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ABSTRACT. Algebraic Riccati equations with indefinite quadratic terms play
an important role in applications related to robust controller design. While
there are many established approaches to solve these in case of small-scale
dense coefficients, there is no approach available to compute solutions in the
large-scale sparse setting. In this paper, we develop an iterative method to
compute low-rank approximations of stabilizing solutions of large-scale sparse
continuous-time algebraic Riccati equations with indefinite quadratic terms.
We test the developed approach for dense examples in comparison to other
established matrix equation solvers, and investigate the applicability and per-
formance in large-scale sparse examples.

algebraic Riccati equation and large-scale sparse matrices and low-rank
approximation and iterative numerical method

1. INTRODUCTION

Many concepts in systems and control theory are connected to solutions of al-
gebraic Riccati equations. Prominent examples are the linear-quadratic regulator
(LQR) and linear-quadratic Gaussian (LQG) controller design [32] and correspond-
ing model order reduction methods [23] as well as the characterization of passivity
and contractivity of input-output systems and properties-preserving model reduc-
tion methods for these [1,35]. They also appear, for example, in applications with
differential games [4,17]. In this paper, we target the numerical solution of Riccati
equations with indefinite quadratic terms

(1) ATX + XA+ X (v7?B1B] — B:B})X +CTC =0,

as they frequently occur in the state-space theory of H..-robust controller de-
sign [33,47]. In this case, the matrices A € R"*", By € R"*™1 By € R"*™m2
and C € RP*™ describe a linear time-invariant system of the form

(2) i(t) = Ax(t) + Biw(t) + Bau(t), y(t) = Cx(t),

with state z(t) € R™, controller input u(t) € R™2, disturbances w(t) € R™ and
output y(t) € RP, and we are interested in a symmetric positive semi-definite so-
lution X to (1) that stabilizes (A, By) with a bound on perturbations induced by
Biw(t) expressed by v > 0.

In the case of coefficients of small size n and classical LQR/LQG Riccati equa-
tions, i.e., B; = 0 in (1) such that the quadratic term is negative semi-definite,
there is a variety of different numerical approaches to compute the stabilizing so-
lution: Direct approaches that compute eigenvalue decompositions of underlying
Hamiltonian or even matrix pencils [2, 28], iterative methods that work on the un-
derlying spectrum of the Hamiltonian matrix [9,36], or iterative approaches, which
compute a sequence of matrices converging to the stabilizing solution [24,40]. The
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problem becomes more complicated in the opposite case with symmetric positive
semi-definite quadratic term, i.e., setting By = 0 in (1), which occurs in bounded-
real and positive-real problems [1,35]. This already reduces the number of appli-
cable methods. While techniques from the classical setting that do not take the
definiteness of the quadratic term into account can still be applied here [2, 28, 36],
only few, iterative Newton-type methods, which converge to the desired solution,
have been developed for this problem class [14,44]. The amount of applicable ap-
proaches narrows down even further when considering the general case of indefinite
quadratic terms like in (1). A new type of iterative method for the solution of (1)
was developed in [26,27] to overcome accuracy problems of classical solution ap-
proaches and the general lack of iterative methods for this problem type. This new
approach computes a sequence of matrices converging to the stabilizing solution
of (1) by solving classical Riccati equations with symmetric negative semi-definite
quadratic terms.

However, in this paper, we will mainly focus on the case of large-scale sparse
coefficient matrices in (1) arising, for example, from the discretization of partial
differential equations, with n > 10° and low-rank quadratic term and right-hand
side such that my,mo,p < n. A high dimension of n leads to two major computa-
tional issues that forbids the use of the computation methods from above that were
developed for dense coefficients of small or moderate size. Firstly, any transfor-
mation, like the eigenvalue decomposition, will necessarily transform the matrices
into fully populated data arrays which quickly becomes unfeasible in terms of mem-
ory requirements. Secondly, these methods base on matrix operations that do not
scale well with the problem dimension, which heavily increases the running time of
algorithms. As in the dense case, there exists a variety of methods for the classi-
cal LQR/LQG case (By = 0), for example, the low-rank Newton method [12,45]
with the low-rank alternating direction implicit method [12,25,30] for solving the
occurring large-scale sparse Lyapunov equations (LR-Newton-ADI), the Riccati al-
ternating direction implicit method (RADI) [7], the incremental low-rank subspace
iteration (ILRSI) [31], and projection-based methods that construct approximat-
ing subspaces such that internally small-scale dense Riccati equations need to be
solved, e.g., [22,41]. See also [8,13,25] for overviews and numerical comparisons
of large-scale sparse solvers for this special case of Riccati equations with negative
semi-definite quadratic terms. For the opposite case of Riccati equations with pos-
itive semi-definite quadratic terms (B = 0), only the Newton method from [14] is
known to have a low-rank extension to the large-scale sparse matrix case. How-
ever, there are no methods known to solve the general case (1) with an indefinite
quadratic term in the large-scale sparse setting.

