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Temporäre Phasen- und Polarizationsinterferometrie im Röntgenbereich

Im Bereich der Röntgenquantenoptik sind viele experimentelle Schemata und Tech-
niken, die im optischen Bereich weit verbreitet sind, schwer zu realisieren. Haupt-
schwierigkeiten sind Messungen von komplexen Phasen auf der Seite der Detek-
tion und temporäre Pulsmodelierung auf der Lichtseite. In dieser Arbeit wird eine
Methode zur Rekonstruktion komplexer Lichtfeld-Phasen und Bewegungen als mit
Phasen verbundene Observablen entwickelt. Sie basiert auf temporärer Phaseninter-
ferenz, wobei die Interferenz mit einer wohlbekannten Referenzprobe als Funktion
der Zeit gemessen wird. Außerdem wird die experimentelle Realisierung von tem-
porärer Pulsmanipulation inklusive der Erzeugung von Doppelpulsen mit Hilfe eines
Polarizationsinterferometers demonstriert. Es ist das erste Experiment, das mech-
anisch induzierte Brechungsindexverstärkung nutzt, welche die Interferenz kontrol-
liert. Zusätzlich bietet das im Minimum betriebene Polarizationsinterferometer ein
Werkzeug, um Hintergrundrauschen im Experiment zu analysieren. Dieses Rauschen
beinhaltet das Vorhandensein von Schallwellen im Labor und in den Proben wie auch
kleine unkontrollierte Bewegungen der Proben. Die in dieser Arbeit präsentierten
Methoden sind unabhängig von der Wellenlänge und daher im Prinzip auf beliebige
Energien übertragbar.

Temporal phase and polarization interferometry at x-ray energies

In x-ray quantum optics, many experimental schemes and techniques that are widely
used at visible frequencies are hard to implement. Key difficulties are the measure-
ment of complex phases on the detection side and temporal pulse shaping on the light
source side. In this thesis, a method to reconstruct complex phases of light fields
and motions as a phase-related observable from experimental data is developed. It
is based on temporal phase interference, in which the interference with a well-known
reference sample can be measured as a function of time. Furthermore, the experi-
mental realization of temporal pulse shaping including the creation of double pulses
with a polarization interferometer is demonstrated. It is the first experiment using
mechanically-induced refractive index enhancement, which controls the polarization
interference. In addition, the polarization interferometer operated at minimal in-
tensity provides a tool to analyze background noise in the experiment. This noise
includes the presence of sound waves both in the laboratory and in the samples as
well as small uncontrolled vibrations of the samples. The presented methods in this
thesis are not wavelength-dependent and can thus in principle be used at arbitrary
energies.
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Chapter 1

Introduction

In the middle of difficulty lies opportunity.

Albert Einstein

In this chapter, the work carried out within the scope of this thesis is motivated
by giving an overview of the state of the art and indicating current problems. Af-
terwards, a short outline of the thesis is given.

Motivation

X-ray quantum optics is a relatively new field, that builds a bridge between stan-
dard quantum optics at visible frequencies and x-ray science [1]. Already right after
their discovery by Röntgen in 1895 [2], especially in medicine, x-rays had important
applications as an imaging tool [3]. X-ray diffraction also played a decisive role
in resolving the structure of DNA [4, 5]. Nowadays, the associated sub-Ångstrom
wavelengths are key to high resolution imaging [6] providing insight into the struc-
tures of the organic world, such as proteins [7] or viruses [8], as well as anorganic
structures such as crystals [9]. Modern methods even allow to follow chemical reac-
tions [10]. As an underlying concept, x-rays let us measure distances between atoms
and molecules on the short scales [11] as well as properties of matter at relatively
high energies [12, 13, 14].
Quantum optics on the other hand has become more and more relevant in the

second half of last century after the first successful operation of a laser reported in
1960 [15]. Due to their well-known properties, lasers enable to measure and control
light-matter interactions [16, 17]. Among the huge number of applications, these
techniques give rise to atomic clocks [18], testing fundamentals of quantum physics
[19, 20], quantum computing [21, 22], trapping and cooling of atoms [23, 24, 25],
moving physical objects with optical tweezers [26] and high precision interferometry
allowing to measure as tiny variations in length as caused by gravitational waves
[27].
With the development of x-ray sources such as synchrotrons, especially in the last

years, the field of x-ray quantum optics has become an active research field [1, 28,
29]. Several effects known from quantum optics in the optical regime have success-
fully been demonstrated in the x-ray regime as well. In x-ray quantum optics with
electrons those are for example the Hanbury Brown-Twiss effect [30], ghost imag-
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Chapter 1 Introduction

ing [31], two-photon X-ray spectroscopy [32, 33], time and energy correlations [34,
35, 36] and many more [1]. In nuclear quantum optics among others, the following
schemes have been realized experimentally: collective Lamb shift [37], superradi-
ance [38], electromagnetically induced transparency [39], spontaneously generated
coherences [40] as well as coherent control of excitons [41]. In addition, experimental
tools such as short x-ray pulse trains [42], entanglement [43] and dynamical control
of light-matter interactions [44, 45] have been demonstrated.
The above named experiments show that in principle it is possible to transform

successful schemes from the optical to the x-ray regime. One of the main difficulties
is that current light sources, such as PETRA III at DESY in Hamburg [46] and
ESRF in Grenoble [47], on average provide less than one resonant photon per pulse.
Hence, only low intensity effects can be studied. New light sources, e.g. XFELs [48,
49], fourth generation synchrotrons [50, 51] and XFELOs [52], enable new promising
experiments, that have already been performed [38] or are proposed [29, 39, 53, 54].
In nuclear quantum optics, on which we will focus in this thesis, synchrotron

radiation is often used as the light source. On the matter side, Mössbauer nuclei
play a key role because of their extreme properties. Due to the Mössbauer effect [55,
56], recoilless photon emission is possible as the entire lattice of the solid state body
absorbes the photon momentum. Thus, while having a transition frequency above
10 keV (14.4 keV for 57Fe), the linewidth is on the level of neV (4.7 neV for 57Fe)
[57], which makes nuclear transitions advantageous for precision spectroscopy [58,
59, 60]. Mössbauer spectroscopy has broad applications such as in geoscience [61],
archaeology [62] and biochemistry [63]. A Mössbauer spectrometer was even send
on a Mars mission giving evidence for water [64]. The corresponding long lifetimes
of Mössbauer nuclei are favorable for measuring and manipulating the emitted light
[41, 57, 65]. In addition, the decoherence is very low with quality factors on the
level of the best optical clocks [18, 29, 66]. Mössbauer transitions can be seen as a
two-level system [67] with low coherences and nearly no line broadening because of
being in the solid state [57]. Therefore, they are a promising platform for qubits.
Although there are several interesting physical effects, here we will concentrate on

interferometry. Several different types of interferometers, e.g. Michelson interferom-
eter [68], Mach-Zehnder interferometer [69, 70], Fabry-Perot interferometer [71] and
atom interferometers [72, 73], are widely used in different fields of physics [27, 68,
74, 75]. All of the named interferometers are spatial ones, i.e. the two paths are sep-
arated spatially. At x-ray energies, spatial interferometers are challenging because
they need to be stabilized on the order of the wavelength, which is sub-Ångstrom
for hard x-rays. Nonetheless, a Mach-Zehnder interferometer has been build from a
single crystal [76].
Besides the widely-used spatial interferometry, where interference is encoded in

spatial interference patters, also temporal phase interferometers exist. In those
interferometers, the interference influences the temporal properties of the detected
light [77]. A reference sample with a well-known phase is placed behind the sample
to be analyzed and the relative phase between those samples is measured in time
space. Here, the interference paths are given by the two samples. Those kind of
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interferometers have also been realized at x-ray energies [78, 79].
A different interferometer is the polarization interferometer [80, 81]. Here, the

two arms are represented by two orthogonal polarization states, e.g. created by a
polarizing beam splitter. Also at x-ray energies, polarization interferometers have
been demonstrated already [82].
Temporal phase and polarization interferometry are tools to tackle current prob-

lems at x-ray energies. Among other difficulties, phase and motion reconstruction,
temporal pulse shaping and noise analysis in nuclear forward scattering are impor-
tant topics and will be discussed in the following.
The phase of the complex electric field of the light is not directly measurable

because conventional light detectors, such as e.g. avalanche photodiodes (APDs),
only give access to intensities [83]. Knowledge on the phase relation is necessary
for Fourier transforms from time to frequency space and vice versa. In addition,
some effects only leave signatures in the phase and are thus not detectable. The
lack of phase detection is known as the phase problem and is a severe issue at
different wavelengths [84, 85], including hard x-ray energies. An early solution
was to use the interference between the sample and a well known reference, the
holographic principle proposed by Gabor in 1948 [86]. This is still the principal
behind spectral [87, 88] and temporal phase interferometry [78, 79, 89], which among
other techniques, e.g. ptychography [90], are used to retrieve phase information at x-
ray energies. Some current phase reconstruction techniques at x-ray energies [78, 79]
neglect the interaction between the two samples in temporal phase interferometry
for simplicity. This approximation is only valid under certain conditions.
Connected to the reconstruction of complex phases of the light field is the re-

construction of small motions. Those motions usually leave strong signatures in
the phase, which allows to extract the motion directly from the phase [41, 65, 79].
Small motions, on the sub-Ångstrom level, and their measurements are crucial in
many fields, such as precision engineering [91], fundamental quantum physics [92],
optomechanics [93] and measuring external influences, e.g. gravitational waves [27].
In addition, for motion-controlled experimental schemes like in [41, 65, 94, 95], the
knowledge of the exact motion is necessary for its optimization and controllability.
Currently used reconstruction schemes [41] are inefficient on measurement and eval-
uation. Especially, if several motions have to be reconstructed during an experiment
for optimization and control, faster methods have to be used. In addition, it would
be desirable to have a motion reconstruction scheme that does not depend on any
model assumptions or material parameters.
Besides the detection systems, at hard x-ray energies also the light manipulation

tools are limited. Because of the real part of the refractive index of any material
being close to unity at those energies [14], using diffractive or refractive elements
like at optical wavelength, e.g. waveplates, is restricted. Thus, alternative meth-
ods are necessary, resulting in the development of an impressive toolbox. Among
those are deformable [96] or micromechanical mirrors [97, 98], rotational shutters
[99] and off-Bragg phase modulation [100]. Adjustable methods include the use of
sound waves [101, 102], piezoelectric [103] or photo-acoustic [104] diffraction con-
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Chapter 1 Introduction

trol, magnetic [44] or optical properties switching [105] and mechanically-induced
refractive index enhancement [94, 95]. Combined with a polarimeter the latter one
builds a controllable polarization interferometer [95]. Temporal pulse shaping with
a polarization interferometer has already been demonstrated in the optical regime
[106]. At x-ray energies it can be used for fast and adaptive pulse shaping in tem-
poral domain as proposed theoretically in [95] and provides an alternative to other
techniques for temporal pulse shaping [41, 42, 107, 108, 109]. Especially the creation
of pulse sequences is desirable, e.g. for Ramsey spectroscopy.
The polarization interferometer works at minimal intensity, such that noise dis-

turbes the destructive interference. Because this reduces the visibility of controlled
interference changes, noise reduction is desired. Therefore, it is necessary to un-
derstand the background noise in the experiment. Besides, in [41, 110] an Allan
deviation [111] has been performed to characterize the stability of the system, but a
systematic noise analysis has not been done. The setup in [41, 110] and the polar-
ization interferometer are similar, such that a combined noise analysis is possible.
An understanding of the background noise is necessary for the theoretical simulation
and optimization of future experimental schemes.

Outline of thesis

In this thesis, experimental setups needed for the realization of quantum optical
schemes at x-ray energies, such as phase and motion reconstruction, temporal pulse
shaping and a noise analysis tool, are developed.
After this introduction, background information will be provided in Chapter 2.

Besides the properties of 57Fe as one of the most used Mössbauer nuclei and basic
principles behind nuclear forward scattering, the standard experimental setup and
data evaluation are explained.
The main part is divided into two parts. The first part (Chapters 3 and 4)

focuses on temporal phase interferometry, while in the second part (Chapters 5
and 6) measurements with a controllable polarization interferometer are evaluated.
In Chapter 3, heterodyne phase reconstruction is introduced as one solution to

the phase problem at x-ray energies. After explaining the basic setup of Callens et
al. [78], the scheme is analyzed more closely. At quantum beat minima, interaction
between sample and analyzer sample cannot be neglected anymore and new cor-
rection terms to the basic model by Callens et al. are introduced. Including those
correction terms results in an extended heterodyne phase reconstruction that also
works at intensity minima and has successfully been used on experimental data.
Chapter 4 presents and analyzes a new scheme for motion reconstruction that is

based on heterodyne phase detection. The principal idea is that the motion-induced
phase can be calculated as the difference between the phase in the static case and
with motion. Similar to an idea originally presented in [79], the motion-induced
phase directly gives the motion. As will be discussed, the new scheme is much more
efficient than the one that was formerly used in [41, 65] both for measurement and
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evaluation times. This improvement is essential to characterize several motions in
real time during the experiment. In addition, the new method gives further insights
into the computational steps because it needs much less model assumptions and
material properties, such that intermediate results can be tested for plausibility.
The first experimental realization of temporal pulse shaping with polarization

interferometry at x-ray energies as presented in [95] is investigated in Chapter 5.
The central idea is to control the interference between the two samples in time
domain by moving one of the two samples on the order of the wavelength. The light
output from the interferometer is directly related to the samples’ interference and
can thus be controlled by the motion. It is demonstrated that temporal single pulse
shaping is possible with this setup. Different experimental settings and parameters
are analyzed. In addition, first proof of principle measurements for the creation of
double pulses are performed. Those measurements demonstrate, that as proposed
in [95], the controllable polarization interferometer can be used for temporal pulse
shaping and creation of pulse trains.
Besides the pulse shaping, the polarization interferometer provides a new tool for

background noise analyzes as explained in Chapter 6 because it operates close to
minimal intensity. A new measurement mode is introduced, where sequences of 40
pulses are collected. A piezo motion is applied only for one pulse so that the motion
decay can be studied over 39 bunches. This new mode allowed us to see sound waves
traveling through the sample material because they leave a signature upon their
revival about 15 bunches after the piezo motion is applied. This observation would
not have been possible with the old mode with only four pulse sequences. Besides,
the evolution of interference over the whole 40 bunches is evaluated. Furthermore,
models for the background noise are tested. Those tests allow to model noise in
future theoretical simulations of experimental schemes.
Finally, a summary and outlook are given in Chapter 7.
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Chapter 2

Background

In this chapter the theoretical background of nuclear forward scattering exemplified
by the isotope 57Fe and experimental methods used in the evaluated experiments
will be explained.
All spectra throughout this thesis are calculated with the software package pynuss

[112], which is based on the software package conuss [113].
In Section 2.1 and Section 2.2, the basics of nuclear transition at the example

of 57Fe and the theory of nuclear forward scattering are explained, respectively.
Afterwards, the influence of a moving sample is discussed in Section 2.3. The chapter
ends with the experimental setup and data evaluation being explained in Section 2.4
and Section 2.5.

