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Figure S1. Graphene/-RuCl3 device fabrication. (A) Diagram of four steps for graphene/-

RuCl3 device assembly. In the first step, a PC-coated glass slide is used to pick up exfoliated -

RuCl3 on an SiO2/Si substrate. In the second step, the -RuCl3/PC transfer slide is used to pick 

up exfoliated graphene. In the third step, the transfer slide is flipped over and the PC is 

delaminated from the glass slide and placed on a SiO2/Si chip. In the final step, indium contacts 

are deposited on the device using a micro soldering approach.1 (B) Optical image of graphene/-

RuCl3 device with the graphene outlined in red and the -RuCl3 outlined in green. (C) High 

contrast magnified image of the stack shown in (B). (D) Optical image of the graphene/-RuCl3 

device after the deposition of indium contacts. 
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Figure S2. STM and AFM topographic data. (A) STM topographic overview of graphene/-

RuCl3 (VS = 0.7 V, It = 50 pA) showing that both flat regions and nanobubbles are present. (B) 

High magnification STM topographic image of a typical graphene nanobubble (VS = 0.7 V, It = 

50 pA). (C) High magnification AFM topographic image of a typical graphene nanobubble. (D) 

Topographic line profiles based on the images in (B) and (C) showing that typical nanobubbles 

measured in STM (red curve) have a similar topography to those viewed with AFM and s-

SNOM (blue curve). 
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Figure S3. STM and STS of multiple nanobubbles. (A) Inset: STM topographic image of a 

second graphene nanobubble (VS = 0.7 V, It = 50 pA). Representative dI/dV point spectroscopy 

collected over nanobubbles (blue curve) and flat graphene/-RuCl3 interfaces (red curve) as 

indicated by the crosshairs in the inset. (B) dI/dV maps of a graphene nanobubble conducted at 

the indicated biases corresponding to the Dirac point energies on the nanobubble (left panel) and 

the flat interface (right panel) (VAC = 25 mV, It = 50 pA). A suppressed LDOS is observed at 

those biases associated with the local Dirac point energy. (C) Linecuts of the dI/dV maps shown 

in (B) following the green and purple lines indicated on the 0 mV and 500 mV maps, 

respectively. In both instances, the change in the LDOS at the bubble boundary (indicated by the 

black dashed line) takes place over a lateral length of approximately 3 nm. (D), (E), and (F) 

same as (A), (B), and (C), respectively, but for a third graphene nanobubble. (G), (H), and (I) 

same as (A), (B), and (C), respectively, but for a fourth graphene nanobubble. 
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Figure S4. s-SNOM on multiple nanobubbles with - and angle-dependent near-field 

linecuts. (A) s-SNOM S3 amplitude (left panel) and 3 phase (right panel) collected over a 

graphene nanobubble ( = 1170 cm–1). The black dashed lines separate the s-SNOM maps into 

eight angular slices used for the analysis in (B). (B) The radial dependence of the s-SNOM S3 

amplitude (red curves) and 3 phase (blue curves) integrated over the indicated angles 

designated in (A). The lack of a systematic angular dependence suggests that p fringes do not 

contribute significantly to the plasmonic response of nanobubbles. (C) The radial dependence of 

the S3 amplitude is shown for frequencies spanning  = 930 cm–1 – 2280 cm–1 collected on 

bubble 2 (blue curves), bubble 4 (orange curves) and bubble 5 (purple curves) referenced in 

Figure 3 of the main manuscript. Since bubbles 1, 2, and 3 all overlap in frequency, only bubble 

2 is shown for clarity. All line profiles are truncated at the boundary of the associated 

nanobubble. (D) Same as (C) but for the radial dependence of the 3 phase. 
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Supplementary Methods 

 

Material Growth:  

α-RuCl3 crystals were grown by the sublimation of RuCl3 powder sealed in a quartz tube 

under vacuum. About 1 g of powder was loaded in a quartz tube of 19 mm in outer diameter, 1.5 

mm thick, and 10 cm long. The growth was performed in a box furnace. After dwelling at 1060 

°C for 6 h, the furnace was cooled to 800 °C at a rate of 4 °C/h. Magnetic and specific heat 

measurements confirmed that the as-grown pristine crystal orders antiferromagnetically around 7 

K. For more information, see ref. 2. 

 

Device Fabrication: 

α-RuCl3 is notoriously difficult to pick up using standard dry stacking techniques. To 

overcome this limitation, we modify the usual dry stacking procedure in the following ways: 

When exfoliating α-RuCl3 onto SiO2, we avoid any plasma treatment of the SiO2 prior to 

exfoliation. This reduces the adhesion of the α-RuCl3 to the SiO2 (albeit at the expense of the 

yield of large-area crystals, which were not needed in this experiment).  