The goal of this paper is to develop an extension of the approach described
in [26,27] that can be applied in the case of large-scale sparse coefficient matrices.
With such an algorithm at hand, in particular, the design of so-called Ho-robust
controllers based on the state-space theory from the 1990s [33,47] may become
generally accessible for large-scale systems. This working hypotheses we find well
backed up by the close connection between the existence of such controllers and
the sufficient conditions for convergence of the algorithm of [26,27]. Under some
reasonable assumptions, it is known that if an H,,-robust controller K: y — u
that stabilizes the system (2) with a robustness bound 7 exists, then the Riccati
equation (1) has a unique symmetric positive semi-definite solution X, for any
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v > q0; cf. [47]. We will point out in detail that the sufficient conditions for
convergence of the proposed algorithm coincide with the assumptions made for H .-
controller design. Accordingly, we can state that success of the proposed method
is in one-to-one correspondence with the existence of the relevant solution.

The contents of this paper are organized as follows. In the upcoming Section 2,
we first recap the algorithm from [26,27] and summarize some important results. Af-
terwards, we reformulate the steps of the algorithm to fit the large-scale sparse sys-
tem case and extend it further to coefficients arising from systems with differential-
algebraic equations. In Section 3, we test the new algorithm first on Riccati equa-
tions with dense coefficients, for a comparison to other established methods, and
afterwards on equations with large-scale sparse coefficients. The paper is concluded
in Section 4.

2. RICCATI ITERATION METHOD

In this section, we describe the idea of the Riccati iteration method from [26,27]
and extend the approach to large-scale sparse systems. For generality and brevity
of the paper, we immediately consider the generalized formulation of (1) involving
an additional £ € R™*™ matrix as shown in Problem 2.1.

Thereby, we will use the following notation. We denote symmetric positive semi-
definite matrices by X = XT >0, for X € R"™™, and write X; > X, for two
symmetric matrices X1, Xo € R™ " if X; — X5 > 0. We call a matrix triple
(A, B, E) stabilizable, with A € R*"*" B € R"*™ and F € R™*" invertible, if there
exists a feedback matrix K € R™*™ such that the matrix pencil A\E — (A — BK)
has only eigenvalues with negative real parts.

2.1. Basic algorithm. In this section, we formulate the fundamental algorithm
for the iterative computation of approximate solutions to the following general
problem.

Problem 2.1 (Stabilizing solutions of indefinite Riccati equations). Given matrices
Ae R By e R®™™1 By ¢ R"*™2 (' ¢ RP*" and E € R™ "™ invertible, where
n,mi, mo,p € N, compute a matrix X = X € R™"*" if it exists, which

(a) solves the Riccati equation with indefinite quadratic term
(3) ATXE+E"XA+E"X(B1B] — BB} )XE +C"C =0,

and
(b) is symmetric positive semi-definite and such that the matrix pencil

AE — (A+ (B1B] — BoB})X.E)
is stable, i.e., all its eigenvalues lie in the open left half-plane.

Remark 2.2 (Reformulated Riccati equation). If compared to the Riccati equa-
tion (1) from Heo-control theory introduced before, the indefinite Riccati equa-
tion (3) that we use for the derivation and display of the solution approach, differs
in the additional E matriz and the missing factor v~2. While the y-term is a sim-
ple scaling of the By matriz, an invertible E can be readily resolved in the standard
form by considering AE~" and CE~' as coefficients rather than A and C. How-
ever, in many applications the inversion of E should be avoided, so that we rather
state the equivalent equations with E explicitly given.
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Algorithm 1: Riccati iteration (RI).

Input: A, By, By, C, E from (3), convergence tolerance 7.

Output: Stabilizing approximate solution Xj ~ X, of (3), with
X = XT > 0.

Initialize Xg =0, k£ = 0.

repeat

Update the iteration matrix Ay = A + (B1B] — BoaBY) X,.E.

Solve the definite Riccati equation

AIW 1 E4+ E"Wy 1Ay — E"Wye 1 BoBYWy B+ R(X,) =0

for the stabilizing solution Wy1 € R™*™.

NIV S

5 Update the solution matrix X1 = X + Wiyt
6 if (A+ B1B] Xy 1E, By, E) is stabilizable then
7 ‘ Increment k < k + 1.
8 else
9 error // There is no stabilizing X, = XIO >0 that
solves (3).
10 end

11 until |BiWiE|s < T

For computing the solution to Problem 2.1 numerically, the Riccati iteration
method was first described in [26,27] for the standard equation case (F = I,). The
underlying idea of the algorithm is to consider the Riccati operator

(4) R(X):=A"XE+E"XA - E"X(ByB} — BiB))XE +C"C,

associated with (3), and a splitting of the final solution into the sum of consecutive
solutions of updated algebraic Riccati equations with semi-definite quadratic terms.
For two symmetric matrices X; = X] and X, = X7, one can show that

R(X1 + Xo) = R(Xy) + ATX,E + ET X, A — E" X5 (B, BY — BiBI) X, E

holds, where A := A — (ByB] — By BT)X,E. Accordingly, for X as a solution to
the algebraic Riccati equation with negative semi-definite quadratic term

(5) 0="R(X1)+ A" XoF + E' XoA — E" X, B, By X1 F,
the residual reads
R(X: + X2) = E"X,B, B] X, .