2.1 Nuclear transitions of 57Fe

Throughout this thesis the magnetic dipole transition of 57Fe as one of the most
popular Mössbauer transitions [57] will be used. As a Mössbauer-active element it
has a nearly recoil-free, resonant absorption and emission of x-rays.
In Fig. 2.1a the level scheme of 57Fe is shown. In absence of a hyperfine field, this

nucleus can be regarded as a simple two-level-system with transition frequency and
wavelength [57, 114]

ω0 = 14.4 keV, λ = 0.861Å (2.1)

and linewidth [57, 114]
γ = 4.7 neV. (2.2)

Already a weak external magnetic field of about 30 mT [115] can align the strong
internal magnetic hyperfine field of 33 T caused by spin polarization [57]. Because
the nuclear spins are Ig = 1

2
and Ie = 3

2
for the ground and excited state, respectively,

hyperfine splitting occurs. In the case of an internal magnetic field of 33 T, we
have a splitting of δg = 39.7 γ and δe = 22.5 γ for the ground and the excited
state, respectively [114]. Due to the selection rules for magnetic dipoles, only the
transitions with me −mg = 0,±1 can be driven. The properties of the six allowed
transitions are given in Table 2.1. The six transitions have different detunings

∆hyp = ω0 − ωtransition = mgδg +meδe. (2.3)

Because of the selection rules, they also have different transition dipole moments.
Their spatial arrangement is shown in Fig. 2.1b. The linearly polarized transitions
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Chapter 2 Background

Ie = 3/2

Ig = 1/2

+3/2 |e4〉
+1/2 |e3〉
−1/2 |e2〉
−3/2 |e1〉

−1/2 |g1〉
+1/2 |g2〉

me

mg

δe = 22.4γ

δg = 39.7γ

ω0 = 14.4 keV
γ = 4.7 neV,
1/γ = 141 ns

(a)
(b)

Figure 2.1: (a) The level scheme of the six M1 allowed transitions in 57Fe. On the left
side, the transitions without a magnetic hyper fine splitting can be seen. On the right side,
the allowed transitions with the hyperfine splitting are displayed. Levelspacings are not to
scale. (b) The polarization arrangement of the hyperfine splitted lines. Directions depend
on the angle of the magnetic field ~B. The π̂-axis always points along the magnetic field.
The colors in both figures indicate, whether the line is linearly (light green) or circularly
(dark green) polarized.

n Transition mg me ∆hyp Polarization cµ

1 |g1〉 ↔ |e1〉 −1/2 −3/2 −53.6γ σ− 1

2 |g1〉 ↔ |e2〉 −1/2 −1/2 −31.1γ π0
√

2/3

3 |g1〉 ↔ |e3〉 −1/2 +1/2 −8.6γ σ+

√
1/3

4 |g2〉 ↔ |e2〉 1/2 −1/2 8.6γ σ−
√

1/3

5 |g2〉 ↔ |e3〉 1/2 +1/2 31.1γ π0
√

2/3
6 |g2〉 ↔ |e4〉 1/2 +3/2 53.6γ σ+ 1

Table 2.1: Properties of the six transition lines of 57Fe adapted from [114]. Circular
electric dipole moments are indicated by σ±, linear ones by π0. The six lines have different
Clebsch-Gordan coefficients cµ.
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2.2 Nuclear forward scattering

are always parallel to the orientation of the magnetic field, while the circular ones
are perpendicular.
Throughout this thesis, when talking about light fields, without loss of generality

we will always only consider the electric component because it is more familiar.
If the incoming beam is linearly polarized in a certain direction, which usually is
the case for synchrotron radiation, the orientation of the magnetic field determines
which lines are driven. Thus, the direction of the magnetic field has to be described
relative to the the beam polarization. Usually, this is described with two angles
namely

• the inclination angle θ, i.e. the angle between beam propagation axis and the
magnetic field,

• the azimuthal angle α, i.e. the angle between the magnetic field and the
direction perpendicular to the linear polarization of the beam.

The perpendicular component in the definition of α is used because we have a
magnetic dipole transition, but consider the electric field of the light.
Throughout this thesis, it is θ ≈ π/2 and the azimuthal angle α, that is sufficient

to describe the orientation of the magnetic field in this case, is called angle of
magnetization. This is illustrated in Fig. 2.2, where the incoming beam is assumed
to be linearly polarized along the σ̂0-axis [116]. For example, in case of α = π/2
only the two linear transitions are driven, while for α = 0 this is the case only for
the four circular transitions. Any angle in between results in all lines taking part in
scattering processes.
From Table 2.1, it can be seen, that the frequency shifts caused by magnetic

hyperfine splitting (∆hyp < 252 neV) are many orders of magnitude smaller than the
transition frequency (14.4 keV). Therefore, the relevant energy scale is the detuning
∆ = ω − ω0, which will be used throughout this thesis.

2.2 Nuclear forward scattering

A widespread scheme using Mössbauer nuclei is nuclear forward scattering. The
principal setup is shown in Fig. 2.2. The sample of interest is excited, e.g. with syn-
chrotron radiation or radioactive light sources, and the photons behind the sample
are detected. Moving the sample on the order of wavelength, which can be done by
placing it on a piezo electric element (piezo), and changing the angle of magnetiza-
tion α influences the measured spectra. It can be shown that the forward direction
is enhanced in the scattering process [29, 117].

2.2.1 Calculation of spectra

Within this thesis, we will always use synchrotron radiation as the input field. A
synchrotron pulse is very short (bunch length of 44 psec at PETRA III [46]) com-
pared to the characteristic time scale of the transition γ−1 = 141 ns. Hence, the
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Chapter 2 Background

Figure 2.2: The basic setup of nuclear forward scattering. A sample (orange) is excited by
appropriated x-ray light (pink), e.g. synchrotron radiation. The incoming light is assumed
to be linearly polarized along the σ̂0-axis. The forward scattered light is detected with
e.g. avalanche photodiodes (not shown). This detection typically is time resolved or by
including an analyzer foil frequency resolved as well. The angle of magnetization α (green)
is relative to the direction perpendicular to the incoming beam polarization. The sample
can be mounted on a piezo electric element (red) to move it on the order of wavelength.

incoming field in time and frequency space can be described by a Dirac δ-function

Ein(t) = E0δ(t), (2.4)

Êin(ω) = E0, (2.5)

where we used that the Fourier transform of δ(t) is 1 and omitted the factor of
√

2π
for simplicity. Throughout this chapter, if f is a function in time space, f̂ describes
the Fourier transform of f in frequency space. The constant E0 defines the strength
of the field.
In frequency space, the outgoing field Ê(ω) is simply the product of the incoming

field and a response function R̂(ω) that describes the response of the sample to the
incoming field

Ê(ω) = R̂(ω)Êin(ω). (2.6)

Accordingly, due to the convolution theorem, in time space the outgoing field can
be described by a convolution

E(t) = R(t) ∗ Ein(t). (2.7)

The measured spectra are then given by I(t) = |E(t)|2 and Î(ω) = |Ê(ω)|2. Hence,
the problem is solved if the response functions are known.

2.2.2 Response functions

Single line. For simplicity, we will first consider the case of a single line absorber,
i.e. without hyperfine splitting. As we will see later (see Eqs. (2.12) and (2.13)),
it is simple to include hyperfine splitting afterwards. We are mainly interested in
the nuclear response, so we will neglect electronic contributions that lead to a small
amount of absorption [65].

10



2.2 Nuclear forward scattering

In frequency space, the response function of a single line absorber with transition
frequency ω0 and transition width γ is given by [118, 119]

R̂(ω) = exp

(
−ib

ω − ω0 + iγ
2

)
, (2.8)

where b = ρfRσ0dγ/2 is a material constant proportional to the thickness d, with
ρ the sample density, z the sample thickness, σ0 the absorption cross section at
resonance and fR the Lamb-Mössbauer factor. The response function in time space
can be calculated via a Fourier transform

R(t) =
1√
2π

∫ ∞
−∞

exp

(
−ib

ω − ω0 + iγ
2

)
exp(−iωt)dω. (2.9)

This integral cannot be solved straightforwardly, but with contour integration (see
[119, 120]). Finally, the result reads

R(t) =δ(t)−
√
b

t
J1

(
2
√
bt
)
e−iω0te−

γ
2
tθ(t), (2.10)

=δ(t) +RS(t), (2.11)

with the Bessel function of first kind J1. The prompt pulse, i.e. no interaction with
sample, is represented by δ(t). The remaining part is the actual scattering response
of the sample to the incident field, which will be denoted by RS(t). It can be divided
into three different parts:

• e−
γ
2
t is the exponential decay,

• e−iω0t describes the free time evolution, a fast oscillation at the x-ray’s carrier
frequency that is not resolvable in experiments,

•
√

b
t
J1

(
2
√
bt
)
represents thickness effects caused by the propagation through

the sample. It has a minimum at t = 58.74/b [121] called the dynamical beat,
with b typically of order one

Several lines. The lines in Eq. (2.8) are centered around ω0 and have a width of a
few γ. If hyperfine splitting is taken into account, the transition frequency is slightly
shifted from ω0 to ω0 + ∆hyp, where ∆hyp is the according hyperfine shift. Because
of the narrow absorption lines (a few γ) compared to their separation (> 10γ), we
can neglect any interaction in frequency space and simply add up the lines weighted
with the respective Clebsch-Gordan-coefficients cµ [57]

R̂hyp(ω) =
∑
j

cjµ exp

(
−ib

ω − (ω0 + ∆j
hyp) + iγ

2

)
=
∑
j

cjµ exp

(
−ib

∆−∆j
hyp + iγ

2

)
,

(2.12)
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Figure 2.3: (a) The intensity is plotted against the detuning according to Eq. (2.12). The
parameters in this equation are chosen to be d = 2µm and angle of magnetization α = π/4
so that all allowed lines are driven. The colors indicate the polarization as in Fig. 2.1b. (b)
A typical time spectrum is shown according to Eq. (2.13). Besides the decreasing intensity
with oscillations due to quantum beats, the thickness d dependent dynamical beats can be
seen. The blue (dashed) line is for a sample thickness of d = 2µm, the red (solid) one for
d = 5µm. As expected, the dynamical beat is determined by b ∝ d. The magnetic angle
is chosen to be α = π/2 so that only the two linear lines are driven for simplicity. The
prompt pulse is indicated by the huge intensities close to 0 ns.

where j indicates the transition and ∆ the detuning as defined above. An example
spectrum, where all six allowed lines are driven, is shown in Fig. 2.3a. The absorption
dips of the different transitions can clearly be seen.
Using linearity of the Fourier transform, in time space the contributions of the

different lines can also simply be added up with shifted frequencies and according
Clebsch-Gordan coefficients [57]

Rhyp(t) =
∑
j

cjµ

[
δ(t)−

√
b

t
J1(2
√
bt)e−i(ω0+∆j

hyp)te−
γ
2
tθ(t)

]

=δ(t)−
√
b

t
J1(2
√
bt)e−iω0te−

γ
2
tθ(t)

∑
j

cjµe
−i∆j

hypt

=δ(t)−
√
b

t
J1(2
√
bt)e−iω0te−

γ
2
tθ(t)︸ ︷︷ ︸

Rno hyp(t)

2
∑
k

ckµ cos(∆k
hypt)︸ ︷︷ ︸

quantum beats

, (2.13)

where in the last line we used that driven lines always occur in pairs, that are indexed
with k, with detunings ±∆k

hyp as can be seen from Table 2.1. This sum over the
pairs causes oscillations with frequency ∆k

hyp, which are called quantum beats. The
prefactor of this oscillation term is the response function without hyperfine splitting
Rno hyp(t) as in Eq. (2.10).
Two example time spectra with only the pair of linear lines driven for simplic-

ity are shown in Fig. 2.3b. The exponential decay can be seen in the trend. The
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2.2 Nuclear forward scattering

minima of the envelope are caused by the dynamical beat and the thickness depen-
dency is clearly visible. In addition, the quantum beats due to the slightly different
frequencies of the two linear lines show up as the oscillating structure with minima
separated by about 14 ns.

With polarization dependence. To take into account the different polarizations
(see Table 2.1) of the allowed lines, the Jones matrix formalism will be used. The
electric field is represented by a vector with the electric field components in σ̂0-
and π̂-direction as defined in Fig. 2.1b, where the π̂-axis always points along the
magnetic field and the σ̂0-axis is perpendicular to that. The representation with a
two-dimensional vector is possible because all polarization dependencies only lie in
the plane perpendicular to the beam propagation direction. The linearly (circularly)
polarized transitions can only interact with components in π̂(σ̂0)-direction. Hence,
the polarization dependent outgoing field in frequency space is given by [57, 122]

~̂E(ω) =

(
R̂circ(ω) 0

0 R̂lin(ω)

)
~̂Ein(ω), (2.14)

where ~Rcirc(ω) (~Rlin(ω)) is the response function summed up over all circular (linear)
polarizations. Again, a Fourier transform can be used to give the result in time space.

Thin target approximation. For t < 4/b, i. e. short times or thin samples, we can
Taylor expand the Bessel functions

J1(2
√
bt)√

bt
≈ 1− bt

2
+
b2t2

12
+O

(
b3t3
)
. (2.15)

Comparing to the Taylor expansion of the exponential function,

e−bt/2 ≈ 1− bt

2
+
b2t2

8
, (2.16)

we can approximate
J1(2
√
bt)√

bt
≈ e−bt/2. (2.17)

With this approximation Eq. (2.10) becomes

R(t) ≈ δ(t)− be−iω0te−( γ2 + b
2)tθ(t). (2.18)

This approximation is sometimes used to analytically calculate the output signal
because it simplifies the expressions significantly.
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Chapter 2 Background

2.2.3 Combining several samples

After describing the interaction of one sample with a synchrotron pulse, the calcula-
tion will now be extended to several samples in a row. To calculate the electric field
behind the j-th sample, the output field after the (j − 1)-th sample can be used as
input field in Eq. (2.4) so that

Êj(ω) = R̂j(ω)Êj−1(ω). (2.19)

Hence, the response function of N samples in a row is given by

R̂(ω) =
N∏
j=1

R̂j(ω). (2.20)

In time space, convolutions have to be used instead of the products.
Let us consider the special case of two samples in time domain. The combined

response is given by

R(t) =R1(t) ∗R2(t)

=
[
δ(t) +RS

1 (t)
]
∗
[
δ(t) +RS

2 (t)
]

=δ(t) +RS
1 (t) +RS

2 (t) +RS
1 (t) ∗RS

2 (t), (2.21)

where we used Ri(t) = δ(t)+RS
i (t) (see Eq. (2.11)) in the second line and f(t)∗δ(t) =

f(t) for an arbitrary function f(t) in the last line. The four different scattering paths
are represented by the four different terms:

• δ(t) is the prompt pulse where no scattering with any sample occurs,

• RS
1 (t) represents the paths where scattering only takes place in first sample

and not in the second sample,

• RS
2 (t) describes the other single sample interaction with only the second sam-

ple,

• RS
1 (t)∗RS

2 (t) expresses the interference path in which scattering occurs in both
samples.

In general, this last convolution is hard to compute analytically. Numerical cal-
culation approaches often use the fact that it is a simple multiplication in frequency
space and a discrete Fourier transform can be used to go from time space to fre-
quency space and vice versa.

2.3 Moving sample

Moving a sample on sub-Ångstrom level induces a controlled phase shift in the
response function, which enables to control the interference of the prompt pulse and
the sample response by the phase eikx(t) as shown in Fig. 2.4. The main work on the
theoretical description was done in [119].
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2.3 Moving sample

Figure 2.4: Influence of a moving sample (pink) on the interaction with the prompt pulse
(yellow). The displacement, which is realized by a piezoelectric element (gray), adds an
additional phase eikx(t) (red) to the electric field in the static case (blue). Taken from [65].

2.3.1 Computational strategy

We already know what the response functions look like in case of a static sample,
which would be the appropriate description in the rest frame of the target. Hence,
the main idea is to include the motion by a transformation between the laboratory
and rest frame of the target [65, supplement].
Because the sample motion x(t) is not fast enough so that relativistic effects could

play a role, the incident field Ein(t) = δ(t) in the laboratory frame can be represented
in the rest frame of the sample by

Ẽin(t) = Ein(t)e−ikx(t) = δ(t)e−ikx(0), (2.22)

where k is the wave number. In the second step we used that δ(t) only has contri-
butions at t = 0. In the lab frame, we can use Eqs. (2.4) and (2.11) to find

Ẽ(t) =R(t) ∗ Ẽin(t)

=
[
δ(t) +RS(t)

]
∗
[
δ(t)e−ikx(0)

]
=
[
δ(t) +RS(t)

]
e−ikx(0). (2.23)

Similar to Eq. (2.22), the back transformation can be performed

E(t) =Ẽ(t)eikx(t)

=
[
δ(t) +RS(t)

]
e−ikx(0)eikx(t)

=δ(t) +RS(t)eik(x(t)−x(0)), (2.24)

where in the last step we again used that the δ-function only has a contribution at
t = 0 so that the exponentials cancel each other. Only the relative displacement of
the sample is relevant so that we can set x(0) = 0 and find

E(t) = δ(t) +RS(t)eikx(t). (2.25)
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Figure 2.5: Frequency (a) and time spectra (b) are shown for different displacements:
static (blue), x0 = λ/4 (red) and x0 = λ/2 (orange). The sample thickness is d = 1µm
and α = π/2. The frequency spectra show different line shapes, absorption dips for static
case, Fano line shapes for x0 = λ/4 and intensity enhancement for x0 = λ/2, while the
time spectra are identical.