To pick up the α-RuCl3, we employ PDMS stamps coated with poly(bisphenol A 

carbonate) (PC). The PC is heated above the glass-transition temperature (Tg ≈ 150 ºC) to 170 

ºC, leaving the film in a low viscosity state. We then slowly cover the target α-RuCl3 flake and 

leave the PC in contact with the α-RuCl3 for at least 10 minutes to ensure high coverage. Next, 

we lower the temperature to below Tg, solidifying the PC film around the α-RuCl3 crystal and 

significantly increasing the chance of a successful pick-up. We note that the temperature should 

not be raised higher than the values provided here, as the α-RuCl3 will readily decompose in 

ambient at temperatures above 200 ºC. After the α-RuCl3 is successfully picked up, we can use 

more standard parameters to subsequently pick up other 2D materials (e.g., graphene). Using this 

approach, -RuCl3 flakes and single-layer graphene were sequentially lifted from SiO2/Si 

substrates using a PC coated glass transfer slide. The PC together with the stack were flipped 

onto an Si/SiO2 (285 nm Si) substrate held at 150 C. Indium alloy contacts were placed on the 

graphene using a micro soldering technique1 to provide electrical contacts for STM 

measurements. This technique preserves sample quality compared to lithography methods. See 

Figure S1 for diagrammatic procedure. 

 

Scanning Tunneling Microscopy and Spectroscopy:  

All STM/STS measurements were carried out on a commercial RHK system under ultra-

high vacuum conditions. An etched Tungsten tip was prepared and calibrated on a Au(111) 

single crystal. The topographic images were collected in constant current and bias mode using a 

feedback loop. The STS point spectra were obtained at constant height under open feedback loop 

conditions with a modulating bias of 25 mV using a lock-in amplifier. dI/dV maps were extracted 

from a grid of individual point spectra collected in the vicinity of nanobubbles. All 

measurements were performed at room temperature to permit direct tunneling into -RuCl3 

(which is otherwise too resistive at cryogenic temperatures to permit local tunneling 

measurements). 

 

Scanning Near-Field Optical Microscopy:  

All s-SNOM measurements were conducted using a commercial Neaspec system under 

ambient conditions using commercial ArrowTM AFM probes with a nominal resonant frequency 
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of f = 75 kHz. Three tunable continuous wave quantum cascade lasers produced by Daylight 

Solutions were used, collectively spanning wavelengths from 4 to 11 m. The detected signal 

was demodulated at the third harmonic of the tapping frequency in order to minimize 

background contributions to the scattered light. Simultaneous measurement of the scattering 

amplitude and phase was performed through use of a pseudoheterodyne interferometer. 

 

Ab-initio Calculations of Graphene/-RuCl3 Heterostructures:  

The ab initio calculations were performed within the Vienna Ab initio Simulation 

Package (VASP)3 using a projector-augmented wave (PAW) pseudopotential in conjunction with 

the Perdew–Burke–Ernzerhof (PBE)4 functionals and a plane-wave basis set with an energy 

cutoff at 400 eV. For the heterostructures with graphene and monolayer α-RuCl3, we used a 

hexagonal supercell containing 82 atoms (composed of a 5  5 graphene supercell and √3  √3 

α-RuCl3 supercell). The resulting strain is ~2.5% for the α-RuCl3 monolayer. The surface 

Brillouin zone was sampled by a 3  3  1 Monkhorst–Pack k-mesh. A vacuum region of 15 Å 

was applied to avoid artificial interaction between the periodic images along the z direction. 

Because of the absence of strong chemical bonding between layers, van der Waals density 

functional in the opt88 form5 was employed for structural optimization. All structures were fully 

relaxed until the force on each atom was less than 0.01 eV Å−1. Spin-orbital couplings are 

included in the electronic calculations. 