An iterative use of this relation (5), together with the initial approximate solu-
tion X = 0, yields the Riccati iteration (RI) method. The resulting algorithm is
summarized in Algorithm 1.

The following proposition lays out the theoretical foundation of the Riccati iter-
ation method.

Proposition 2.3 (Properties of the Riccati iteration [26,27]). If (A, Bz, E) is
stabilizable, (A, C, E) has no unobservable purely imaginary modes and there exists
a stabilizing solution Xoo = X1 >0 for (3), then the following statements hold for
the iteration in Algorithm 1:

(a) (A+ B1B] XxE, By, E) is stabilizable for all k = 0,1, ..

)
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(b) W, =W} >0 forallk=0,1,...,

(c) the eigenvalues of the matriz pencil \E — (A + By BI Xi,E — BoBo X111 E)
lie in the left open half-plane for all k =0,1,...,

(d) R(Xpy1) = E"Wy 1 BiBIWy 1 E for allk =0,1,.. .,

(6) Xoo 2 ~~~2Xk+1 2 ZXl ZX():O,

(f) the iteration converges to the stabilizing solution of (3), limy_eo Xt = Xoo,
and

(g9) the convergence is locally quadratic.

Basically, the conditions of Proposition 2.3 guarantee convergence of the iterates
to the desired solution of Problem 2.1 as well as the stabilization property for every
intermediate iteration step. The following remark gives some insight about the
convergence of the stabilizing solutions of (3) and the convergence of the Riccati
iteration.

Remark 2.4 (Definiteness of stabilizing solutions). The Riccati iteration converges
only if the stabilizing solution exists and if it is symmetric positive semi-definite,
which follows from Parts (e) and (f) of Proposition 2.3 and classical theory about
the LQR/LQG Riccati equations that are solved in every iteration step. In general,
if a real stabilizing solution of (3) exists, it does not need to be symmetric positive
semi-definite; see examples in [26]. Other approaches that rely on the underlying
Hamiltonian matriz pencil of (3) are capable of computing also indefinite stabilizing
solutions.

However, for the design of Hoo-robust controllers, the existence of a symmetric
positive semi-definite solution is both sufficient and necessary for the well-posedness
of the controller design problem. In other words, such a controller exists if and only
if the related indefinite Riccati equation has a symmetric positive semi-definite solu-
tion. Even more, the assumptions made for the convergence of the Riccati iteration
are equivalent to the fundamental assumptions made for Hoo-controller synthesis.
In fact, if only the solvability of the (regulator) Riccati equation (1) is discussed,
the conditions listed in [47, Chap. 17.1] reduce to (A, Ba) being stabilizable and

e

having full column rank for all purely imaginary s € C that are readily converted
into the assumptions made for Proposition 2.3.

2.2. Factorized low-rank formulation for large-scale sparse equations. The
Riccati iteration method in Algorithm 1 cannot be directly applied to the large-
scale case. Most importantly, the iterates X, will be dense n X n-matrices such
that memory will become a limiting factor already for moderate dimensions n.
With the guarantee that all intermediate solutions X} as well as all updates Wy
are symmetric positive semi-definite (cf. Parts (a) and (e) of Proposition 2.3), the
approximation by low-rank factorizations provides a potential remedy as in the case
of Riccati equations with symmetric semi-definite quadratic terms; see, e.g., [8,13,
25]. The basic idea is to rewrite the intermediate stages of the Riccati iteration via
Cholesky-like low-rank factorizations such that X =~ ZkZZ and W41 ~ Yk“Y,;r 1
with Z € R™*"™ and Y1 € R"*%+1 for all k = 0, 1, .. ., and the relevant equations
in terms of the factors Z; and Yj. In particular, with the intermediate solution in
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Step 6 of Algorithm 1 reformulated as

YTk

Zii1Zpn = Xpp1 = X + Wiy = ZpZp + Vi1 Vil g = (Zk  Yig1] [
k41

ZT}

we will develop an iteration for the solution factors without ever forming the full
solution explicitly.

The residual Riccati equation in Step 4 of Algorithm 1 that defines the update
Wi41 is given via

(6) AIWi i E+ E"Wy 1 Ay — E"Wyy 1 BoBIWy 1 E + R(X}) = 0,

and we observe that

(1) in the initial step with Xy = 0, we have R(X) = CTC, and
(2) for all all further steps, with Part (d) of Proposition 2.3, it holds

.
R(Xk41) = E'Wip1 BiBI{ Wiy 1 E = (B{Wj 1 E)  (B{Wii1E) ,

cRnXm1 cR™Mm1 X7

for all k =0,1,..., and where Wy, = Yk+1Y,;r+1.

In both cases, this central step of the algorithm requires the solve of a standard
(semi-definite) Riccati equation with low-rank factorized quadratic and constant
terms. Accordingly, a low-rank factorized approximation to X1 can be computed
by established Riccati equation solvers, like the LR-Newton-ADI method [12,45],
RADI [7], ILRSI [31], or projection-based methods [22,41].

Remark 2.5 (Low-rank solutions). By the low-rank structure of the right hand-side
and the quadratic terms, my, mo,p <K n, we can also expect the solution and update
terms to be well approzimated by low-rank factors such that vy, qr < n; see [6,42].