The motion induces a phase shift eikx(t) to the scattering part of the response func-
tion. This phase can also be understood intuitively: First, it is clear that there
cannot be a phase shift in the prompt part of the response function because this
part does not interact with the sample at all. Second, any plane wave propagates
through space by picking up a phase eikx. Hence, shifting the source point of the
wave, the x-coordinate has to be changed accordingly.
Except in case of t = 0, the phase will be cancelled out in the measured time

spectra so that the intensities in time space look the same for the different motions as
displayed in Fig. 2.5b. However, this is not the case in frequency space because there
the prompt pulse is distributed uniformly over all frequencies. Thus, the motion-
induced phase controls the interference between prompt pulse and light emitted by
the sample in frequency space (see Fig. 2.5a).
In experimental settings, there is a bandwidth of different frequencies in the syn-

chrotron pulse because of its shortness. It is possible to limit the bandwidth of this
pulse on meV level so that the variation in k is small compared to the absolute value
(about 6 orders of magnitude) [120]. Hence, the variations can be neglected and k
be assumed to be the same for all six transitions.
Controlling the sample motion x(t) on sub-Ångstrom-level results in phases be-

tween 0 and 2π.

2.3.2 Instantaneous jump

With the framework for moving sample at hand, we want to illustrate the effect at
the simple example of an instantaneous jump at t = 0

x(t) = x0θ(t). (2.26)
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Plugging Eqs. (2.10) and (2.26) into Eq. (2.25) gives

E(x0, t) = δ(t)− e−ikx0θ(t)
√
b

t
J1(2
√
bt)e−iω0te−

γ
2
tθ(t). (2.27)

The electric field in frequency domain can be calculated via a Fourier transform

Ê(ω) =

∫ ∞
−∞

E(x0, t)e
iωtdt

=1−
∫ ∞
−∞

e−ikx0θ(t)
√
b

t
J1(2
√
bt)e−iω0te−

γ
2
tdt

=1− e−ikx0
∫ ∞

0

√
b

t
J1(2
√
bt)e−iω0te−

γ
2
tdt, (2.28)

where in the last step we used that e−ikx0θ(t) = e−ikx0 for t > 0. The variation at
t = 0 can be ignored because its measure is zero so that it does not contribute to
the integral. The remaining integral expression is RS(t). Hence, by using Eqs. (2.9)
and (2.11) we find

Ê(ω) = 1 + eikx0
( −ib

∆ + iγ
2

− 1

)
. (2.29)

The first part gives the spectral baseline from the incident pulse, the second term
the phase controlled sample interference with the uniform prompt pulse. From this
expression, we can see that for different phases all kinds of Fano-lines are possible
for different x0. Spectra for different x0 are shown in Fig. 2.5. While the frequency
spectra differ significantly, the time spectra are all the same.
Choosing x0 = λ/2 as in [65] gives a phase of eikλ/2 = −1 and thus

Ê(ω) = 2− −ib
∆ + iγ

2

. (2.30)

The frequency dependent part, that is responsible for absorption dips, has the oppo-
site sign now so that absorption dips turn into intensity enhancement [65] at those
frequencies (see Fig. 2.5).

2.3.3 Arbitrary motions

In experiments, a step function as discussed above usually is not possible. Instead,
the motion would have a certain rise time (see figs. 2.6a and 2.7b). Luckily, those
risetimes do not change the spectra much (see Fig. 2.6b). The more realistic mo-
tion causes a Doppler shift because of finite velocities on the rising edge, which is
responsible for the asymmetry in the spectra [65, supplement].
Arbitrary motions can be evaluated in a similar fashion: Transforming into the

rest frame of target, evaluating the response there and transforming back into the
laboratory frame. The problem is that for arbitrary motions the integral in the
Fourier transformation may not be solvable analytically. However, the integral is
not a problem for simulations because a discrete Fourier transforms can be used.
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Figure 2.6: Three different motions and their corresponding frequency spectra are shown:
static case (blue), the discussed step function (orange) and a more realistic function with
a certain rise time (red). The non-instantaneous motion causes a Doppler shift during the
rise, which is responsible for the asymmetry in the spectra [65, supplement].

2.4 Experimental setup

In this section, the experimental setup for nuclear forward scattering with a moving
sample will be explained. The goal is to measure, time and frequency spectra as
well as 2D spectra, in which both information is combined, and to characterize the
piezo motion.

2.4.1 Setup and detection system

Setup. The experimental setup is shown in Fig. 2.7a. The sample is mounted on
a piezoelectric element (piezo) so that it can be moved in a controlled way on the
level of the wavelength. Which of the six sample transitions are driven, is selected
by aligning the external field. In forward scattering direction a single-line analyzer,
here a stainless-steel foil, on a Mössbauer drive, that can move the analyzer with
different velocities, and avalanche photodiodes (APDs) are placed. As light input,
synchrotron radiation is used. The experimental data shown in Chapters 3 to 6 were
taken at beamline P01 at DESY [116], which has a pulse separation of 192 ns [46].

Detection. Our detection system with the combination of a Mössbauer drive and
APDs allows event-based detection. That means that for every arriving photon,
energy and time information can be stored among other quantities. Thus, 2D spectra
with frequency and time information can be measured (see Fig. 2.7b). Those 2D
spectra contain enough information to extract intensity and phase of the electric
field. The first few nanoseconds are excluded by a veto because in this range the
detection does not work properly as it still tries to handle the massive counts from
the prompt pulse. For more details on the detection scheme see [41].
The signatures of the resonances are clearly visible in the 2D spectra, especially

at late times. In Fig. 2.7b, only the two linear lines are driven. Thus, pseudo
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(a) (b)

Figure 2.7: (a) The standard experimental setup adapted from [65]. A short (ps) syn-
chrotron pulse (yellow) interacts with the sample (purple). The latter is mounted on a
piezoelectric element (piezo, gray) so that it can be moved in a controlled way on sub-
Ångstrom level. The detection system consists of avalanche photodiodes (APDs) for time
spectra and a single line analyzer on a Mössbauer drive to measure 2D spectra in addition.
A magnet (not shown) is used to align the internal magnetic field and hence select the
driven lines. (b) Two 2D example spectra taken from [41]. The number of photon counts
is shown as a function of the Mössbauer detuning ∆ (δ in figure) and time t. White areas
indicate no counts.

frequency spectra can be created by the so-called late-time integration. In this
method, the 2D spectra are integrated over late times, e.g. after 100 ns, which
traces out the modulation with time. At earlier times, there are a lot of structures
off the resonances, which would falsify the frequency spectra if integrating over the
whole time range. More details on this method can be found in [57, 114].

2.4.2 Moving samples

About 1µm thick α-iron foils enriched in 57Fe to 95% are placed on a thin polyvinyli-
dene fluoride piezoelectric transducer (DT1-028K/DT1-052K, Measurement Special-

(a) (b)

Figure 2.8: (a) A sample consisting of a thin foil enriched with 57Fe (about 1 mm×3 mm)
glued on a piezoelectric element (about 1 cm × 3 cm). A 4 mm-thick acrylic glass plate
stabilizes the sample. (b) Two reconstructed example motions of the piezo are shown. The
amplitude of 0.43Å corresponds to λ/2 and hence a phase shift of φ = k∆x = π. Taken
from [65].
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Figure 2.9: An example reference voltage for a motion, that covers a four bunch cycle.
Gray lines indicate the arrivals of the x-rays. The rising edges should be within the veto
time, in which no data is collected because the APDs still handle the photons from the
prompt pulse. The voltage of the reference ramp is a clear identifier of the bunch number
in the four bunch sequence.

ities Inc) [123], called piezo in the following. For stability, this altogether is glued
onto a 4 mm thick acrylic glass plate. An example can be found in Fig. 2.8a.
The voltage pattern for the piezo is generated by an Agilent arbitrary waveform

generator (Keysight 81160A-002 [124]) called agilent. Two example measured mo-
tions are shown in Fig. 2.8b. They have a rise time of about 20 ns until they reach
a phase jump of about π. For roughly the next 50 ns, they stay relatively constant
before slightly drifting away.
Usually we want a motion to last for 4 bunches to directly compare different

motion patterns such as piezo contraction, expansion or no motion. In principle,
those comparisons could also be done in separate measurements, but if any noise
drifts with time, the drifts would distort the results.
To sort the data into the correct 2D spectrum, a reference voltage is collected

as well by the detection system for every arriving photon. The reference voltage
is a step function with as many steps as bunches covered by the motion. Hence,
the voltage of this reference ramp is a unique identifier of the bunch number within
the motional sequence. An example reference ramp for 4 bunches is displayed in
Fig. 2.9. If possible, the rising edges of the reference voltage should be placed in
the veto regime (here at 10 ns), where no data is collected. Otherwise data might
be lost because on the rising edge sorting into the correct bunch is difficult.

2.5 Data evaluation

The principal evaluation toolchain for live evaluation during the experiment as well
as basic evaluation after the experiment is displayed in Fig. 2.10. It can divided into
four main parts: data processing, calibrations, motion reconstruction and output of
data..
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convert into .h5 format

calibration needed?

time calibration

material characterization

energy calibration

define reference ranges

create 2D spectra

reconstruct motion part
with evolutionary algorithms

optimize motion part
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combine motion parts
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Figure 2.10: The principal toolchain to evaluate the experimental data is shown. Red
indicates in and output, gray data processing steps, blue calibration steps and green the
motion reconstruction steps. Because with the old method presented in Section 2.5.3 only
up to 55 ns of the motion can be reconstructed from one 2D spectrum, but the motion
lasting for 192 ns, different delays of the motion need to be measured (see Fig. 2.11). More
details on the toolchain can be found in main text.
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2.5.1 Data processing

The data processing steps are the gray ones in Fig. 2.10. At first, the raw data from
the RoentDek box is converted into a hierarchical data format (.h5), for better
usability. The new data is still event-based selection. After calibrating time and
energy range (see Section 2.5.2), all photon counts can be sorted into the 2D spectra
with time and frequency information as shown in Fig. 2.7b.

2.5.2 Calibrations

The calibration consists of several steps indicated by blue boxes in the toolchain
(see Fig. 2.10).

Time calibration. The detection system can detect the time delay between the
bunch clock, that is a signal triggered to the pulse arrival, and the photon arrival on
the detector. The only problem is that there are time shifts because of cable lengths
on the order of about 3 ns per meter because the signal travels with the finite speed
of light. As not all cable lengths are known and time scale is on ns level, a time
calibration is necessary. Without any motion, the time shift is only defined up to
a multiple of the bunch clock repetition of 192 ns. For 57-Fe, the time spectrum is
well known qualitatively so that we just need to find its starting points and have
the time calibration.

Material characterisations. The properties of the samples can be determined by
fitting calculated time spectra to the measured ones. Possible material properties,
that can be found by fitting are [110]

• thickness of sample (incl. distribution)

• strength of internal magnetic hyperfine field (incl. distribution)

• angle of magnetization α (incl. distribution)

• angle between beam propagation and orientation of magnetic field θ (incl.
distribution)

• isomer shift (incl. distribution)

• quadrupole splitting (incl. distribution)
Typically thickness, magnetic angle, angle between magnetic field and foil plane

and strength of internal field are fitted for α-iron foils, isomer shift and thickness
for stainless steel foils.
The function to be minimized, which is given by the difference between measured

and calculated spectrum in Poissonian metric [41, 125], has many local minima so
that evolutionary algorithms (see Section 2.5.4) are used to find the rough global
minimum. This rough estimate can be optimized by standard fit routines like Nelder-
Mead to find the actual global minimum.
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Figure 2.11: Illustration on how different delays can be used to cover the whole motion
while the reconstruction time is limited to 55 ns. The solid line shows the motion without
delay, while the dotted curve illustrates the same motion delayed by 50 ns. The delay shifts
new motion parts into the reconstruction time window (gray areas) starting 15 ns after the
pulse arrival (gray lines) and ending at 70 ns. The pulse separation is 192 ns like at DESY.

Energy calibration. Using the fitted material properties, 2D spectra can be cal-
culated and compared to the measured ones. For the calculated ones, the position
of the resonances is exactly known so that the frequency axis of the 2D spectra can
be calibrated.

Defining reference ranges. As said above, the motion usually covers more than
one bunch. To identify to which bunch of the motion a detected photon belongs a
reference voltage signal is detected for the voltage limits. An example for four bunch
mode, i.e. motion lasting over four bunches, is given in Fig. 2.9. The reference
voltage is a unique identifier of each bunch in the four bunch cycle.
Because we want 2D histograms for each motion part separately, appropriate limits

have to be defined. The reference ramp has rising edges when switching to the next
voltage level. Hence, at those points the bunch identification by the reference ramp
is difficult and the data is not sorted into the different bunches properly. The rising
edges have no influence if they are set in the veto region.

2.5.3 Reconstruction of motion

The reconstruction of motion represented by the green steps in Fig. 2.10 needs to
be done for different delays as discussed below to cover the whole motion.
In general, the actual motion is expected to differ from the applied voltage pat-

tern. In addition, time shifts occur like explained above for the time calibration
(Section 2.5.2). Thus, the motion has to be determined by fitting routines. The 2D
spectra contain enough information to uniquely reconstruct the motion by compar-
ing the measured spectrum to a calculated one with the function to be fitted.
Fitting the motion point by point has too many free parameters. Hence, we

fit bivariate splines [126], that represent the motion. They represent an arbitrary
function by N−1 piece wise polynomials between N so called support points. In our
case, the polynomials are chosen to be cubic. With appropriate boundary values,
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those polynomials can be represented by a single number called slope in the following.
For more details see [126]. Hence, only the N − 1 slopes have to be optimized.
To compare spline and experimental data, a Poissonian metric is used [41, 125].

The residual sum calculated with this metric will be called fitness in the following.
In a first step a spline will be fitted to the 2D spectra by using evolutionary algo-

rithms (more details in Section 2.5.4 or [41]). In general, there is no good first guess
for the motion so that standard fit routines would only find a local minimum, while
evolutionary algorithms are able to find the environment of the global minimum.
This step needs considerable computational resources, such that it has be done on
the institute’s high performance computer.
Second, this result can be used as initial parameters to optimize the result with

standard optimization methods (here Nelder-Mead [127]).
Typically, the whole reconstruction can only be trusted in the first 55 ns after the

veto. Because of a pulse separation of e.g. 192 ns at DESY [46], one 2D spectrum
is not enough to reconstruct the complete motion. An illustration can be found in
Fig. 2.11. The motion can only be reconstructed in the shaded areas. Delaying
the motion by 50 ns shifts other parts of the motion into the reconstruction time
window of the first 55 ns after the veto. Several measurements are needed with the
motion being shifted by different delays so that every part of the motion is within the
reconstruction time window from 15 ns to 70 ns at least once. Typically, the delay
is chosen in steps of 25 ns to have an overlapping regime for consistency checks.
After the reconstruction of the motion parts for different delays, they can be

combined into one motion again. First, the motion parts are sorted by their starting
points. After the sorting, they are appended step by step. Because earlier times are
more trustworthy, whenever there is an overlap between two motion parts, the one
with later starting time is used in this region.
The delay spacing is chosen in such a way that there is enough overlap, to exclude

some motion parts from combination to optimize the periodicity of the resulting
motion. Two example motions are shown in Fig. 2.7b. For more details on the
standard reconstruction method see [41], [65, supplement].