With small Bader charges of 7.01 e (out of 8 e) per orbital, the Ru-4d states cannot be 

considered fully localized, and therefore, the use of large values of U4d is understood as an ad 

hoc fitting parameter without physical basis. Instead, each Chlorine 3p orbital charge is 7.34 e 

(out of 7 e), indicating the importance of employing correction on both Ru and Cl elements. The 

Hubbard U terms are computed by employing the generalized Kohn–Sham equations within 

density functional theory including mean-field interactions, as provided by the Octopus 

package6,7 using the ACBN08,9 functional together with the local density approximation (LDA) 

functional describing the semilocal DFT part. We compute ab initio the Hubbard U and Hund’s J 

for the 4d orbitals of Ruthenium and 3p orbital of Chlorine. We employ norm-conserving HGH 

pseudopotentials to get converged effective Hubbard U values (1.96 eV for Ru 4d orbitals and 

5.31 eV for Cl 3p orbitals) with spin-orbital couplings.  
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Supplementary Discussion 

Modeling near-field signal from plasmon reflection at a finite-sized bubble defect  

As attested by our experimental results, we model the plasmonic response of a single 

nanobubble in the graphene/-RuCl3 heterostructure by a local perturbation of the graphene sheet 

conductivity 𝜎 with respect to its asymptotic value 𝜎(∞) arising from charge transfer from the -

RuCl3 underlayer. We denote the relative inhomogeneity in conductivity due the nanobubble as 

𝜎̅(𝐫) = 𝜎(𝐫) 𝜎(∞)⁄ . To model the position-dependent near-field signal associated with reflections 

of plasmon polaritons from the defect, we considered the integro-differential equation for the 

scalar potential 𝜙𝑠 generated in response to the incident potential 𝜙probe of a near-field probe10: 

 

 
[1 +

1

2𝜋𝑞𝑠
𝑉 ∗ ∇ ⋅ 𝜎̅(𝐫) ∇] 𝜙(𝐫) = 𝜙probe(𝐫),     𝜙 = 𝜙probe + 𝜙𝑠 . (S1) 

 

Here 𝑞𝑠 = 𝑖𝜔/(2𝜋𝜎(∞)) parameterizes the asymptotic conductivity away from the defect 

through its associated plasmon polariton momentum, 𝑉(𝑟) = 1/(𝜅 𝑟) is the Coulomb kernel 

screened by permittivity 𝜀 of the proximate -RuCl3 underlayer with 𝜅 = (𝜀 + 1)/2, and the 

asterisk (∗) denotes the spatial convolution over the in-plane coordinate 𝐫 = (𝑥, 𝑦). As an 

example, we choose  𝜎̅(𝐫) ≡ 1 + 𝛿Λ(𝑟/𝑅bubble), where 𝛿 is the characteristic magnitude of the 

conductivity fluctuation at the nanobubble, 𝑅bubble is its width, and Λ(𝑟) = 1 − 𝜃(𝑟 − 1) is 

taken as a step function of unit radius and height. We solved Eq. (S1) through expansion in an 

orthonormal basis of plane waves 𝜙𝑗 = 𝐴𝑗𝑒𝑖𝐪𝑗⋅𝐫 periodic in a 2D square cell 𝑥, 𝑦 ∈
[− 𝐿 2⁄ , 𝐿 2⁄ ], with 𝐴𝑗 a normalization constant and 𝐿 ≫ 𝑅bubble. If we assemble the Fourier 

momenta 𝐪𝑗 and the Fourier coefficients 𝜙̃𝑗 = ⟨𝜙𝑗|𝜙⟩ ≡ ∫ 𝜙𝑗
∗(𝐫)𝜙(𝐫)𝑑2𝑟 into column vectors 𝑞⃗ 

and 𝜙⃗⃗, respectively, then ⟨𝜙𝑖|𝑉 ∗ |𝜙𝑗⟩ = 2𝜋/(𝜅 𝑞𝑖) 𝛿𝑖𝑗 with 𝛿𝑖𝑗 the Kronecker delta, and these 

vectors must obey the equation 

 

 
𝜙⃗⃗ = [𝑞𝑠

∗ − (𝛿𝑄 + diag |𝑞⃗|)]
−1

𝑞𝑠
∗ 𝜙⃗⃗probe , (S2) 