Combining all these ideas leads now to the low-rank Riccati iteration (LR-RI)
method in Algorithm 2. Algorithm 2 has been implemented for dense coeflicients
in the MORLAB toolbox [16] and for the large-scale sparse case in the M-M.E.S.S.
toolbox [38].

Another difference of Algorithm 2 compared to Algorithm 1 is the stabilizability
test for (A + B1B] X311 E, By, E). This additional test is expensive in the large-
scale setting but can, in principle, be omitted. In case of (A + B BIX;CHE, By, E)
not being stabilizable in intermediate steps, the iteration will diverge and there
might be no stabilizing solutions for the intermediate Riccati equations with neg-
ative semi-definite quadratic terms anymore. The following remarks state further
computational features of the new low-rank iteration method in Algorithm 2.

Remark 2.6 (Unstable closed-loop matrix pencils). The intermediate closed-loop
matriz pencils sE — Ay, can potentially have unstable eigenvalues [27]. However,
in case there exists a stabilizing solution Xoo = X1, > 0 of (3), (A, Ba, E) will
be stabilizable. Many of the low-rank solvers for definite Riccati equations need a
stabilizing initial solution or a corresponding feedback matriz. In the large-scale
sparse case, this can be computed using a sparse eigenvalue solver to compute the
eigenvectors corresponding to the unstable eigenvalues of sE — Ay and to apply
a partial stabilization approach [5] on the projected problem using the computed
eigenvalue basis [3]. Note that if sE — Ay, is stable for some ko and the iteration
converges, then sE — Ay, will also be stable for all k > kqo; cf. Proposition 2.5.
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Algorithm 2: Low-rank Riccati iteration (LR-RI).
Input: A, By, By, C, E from (3), convergence tolerance 7.
Output: Low-rank factor Z s.t. Z,Z] ~ X is the stabilizing solution
of (3).
Solve the Riccati equation with negative semi-definite quadratic term
ATWoE + ETWyA — ETWyBoBYWHE + CTC =0,

for the low-rank factor Yj such that YOYOT ~ Wy.

=

2 Initialize Zy = Yy, U = [Bl —Bg} and k£ = 0.
3 while ||B]Y,Y,E|s > 7 do
4 Set A, = A— UV,;'- with the updated low-rank factor
Vi = [ETZkZZBl ETZkZZBg] .
5 Solve the Riccati equation with negative semi-definite quadratic term
AZW/C-HE + ETWk—i-lAk — ETWk+1BQB;—Wk+1E + (ETWkBl) (ETWkBl)T =0,

for the low-rank factor Vi1 with Y41V, ~ Wiq.

Update Zy41 = [Zk YkJ’,]} and increment k < k + 1.
7 end

Remark 2.7 (Riccati equations with positive semi-definite quadratic terms). In
principle, the Riccati iteration method can be used as an alternative approach to
solve Riccati equations with positive semi-definite quadratic terms by setting Bo = 0:

ATXE+E"XA+E'XBB/]XE+C"C =0,

which occur, for example, in [1,35]. A necessary condition for applying the Riccati
iteration method is in this case the stability of the matriz pencil sE — A, since
otherwise the stabilizability of (A, Ba, E) will never be fulfilled. This restriction
does not occur in the Newton iteration from [14,44], where only a stabilizing initial
feedback is needed.

2.3. Realization of linear solves in factored form. In general, the coefficients
Ay = A+(B1BI =B B) X\, E, for k = 1,2, ..., of the intermediate Riccati equations
in Step 4 of Algorithm 2 are n x n-matrices without sparsity structures such that
an explicit realization would make the approach infeasible in the large-scale setting.
In this case, the coefficients need to be rewritten as the sparse system matrix A
plus low-rank update:

BIX.E
(7) Apy=A+ (B1B] — ByB)X,E=A+ By —Bo] {B%XkE] = A+ UV,
2Nk
with U, Vj, € R**(m+m2) for all k = 1,2,.... Thereby, matrix-vector multipli-

cations with Ay can be performed without resorting to an explicit formation of
Ag.

For the use within sparse direct solvers, this factored representation of Ay in (7)
can be exploited as follows. Consider the shifted linear system

(8) (0E" — A)X = (0E" — AT - V,UNX = F,
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for a slim right-hand side F' € R™*¢, with ¢ < n, and a shift ¢ € C. The solution
of such linear systems (8) are the backbone of standard iterative solvers for large-
scale Riccati equations. By the Sherman-Morrison- Woodbury formula for matrix
inversion [19] and with the abbreviation ®(c) := (cE" — AT), the inverse of the
shifted matrix in (8) is given by

(9)
(®(0) = ViUT) " = ®(0) ™ + (0) " Vi (Iony 4y — UT®(0) " V3) " UTD(0) 7,

which actually amounts to 2¢ sparse linear solves with o ET — AT and one solve with
an (my+ms) X (mq+mg)-dimensional matrix. Thus, in a practical realization of (9)
for (8), one would compute

X = Zy + Zo(Iny my — U 25) " U 24,

with (cET — AT)Z, = F, and (0E" — A")Zy = V.