2.5.4 Evolutionary algorithms

In some of the above mentioned fitting routines, many local minima exist. Standard
fit methods such as the used Nelder-Mead can only find a local minimum, but no
global minimum. Depending on the starting parameters of the fitting routine, the
global minimum might not be found because the fit converges in the local minimum.
One solution to this problem is given by evolutionary algorithms [128, 129]. The

key idea is to implement some randomness into the fitting routine. In every itera-
tion, called generation here, several sets of parameters, the DNAs, are used. Their
“fitness”, i.e. a measure for deviation from the measured data, is calculated and
compared. The fittest create “children”, i.e. two DNAs are mixed into a new one, to
give a new set of DNAs for the next generation. DNAs who are not fit enough “die
out” and are replaced by new random DNAs.
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2.5 Data evaluation

The included randomness ensures that for enough generations and a big enough
population, i.e. number of DNAs in each generation, the area in which the global
minimum lies can be found. Within this area standard fit routines can be used to
find the local minimum in this area to actually get the global minimum.

2.5.5 Output of data

At different steps of the toolchain, different outputs are possible. After the time
calibration, time spectra can be created. If the energy is calibrated and reference
ranges are defined in addition, 2D spectra can be output from which also pseudo
frequency spectra can be calculated [57, 114]. Finally, after the motion reconstruc-
tion, the full motion is given and can be used for further evaluation steps or setting
experimental parameters accordingly.
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Part I

Temporal phase interferometry
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Chapter 3

Heterodyne phase reconstruction

Conventional light detectors, such as e.g. avalanche photo diodes (APDs), can
only count photons [83]. Thus, there is no direct way to measure the phase of
the complex electric field. However, some effects are only visible in the phase and
Fourier transforms of the electric field are impossible if the phase relation is not
measurable. This is known as the phase problem and is a difficulty not only at
x-ray energies [84, 85]. Since the first attempt to overcome this problem by Gabor
in 1948 [86], the key idea is to measure interference patterns from which the phase
can be reconstructed. The common approach of spatial interferometers, such as the
Mach-Zehnder-interferometer, is difficult to realize in the x-ray regime since the two
path lengths have to be stabilized on sub-Ångstrom level.
In this chapter, we will focus on a method using a Mössbauer drive as an interfer-

ometer and phase retarder. First, a phase reconstruction method initially introduced
by Callens et al. [78] will be explained in Section 3.1. The key idea is that the oscil-
lation created by the interference between sample and analyzer has a phase directly
related to the sample’s phase. Afterwards, we move on to further improvement of
the method developed in the scope of this thesis. We start with a closer look into
the regions near the quantum beats in Section 3.2. In these regions, the interference
oscillation goes to zero and thus does not give a proper phase relation anymore.
Next, in Section 3.3 corrections terms neglected in the initial simplistic treatment
by Callens et al. [78] are introduced to overcome the problems at quantum beats.
In Section 3.4, the extended method is included in our standard data evaluation
chain (see Fig. 2.10), which was already used at the beamtime in May 2021. Fi-
nally, Section 3.5 discusses the general usability of the developed heterodyne phase
detection.

3.1 Simplistic heterodyne phase reconstruction
scheme

There are different possibilities to access the phase problem, e.g. via 2D spectra
[41, 65]. Here, the idea of Callens et al. [78] is presented. The principal setup is
shown in Fig. 3.1. The sample, that is to be measured, and a single line absorber
on a Mössbauer drive are placed in front of a a set of APDs. For the light input
synchrotron radiation is used. As we will see in Eq. (3.5), the sample and analyzer
on Mössbauer drive are commutative in the evaluated off-resonant regime. For
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Figure 3.1: An analyzer (cyan) on a Mössbauer drive (blue) is placed downstream of the
sample to be analyzed (orange). A detector, typically avalanche photo diodes (APDs),
detects the forward scattered light after the interaction with synchrotron radiation. The
Mössbauer drive velocity and arrival time of photons are recorded to create 2D spectra.

simplicity, we assume the transition frequency of the single line analyzer to be the
same as the one of the sample ω0, which can be realized in experiments for 57 by
using a stainless steel foil as the analyzer.
The electric field behind the sample can be described by

~Es(t) = |Eσ(t)|eiφσ(t)~eσ + |Eπ(t)|eiφπ(t)~eπ, (3.1)

where ~eσ and ~eπ indicate two different polarization directions.
Moving the single line absorber with velocity v causes a Doppler shift of

∆D = ω0
v

c
, (3.2)

where ω0 is the analyzer transition frequency, which is identical to the sample’s
transition frequency, and c is the speed of light. That causes an additional phase in
the electric field scattered by the single line analyzer

ED
ana(t) = e−i∆DtEana(t), (3.3)

where Eana(t) is the electric field after the analyzer sample without Mössbauer drive.
The single line absorber has no polarization dependency. However, if the incoming
beam has a polarization, the single line absorber preserves it. Let us assume that
the incoming beam is polarized along the ~eσ. In that case, the electric field behind
the analyzer mounted on the Mössbauer drive with polarization dependency is given
by

~ED
ana(t) = e−i∆tEana(t)~eσ. (3.4)

As we have seen in Section 2.2.3, in general calculating the combined time spec-
trum of two samples is difficult. The key idea of Callens et al. [78] is to only consider
the regime outside of the sample’s resonant frequency regime (see Fig. 2.3a). Far
away from resonances, we can assume that there is no coupling between the sam-
ple and the analyzer. Hence, coupling terms between the two electric fields can be
neglected and the two fields can simply be added up

~Ecomb(∆D, t) = ~ED
ana(t) + ~Es(t). (3.5)
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Figure 3.2: Simulated data intensities as function of Mössbauer detuning ∆D (blue) and
fits of fit function ft0(∆D) in Eq. (3.8) (orange) for different times t0 (label at right). The
oscillation is clearly visible and fit and data agree with each other. In the empty central
region from −45γ to 45γ, the resonances are expected which is why this region is excluded
from the fit and thus not shown. The resulting amplitude and phase of the complex field
are shown in Fig. 3.3.

From this equation it can also be seen that the order of sample and analyzer does
not matter. The measured intensity is given by

I(∆D, t) =| ~ED
ana(t) + Es(t)|2 (3.6)

= |Eana(t)|2 + | ~Es(t)|2︸ ︷︷ ︸
baseline

+ 2|Eana(t)||Eσ(t)|︸ ︷︷ ︸
amplitude

cos [φσ(t) + ∆Dt]︸ ︷︷ ︸
oscillation

, (3.7)

where we used |Eana(t)| = |ED
ana(t)| and | ~Es(t)| = |Es(t)|. Note that the highly

oscillating terms eiω0t in Eana(t) and Es(t) (see Eqs. (2.10) and (2.13)) cancel each
other, such that this phase is not included in φσ(t). For a fixed time t = t0, this
equation is just an oscillation as function of ∆D with amplitude 2|Eana(t0)||Eσ(t0)|
and “oscillation frequency” t0 on top of a baseline |Eana(t0)|2 + | ~Es(t0)|2. Hence, for
a given 2D spectrum, i.e. intensity as function of time t and Mössbauer detuning
∆D, a function

ft0(∆D) = A+B cos (C + ∆Dt0) (3.8)

can be fitted to slices at different times t0. Throughout this thesis, those oscillation
fits are performed with the Levenberg-Marquardt (least square) algorithm [130].
Examples of those fits are shown in Fig. 3.2 for a 1µm thick sample with only the
two linear lines driven. The oscillation due to the cosine term in Eq. (3.6) is clearly
visible. In addition, the “oscillation frequency”, which is equivalent to the time at
which the data is taken, increases with time as expected. We can see that the fits
of Eq. (3.8) (orange) resemble the measured data (blue) well. The slight “oscillation
frequency” deviation for early times, i.e. at 10 ns, is not yet understood. Note that
only a region of about −45γ to 45γ needs to be excluded from the analysis in case
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Figure 3.3: The reconstructed (orange dots) field amplitude (a) and phase (b) are com-
pared to the calculated ones (blue line) for a 1µm thick sample with only the two linear
lines driven. Some corresponding fits of Eq. (3.8) can be found in Fig. 3.2. The errorbars
indicate the standard deviations from the fitting routines.

of only the two linear lines being driven in contrast to the region of about −100γ to
100γ excluded by Callens et al. in [78].
With measuring the intensity of the analyzer Iana(t0), we can reconstruct the

amplitude of the complete electric field of the sample |Es(t0)|, its amplitude in
beam polarization direction |Eσ(t0)| and the phase in beam polarization direction
φσ(t0) at time t0 as follows

|Es(t0)| =
√
A/Iana(t0), (3.9)

|Eσ(t0)| =B/
(

2
√
Iana(t0)

)
, (3.10)

φσ(t0) =C. (3.11)

Doing so for multiple times t0 gives the corresponding measurands as function of
time. All needed quantities for the value extraction in Eqs. (3.9) to (3.11) can in
principle be measured. Only the rough frequency spectrum must be known to ex-
clude near-resonance regimes. However, the spectrum can directly be extracted from
the 2D histogram via late time integration [57, 114]. Hence, no model assumptions
despite the no coupling approximation have to be made to extract amplitude and
phase of the electric field behind the sample.
An example for a reconstructed complex field from simulated data is shown in

Fig. 3.3. The reconstructed amplitude and phase agree with the calculated ones
within the errors. Furthermore, errors are biggest at the quantum beat minima.
The large errors are due to the quantum beat problem to be discussed in Section 3.2.
If the sample has no polarization dependency, the described method directly gives

the amplitude and phase of the sample as a function of time. If there is a polarization
dependence, for complete information the above steps have to be repeated for the
other polarization direction by rotating the polarization of the incoming beam or
usually more feasible in experiment by rotating the sample. However, depending on
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the requirements, oftentimes it is enough to know only amplitude and phase of one
polarization direction.

3.2 The quantum beat problem

We will now start with improvements, which were performed within the scope of
this thesis, of the heterodyne phase reconstruction (HPR) scheme by Callens et al.
[78] resulting in an extended heterodyne phase reconstruction (xHPR) scheme (see
Section 3.3). As a first step, the behaviour close to quantum beat minima is analyzed
because the neglected coupling terms have the strongest effect at low intensities.

HPR relies on the oscillations from the interference term (see Eq. (3.6)). How-
ever, close to quantum beats, this oscillation approaches zero as the cosine terms in
Eq. (2.13) causes the field amplitude Es(t) to become minimal. Therefore, especially
at those times, the formerly neglected coupling terms needs to be taken into account
because they are not dominated anymore by the oscillation.

Using a δ-pulse as input field (see Eq. (2.4)), the combined electric field behind
the two samples is given by

Ecomb(t) = Rcomb(t) ∗ δ(t) = Rcomb(t), (3.12)

where

Rcomb(t) =Rana(t) ∗Rs(t) (3.13)
=δ(t)−RS

ana(t)−RS
s (t) +RS

ana(t) ∗RS
s (t), (3.14)

is the combined response function of the two samples (see Eq. (2.21)) with the
response functions of the single foils defined in Eq. (2.11) as

Rana(t) =δ(t)−RS
ana(t), (3.15)

Rs(t) =δ(t)−RS
s (t). (3.16)

For times t > 0 the δ(t)-functions vanish and we can simply write

Rcomb(t) = Rana(t) +Rs(t) +RS
ana(t) ∗RS

s (t). (3.17)
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Thus, the combined spectrum is calculated to be

Icomb(t) =|Ecomb(t)|2

=|Rana(t) +Rs(t)|2 + |RS
ana(t) ∗RS

s (t)|2

+ 2<
{

[Rana(t) +Rs(t)] ·
[
RS

ana(t) ∗RS
s (t)

]}
= |Rana(t)|2 + |Rs(t)|2︸ ︷︷ ︸

background

+ |Rana(t)| · |Rs(t)| cos[φ(t) + ∆Dt]︸ ︷︷ ︸
oscillation︸ ︷︷ ︸

Callens et al.

+ |RS
ana(t) ∗RS

s (t)︸ ︷︷ ︸
interference

|2 + 2<
{

[Rana(t) +Rs(t)]
∗ ·
[
RS

ana(t) ∗RS
s (t)

]}︸ ︷︷ ︸
mixture with interference term︸ ︷︷ ︸

correction terms

.

(3.18)

The first terms are the well-known terms of HPR in Eq. (3.6) by Callens et al. [78].
The second terms are corrections, that will partially be included into the fit model
in Section 3.3.
The correction terms become most important close to the quantum beats because

there, the oscillation that is used by Callens et al. [78] to extract complex phase
information becomes zero. The effect is most prominent if only the two linear
transitions are driven (α = π/2) because there is only one cosine term in Eq. (2.13),
such that at every intensity minimum the oscillation reaches zero. For all six lines
driven only at common multiples of the hyperfine splitting detunings (∆hyp,1 =
53.6γ, ∆hyp,2 = 31.1γ and ∆hyp,3 = 8.6γ) the minima get close to zero.
Furthermore, in experiments the limited counting statistics due to limited mea-

surement times increases the effect in comparison to simulation data. An example
for low visibility of the oscillation in experimental data can be found in Fig. 4.4b.

3.3 Extended heterodyne phase detection

We now want to evaluate the correction terms in Eq. (3.18) and partially include
them into the simple fit model in Eq. (3.8) for extended heterodyne phase reconstruc-
tion (xHPR). Furthermore, we will see that the inclusion of correction terms in the
fit model allows us to also include the region between the resonances (see Fig. 3.4),
which increases the used data from one measurement and thus gives better statistics.
In principle, for better statistics the detuning range could just be chosen as big

as possible. However, in experiments a bigger range would limit the frequency
resolution in most cases. A reduced frequency resolution is not wanted for two
reasons. First, the “oscillation frequency” increases with time (see Fig. 3.2). Thus
for later times, a limited frequency resolution would be problematic. In experiments
(see [41, 65]), we have a frequency resolution of about 0.5γ in the 2D spectra, so
that at t = 141 ns, i.e. at t equal to the lifetime, there are only about two data
points per oscillation period, which makes the fitting already hard. Second, usually
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Figure 3.4: Example oscillation fits without (HPR) in (a) and with (xHPR) in (b) the
extension presented in Eq. (3.45). Especially in the center, the extended model fit performs
much better. Near 21 ns there is a quantum beat minimum, so that the extension in xHPR
becomes most important here out of all shown times. Regions around resonances between
−45γ and −15γ as well as 15γ and 45γ are excluded from the fits.

the spectra are not only measured for phase reconstruction. Other analyses such
as late time integration for frequency spectra [57, 114] would suffer from a limited
frequency resolution.

Thus, increasing the detuning range by using larger detunings is limited, but we
could try to additionally use detuning ranges within the spectral region. Naively,
one could imagine that it is sufficient that the used Mössbauer detuning range is
far away from the resonances to not have coupling effects, but that the analyzed
detuning range can even lie in between resonances. However, as shown in Fig. 3.4a
especially close to quantum beats the combined field of sample and analyzer cannot
simply be calculated as the sum of the individual fields if including regions between
the resonances. The amplitude of the oscillation in the center differs significantly
from the one in the off-resonant regime. The effect is strongest close to quantum
beats, e.g. at 21 ns. The reason for the deviations is that the oscillation term
approaches zero so that it does not dominate over the formerly neglected coupling
terms any more (see Section 3.2). In Fig. 3.4a, in contrast to the other times, at
21 ns the fitted oscillation is clearly dominated by another structure that will be
discussed in more detail in this section. The further from the quantum beat the
more dominant the oscillation is over the additional structure so that neglecting
coupling terms becomes valid again.