 

where 𝑞𝑠
∗ = 𝜅 𝑞𝑠 defines the screened polariton momentum, and 𝑄 is the scattering matrix with 

the elements 

 

 
𝑄𝑖𝑗 = (𝐪̂𝑖 ⋅ 𝐪𝑗) ⟨𝜙𝑖 |𝛬 (

𝑟

𝑅bubble
)| 𝜙𝑗⟩ . (S3) 

 

We defined another matrix-valued function 𝐺 by 𝜙⃗⃗𝑠 = 𝐺 𝜙⃗⃗probe. From Eq. (S2), we obtain 

 

 
𝐺𝑖𝑗 = ⟨𝜙𝑖|[𝑞𝑠

∗ − (𝛿𝑄 + diag |𝑞⃗|)]
−1

(𝛿𝑄 + diag |𝑞⃗|)|𝜙𝑗⟩. (S4) 

 

For a translationally invariant system, 𝛿 = 0, where the momentum is conserved, only the 

diagonal matrix elements are nonzero. They can be understood as “in-plane” reflection 

coefficients, and are related to the conventional Fresnel coefficients 𝑟𝑃(𝜔, 𝑞) by −𝐺𝑗𝑗 =
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𝑟𝑃(𝜔, 𝑞 = |𝐪𝑗|). Therefore, Im (−𝐺𝑗𝑗) = 𝑓(𝜔, 𝐪𝑗) has maxima at the same plasmon polariton 

momenta |𝐪𝑗| = Re 𝑞𝑠
∗ as Im 𝑟𝑃. However, our interest concerns 𝛿 ≠ 0. 

 Previous work11 has established a leading order approximation to the complex-valued 

near-field signal 𝜌 scattered by a probe, given by the Fourier integral: 

 

𝜌 ~ −
1

2𝜋
∫ 𝑑2𝑞 |𝐪| 𝜙̃probe(𝐪) 𝜙̃𝑠(𝐪) (S5) 

 

where 𝜙̃probe and 𝜙̃s denote Fourier transforms of the respective potentials with respect to in-

plane (vector) momenta 𝐪 evaluated at the surface plane of the sample. The notation 𝜌 used here 

for the near-field signal affirms its connection to the so-called photonic density of states as 

motivated in ref. 11. In our case where 𝐪𝑗 describe a uniformly spaced grid of momenta spanning 

the “first Brillouin zone” of the simulation domain, Eq. (S5) is readily evaluated by: 

 

𝜌 ~
1

2𝜋
𝜙⃗⃗probe

𝑇  diag |𝑞⃗| 𝐺(𝑞𝑠
∗, 𝑅bubble) 𝜙⃗⃗probe. (S6) 

 

Here we highlight that the dependence on screened plasmon wavevector and nanobubble size 

resides in  𝐺(𝑞𝑠
∗, 𝑅bubble), which encodes the associated inhomogeneous optical response. 

We developed a Python-language computer code implementing the above equations 

taking advantage of public-domain libraries and we used it to carry out a series of numerical 

simulations. For simplicity, we approximated 𝜙probe(𝐫) by a potential of a point dipole placed a 

small distance 𝑧probe away from graphene12. Given an in-plane probe position 𝐫probe, the relative 

strength 𝛿 of the perturbation due to the nanobubble, and the nanobubble radius 𝑅bubble, the 

code computes the complex-valued amplitude and phase of 𝜌. We take 𝑧probe ≈ 𝑎 ≈ 30 nm to 

appropriately treat the incident field from the near-field probe with apex radius 𝑎. Informed by 

our STS results demonstrating near uniform suppression (on the scale of both 𝑎 and the 

unperturbed polariton wavelength) of the graphene Fermi level to near the Dirac point across the 

entire nanobubble, we take 𝛿 ≈ −1 to denote complete suppression of free carrier conductivity. 