An alternative to the Sherman-Morrison-Woodbury formula is the augmented
matrix approach, which makes use of the block matriz inversion formula. This ap-
proach is, often times, more stable than the Sherman-Morrison-Woodbury formula.
Thereby, the solution of (8) is given as the solution of an augmented system of
linear equations with

10) cET—AT Hx}m

Ut Ly tm, | | X 0

where the lower block of the solution, X, is an auxiliary variable with no relevance
for the solution of (8). Under the assumption that U and Vi have much fewer
columns than n, systems of the form (10) can still be solved with standard sparse
solvers.

2.4. Singular F matrices and projected Riccati equations. A regularly oc-
curring case in applications involves singular E matrices. These especially occur
in control problems with differential-algebraic equations (DAEs). In general, the
presence of singular £ matrices changes the concepts of stabilizability of matrix
pencils and solvability of Riccati equations; see, e.g., [10,34] and references therein.
However, in many cases, the singular part of E does not play any substantial role
and it is actually enough to consider the solution of Riccati equations restricted
to subspaces corresponding to the finite eigenvalues of the matrix pencil A\E — A,
i.e., a restriction to the invertible part of £. This can be realized in two different
concepts:

(1) consider a projected version of the Riccati equation (3) with additional
constraints on the stabilizing solution,
(2) consider a truncated version of the Riccati equation (3).

In the following subsections, we consider first the general ideas for projected and
truncated Riccati equations and, afterwards, the setup of incompressible flows as a
particular example.

2.4.1. Projected and truncated equations. In the first concept, appropriate spectral
projections P,., P, € R™*"™ onto the right and left deflating subspaces corresponding
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to the finite eigenvalues of AE — A are explicitly introduced in (3) such that
(11a) A'XE+E"XA+E"X (B1B] — BoB}) XE + P CTCP, =0,
(11b) P XPy = X,

needs to be solved instead. While in general, such projections P,, Py can be con-
structed using decompositions of the matrix pencil AE— A that resemble the Weier-
strass canonical form, they are in fact known for several specially structured prob-
lems that arise in the large-scale sparse setting; see the examples in [43]. Note that
the F matrix in (11) is still singular, but the equation and its solutions are restricted
to the appropriate underlying subspace. Iterative methods like Algorithm 2 can be
used to solve (11), where only the application of the spectral projections P, and Py
is needed in the intermediate computational steps. This is also the common draw-
back of solving (11), since the repeated application of the projections can quickly
become expensive, especially in the large-scale sparse case.

The second concept of truncated Riccati equations is more commonly used in
practice. Thereby, we consider in general Riccati equations of the form

(12) ARE+ F XA+ B'X (BiB] - BuB]) XE+C7C — 0,
where the truncated matrices are constructed by
(13) A=WTAv, E=W'EV, B=W'B, C=CV,

with the coefficient matrices from (3) and V,W € R™*", basis matrices of the
right and left deflating subspaces corresponding to the finite eigenvalues of AE — A.
By construction, the £ matrix in (12) is nonsingular and the solution techniques
mentioned so far for (3) can also be applied to (12). These basis matrices V' and
W can be computed and applied explicitly to (3) up to medium-scale coefficient
matrices. This is the basis of the implementation of model reduction methods for
descriptor systems in the MORLAB toolbox [16] and explained in [15].

However, the explicit computation of the basis matrices V and W and of the
resulting truncated coefficient matrices (13) is usually not possible in the large-
scale sparse setting because of computation time and memory limitations. In this
case, for many special sparse structures, the truncated Riccati equation (12) can be
realized implicitly during the computations, i.e., instead of applying Algorithm 2
directly to (12), the original sparse coefficients from (3) are used and, by means
of their structure, V and W are implicitly applied during the computational steps.
Examples for this implicit truncation for different sparsity structures are given
in [3,18,21,39], which are also implemented in the function handle framework of
the M-M.E.S.S. toolbox [38]. Consequently, the implementation of Algorithm 2
in the M-M.E.S.S. toolbox can make use of the implicit truncation in the case of
singular E matrices. As a particular example, the following subsection considers
the case of structured coefficient matrices arising from incompressible flows.

2.4.2. Implicit realization of truncations in case of flow problems. Riccati equations
with indefinite quadratic terms (3) are of particular interest in the design of robust
controllers for the stabilization of incompressible flows modeled by linearization
of the Navier-Stokes equations [11]. We briefly touch this particular case as an
example for implicit truncation since we will consider such a numerical example
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later. In this case, the coefficient matrices of (3) are structured and given by
(14)

S R S

with E symmetric and invertible. The key to implicitly truncate and project Riccati
equations with coefficients like (14) is the discrete Leray projection

(15) M=1I—E ' J(JE '),

see [21] for the most general case. Then, the truncated and projected Riccati
equation that needs to be solved has the form

(16) TATIIXE + B X117 ATl + BT XTI (Elﬂ - 5253) IXE+I'CTCI = 0,

where X = ILXTI"; sce [11, Sec. 3.1].