For thin foils, it is possible to extend the approach by Callens et al. in [78]
to detunings within the region of the frequency spectrum, but far away from any
resonant line by the inclusion of correction terms. Especially, if only the two linear
lines are driven, an additional region of −15γ to 15γ (see Fig. 3.4b) can be used for
the analysis.
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3.3.1 Evaluating the interference term convolution

In all correction terms in Eq. (3.18), the interference term RS
ana(t)∗RS

sample(t) occurs.
In a first step, we will evaluate this convolution.
To simplify the expressions, we assume only two lines to be driven with a detuning

of ±∆hyp. Because the contributions from different pairs of driven lines are additive,
the result for only linear lines driven can simply be extended to all lines being driven.
The responses of sample and analyzer are given by Eqs. (2.10) and (2.13)

RS
s (t) =

√
bs
t
J1

(
2
√
bst
)
e−iωrte−γst/2

[
e−i∆hypt + ei∆hypt

]
(3.19)

=Rno hyp
s (t)2 cos (∆hypt) , (3.20)

RS
ana(t) =

√
bana
t
J1

(
2
√
banat

)
e−iωrte−γanat/2, (3.21)

such that the interference term is given by

RS
ana(t) ∗RS

s (t) = e−iωrte−γst/2
∫ ∞

0

√
bana
τ
J1

(
2
√
banaτ

)
e−(γana−γs)τ/2e−i∆Dτ√

bs
t− τ J1

(
2
√
bs(t− τ)

)
2 cos [∆hyp(t− τ)] dτ. (3.22)

Thin target approximation. For thin samples or short times the Bessel functions
of first kind J1 can be Taylor expanded and approximated (see Eq. (2.17))√

b

t
J1

(
2
√
bt
)
≈ be−bt/2. (3.23)

Inserting this approximation into Eq. (3.22) we find

RS
ana(t) ∗RS

s (t) = 2e−iωrte−(γs+bs)t/2banabs

∫ ∞
0

e−(γana−γs+bana−bs)τ/2e−i∆Dτ

cos [∆hyp(t− τ)] dτ. (3.24)

The validity range of this approximation gives a natural reconstruction time limit
in case of xHPR.

Quantum beat approximation. In Fig. 3.4, it can be seen that the correction
becomes most important around the quantum beats, e.g. at 21 ns, while being less
important in between. Close to quantum beats, we can approximate

cos (∆hypt) ≈ 0⇔ ∆hypt ≈ ±π/2 + n · 2π, n ∈ Z. (3.25)

The sign is given by sign [sin (∆hypt)]. With this approximation, it is

cos (∆hyp(t− τ)) ≈ sin (∆hypτ) (3.26)

36



3.3 Extended heterodyne phase detection

and we find

RS
ana(t) ∗RS

s (t) = ±e−iωrte−(γs+bs)t/2banabs

∫ ∞
0

e−(γana−γs+bana−bs)τ/2

e−i∆Dτ2 sin(∆hypτ)dτ. (3.27)

Before we start to evaluate this integral, we introduce an effective line width

γeff =
1

2
[γana − γs + (bana − bs)] . (3.28)

The integral can simply be calculated to be

2

∫ t

0

e−(γeff+i∆D)τ sin (ωhypt) dτ = −ie
−(γeff+i∆+iωhyp)t − 1

γeff + i(∆ + ∆hyp)
+i
e−(γeff+i∆−i∆hyp)t − 1

γeff + i(∆−∆hyp)
.

(3.29)

With the quantum beat approximation ∆hypt ≈ ±π/2 + n · 2π in Eq. (3.25), this
expression simplifies to

− ie
−(γeff+i∆D+i∆hyp)t − 1

γeff + i(∆D + ∆hyp)
+ i

e−(γeff+i∆−i∆hyp)t − 1

γeff + i(∆D −∆hyp)

= − ±e
−(γeff+i∆D)t − i

γeff + i(∆D + ∆hyp)
+
∓e−(γeff+i∆D)t − i
γeff + i(∆D −∆hyp)

. (3.30)

Plugging this result back into Eq. (3.27) it is

Rana(t) ∗Rs(t) =± e−(iωr+γs)tbanabs

( −e−(γeff+i∆D)t ± i
γeff + i(∆ + ∆hyp)

+
−e−(γeff+i∆D−)t ∓ i
γeff + i(∆−∆hyp)

)
=
−RS

ana(t)± iRno hyp
s (t)

γeff + i (∆D + ∆hyp)
+
−RS

ana(t)∓ iRno hyp
s (t)

γeff + i (∆D −∆hyp)
. (3.31)

Thus, we get two similar terms only varying in the relative sign between Rno hyp
s (t)

and RS
ana(t) centered around Doppler detunings of ∆D = ±∆hyp, respectively.

Off-resonance approximation. To simplify even further, we have a closer look
onto γeff. Typical values are γana − γs < γs and bana − bs < γs. Hence, γeff is on the
order of a few γs. Off the resonances, i.e. |∆D ± ωhyp| � γs, we can approximate

γeff � |∆D ± ωhyp| (3.32)

and neglect γeff. This approximation simplifies Eq. (3.31) to be

RS
ana(t) ∗RS

s (t) =
±Rno hyp

s (t) + iRS
ana(t)

∆D + ∆hyp
+
∓Rno hyp

s (t) + iRS
ana(t)

∆D −∆hyp
. (3.33)

For negative Mössbauer detunings ∆D, the left term dominates and vice versa. The
nominators only differ in the sign of the response function of the sample without
hyperfine splitting. All detuning frequency dependency is in the denominator.
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Chapter 3 Heterodyne phase reconstruction

Several lines. If more pairs of lines should be taken into account, we can use the
additivity of different hyperfine splitting lines (see Eq. (2.13)). For j pairs of driven
lines, the sample response in Eq. (3.20) is given by

RS
s (t) = Rno hyp

s

∑
j

cos (∆hyp,jt) (3.34)

and hence the interference term in Eq. (3.33) becomes

RS
ana(t) ∗RS

s (t) =
∑
j

±Rno hyp
s (t) + iRS

ana(t)

∆D + ∆hyp,j
+
∓Rno hyp

s (t) + iRS
ana(t)

∆D −∆hyp,j
, (3.35)

where we used the distributivity of convolutions.
However, as we have to be far enough away from the resonances, this extension

is most valuable for only the linear lines being driven. Hence, we will continue with
this simpler situation.

3.3.2 Calculating the different correction terms

After calculating the interference term in Eq. (3.33), we can now go back to Eq. (3.18)
and calculate the two different correction terms.

First correction term. The first one is given by∣∣RS
ana(t) ∗RS

s (t)
∣∣2 =

∣∣∣∣±Rno hyp
s (t) + iRS

ana(t)

∆D + ∆hyp
+
∓Rno hyp

s (t) + iRS
ana(t)

∆D −∆hyp

∣∣∣∣2
=
| ±Rno hyp

s (t) + iRS
ana(t)|2

(∆MB + ∆hyp)2 +
| ∓Rno hyp

s (t) + iRS
ana(t)|2

(∆MB −∆hyp)2

+
2<
{[
±Rno hyp

s (t) + iRS
ana(t)

] [
∓Rno hyp

s (t) + iRS
ana(t)

]∗}
∆2

MB −∆2
hyp

.

(3.36)

The numerators in the first two terms are given by∣∣±Rno hyp
s (t) + iRana(t)

∣∣2 =
∣∣Rno hyp

s (t)
∣∣2 + |Rana(t)|2

± 2|Rs(t)||Rana(t)| sin
(
φno hyp
s − φana

)
, (3.37)

where we used used

| ± a+ ib|2 = (±<(a)−=(b))2 + (±=(a) + <(b))2

=|a|2 + |b|2 ± 2|a||b| sin(φb − φa) (3.38)

for arbitrary a, b ∈ C. The numerator of the second term is given by

2<
{[
±Rno hyp

s (t) + iRS
ana(t)

] [
∓Rno hyp

s (t) + iRS
ana(t)

]∗}
= 2|RS

ana(t)|2 − 2|Rno hyp
s (t)|2,
(3.39)
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3.3 Extended heterodyne phase detection

where we used

< [(±a+ ib) (∓a+ ib)∗] = |b|2 − |a|2 (3.40)

for arbitrary a, b ∈ C. Hence, the first correction term in Eq. (3.36) can be simplified
to be

∣∣RS
ana(t) ∗RS

s (t)
∣∣2 =|Rno hyp

s (t)|2
[

1

(∆D + ∆hyp)2 +
1

(∆D −∆hyp)2 +
2

∆2
D + ∆2

hyp

]

+ |RS
ana(t)|2

[
1

(∆D + ∆hyp)2 +
1

(∆D −∆hyp)2 −
2

∆2
D + ∆2

hyp

]
± 2|R(

st)||Rana(t)| sin
(
φno hyp
s − φana

)
·
[

1

(∆D + ∆hyp)2 +
1

(∆D −∆hyp)2

]
. (3.41)

This expression looks similar to the original model in Eq. (3.8), but with a frequency
dependency on the Mössbauer detuning ∆D.

Second correction term. The second term in Eq. (3.18) can be calculated to be

2<
[
(Rana(t) +Rs(t))

∗ ·
(
RS

ana(t) ∗RS
s (t)

)]
≈ <

[
RS

ana(t)
∗ ·
(
RS

ana(t) ∗RS
s (t)

)]
(3.33)
= <

[
RS

ana(t)
∗
(±Rno hyp

s (t) + iRS
ana(t)

∆D + ∆hyp
+
∓Rno hyp

s (t) + iRS
ana(t)

∆D −∆hyp

)]
= ±<

[
RS

ana(t)
∗Rno hyp

s (t)
]( 1

∆D + ∆hyp
− 1

∆D −∆hyp

)
± |RS

ana(t)||Rno hyp
s (t)| cos(φana − φs)

(
1

∆D + ∆hyp
− 1

∆D −∆hyp

)
, (3.42)

where in the second line we used that close to the quantum beats it is Rs(t) ≈ 0, in
the second last line < (i|a|2) = 0 for arbitrary a ∈ C and in the last line

< (a∗b) = <(a)<(b) + =(a)=(b) = |a||b| cos(φa − φb) (3.43)

for arbitrary a, b ∈ C.
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3.3.3 The extended fit model

After the evaluation of the two correction terms, in Eqs. (3.41) and (3.42), the full
model in Eq. (3.18), simplifies to

Icomb(∆D, t) = |Rana(t)|2

 1︸︷︷︸
Callens

+
1

(∆D + ∆hyp)2 +
1

(∆D −∆hyp)2 −
2

∆2
D + ∆2

hyp︸ ︷︷ ︸
2nd order correction



+ |Rno hyp
s (t)|2

cos(∆hypt)
2︸ ︷︷ ︸

Callens

+
1

(∆D + ∆hyp)2 +
1

(∆D −∆hyp)2 +
2

∆2
D + ∆2

hyp︸ ︷︷ ︸
2nd order correction



± |RS
ana(t)||Rno hyp

s (t)| cos(φana − φs)

2 cos(∆hypt)︸ ︷︷ ︸
Callens

± 1

∆D −∆hyp
− 1

∆D + ∆hyp︸ ︷︷ ︸
1st order correction



± 2|R(
st)||Rana(t)| sin

(
φno hyp
s − φana

)
 1

(∆D + ∆hyp)2 +
1

(∆D −∆hyp)2︸ ︷︷ ︸
2nd order correction

 .
(3.44)

The sign of the correction terms can be determined by sign [sin(∆hypt)]. In addition
to the simple model by Callens et al. [78]. (HPR), we get several correction terms
if including coupling terms close to quantum beats but still off resonances. Most
correction terms are of 2nd order. In a first extension of the fit model, we will only
consider 1st order extensions. Thus, the extended fit model is given by

f extt0
(t) = A+B cos [C + ∆Dt0] ·

2 cos(∆hypt) +D

(
1

∆D + ∆hyp
− 1

∆D −∆hyp

)
︸ ︷︷ ︸

extension

 ,
(3.45)

where the sign of the 1st order correction term is included into the additional fit
parameter D. That is introduced to take into account that the correction is most
dominant close to quantum beats and can be set to zero far away from quantum beat
minima. In addition, D depends on the interference and coupling between sample
and analyzer, which can be distorted by noise. This given model is still a rather
simple fit model called xHPR. As with the fit function in Eq. (3.8) the interesting
properties can be extracted by Eqs. (3.9) to (3.11) despite the fact, that Eq. (3.10)
gives the amplitude without hyperfine splitting because the hyperfine splitting is
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added into the fit function f extt0
(t) by 2 cos(∆hypt). A comparison of the oscillation

fits with and without the correction term in the extended regime is shown in Fig. 3.4.
It can clearly be seen that for low oscillation amplitudes, i.e. at the minima of the
quantum beats around 21 ns, and in the center of the Mössbauer detuning range the
correction becomes most important. Even though the fit model only takes correction
terms up to first order into account to keep the model simple, it resembles the data
reasonably well.
The fit model of xHPR could be extended even further by taking into account

the second order correction terms as well. However, that would complicate the
fit model much more than the first order corrections terms. Because already xHPR
gives much better results than HPR and we did not find regimes, where second order
terms would be necessary, we decided to stay with the simpler first order extension
and leave the inclusion of second order correction terms as an open project.

3.4 Usage in data evaluation

The usage of xHPR and HPR in the toolchain for data analysis is shown in Fig. 3.5.
A detailed explanation of the new features is given in this section. During our
beamtime in May 2021, the extended toolchain has successfully been used.

3.4.1 Complex field amplitudes

Benefits. HPR and its extension xHPR can reconstruct the phase of the complex
field behind a sample from a 2D spectrum. In combination with the intensity,
complex field amplitudes of light scattered from a sample in forward direction can
be extracted.
Thus after the creation of 2D spectra, besides 2D spectra itself and frequency

spectra calculated via late time integration, with the extended toolchain complex
field amplitudes are accessible. A reconstructed example complex field is compared
to the one calculated with pynuss from material properties in Fig. 3.6. At all times,
the calculated and reconstructed results agree within the errorbars. Large errorbars
can be found for late times and at quantum beat minima due to limited statistics
and Mössbauer detuning resolution.
If the input electric field is known and simple enough so that a deconvolution

is possible, e.g. short synchrotron pulses represented by δ-functions, the complex
scattering field directly gives access to the sample’s complex response function.
In addition, it enables the reconstruction of the whole class of phase-related ob-

servables, e.g. small motions in Chapter 4.

Implementation. The implementation of using xHPR in the data evaluation is
summarized in Algorithm 1.
First, the resonances need to be cut out from the 2D spectrum so that they are not

used in the fitting routines. For only linear lines driven the regions of [−45γ,−15γ],
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convert into .h5 format

calibration needed?

time calibration

material characterization

energy calibration

material properties checked?Complex fields agree?

define reference ranges

create 2D spectra

reconstruct motion part
with evolutionary algorithms

optimize motion part

all delays done?

combine motion parts

raw data
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frequency spectra

complex field amplitude
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Figure 3.5: The light colors correspond to the standard tool chain as shown in Fig. 2.10,
the strong colors to the newly inserted blocks. From the 2D spectra with use of xHPR,
also the complex electric field amplitude can be reconstructed. The complex field ampli-
tudes provide a crosscheck for the material characterizations if the amplitude and phase
calculated with pynuss from material properties and ones reconstructed from 2D with the
scheme presented in this chapter agree.
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1 Function FitFunction(I, Delta, IRef, t):
Input: I: intensities at t as function of Mössbauer detuning

Delta: Mössbauer detuning
IRef: Intensity of analyzer at t
t: time

Result: EAbs: amplitude of electric field at t
EPhi: phase of electric field at t

2 fitFunction_HPR = A + B*cos(C + Delta t)
3 fitFunction_xHPR = A + B*cos(C + Delta t)*(2*cos(DeltaHyp t) +

D*( 1/(Delta + DeltaHyp) - 1/(Delta - DeltaHyp) ) )
4 AOpti, COpti = fit fitFunction to I

5 EAbs = AOpti / (2*sqrt(IRef))
6 EPhi = COpti
7 return EAbs, phiOpti

8 Function ExtractComplexField(2Dspec, refSpec, tCutOff, resonances):
Input: 2Dspec: 2D spectrum of combined response

refSpec: time spectrum of analyzer only
tCutOff: time until which complex field is extracted
resonances: list of the resonant ranges that are to be excluded

Result: E: complex electric field as function of time

9 cut out resonances from 2Dspectrum

10 A = []
11 phi = []
12 for t=1 to t=tCutOff do
13 I, ∆ = slice of 2Dspectrum at t
14 A_t, phi_t= FitFunction (I, ∆, refI, t)
15 A.append(A_t)
16 phi.append(phi_t)

17 E = A*exp(i*phi)
18 return E
Algorithm 1: Pseudo code algorithm of usage of HPR and xHPR in data
evaluation to extract complex fields. It can be performed after the creation
of 2D spectra in the toolchain (see Fig. 3.5). The fit function has to be
chosen according to the used scheme. Only the σ-component of the electric
field is considered, because the intensity of the complete field is usually
measured in time spectra already.
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Figure 3.6: The reconstructed (orange dots) field amplitude (a) and phase (b) are com-
pared to the calculated ones (blue line). In this example, all six lines are driven so that the
resonant regime between −65γ and 65γ is excluded from the fits and HPR is used. A cutoff
time of 170 ns is set to also show some noisy data at late times. Results for later times and
at the quantum beat minima are noisy due to lower counting statistics. The calculated
values are interpolated and evaluated at the measured times. Standard deviations from
fitting routines are indicated by errorbars.