Meanwhile, as a representative case, we select 𝑅bubble = 30 nm ≈ 𝑎. Results presented in 

Figure 3B of the main text were obtained by computing 𝜌 for numerous values of 𝑞𝑠
∗ and the 

probe position 𝑟 ≡ |𝐫probe|, and normalizing the result by its value at 𝜌(𝑟 → ∞), thus 

highlighting contrasts due solely to the nanobubble-scattered field. The result can be 

straightforwardly understood as uniquely a function of three dimensionless ratios, 

𝑧probe/𝑅bubble, 𝜆𝑝/𝑅bubble, and 𝑟/𝑅bubble, where 𝜆𝑝 ≡ 2𝜋/𝑞𝑠
∗ defines the wavelength of the 

plasmon polariton in the bulk of graphene. The select results shown in Figure 3B of the main text 

are broadly characteristic of the case where 𝑧probe ∼ 𝑅bubble, and are therefore well 

representative of the infrared nano-imaging results for nanobubbles characterized in this work. 

 

Derivation of scattering amplitude for plasmonic point-scatterer  

 

In this section we utilize notations common to the previous section, where possible. The 

polariton scattering problem Eq. (S1) admits an analytic solution for the total field 𝜙 = 𝜙probe +

𝜙𝑠 in the case that the excitation field 𝜙probe and the “defect” in graphene optical conductivity 
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Δ𝜎̅(𝐫) = 𝜎̅(𝐫) − 1 take the form of a point source and a point scatterer, respectively. Provided 

that the defect and source are “not too strong”, a perturbation theory can be applied. The 

condition for its self-consistency will be discussed in the context of the result. In this case, it is 

convenient to rewrite Eq. (S1) in an operator notation: 

 

[1 − (𝐿̂0 + 𝜖 ⋅ 𝐿̂′)]𝜙 = 𝜙probe 

where    𝐿̂0 ≡ −
1

2𝜋𝑞𝑠
𝑉 ∗ ∇2    and     𝐿̂′ ≡ −

1

2𝜋𝑞𝑠
𝑉 ∗ ∇ ⋅

1

𝜖
 𝛬(𝐫 − 𝐫0)∇. 

(S7) 

 

Here 𝛬(𝐫) ≈ 𝐴𝑠 𝛿(𝐫) denotes the profile selected to describe the defect centered at lateral 

coordinate 𝐫0, with 𝐴𝑠 its integral weight, in units of area, and 𝛿(𝐫) a Dirac delta function. 

Meanwhile, taking 𝜖 ≪ 1 supplies a perturbation expansion provided that 𝐿̂′𝜙probe remains 

“small”: 

 

𝜙 = [1 − (𝐿̂0 + 𝜖 ⋅ 𝐿̂′)]
−1

𝜙probe 

≈ [𝐺̂0 + 𝜖𝐺̂0𝐿̂′𝐺̂0 + 𝑂(𝜖2)]𝜙probe, 

with   𝐺̂0 ≡ (1 − 𝐿̂0)
−1

. 

(S8) 

 

Here 𝐺̂0 defines a “bare” propagator for plasmon polaritons. This propagator can be obtained 

through a Fourier representation of Eq. (S7) with respect to the in-plane wavevector 𝐪, whereby: 

 

𝜙(𝐫) = ∫
𝑑2𝑞

2𝜋
𝑒𝑖𝒒⋅𝒓𝜙(𝐪),     𝜙(𝐫) = ∫

𝑑2𝑞

2𝜋
𝑒𝑖𝒒⋅𝒓𝜙(𝐪),    and    𝐿̂0 = |𝐪|/𝑞𝑠

∗. (S9) 

 

Here we use the unitary Fourier transform. In the Fourier domain, the propagator is naively then 

expressed by 𝐺0(𝑞) = 𝑞𝑠
∗/(𝑞𝑠

∗ − 𝑞). However, note that this form of the propagator 𝐺̂0𝜙probe 

can only generate the inhomogeneous part of solutions 𝜙, to which any arbitrary homogeneous 

part 𝜙ℎ for which (1 − 𝐿̂0)𝜙ℎ = 0 can also be added (e.g., 𝜙 = 𝐺̂0𝜙probe + 𝜙ℎ) however 

necessary to satisfy the prescribed boundary conditions. For the case of an open system of 

graphene on -RuCl3 illuminated by a localized probe, we will demand an outgoing radiation 

condition for 𝜙. In other words, 𝜙 must vanish at infinite distance, and (polariton) waves must 

propagate outwards, with complex phase decreasing uniformly with distance from the source. To 

this end, we can augment the propagator as follows to enforce this condition. We first consider a 

point source placed at the origin, 𝜙probe(𝐫) = 𝐴𝑝𝛿(𝐫), where 𝐴𝑝 denotes the integral weight of 

the excitation (in units of area), for which 𝜙probe(𝑞) = 𝐴𝑝/2𝜋. The inhomogeneous part of the 

solution is given by: 