As mentioned in Section 2.4.1, in the large-scale setting, we can neither explicitly
compute the matrices in (16) nor the projection (15). However, instead one can use
the original coefficient matrices with their special structure (14). As mentioned in
Section 2.3, we practically need to solve linear systems like (8) in every step of the
low-rank Riccati iteration. If we consider the coefficients of (16) in this setting, the
low-rank update matrix (7) has the form

TA™ + E"X, 1" (B, BT — B,B)II
=N"(A" + E"X,(B1B] — Bo,B))II
= II" A, 1L,

where we also used that ETl = II" E and 112 = II. By observing that all occurring
right-hand sides will satisfy F' = IIF, the solution of (cET — IITAJI)X = F is
alternatively given by

oF - T+ PSER -5 - [X]_[F]

(17) —J 0 X+ 0

where X is an auxiliary variable that does not play any role. This ensures that
X = X as required during the iteration; see [21, Lem. 5.2]; and respects the
sparsity structure of (14), since (17) is actually given by

X. 0 X F
(UET—AT+ET { ok 0] (BlBI—BQB§)> [XL] = M ,

using the matrices from (14).

3. NUMERICAL EXPERIMENTS

The numerical experiments reported in this section have been executed on a
machine with 2 Intel(R) Xeon(R) Silver 4110 CPU processors running at 2.10 GHz
and equipped with 192 GB total main memory. The computer runs on CentOS
Linux release 7.5.1804 (Core) with MATLAB 9.9.0.1467703 (R2020b).

The benchmark data used can be found in Table 1, where the first four columns
state the dimensions of the considered problem; cf. (3); #Aunstab denotes the num-
ber of unstable eigenvalues of the matrix pencil s — A and in the data column
the example type is denoted with either dense or sparse. The last column shows
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TABLE 1. Results for the aircraft and cable mass benchmarks.

n mi1 M2 P  FAunstab data ol

AC10 55 3 2 5 2 dense 2.00

CM6 960 1 1 3 76  dense  2.00

rand512 512 2 6 5 8 dense 8.00
rand1024 1024 4 2 3 6 dense 8.00
rand2048 2048 3 3 1 2 dense 7.00
rand4096 4096 4 3 6 1 dense 10.00
rail 79841 3 3 6 0 sparse  2.00
cylinderwake 47136 1 1 6 4 sparse 50.00

~v-values; cf. (1); by which the By matrices have been scaled such that the consid-
ered Riccati equations have symmetric positive semi-definite stabilizing low-rank
solutions.

For the comparison of results between different algorithms and benchmarks, we
will report different information about the performance of the applied solvers in
upcoming tables such as the used iteration steps, the overall runtime in seconds,
the rank of the resulting solution factor, the final normalized residual of the Riccati
iteration as given by ||B1YyY E||3/|[CCT||2, the relative residual of the solution
factor given by |R(ZrZ))|2/||Z} Zk|2 and the normalized residual of the solution
factor computed as |R(Z,Z])|2/||CCT |2 using the Riccati operator R from (4),
and lastly the norm of the full solution || Z] Zj ||2.

3.1. Factorized method for dense examples. Before we actually consider the
large-scale sparse case, we test the new method from Algorithm 2 on medium-scale
dense benchmarks and compare the results with two other commonly known solvers
that can be applied to (3). We use the dense low-rank factor version of Algorithm 2
as implemented in m1_icare ric_fac of [16], which we denote further on as LRRI,
but we replace the internal Riccati equation solver by the factorized sign function
approach [9] implemented in the very same toolbox [16] as m1_caredl_sgn fac. For
comparison, we use the Hamiltonian eigenvalue approach from [2] as it is imple-
mented in the new MATLAB function icare from the Control System Toolbox™,
further denoted by ICARE, and the classical (unfactorized) sign function solver [36]
from the MORLAB toolbox [16] in m1_caredl_sgn, further on as SIGN. Since SIGN
and ICARE can only compute unfactorized solutions of (3), we perform eigende-
compisitions of the computed solutions to check the positive semi-definiteness and
to compute low-rank approximations of the solutions by truncating all components
corresponding to non-positive eigenvalues.

Considering the benchmarks, the first two data sets in Table 1 are practical
examples taken from [29], where AC10 is an aircraft model and CM6 a cable mass
model with low damping. The data was taken over with exactly the same naming
as given in [29], where we have set C' = Cy. The results of the different algorithms
on these two data sets are shown in Table 2. First, we recognize that for AC10, LRRI
performs visibly worse than the other two approaches in terms of accuracy, since
we are loosing three orders of magnitude in the relative and normalized residuals.
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TABLE 2. Results for the aircraft and cable mass benchmarks.