[15γ, 45γ] (xHPR) and [−45γ, 45γ] (HPR) need to be excluded. In the case of all six
lines driven, the outer most resonances lie at ±53.6γ so that a region of [−65γ, 65γ]
needs to be cut out before the analysis. Unfortunately, the lines are to close to use
any regions between the resonances so that xHPR does not improve the result and
the simpler HPR can be used.
Next, for every time step, we can slice the 2D spectrum to get the intensity as

function of Mössbauer detuning ∆D. To this intensity the fit function of HPR (see
Eq. (3.8)) or xHPR (see Eq. (3.45)) is fitted. The phase can be extracted with
Eq. (3.11), the amplitude with Eq. (3.10). If the analyzer time spectrum is not
known, an alternative approach for the sample’s amplitude would be to integrate
the 2D spectrum along the detuning axis or measure time spectra directly.
Performing those fits for every time step until a cutoff time tcutoff gives the complex

field amplitudes as function of time. A cutoff time has to be set because due to lower
statistics for later times, results are noisy at late times. Depending on the demanded
accuracy of the results, this cutoff can be earlier for nearly noisy-free results or later
with only rough estimates at late times.

3.4.2 Cross check of material properties and energy
calibration

In the toolchain (see Fig. 3.5), the material properties are received by fitting calcu-
lated time spectra to the measured time spectra. For more details see Section 2.5.2.
In this fitting, the comparison is on the level of intensities. Being able to reconstruct
the phase of the complex electric field allows us to also perform comparisons on the
level of complex field amplitudes. Using complex field amplitudes is a qualitatively
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different comparison than on the level of intensities because it also includes phase
information. By comparing to calculated complex field, it provides a cross check for
the calculated material properties.
In the future, the material characterization process might be improved by also

fitting on the level of complex field amplitudes to use the phase information in
addition.
Furthermore, the method itself gives a crosscheck for the energy calibration. If

the calibration is not good enough, the fitted “oscillation frequencies” in Eqs. (3.8)
and (3.45) do not match the measured data.

3.5 General usability of HPR and xHPR

The presented scheme of HPR in Section 3.5 is a solid tool to reconstruct complex
electric field phases. It neither has a wavelengths dependency nor does it use nuclear
forwards scattering properties. The only requirement is to record a detuning region
without resonances in the 2D spectrum, so that coupling terms can be neglected.
Thus, it can be used in a much wider field than nuclear resonant scattering.
However, the neglection of coupling terms at times with minimal intensity dis-

cussed in Section 3.2 is problematic whenever those situations occur, e.g. due to
hyperfine splitting. The worst situation is given in the case where a beating between
two frequencies appears. Here, it is advantageous to have more than two frequencies
so that not all beatings result in minima at the same time (see Section 4.2.2).
The other possibility to deal with times with minimal intensity is to use xHPR. In

Section 3.3, we showed that the additional correction terms lead to much better fits
close to quantum beat minima than the HPR fits. In addition, a bigger detuning
region can be used.
In contrary to HPR, the calculation of the correction terms in xHPR is based

on nuclear forward scattering and thin foils in particular because of the applied
approximations. However, the principles of this calculation can be used in other
situations as well as long as certain conditions, that are discussed in the following,
are fulfilled.
The quantum beat problem occurs for every beating with a small frequency dif-

ference compared to the absolute value of the frequencies, e.g. due to hyperfine
splitting. Besides, the decay time has to be large enough so that several quantum
beat cycles are detectable. In such settings, the quantum beat approximation in
Eq. (3.25) is valid. If no such minima occur, the simpler HPR can be used.
Depending on the envelope, i.e. the Bessel function of first kind J1 in case of

nuclear forward scattering, a similarly simple approximation of the envelope by an
exponential function like in the thin target approximation (see Eq. (3.23)) might
be possible. If this simplification is not possible, the convolution probably does not
give as simple expressions as in xHPR if solvable at all.
The third crucial approximation in the derivation of the xHPR fit model is the

off-resonant approximation. If sample and analyzer are from the same material so
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that there spectral properties are roughly the same, and if the lines are sufficiently
narrow, this approximation is valid.
Summarizing, if the above criteria are met by the setup, xHPR can be used

independently of x-ray energies or nuclear forward scattering.
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Chapter 4

Heterodyne reconstruction of
sub-Ångstrom motions

The measurement of small motions is essential in many different fields, such as
high-precision technology [91], gravitational waves [27], quantum limits [92], op-
tomechanics [93] or coherent control in x-ray quantum optics [41]. Here, we are
mainly interested in the latter application.
As explained in Section 2.5.3, our standard method for motion reconstruction [41,

65] has to be run on a high performance computer to reconstruct the motion in the
limited time of the live evaluation during the beamtime. The live reconstruction
is necessary so that the starting point of the motion can be adjusted to achieve
the desired jump amplitude of e.g. λ/2 in [41, 65] or to optimize the motion. The
sample motion cannot be calculated just from the the applied voltage without the
piezo motion because the response of the system is not known and non-trivial.
In addition, several measurements of 2D spectra at different delays, i.e. shifts

of the motion into the measurable time window from 15 ns to 70 ns, are needed to
reconstruct the full motion (see Section 2.5.3).
Thus, especially if more than one motion has to be reconstructed, the current

techniques are very time and resource consuming. To scale up the number of sam-
ples or iteration cycles for motion optimization like in [110], computationally and
experimentally more efficient reconstruction schemes are needed.
In this chapter we present a new technique to reconstruct motions on the sub-

Ångstrom level by using extended heterodyne phase reconstruction (xHPR, see
Chapter 3) for phase reconstruction. The principal idea is to compare the phase
of the complex field with and without motion to identify the motion-induced phase
as in [79]. First, the scheme is illustrated with simulated data in Section 4.1. Next, in
Section 4.2, the usability with experimental data as well as the influence of the quan-
tum beat problem on different experimental settings is evaluated. In Section 4.3,
the optimization procedure introduced in Section 2.5.3 is discussed. After showing
two different reconstructed motions in Section 4.4, the new scheme is compared to
existing motion reconstructing techniques in Section 4.5. Finally, Section 4.6 ex-
plains how the new technique can be used in the existing data evaluation, which
was already successfully done during the beamtime in May 2021, and under what
conditions it can be used.
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4.1 Illustration of working principle and first results

With a look back at Eq. (2.25), we see that for times t > 0, the motion-induced
phase φmotion(t) is given as the phase difference between the field with motion and
the static case

φmotion ind(t) = φmotion(t)− φstatic(t). (4.1)

Using Eq. (4.1) and φmotion ind(t) = kx(t), with the wave number k, the motion is
given by

x(t) =
λ

2π
(φmotion(t)− φstatic(t)) . (4.2)

The respective phases can be extracted with HPR or xHPR as presented in Chap-
ter 3. In the case with motion, HPR has to be used because the convolution in
xHPR can not be evaluated for arbitrary motions. Because of the phase reconstruc-
tion technique, the evaluation scheme is called heterodyne motion reconstruction
(HMR).
Alternatively, the phase in the static case can be calculated from the material

properties via pynuss. The latter approach reduces the noise of the static case as
a reference because it does not depend on noisy, experimental data. In addition, it
decreases the quantum beat problem (see Section 4.2.2). In this case, however, the
whole calculation relies on material model assumptions and the material character-
izations. Hence, depending on the situation, sometimes reconstructing the phase in
the static case is better, sometimes calculating it from material properties. Usually,
the choice of how the phase in static case is determined does not make a substantial
difference to the reconstructed motion as demonstrated in Figs. 4.1, A.1 and A.2.
An example of the reconstruction of a motion from simulated data with HMR is

shown in Fig. 4.1a for the static phase being reconstructed with xHPR and calcu-
lated from material properties. It can easily be seen, that the motions with static
phase being reconstructed with xHPR and calculated from material properties agree
within the errors, which are the standard variations of the fitting routine. Like in
Chapter 3, Levenberg-Marquardt (least square) algorithm [130] is used. In addition,
both agree with the motion used to create the simulated data. At the quantum beat
minima (at about 7 ns, 21 ns, 36 ns, 50 ns, ...) significant deviations from the motion
occur, especially for the reconstructed static phase. Those deviations are due to
the quantum beat problem discussed in Section 3.2 and will be investigated in more
detail in Section 4.2.2. For the motion with calculated static phase, the effect is not
as strong because the quantum beat problem only effects the reconstructed phases.

4.2 Reconstruction from experimental data

After introducing HMR for simulated data, we now want to use it on experimental
data. We will analyze two example motions. Motion “ramp2019” was measured in
2019 with only the two linear lines driven, while for the characterization of motion
“magic2021” in 2021 all six lines were used. The evaluation is divided into three steps:
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Figure 4.1: HMR reconstructed example motions from simulated (a) and experimental
(b) data are shown. The motion in (b) is part of the motion “ramp2019”. The static phase
is either reconstructed with xHPR (red) or calculated from material properties (blue).
For simulated data, also the actual motion is indicated (green). In both pictures, the
angle of magnetization is α = π/2, i.e. only the two linear lines are driven. The periodic
discrepancies (at about 7 ns, 21 ns, 36 ns, 50 ns, ...) between actual and reconstructed
motion in (a), especially for the reconstructed static phase, and deviations from the trend
in (b) are due to quantum beats and will be discussed in more detail in Section 4.2.2.
Errorbars indicate the standard deviation from the fitting routine (here the Levenberg-
Marquardt (least square) algorithm [130]). The resonant regime between −45γ and 45γ is
excluded from the analysis

the actual reconstruction (Section 4.2.1), an automatic exclusion of nonphysical
points (Section 4.2.2) and a comparison of the different motion parts for different
delays (Section 4.2.3).

4.2.1 Reconstruction step

In Fig. 4.1b, a reconstructed example motion using experimental data is shown.
In the red motion, the static phase is reconstructed with xHPR, in the blue one
it is calculated from material properties. The motions agree within the errorbars.
However, the errors are only the standard deviations from the fitting routines. The
statistical noise of the experimental data is not taken into account in the errorbars.
Hence, they are underestimated.
The periodic deviations, especially in Fig. 4.1b at about 21 ns, 36 ns, 50 ns,... are

due to minima of quantum beats and will be analyzed more closely in Section 4.2.2.
What we can already note here is that the static phase calculated from material
properties does not reduce the divergence at quantum beat minima as much as for
simulated data (see Fig. 4.1a). In fact, they are on a similar level for reconstructed
and calculated static phase, which might be due to an imperfect sample characteri-
zation or noise in the measured spectra.
In comparison to simulated data, experimental data limits the time range in which

the motion can be reconstructed. As already explained in Section 3.4.1 lower count-
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Figure 4.2: Reconstructed example motions to illustrate the different reconstruction
times. In (a) only the two linear lines are driven (α = π/2), while in (b) all six lines
take part in the scattering (α = π/4). The motion parts are from “ramp2019” (a) and
“magic2021” (b), respectively. The data becomes significantly more noisy after 100 ns and
150 ns in (a) and (b), respectively. The colors indicate whether the static phase is recon-
structed with xHPR (red) or calculated from material properties (blue).

ing statistics at later times lead to a noisy phase a those times. Depending on the
demands, the cutoff time has to be chosen. For relatively noise free reconstructed
motions, shorter reconstruction ranges should be chosen while for rough estimates
of the motion bigger time ranges are accessible. The bigger the time range, the less
delays are needed to characterize the full motion.
In the analysis, we recognized that the setup where only the two linear lines are

driven has a shorter time range, in which the fit results have a rather constant
quality, than the one where all six lines are driven. Typically, in the case with only
the two linear lines being driven, reconstruction is possible until 100 ns, while for all
six lines taking part in scattering it is possible to extract the motion until 150 ns.
The times are demonstrated in Fig. 4.2, where example motions for 20 ns later than
the above named standard cutoff times are displayed. It can clearly be seen that
the motions get more noisy after 100 ns and 150 ns, respectively. Thus, whenever
possible, the motion reconstruction should be carried out with all six lines driven.
HMR reconstruction times can be much larger than the one typically possible

with the standard technique using evolutionary algorithms (about 55 ns, see [41,
65], Section 2.5.3). The longer reconstruction times allow a larger delay spacing and
thus reduce the measurement time needed for reconstructing a motion.
The differences in the divergence at quantum beat minima for only the two linear

lines or all six lines being driven will be analyzed in Section 4.2.2.

4.2.2 Automatic exclusion of nonphysical data points

We now want to focus on the divergences at quantum beat minima. As discussed
in Section 3.2, at the quantum beat minima the oscillations are very small and
dominated by other effects. Unfortunately, the extension introduced in Section 3.3
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Figure 4.3: Reconstructed example motions to illustrate the quantum beat problem. In
(a), only the two linear lines are driven, while in (b), all six lines take part in the scattering
due to the chosen magnetic configuration. Again, the motion parts are from “ramp2019”
and “magic2021”, respectively. In the case of linear lines, every quantum beat minimum (at
about 21 ns, 36 ns, 50 ns,...) the intensity goes to zero so that reconstruction at those times
becomes difficult. In case of all lines being driven, only some quantum beats drop to zero
as can be seen from Eq. (4.4). The divergence at the quantum beats can clearly be seen
in (a). Hence, those times are automatically excluded in the automatic selection. In (b)
the reconstruction is much smoother due to the intensity not dropping to zero (see main
text). The shaded colors indicate the excluded data points from the automatic exclusion.
The static phase is reconstructed with xHPR (red) or calculated from material properties
(blue).

is only valid for the static case. Including a motion, makes the general analytical
evaluation of the convolutions in Eq. (3.18) much more difficult. To our knowledge,
it is not possible to evaluate the convolution for arbitrary motions.
As also already discussed in Section 3.2 the effect is worst, when only the linear

lines are driven. In this case, the quantum beat minima approach zero at every
oscillation because they are created by the single cosine term

quantum beat term = cos (∆hypt) , (4.3)

in comparison to the case where all six lines are driven (see Eqs. (2.10) and (2.12))

quantum beat term = c1 cos(∆hyp,1t) + c2 cos(∆hyp,2t) + c3 cos(∆hyp,3t), (4.4)

which is only zero for common multiples of the three frequencies ∆hyp,1 = 53.6γ,
∆hyp,2 = 31.1γ and ∆hyp,3 = 8.6γ. The first roughly common minimum is at about
78 ns. However, the three lines do not reach their minimum at the very same time
so that the effect is not as strong as the quantum beat minima in the case with only
two lines driven.
As a comparison, example motions for only linear and all six lines being driven are

shown in Fig. 4.3. For only linear lines in (a) the periodic discrepancies at quantum
beat minima (at about 21 ns, 36 ns, 50 ns,...) are clearly visible. Those deviations
are significantly above the noise floor and probably occur due to low contrast in
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Figure 4.4: Experimentally measured intensity as function of Mössbauer detuning at three
different times and its fits used in HPR (see Chapter 3). In the upper (center) plot, an
example with high (low) contrast is shown. Because of the low contrast at a quantum beat
minimum (77 ns), the fit results and thus the displacement at this time are not trustworthy.
To demonstrate that the contrast is not due to the time, also the data and fit for 80 ns are
shown in the bottom plot. The corresponding motion is the one with reconstructed static
phase in Fig. 4.1b.

the intensity versus Mössbauer detuning plots at those times. An example for low
(center) and high (top) contrast is shown in Fig. 4.4. While for high contrast the
fit resembles the data, it fails for low contrast. In the lower plot, the data and fit
for a later time are shown to demonstrate that the low contrast is an effect of the
quantum beat minimum at 77 ns and not the late time. If the hyperfine splitting
is known, which usually is the case, the positions of the quantum beats are well-
known and can be excluded from the motions automatically. The excluded values
are indicated by the shaded colors in Fig. 4.3. For all six lines being driven, we
expect the unwanted effect to be less significant as explained above, which is indeed
the case as can be seen from Fig. 4.3b.