[𝐺̂0𝜙probe](𝒓) =
𝐴𝑝

2𝜋
∫

𝑑2𝑞

2𝜋
𝑒𝑖𝒒⋅𝒓𝐺(𝑞) 

=
𝐴𝑝

(2𝜋)2
∫ 𝑑𝑞

∞

0

𝑞 (
𝑞𝑠

∗

𝑞𝑠
∗ − 𝑞

) ∫ 𝑑𝜃
2𝜋

0

𝑒𝑖𝑞𝑟 cos 𝜃 
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= −
𝐴𝑝𝑞𝑠

∗

2𝜋
∫ 𝑑𝑞

∞

0

𝑞

𝑞 − 𝑞𝑠
∗

𝐽0(𝑞𝑟) 

= −
𝐴𝑝𝑞𝑠

∗2

2𝜋
[

1

𝑞𝑠
∗𝑟

−
𝜋

2
(𝑌0(𝑞𝑠

∗𝑟) + 𝐇0(𝑞𝑠
∗𝑟))] 

(S10) 

 

Here we have applied identity (2.12.3.11) of ref. 13 to the case of the Bessel function of order 𝜈 =
0, where 𝐽0(… ), 𝑌0(… ) and 𝐇0(… ) denote Bessel functions of the first and second kinds and the 

Struve-H function, respectively, all of order 𝜈 = 0.  For distances 𝑟0 ≫ 𝜆𝑝 = 2𝜋/𝑅𝑒[𝑞𝑠
∗], the 

sum in brackets is very nearly equal to −𝜋 𝑌0(𝑞𝑠
∗𝑟), which can be identified as the 

inhomogeneous part of the solution to the wave equation with open boundary conditions. The 

outgoing wave condition is therefore enforceable by an added homogeneous part 𝜙ℎ ∝
𝑖𝜋 𝐽0(𝑞𝑠

∗𝑟), in which case the term in square brackets becomes very nearly equal to 𝑖𝜋 𝐻0
1(𝑞𝑠

∗𝑟), 

with 𝐻0
1(… ) the Hankel function of the first kind of order 𝜈 = 0, representing an outgoing 

cylindrical wave. Consequently, we forthwith augment the Fourier space propagator to enforce 

our prescribed boundary conditions: 

 

𝐺(𝑞) = 𝑞𝑠
∗ (

1

𝑞𝑠
∗ − 𝑞

+ 𝑖𝜋𝛿(𝑞 − 𝑞𝑠
∗)),  

so that    𝐺0(𝑟) ≈
𝑖

2
𝑞𝑠

∗2𝐻0
1(𝑞𝑠

∗𝑟). 

 

 

 

(S11) 

 

Here the Dirac delta function supplies the homogeneous component in Fourier space. Deviations 

not captured by this functional form at distances 𝑟 → 0 associate with the “local” metallic 

response of the plasmonic medium, which supply screening of the incident divergent field as 

𝑞𝑠
∗ → 0 in the limit where surface conductivity diverges to infinity. While this physical behavior 

is not captured by a mere wave solution, it remains inessential to our experimental results. 

Meanwhile, the Fourier space representation for 𝐿̂′ operating on a function 𝑓(𝐪) is: 

 

[𝐿̂′𝑓](𝐪) =
1

𝜖𝑞𝑠
∗

𝐪̂ ⋅ ∫ 𝑑2𝑞′ 2𝜋 𝛬(𝐪 − 𝐪′) 𝐪′ 𝑓(𝐪′) (S12) 

 

Here 𝐪̂ denotes a unit wavevector, and real-space multiplication by 𝛬(𝐫 − 𝐫0) within 𝐿̂′ is 

transformed by the convolution theorem into an integral kernel 2𝜋 𝛬(𝐪 − 𝐪′). Next, we apply 

the Fourier representation of the defect profile 𝛬(𝑞) = 𝑒−𝑖𝐪⋅𝐫0/2𝜋 representing the Dirac delta 

function centered at 𝐫0, obtaining: 