AC10 CM6
LRRI ICARE SIGN LRRI ICARE SIGN
Iteration steps 5 — 19 4 — 23
Runtime (s) 0.92801 0.47971 0.07705 29.9208 140.136 7.24722
Rank Zj 53 55 55 569 758 781
Final res. | 5.545e-25 — — | 1.873e-15 — —

Relative res. | 2.599e-07 9.617e-10 1.183e-09 | 1.910e-09 5.019e-08 2.125e-07
Normalized res. | 1.554e-03 5.752e-06 7.074e-06 | 1.667e-05 4.381e-04 1.855e-03
| Z} Zy||2 | 1.457e+01  1.457e+01 1.457e+01 | 1.253e+04 1.253e+04 1.253e+04

TABLE 3. Results for the smaller random examples.

rand512 rand1024
LRRI ICARE SIGN LRRI ICARE SIGN
Iteration steps 8 — 14 7 — 8
Runtime (s) 6.94609 23.0720 1.39393 10.3911 217.230 2.96977
Rank Zj 96 298 294 89 522 512
Final res. | 7.889e-23 — — | 2.600e-14 — —

Relative res. | 7.544e-10 2.926e-11 3.508e-11 | 6.737e-11 6.980e-11 1.074e-10
Normalized res. | 3.930e-10 1.524e-11 1.827e-11 | 6.164e-12 6.387e-12 9.830e-12
| ZF Zi|l2 | 3.202e+02 3.202e+02 3.202e+02 | 1.058e+02 1.058e+02 1.058e+02

We assume this comes from the bad conditioning of the A matrix in this example
and the repeated solution of Riccati equations with the matrix. However, for the
CM6 example, this turned around, as LRRI performs now an order of magnitude
better than ICARE and two orders better than SIGN. Concerning the computation
times we see that LRRI performs reasonably well thanks to the efficient inner Riccati
equation solver. While on the smaller data set AC10, the runtime of LRRI is in the
same order of magnitude as ICARE, LRRI is already four times faster than ICARE
for CM6. We are not able to outperform SIGN with LRRI in these examples.

To further investigate accuracy and performance of LRRI, we created random
examples denoted by rand# in Table 1 using the randn function in MATLAB. The
results of the computations can be found in Tables 3 and 4. Overall, LRRI com-
petes very well against ICARE and SIGN in terms of accuracy. For all four presented
random examples, the residuals of the solution factors lie in the same order of mag-
nitude for all methods with only minor exceptions. In terms of runtimes, we see
the same relations that we already recognized in Table 2. LRRI easily outperforms
ICARE due to its efficient inner factorized sign function solver. For increasing prob-
lem size also this speed-up tremendously increases further up to the largest example
rand4096, where LRRI is 113 times faster than ICARE. Compared to SIGN, LRRI is
still not able to outperform the classical sign function iteration method. However,
we can observe that the difference in runtimes is getting smaller and smaller, i.e.,
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TABLE 4. Results for the larger random examples.

rand2048 rand4096
LRRI ICARE SIGN LRRI ICARE SIGN
Iteration steps 5 — 11 4 — 9
Runtime (s) 34.8321 2043.78 21.4784 139.670 16042.8 125.835
Rank Zj 59 992 967 72 1984 1961
Final res. | 2.450e-21 — — | 2.000e-14 — —
Relative res. | 4.997e-10 2.977e-10 1.628e-10 | 1.811e-10 1.804e-09 1.813e-10
Normalized res. | 3.402e-11 2.027e-11 1.108e-11 | 2.812e-11 2.803e-10 2.816e-11
HZZZkuz 1.642e+02 1.642e+02 1.642e+02 | 6.760e+02 6.760e+02 6.760e+02
12 T
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FiGURE 1. LRRI iteration steps for changing v in the AC10 example
close to existence limit of semi-definite stabilizing solutions.

we can expect LRRI to outperform SIGN for larger problems. Also, these results
reveal the strong dependence of LRRI on the inner Riccati equation solver and the
power that comes from the ability to use sophisticated implementations for the
inner Riccati equations with negative semi-definite quadratic terms.

Besides the general performance of the new LRRI approach, we have investigated
its behavior for Riccati equations close to the existence limits of symmetric positive
semi-definite stabilizing solutions. Therefore, we have varied the scaling constant
~; cf. Table 1. Figure 1 shows the iteration steps of LRRI in the AC10 example over
a range of different v-values. The change in iteration steps depicted has also been
observed for the other examples. Decreasing v leads to an increase in the number
of iteration steps since the scaled term %Bl becomes larger and the indefinite
Riccati equation deviates further from the classical LQR/LQG equation, which is
determined by By. The number of iteration steps tend to infinity for v approaching
its smallest possible value vy. For smaller values, the solution of the indefinite
Riccati equation is not stabilizing anymore, or symmetric positive semi-definite, or
both. This is in accordance with the convergence theory in Proposition 2.3 and
Remark 2.4.

Similarly, we have obtained results for the ranks of the computed Riccati solution
factors in the iteration steps of LRRI. Figure 2 shows the ranks of the outer and
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FIGURE 2. Rank development in LRRI in the rand512 example for
different ~.

inner solution factors in the rand512 example for four different v-values, where Zj
denotes the solution factor of the indefinite Riccati equation and Y of the semi-
definite equation that is during the iteration step; cf. Algorithm 2 for the notation.
Let omax(Zk) and omax(Yy) denote the largest singular values of the matrices Zj
and Yy, respectively. The relative ranks of Zj and Yj are the numbers of singular
values which are larger than opax(Zx) - 7 and omax(Yx) - 7 using the tolerance
7 =102 \/ne, with the double precision machine epsilon . The normalized rank
of Y}, is given by the number of singular values of Y}, that are larger than oymax(Z1) 7.
We can observe that for decreasing -, the rank of Zj increases and that the ranks
of Y}, seem to lie relatively stable around 50 for an increasing number of iteration
steps. The difference of the normalized rank from the relative towards the ends
of the iterations indicates that it may be possible to solve these residual equations
less accurate than the equations at the beginning of LRRI. However, an inexact
version of the LRRI needs a careful analysis of the different errors and residuals in
Algorithm 2 and is subject to future work.