Besides the longer reconstruction times, the smaller influence of quantum beat
minima is an argument to characterize motions in a setting with all six lines driven
whenever possible.

During the investigation of HMR, we realized that even off the quantum beat
minima and not at late times, points exist that differ more than 0.3λ from their
neighbours. Until now we have not found a third mechanism besides quantum beat
minima and long times, that could explain those deviations. The piezo is not fast
enough to jump on this level back and forth within two nanoseconds because of its
inertia with respect to voltage changes. Thus, those data points are nonphysical
and will also be excluded from the motion.

In Fig. 4.3, automatically excluded data points are shown in shaded colors. The
remaining motion seems to be much smoother than before the automatic selection.

52



4.2 Reconstruction from experimental data

0 100 200 300 400 500 600 700 800

time [ns]

−2

−1

0

1

2

3

4
d

is
p

la
ce

m
en

t
[λ

]

delay

0ns

25ns

50ns

75ns

100ns

150ns

Figure 4.5: All reconstructed motion parts for “magic2021” (all six lines driven). The
colors in the legend correspond to the different delays, that cover different regions of the
motion and are used to “scan” the whole motion as illustrated in Fig. 2.11. Displacement
offsets of the motion parts are arbitrary as discussed in Section 2.3.1 (more detail in main
text). The motions parts agree within the errors. Excluded values are not shown for clarity.
The gray vertical lines indicate the arrival of a synchrotron pulse for a delay of 0 ns.

4.2.3 Comparison of motion parts

After preparing the different motion parts, we can view them together to control
whether they are consistent with each other. An example for all lines being driven
(“magic2021”) is shown in Fig. 4.5. A similar figure for only the linear lines taking
part in the scattering (“ramp2019”) is shown in Fig. A.3. The relative shifts between
the motions parts are arbitrary as we can always set the starting point to a displace-
ment of zero (see Section 2.3.1). Only, when the motion parts are combined into
one motion, they have to be taken care of, such that a continuous motion is created.
Here, they are set so that every motion part is clearly visible. In the overlapping
regions, motions reconstructed from data measured with different delays agree with
each other within the errors. In addition, less delays would still be sufficient due to
the longer reconstruction times compared to the evolutionary algorithm results as
already discussed in Section 4.2.1.
Sometimes, the automatic selection cannot exclude all nonphysical values because

we decided for rather high threshold values to be significantly above the noise level
and not accidently exclude values that are not nonphysical. In this step, also data
points that do not fit into the motion trend can be excluded manually. However,
if fitted splines (see Section 4.3) are used, single points slightly deviating from the
motion trend do not have an influence on the whole motion.
The results after those three reconstruction steps will be referred to as pure HMR

results in the following.
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4.3 Optimization

In the old standard motion reconstruction scheme using evolutionary algorithms as
explained in Section 2.5.3, the results of the evolutionary algorithms are used as
an initial guess for a standard fit procedure to optimize the result with respect to
the fitness. The evolutionary algorithm roughly gives the global minimum of the
fitting measure. Standard fit routines can be used to find the local minimum in the
neighbourhood of the rough global minimum.
The new HMR scheme in principle gives the global minimum. However due to

the discussed problems at quantum beat minima and at late times that lead to
exclusions of data points, it can be desirable to optimize the pure HMR data as
well.
As explained in Section 2.5.3, fitting all data points has to many degrees of free-

dom. Hence, the pure HMR results will be represented by a fitted spline. For a
successful optimization, the choice of the number of support points is crucial. A
comparison between the pure HMR data and splines with different numbers of sup-
port points can be found in Fig. 4.6 for all motion parts of motion “magic2021”
measured with all six lines driven. A similar plot for motion “ramp2019” measured
with only the two linear lines driven is given in Fig. A.4.
For most motion parts the optimized splines with different numbers of support

points agree with each other and already N = 8 support points are enough to closely
reproduce the pure HMR data. However, for some panels (e.g. ref 1 and ref 3 for 0 ns)
more support points (N ≥ 16) are needed to reproduce the motion properly. Until
now, we have not found systematics or even a reason for the significant deviations in
the necessary number of support points. For a fast optimization a small number of
support points N should be used because the Nelder-Mead algorithm scales linearly
with the number of fitting parameters [131]. The N for which the error-weighted
residual sum as compared to the pure data is lowest, i.e. best agreement between
optimized spline and pure data, is displayed in the respective upper right corner.
For a fast live evaluation a small number of support points N should be chosen

due to the linear scaling of N . A comparison to the pure HMR data like in Fig. 4.6
can reveal the motion parts for which the chosen N is not high enough. In those
cases, higher N can be tested until agreement between optimized spline and pure
HMR data is sufficient. In the detailed data evaluation after the experiment, when
run time is not a crucial factor anymore, higher and various numbers of support
points N can be tested for the best result.
The optimization depends on a meaningful fitting measure. Here, the measure

is given by the Poissonian residuals [41, 125] of a calculated 2D spectrum with the
motion to be fitted and the measured 2D spectrum. This measure is called fitness
and is minimized in the chosen fitting routines. It sometimes favors nonphysical
solutions as shown in Fig. 4.7. The red point is clearly nonphysical because the
piezo cannot do such rapid displacements as discussed in Section 4.2.2. Nonetheless,
including it results in a better fitness (937807) as without (938525). The difference
is small (0.08%) compared to the changes during the fitting routines (above 1000%)
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Figure 4.6: The pure HMR data (gray dots) as well as the optimized splines for several
numbers of support pointsN (solid lines) are shown for the different motion parts of motion
“magic2021”. The N that fits the pure data best is printed in the respective right upper
corner. For most panels, the optimized splines for different numbers of support points look
rather similar. However, there are some parts (e.g. ref 1 and ref 3 for 0 ns) for which only
a high number of support points (N ≥ 16) represents the motion part properly.
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Figure 4.7: Example of fitness preferring nonphysical result. The red data point is clearly
nonphysical as it is far off its neighbours and the piezo cannot do such rapid movements as
discussed in Section 4.2.2. However, the fitness calculated with that point (937807) is better
than the one without that point (938525). The difference is probably due to overfitting as
explained in the main text. The example is part of “magic2021” and measured with all six
lines driven.

and is probably due to too many free parameters. In the example, the displacement
at every time step is a free parameters and influences the evaluation of the fitness.
Without noise, the fitness should be best for the actual motion. However, including
noise can lead to overfitting by using too many parameters because the noise is fitted
as well. The overfitting can also happen if too many support points are used for the
spline that is to be optimized.
From their construction, the pure HMR results should already be close to the

optimum so that such small effects of physically wrong fitness variations occur.
Thus, the optimized results should always be checked for physical meaningfulness
and agreement with the pure HMR results. They might improve the results, but
the improvements are by far not as big as for the evolutionary algorithms because
the to be optimized results are already close to the optimum. The optimization is
not necessary in live evaluation if time is crucial. However, they can improve the
results in the actual evaluation after the experiment if analyzed carefully.

4.4 Resulting motions

In the last step all the motion parts can be combined together with the combination
procedure described in Section 2.5.3.
An example motion measured with only linear lines driven (“ramp2019”) is shown

in Fig. 4.8. In addition, the slope differences between every pair of motions is
displayed. Slopes provide a better comparison than displacements because the dis-
placement differences depend on the absolute shift between the two motions that
does not matter. The reason is that the displacement at the motion start can always
be set to zero (see Section 2.3.1). The corresponding applied voltage at the piezo
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Figure 4.8: A few reconstructed motion versions for “ramp2019” are shown in (a). The
motion parts are the results of evolutionary algorithms with optimization (black) as well as
optimized (pink) and non-optimized (green) HMR results reconstructed with use of xHPR.
For comparison the pure HMR data is shown as well (gray). The number of spline support
points is chosen to be N = 8. In (b) pairwise comparison of the slopes can be found with
the two colors corresponding to the two compared motion versions. The applied voltage
at the piezo can be found in Fig. 4.10a.
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Figure 4.9: A few reconstructed motion versions for “magic2021” in (a). The motion
parts are the results of evolutionary algorithms with optimization (black), optimized (pink)
and non-optimized (green) HMR results reconstructed with use of xHPR as well as the
reconstruction from only two delays (0 ns and 100 ns) of the optimized HMR results. For
comparison the pure HMR data is shown as well (gray). The number of spline support
points in HMR is chosen to be N = 16. A pairwise comparison of the slopes is shown in
(b) with the colors indicating the compared motion versions. The applied voltage at the
piezo can be found in Fig. 4.10b.
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Figure 4.10: The applied voltages at the piezo corresponding to the reconstructed motions
“ramp2019” in Fig. 4.8 and “magic2020” in Fig. 4.9, respectively.

can be found in Fig. 4.10a. The reconstructed motions with the different methods
are very similar.
The main differences are close to 0 ns and 400 ns, where the steepest parts are.

This result is expectable because absolute the slope differences are compared.
Differences between optimized and non-optimized HMR results are mainly caused

at early times from about 0 ns to about 30 ns. The amount of difference is similar
to the periodicity error of the pure HMR results, that can be seen from the discrep-
ancy at early times. Thus, the discrepancies between optimized and non-optimized
HMR results might be related to this periodicity error. At other times, they are
approximately parallel.
The non-optimized HMR and optimized evolutionary algorithm results are nearly

identical despite the time region at about 480 ns and at early times. On average,
they have the lowest discrepancies. The same holds for the comparison between
optimized HMR and optimized evolutionary algorithms results.
The optimized HMR results seems to agree best with the pure HMR data. How-

ever, the periodicity error in the pure HMR data shows that this data alone cannot
represent the motion because we know that the motion is periodic.
In Fig. 4.9, an example motion measured with all six lines driven (“magic2021”)

is given with the corresponding applied voltage at the piezo in Fig. 4.10b. The
bigger errorbars of the pure HMR data in Fig. 4.9 compared to Fig. 4.8 mainly
result from large errorbars at later times (see Fig. 4.5). The reconstructed motions
with the different methods are very similar and also the deviations are on a similar
level. Like for “ramp2019”, the motions have significant absolute shifts in some parts.
Nonetheless, on the relevant time scale of a bunch cycle, i.e. 192 ns, the shifts are
rather constant so that the influence is expected to be low. However, the shifts
might be relevant when calculating the response function of the system to applied
voltages.
In addition, it can be seen that in principle only two datasets would be enough for

a reasonable reconstruction in case of all six lines driven with the long reconstruction
time of 150 ns. The result with only two delays does not vary significantly more in
the slope comparison than the other pairs. However, four measurements would be
desirable to have enough overlap to reduce the periodicity error as explained in
Section 2.5.3.
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4.5 Comparison to other techniques

Besides the discussed method in this chapter, there are other methods e.g. using
temporal phase interferometry too [79], direct fitting of motion [41, 65] or motion-
induced Doppler-shifts [108]. In this section, we will compare the newly proposed
method to those existing ones.

4.5.1 Evolutionary algorithms

First we want to compare HMR to the standard method in our tool chain [41], [65,
supplement] shortly explained in Section 2.5.3. The main difference is that in the
old standard scheme using evolutionary algorithms, the whole motion part, that is
represented by a spline, is fitted in a single fit. In HMR, at every single time step of a
motion part one (static phase calculated) or two fits (static phase reconstructed) are
performed to receive the displacement at this time point. Because of the different
representation, the evolutionary algorithm method does not have to deal with the
quantum beat problem as the splines do not resolve those divergences on a few ns
level.
While the evolutionary algorithms need about 30 minutes on the institute’s high

performance computer per motion part, HMR only takes about a second on a local
computer. Thus, already shortly after the measurement a rough estimate for this
motion part is available. The fast availability of results allows for quick adjust-
ments of the experimental setup if needed. Furthermore, optimizing the result is
not necessary, which saves additional time.
Another advantage of the new scheme is that it does not need any assumptions

about the samples if the static phase is reconstructed with xHPR as well and no
optimization is done. For the optimization, the measured spectra are compared to
calculated ones. Whenever, a spectrum needs to be calculated model assumptions
for the material, e.g. infinite sample approximation or whether a magnetic field
distribution has to be fitted or not, and material characterization need to be used.
The longer reconstructions times of about 100 ns as compared to the standard ap-

proach with only about 55 ns in the case where only the two linear lines are driven
is a clear advantage because it can reduce the measurement time significantly. For
all lines driven, the effect might be even bigger with reconstruction times up to
150 ns, but reconstruction times of the old evolutionary algorithm method have not
yet been analyzed in this configuration. The long reconstruction times would be
essential for the usage of several moving targets or the “magic-waveform” scheme
to achieve arbitrary piezo motions [110]. For both several motions need to be re-
constructed. Until now, characterization measurements need to be done for every
sample solemnly because there is not yet a scheme that can reconstruct the motion
of two samples measured at the same time. In the “magic-waveform” approach the
response function of the experimental system to the voltage pattern is determined
from the first measured motion. From the response function, the needed voltage
pattern for a desired motion can be calculated. Finally, this second motion needs
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Figure 4.11: The pure HRM data from Section 4.2 (orange), the optimized spline (red)
and the optimized result from evolutionary algorithms (blue) are shown for the different
2D spectra from which they are extracted. The plotted optimized spline with support
number N as indicated in the right upper corner is the one with lowest deviation from
pure HMR data. For a comparison of different support number see Fig. 4.6). Note that
here, the evolutionary algorithms also fit in the veto region, hence starting 0 ns after the
pulse arrival and ending at 70 ns.
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to be characterized as well because it does not match the desired motion perfectly.
Using this approach iteratively, would increase the needed motion even further.
In addition, the idea itself of HMR is advantageous over the method with evolu-

tionary algorithms. While HMR fits the easily derived oscillation terms in Eqs. (3.8)
and (3.45), the evolutionary algorithm fits are rather a black box. In the latter, the
theoretically calculated 2D spectrum with the motion, that is fitted, is compared to
the measured 2D spectrum with a Poissonian metric. This method gives much less
insight than HMR.
Due to all the advantages, especially the time saving, for the live evaluation during

the experiment, we will use HMR in the future. But for the actual offline evaluation
of experimental data after the experiment, where time is not such a critical resource,
the evolutionary algorithm scheme will be kept for cross-checking. A comparison of
the motion parts reconstructed with HMR and evolutionary algorithms is shown in
Fig. 4.11. Note that the evolutionary algorithms start 0 ns after the pulse arrival and
end at 70 ns because they also fit in the veto region. Despite the single histograms
giving the motion in slightly different time regions, the results of the two methods
agree with each other. A similar figure for only the linear lines driven can be found
in Fig. A.5.