 

[𝐿̂′𝑓](𝐪) =
𝐴𝑠

𝜖𝑞𝑠
∗

𝐪̂ ⋅ ∫ 𝑑2𝑞′ 𝑒−𝑖(𝐪−𝐪′)⋅𝐫0  𝐪′ 𝑓(𝑞′) 

=
𝐴𝑠

𝜖𝑞𝑠
∗

𝑒−𝑖𝐪⋅𝐫0 ∫ 𝑑𝑞′
∞

0

𝑞′2𝑓(𝑞′) ∫ 𝑑𝜃′
2𝜋

0

cos(𝜃′ − 𝜃) 𝑒𝑖𝑞′𝑟0 cos 𝜃′
 

=
2𝜋𝑖 𝐴𝑠

𝜖𝑞𝑠
∗

cos 𝜃 𝑒−𝑖𝑞𝑟0 cos 𝜃 ∫ 𝑑𝑞′
∞

0

𝑞′2 𝐽1(𝑞′𝑟0) 𝑓(𝑞′). 

 

 

 

 

(S13) 
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Here 𝐽1 denotes the Bessel function of the first kind of order 𝜈 = 1, and 𝜃′ and 𝜃 denote the 

angles subtended between the position vector 𝐫0 and the incoming and outgoing wavevectors 𝐪′ 

and 𝐪, respectively. Here we have also assumed 𝑓(𝐪) to be an isotropic function. Since the 

defect-scattered field is given by Δ𝜙(𝐫) = 𝜖𝐺̂0𝐿̂′𝐺̂0 𝜙probe(𝐫), then 𝑓 = 𝐺̂0 𝜙probe, and our 

point source at the origin is compatible with this assumption. The latter integral in Eq. (S13) can 

now be evaluated: 

 

𝑓(𝑞) = [𝐺̂0 𝜙probe](𝑞) = 𝑞𝑠
∗ (

1

𝑞𝑠
∗ − 𝑞

+ 𝑖𝜋𝛿(𝑞 − 𝑞𝑠
∗))

𝐴𝑝

2𝜋
,     so that  

∫ 𝑑𝑞′
∞

0

𝑞′2 𝐽1(𝑞′𝑟0) 𝑓(𝑞′) =
𝐴𝑝𝑞𝑠

∗

2𝜋
[𝑖𝜋𝑞𝑠

∗2 𝐽1(𝑞𝑠
∗𝑟0) + ∫ 𝑑𝑞′

∞

0

𝑞′2

 𝑞𝑠
∗ − 𝑞′

𝐽1(𝑞′𝑟0)] 

=
𝐴𝑝𝑞𝑠

∗

2𝜋
[𝑖𝜋 𝐽1(𝑞𝑠

∗𝑟0) −
𝜕

𝜕𝑟0
∫ 𝑑𝑞′

∞

0

𝑞′

 𝑞𝑠
∗ − 𝑞′

 𝐽0(𝑞′𝑟0)] 

=
𝐴𝑝𝑞𝑠

∗2

2𝜋
{𝑖𝜋𝑞𝑠

∗ 𝐽1(𝑞𝑠
∗𝑟0) −

𝜕

𝜕𝑟0
[

1

𝑞𝑠
∗𝑟

−
𝜋

2
(𝑌0(𝑞𝑠

∗𝑟) + 𝐇0(𝑞𝑠
∗𝑟))]}. 
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Noting again that the sum in square brackets is very approximately equal to −𝜋𝜕𝑟0
𝑌0(𝑞𝑠

∗𝑟) =

+𝜋𝑞𝑠
∗𝑌1(𝑞𝑠

∗𝑟), the sum in curled brackets is also very nearly equal to 𝑖𝜋𝑞𝑠
∗ 𝐻1

1(𝑞𝑠
∗𝑟0), a Hankel 

function of the first kind of order 𝜈 = 1. Inserting this wave function back into Eq. (S13), we 

have: 

[𝐿̂′𝐺̂0 𝜙probe](𝐪) = (
2𝜋𝑖 𝐴𝑠

𝜖𝑞𝑠
∗

cos 𝜃 𝑒−𝑖𝑞𝑟0 cos 𝜃) ×
𝐴𝑝𝑞𝑠

∗2

2𝜋
× 𝑖𝜋𝑞𝑠

∗ 𝐻1
1(𝑞𝑠

∗𝑟0) 