3.2. Low-rank approach for large-scale sparse examples. Now we come to
the case of large-scale sparse Riccati equations with indefinite quadratic terms. The
LRRI method from Algorithm 2 is to our knowledge the only method suited to solve
equations like (3) in the large-scale sparse setting. Therefore, we cannot compare
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TABLE 5. Results of LRRI for the large-scale sparse examples.

rail cylinderwake

Iteration steps 3 3
Runtime (s) 72.7378 3469.59
Rank Zj, 169 418

Final res. | 1.297e-19 2.184e-21
Relative res. | 2.125e-21 1.996e-14
Normalized res. | 9.766e-11 1.622e-03
| ZhZx||2 | 6.866e+11 5.056e+08

our results to other methods. However, from the previous section we expect LRRI
to yield reasonably accurate results in comparison to alternative Riccati equation
solvers and the runtimes to be mainly dependent on the inner Riccati equation
solver. We use the implementation of LRRI from [38] with the option to have
RADI [7] or LR-Newton-ADI [12] as inner solvers or to switch between them during
runtime if suitable.

As first example, we consider the optimal cooling problem of a steel profile; see,
e.g., [37]; with the data available in [38]. For the different matrices in the quadratic
term of (3), we consider the boundary control of the three lower segments of the
profile edges as disturbances to give us By and the rest to be control inputs in Bs.
The resulting dimensions are given in Table 1. For LRRI, we use only the RADI
method as inner Riccati equation solver and the results of the iteration can be
seen in the rail column of Table 5. The iteration converges quickly and yields a
very accurate solution of low rank. The behavior of the outer and inner iteration
methods is shown in terms of normalized residuals in Figure 3. The inner solver
has been used with the same convergence tolerance as LRRI.

As second example, we consider a laminar flow in a wake with a cylinder obstacle
at Reynolds number 60, as described in [11] and with the data available at [20]. The
example has two inputs modeling the suction and injection of fluid at the back of the
cylinder placed in the beginning of the wake. We consider the case that one of the
outlets is defect and produces only noise that needs to be compensated. Therefore,
the defect outlet gives us the B; matrix and the control outlet gives us the matrix
Bs. Also, the considered Riccati equation has exactly the structure as in (14)
resulting from the underlying dynamical system of differential-algebraic equations.
Therefore, we use the implicit truncation approach mentioned in Section 2.4.2,
which is implemented in the dae_2 function handles in [38]. Also, we note that
the matrix pencil of this example has unstable eigenvalues. Since RADI is difficult
to use for such a problem since it needs a stabilizing initial solution that produces
a positive semi-definite residual in the Riccati operator, we switch only for the
first iteration step of LRRI to the LR-Newton-ADI method and use a stabilizing
Bernoulli feedback the same way as in [3]. The results of LRRI can be seen in the
cylinderwake column of Table 5 and the normalized residuals of the outer and
inner iterations are shown in Figure 4. We can observe that LRRI as well the inner
iteration methods quickly converge. We want to note that the change from the
Newton to the RADI solver after the first step of LRRI is in our favor, since RADI
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performs significantly faster than Newton. The Newton method applies an iterative
Lyapunov solver in each step such that a single Newton step is in this example by
far more expensive than several hundred RADI steps. While the relative residual
is comfortably small again for this example due to the very large norm of the
stabilizing solution, the normalized residual is still quite high. This likely comes
from the generally poor conditioning of the problem and the small norm of the
right-hand side matrix. But overall, the computed solution has been obtained with
reasonable accuracy and in a reasonable amount of time.
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4. CONCLUSIONS

We have developed a low-rank iterative method for solving large-scale sparse
Riccati equations with indefinite quadratic terms, which is based on solutions of
Riccati equations with negative semi-definite quadratic terms. Numerical examples
have illustrated that, in the dense case, we can expect a similar accuracy and good
performance in comparison to other established Riccati equation solvers, and that
for large-scale sparse equations, the method also yields reasonably good results. We
have also extended the LR-RI approach to indefinite algebraic Riccati equations
related to descriptor systems with singular £ matrix.

To our knowledge, the low-rank Riccati iteration is currently the only approach
to solve Riccati equations with indefinite quadratic terms in the large-scale sparse
case. Another idea that might be directly extendable to this problem are projection-
based methods. However, a problem occurring already in the case of classical Ric-
cati equations with semi-definite quadratic terms is the solvability of the projected
equations. Only recently, new results have been obtained under which conditions
constructed projection spaces preserve the existence of stabilizing solutions in pro-
jected Riccati equations with negative semi-definite quadratic terms [46]. This
problem becomes even more complicated when dealing with Riccati equations with
indefinite quadratic terms, and so far, there are neither theoretical nor numerical
results available considering this.
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