = Γ(b)e
z
2 2b−1

∑
i

pi(b, z)
Jb−1+j(

√
z(2b− 4a))

[z(2b− 4a)]
1
2

(b−1+j)
, (D.8)

where pn(a, x) is the nth Buchholz polynomial, defined in [143].
Because of the oscillatory nature of Bessel functions, this approach should only be

used when |a| > |z|. Otherwise, it is advantageous to revert to the original power
series (D.3).

D.3 Algorithms for evaluating U

The most straightforward way of evaluating the second confluent hypergeometric
function is to relate it directly to 1F1, by [84]:

U(a, b, z) =
π

sin(πb)

F (a, b, z)

Γ(a− b+ 1)Γ(b)
− z1−b

Γ(a)Γ(2− b)!F (1 + a− b, 2− b, z), (D.9)

which has to be understood as a limit if a or b are integers. When b is a positive
integer, the limit can be taken directly, to give:

U(a, b, z) = (−1)a
(a+ b− 1)!

(b− 1)!
1F1(−a, b, z). (D.10)

On the other hand, when b is a negative integer, we make use of another one of
Kummer’s transformations:

U(a, b, z) = z1−bU(1 + a− b, 2− b, z), (D.11)

to make it positive and subsequently apply (D.9).
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D.3 Algorithms for evaluating U

Finally, when a is a negative integer, we repeatedly use the recurrence relation:

U(a, b, z) = −(b−2(a+1)−z)U(a+1, b, z)− (a+1)(2+a− b)U(a+2, b, z), (D.12)

until it can be expressed in terms of values of U with a positive a parameter.
Extensive comparison of the above and many other formulas for evaluating conflu-

ent hypergeometric functions for a wide range of complex parameters can be found
in [141].
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