= −
𝑖𝜋 

𝜖
𝐴𝑠𝐴𝑝𝑞𝑠

∗2𝐻1
1(𝑞𝑠

∗𝑟0) cos 𝜃 𝑒−𝑖𝑞𝑟0 cos 𝜃 

 

 

(S15) 

 

The field scattered by the defect can now be evaluated at the origin 𝐫 = 𝟎, coinciding with the 

location of the probe field, as: 

 

Δ𝜙(𝐫 = 𝟎) = 𝜖 ∫
𝑑2𝑞

2𝜋
 [𝐺̂0𝐿̂′𝐺̂0 𝜙probe](𝐪) 

= −𝑖𝜋𝐴𝑠𝐴𝑝𝑞𝑠
∗3𝐻1

1(𝑞𝑠
∗𝑟0) ∫ 𝑑𝑞 𝑞

∞

0

 (
1

𝑞𝑠
∗ − 𝑞

+ 𝑖𝜋𝛿(𝑞 − 𝑞𝑠
∗)) ∫

𝑑𝜃

2𝜋

2𝜋

0

cos 𝜃 𝑒−𝑖𝑞𝑟0 cos 𝜃
 

= +𝑖𝜋𝐴𝑠𝐴𝑝𝑞𝑠
∗3𝐻1

1(𝑞𝑠
∗𝑟0) [𝑖𝜋𝑞𝑠

∗ 𝐽1(𝑞𝑠
∗𝑟0) + ∫ 𝑑𝑞 

∞

0

 
𝑞

𝑞𝑠
∗ − 𝑞

 𝐽1(𝑞𝑟0)] 

≈ 𝑖𝜋𝐴𝑠𝐴𝑝𝑞𝑠
∗3𝐻1

1(𝑞𝑠
∗𝑟0) × −

𝜕

𝜕𝑟0
𝑖𝜋 𝐻0

1(𝑞𝑠
∗𝑟) 

≈ −(𝐴𝑠𝑞𝑠
∗2)(𝐴𝑝𝑞𝑠

∗2) (𝜋𝐻1
1(𝑞𝑠

∗𝑟0))
2

. 

 

 

(S16) 

 

 

 

 

 

 

 

 

(S17) 



 S14 

Here we have identified the term in square brackets as proportional to the 𝑟0-derivative of our 

augmented propagator 𝐺0(𝑟 = 𝑟0), for which we readily supply the outgoing wave 

approximation (Eq. (S11)). 

We note that the two leading dimensionless terms in parentheses in Eq. (S17) scale as the 

perturbation area in comparison to the plasmon wavelength 𝜆𝑝 = 2𝜋/𝑞𝑠
∗ squared. In the context 

where graphene nanobubbles scatter plasmon polariton fields with momentum 𝑞𝑠
∗, the defect area 

is described by 𝐴𝑠 = −𝜋𝑅bubble
2  (negation implying a deficit of conductivity) and the 

perturbation treatment applied here is self-consistent so long as 𝑅bubble
 ≪ 𝜆𝑝. Since excitation 

from the near-field probe may be described by 𝐴𝑝~𝑎2 with 𝑎 the probe tip radius, the condition 

𝑎 < 𝜆𝑝 implies the perturbation treatment here should be a particularly robust description of our 

experiments. Our nano-imaging experiments approximately detect the vertically polarized field 

scattered on the graphene surface. This field is proportional to instantaneous surface charge on 

the graphene, which is in turn proportional to Δ𝜙(𝐫). Taking 𝑟0 as the probe-nanobubble 

separation distance, we can therefore directly apply the complex-valued functional form 

𝐻1
1(𝑞𝑠

∗𝑟0)2 to fit the line-profiles presented in Figure 3C of the main text. This form is 

characterized by alternating fringes with an apparent spatial period of 𝜆𝑝/2, owing to round-trip 

traversal of polariton fields over a cumulative distance 2𝑟0 between the probe and the 

nanobubble and back. This formalism therefore supplies a quantitative means to extract plasmon 

polariton momentum and wavelength directly from our nano-infrared images. 
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