4.5.2 Temporal phase interferometry near x-ray resonances

Another technique to retrieve the motion is the “Time-Resolved sub-ÅngstromMetrol-
ogy by Temporal Phase Interferometry near x-ray Resonances of Nuclei” by Goerttler
et al. [79]. The scales of the extracted motions are similar to ours. In this paper
also a single line analyzer mounted on a Mössbauer drive is used to determine the
phase of the sample’s electric field. The principal idea is similar to HPR [78] only
that instead of fits for every time step a Fourier transform is used.
Assuming no coupling, the combined electric field can be expressed by a back-

ground and an oscillation term (see Eq. (3.6)). The background can be subtracted
by measuring the single responses of sample and analyzer. The remaining oscillation
term is given by

oscillation term = ei[φ(t)+∆t]A(t) + e−i[φ(t)+∆t]A(t), (4.5)

with the phase to be determined φ(t), the detuning ∆ between sample and analyzer
and a real amplitude A(t) depending on the materials. Now, the phase is not
determined by fitting a cosine function like in HPR, but with a Fourier transform.At
high enough detuning ∆ & 3γ, where γ is again the linewidth of the transition, the
two terms are sufficiently separated in Fourier space. Only the positive oscillation
term is transformed back to time space, efficiently truncating the oscillation term to

oscillation term′ = ei[φ(t)+∆t]A(t), (4.6)

which gives the phase φ(t)+∆t by reading out the argument of this complex function.
Because ∆ is known, argument directly gives the phase φ(t).
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Similar to xHPR, the method can be used to determine the phase in case with
and without motion. The difference between those two phases is the motion-induced
phase and the motion is given by Eq. (4.2) again.
Despite the method to extract the phase information, the second main difference

between the two approaches is the used detuning range. While HPR performs
the analysis out of the region where the spectrum is expected (outside of ±90γ),
Goerttler et al. stay close to the resonance (from ∆ = ±3γ up to ∆ = ±6γ). As we
have seen in the derivation of xHPR in Section 3.3, the region outside all resonances
and between resonances behaves qualitatively different. However, the first order
correction term in Eq. (3.44) can be considered constant in the used small regions
from about ±3γ to about ±6γ.
With their scheme, Goerttler et al. achieve reasonable results for the reconstructed

motions. Unfortunately, the reconstruction times in this scheme also seem to be
limited to about 35 ns. Nonetheless, a big advantage of that scheme is that it can
use more of the measured data so that statistics are better. In addition, using a
Fourier transform instead of a cosine fit automatically reduces the effects of quantum
beat minima.

4.5.3 Quantum-beat analysis

A slightly different approach is used in the quantum-beat analysis by Schindelmann
et al. [108]. The motion scales used there are again similar to our scales. Here, the
motion is not extracted via the induced phase but the induced detuning with respect
to a reference sample, which is placed behind the moving sample on a Mössbauer
drive. Hence, the motion is not reconstructed via the displacement, but the veloc-
ities. Without motion, the Mössbauer detuning between the two samples causes
quantum beats due to the slightly different frequencies. The beating frequency is
determined by the relative detuning and thus the motion-induced detuning, that
is directly proportional to the samples velocity vmotion, can be determined as the
difference between beating frequency ∆beat and Mössbauer detuning ∆D

ω0

c
vmotion = ∆motion = ∆beat −∆D, (4.7)

where ω0 is the transition frequency and c the speed of light. Different Mössbauer
detunings ∆D can be used if the motion is not well-defined by a single time spectrum.
Schindelmann et al. successfully used that technique for motion reconstruction

in case of two single line absorbers, where the beating frequency is clearly visible.
However, it probably is challenging to do this analysis in the presence of magnetic
hyperfine splitting due to more lines, that give additional beatings. The huge ad-
vantage of this technique is that it uses only time spectra, which can be measured
much faster than 2D spectra.
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Chapter 4 Heterodyne reconstruction of sub-Ångstrom motions

4.6 Usage in data evaluation chain

The above new scheme to reconstruct the piezo motion was already used in the
live evaluation during the last beamtime as well as in the offline evaluation after
the experiment. The used extension of the tool chain is shown in Fig. 4.12. For
discussion of the blue and red boxes regarding the reconstruction of the complex
field amplitude see Section 3.4.
HMR can be used as an alternative to the evolutionary algorithm approach for

reconstruction of motions. A comparison of the different motion parts reconstructed
with the two methods can be found in Fig. 4.11. In the live evaluation during
a beamtime, the new scheme is favourable because it is faster. For the actual
data evaluation after the experiment both methods can be used to give a cross
check. However, as HMR can deal with less delays, if both methods should be used,
appropriate delays need to be chosen in the experiment.

4.6.1 Implementation of HMR

If possible, the measurements of the 2D spectra with motion should be performed
with all six lines driven for the various reasons discussed above.
First, for the reconstruction step it has to be decided whether the static phase

should be reconstructed with xHPR/HPR or calculated from material properties.
Appropriate measurements, i.e 2D spectrum without motion or time spectrum of
sample only, respectively, have to be available. Both methods have advantages and
disadvantages as discussed in Section 4.2.1. In addition, the cutoff time has to be
chosen. Here, a tradeoff between noise free data and long reconstruction times has
to be made.
Next, the automatic exclusion can be done. Especially if only the two linear lines

are driven, data close to quantum beat minima should be excluded because they
diverge significantly as shown in Fig. 4.3. Additional nonphysical data points can
be excluded as well in this step.
In the last step of pure HMR data processing, different motion parts can be viewed

together so that agreement in the overlapping regions can be checked. Remaining
nonphysical data points can also be excluded.
After the generation of pure HMR data, it can be decided whether this data

should be optimized with the standard optimization procedure used for evolutionary
algorithms. As discussed in Section 4.3 the optimization is not always necessary,
especially not in the live evaluation during the beamtime where the time might not
be sufficient. However, it can improve the results.
Finally, the motion parts for different delays can be combined into one motion as

described in Section 2.5.3.
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convert into .h5 format

calibration needed?

time calibration
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Figure 4.12: The complete extended tool chain as used for the live and detailed post-
experiment data evaluation of the beamtime in May 2021. The light colors correspond to
the standard tool chain as shown in Fig. 2.10, the strong colors to the newly inserted blocks
with the new blue and red parts explained in Section 3.4. The new motion reconstruction
scheme (strong green parts) can be used as an alternative to the standard technique using
evolutionary algorithms. For details see Section 4.6 in the main text.
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Chapter 4 Heterodyne reconstruction of sub-Ångstrom motions

4.6.2 General usability

The presented HMR scheme for motion reconstruction can be used whenever the
motion induces a phase and HPR is usable. This is the case if two electric fields
interfere with each other, but coupling can be ignored at least in parts of the fre-
quency spectrum. In addition, 2D spectra have to be measurable. Thus HMR like
HPR is not limited to the field of nuclear forward scattering.
A limit is given for the slope of the motion. For every time step, a phase φ and

another phase φ + 2π are indistinguishable. In our current setting we know, that
phase changes greater than 2π within one time step cannot occur. This knowledge
gives us well-defined phase changes with respect to the neighbours and hence a well-
defined motion. However, if phase changes bigger than 2π are physically possible
within a time step, the motion is not well-defined anymore. Those large phase jumps
can happen by either more rapid changes or larger time steps. In those cases the
motion has to be roughly known on the order of multiples of 2π.

66



Part II
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Chapter 5

Temporal pulse shaping

In quantum optics at visible frequencies, a wide range of different pulse shapes in
the temporal and spectral domain is available. At x-ray frequencies, pulse shaping is
much more difficult because the standard techniques from the optical regime cannot
simply be transferred. One of the main difficulties is that the refractive index of any
material is close to unity. However, spectral pulse shaping was achieved e.g. in [65],
temporal pulse shaping e.g. in [42, 44, 99, 107, 108, 109].
In this chapter, we focus on a different method using a polarization interferometer

[95], which allows fast and adaptive pulse shaping. It consists of two samples with
angles of magnetization α = ±π/4 with respect to the incoming polarization placed
inside a polarimeter. This setting can be interpreted as an interferometer, whose
arms are created by two orthogonal polarization channels. Placing one sample on
a piezo electric element to move it on the order of wavelength allows to control
the interference between the two samples. Selecting only one output polarization
with the analyzer of the polarimeter allows to translate the interference into output
intensity. Thus the piezo motion can be used for pulse shaping. In principal double
pulses or even whole pulse trains with fixed phase relation can be created. Double
pulses are essential for e.g. Ramsey spectroscopy.
This chapter starts (see Section 5.1) with the theoretical background of how a po-

larization interferometer works and and how it can be used for switching. This basic
work was performed outside the scope of this thesis [94, 95]. Next, in Section 5.2 the
basics of the experiment on temporal pulse shaping, which was prepared, performed
and evaluated in the scope of this thesis, are explained. Finally, the actual results
of the experiment are presented in Section 5.3 and discussed in Section 5.4.

5.1 Theory behind fast adaptive x-ray optics

The work presented in this section was done before this thesis in [94, 95]. It is
summarized here because it lays the foundation for the performed experiment.

5.1.1 Mechanically-induced refractive index enhancement

Light with wavelength ω propagating through a material with refractive index [14]

n(ω) = 1− δ(ω) + iβ(ω) (5.1)
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Figure 5.1: The refractive index of iron for different frequencies. The real (imaginary)
part of the refractive index determines the phase (absorption) of light propagating through
an iron sample. Data created with python package xraylib [132].

and thickness d acquires an additional phase and is absorbed. The propagation is
represented by multiplying the incident field with the following term

ein(ω)kd = eikde−iδ(ω)kde−β(ω)kd, (5.2)

where k is the corresponding wave number. The first part is the phase from vacuum
propagation, the second term the phase that can be manipulated with material
properties and the last one is the absorption term.
In the optical regime, this second phase term is used e.g. for building waveplates.

However, at x-ray energies δ is very small as shown in Fig. 5.1 resulting in small
phase shifts from which it is difficult to build optical elements. Nonetheless, different
approaches e.g. using diamond phase plates [133] were found to overcome this
problem.
Here, we want to explain a different scheme. The motion-induced phase introduced

in Section 2.3 can be used for mechanically-induced refractive index enhancement
[94, 95]. The motion adds an additional phase to the one in Eq. (5.2)

ein(ω)kdeik∆x = eikde−i(δ(ω)kd−k∆x)e−β(ω)kd, (5.3)

where ∆x is the displacement. Due to the small δ, the motion-induced phase can
be much larger and dominates the second term. Thus, effectively with a controlled
motion, the real part of the refractive index can be enhanced by adding the motion-
induced term ∆x/d

n′(ω) = 1−
[
δ(ω) +

∆x

d

]
+ iβ(ω). (5.4)

This modified refractive index can be used for building optical devices at x-ray
energies as proposed in [94, 95].
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5.1 Theory behind fast adaptive x-ray optics

5.1.2 Polarization manipulation in general

The key idea to use mechanically-induced refractive index enhancement for optical
elements is to imprint the modified phase on only one polarization component. This
phase manipulation can be done by choosing an appropriate angle of magnetization
α. Using Eq. (2.14), this angle is included by rotation matrices Rα [122]

~̂E(ω) = Rα

(
R̂circ(ω) 0

0 R̂lin(ω)

)
R−1
α
~̂Ein(ω). (5.5)

Also including the motion-induced phase φ gives

~̂E(ω, φ) = Rα

(
R̂circ(ω, φ) 0

0 R̂lin(ω, φ)

)
R−1
α
~̂Ein(ω), (5.6)

where
R̂lin/circ(ω, φ) = 1 + R̂S

lin/circ(ω)eiφ (5.7)

is the response function including motion in analogy to Eq. (2.25).
With a phase of φ = π/2 the motion-induced refractive index enhancement can be

used to convert linear into circular polarization and vice versa, while φ = π allows
to rotate linear polarizations. In the following, we will concentrate on the latter
application. The phase shifts can be applied on the piezo timescale, which is about
10 ns to 20 ns.

5.1.3 Polarization interferometer

Using mechanically-induced refractive index enhancement to rotate incoming polar-
ized light in combination with a polarimeter enables a polarization interferometer
at x-ray energies..
The principal setup is shown in Fig. 5.2. The polarimeter is mounted in crossed

setting. That means that polarizer and analyzer are perpendicular to each other
so that no light can pass the setup if the polarimeter is empty. To also not let
any light pass through the setup in the case of static samples being inserted in the
polarimeter, a second sample perpendicular to the first one is needed as will be
shown in the following.
With Eq. (5.6), the Jones matrix of a nuclear sample is given by

M±(ω, φ) =R±π/4

(
R̂circ(ω, φ) 0

0 R̂lin(ω, φ)

)
R∓π/4

=
1

2

 R̂circ(ω, φ) + R̂lin(ω, φ) ±
[
R̂circ(ω, φ)− R̂lin(ω, φ)

]
±
[
R̂circ(ω, φ)− R̂lin(ω, φ)

]
R̂circ(ω, φ) + R̂lin(ω, φ)

 . (5.8)
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Chapter 5 Temporal pulse shaping

ba c d

e f

Figure 5.2: The setup for temporal pulse shaping consists of a polarizer-analyzer setup
in crossed setting (gray) [134] and two samples (orange) with angles of magnetization
α1/2 = ±π/4. One of the two samples is mounted on a piezoelectric element (red) so that
it can be moved on the order of wavelength. The experimental components can be seen
in the inlets: (a) shows the sample (silver) glued onto the piezo (beige). For stability, the
piezo is fixed on an acrylic glass plate. The magnet that aligns the magnetic field and
hence sets the angle of magnetization for the moving sample (sample 1) and static sample
(sample 2) are displayed in (b) and (c), respectively. (d) is a close up of the sample foil in
(c). It can be seen through the small hole in the center. The polarizer and analyzer are
shown in (e) and (f), respectively. Photos by Jörg Evers and myself.
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5.1 Theory behind fast adaptive x-ray optics

If we assume the incoming light to be polarized along σ̂0, the electric field behind
the first sample according to Eq. (5.6) is given by

~̂E1(ω, φ = 0) =M+(ω, φ = 0)

(
1
0

)
=

1

2

(
R̂circ(ω, 0) + R̂lin(ω, 0)

R̂circ(ω, 0)− R̂lin(ω, 0)

)
. (5.9)

There is still some scattering from incoming σ̂0-component into the perpendicular
π̂-component so that light would be able to pass the polarimeter in crossed setting.
In this case, the effect of polarization rotation would be more difficult to detect.
Fortunately, the scattering into perpendicular component vanishes due to destructive
interference if including a second sample. The combined field after both samples is
given by

~̂E2(ω, φ = 0) =M−(ω, 0)M+(ω, 0)

(
1
0

)
=

(
R̂lin(ω, 0)R̂circ(ω, 0)

0

)
. (5.10)

Taking motion-induced phases into account the electric field behind the second sam-
ple is given by

~̂E2(ω, φ) =

(
2R̂lin(ω, φ) + 2R̂circ(ω, φ)− 2R̂lin(ω, φ)R̂circ(ω, φ)

−2
[
R̂circ(ω, φ)− R̂lin(ω, φ)

] )
. (5.11)

It can be shown, that the intensity in the perpendicular component, i.e. the π̂-
component, is given by

Iπ̂(ω) = Iin sin2(φ/2) |Rcirc(ω)−Rlin(ω)|2 . (5.12)

Hence, the strongest signal in the π̂-component is achieved with φ = π.
A few example spectra and their corresponding motions are given in Fig. 5.3. In

Fig. 5.3a, the influence of different motion starting times can be seen. In the static
case no light can pass the setup. For both motions, the count rate rises significantly
at the time where the motion starts. Also a switching off effect is visible for the
red motion when it jumps back to zero displacement. After this backjump, it is
significantly suppressed compared to the black motion that stays at a displacement
of λ/2. Fig. 5.3b demonstrates the influence of different rise times. In the spectra
significant differences due to different displacements at the respective times can be
seen. Once, the different motions have reached their plateaus, the spectra are the
same again.
The setup with both samples can also be interpreted as an interferometer where

the two arms are realized by the two orthogonal polarization directions as explained
in the following.
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Figure 5.3: Different motions of first sample (top) and their corresponding spectra behind
the polarimeter in crossed setting (bottom). In (a) different switch-on times as well as the
influence of switching off is shown. (b) illustrates the influence of different rise times.

Without loss of generality, we concentrate on linear transitions ωlin. For simplicity,
in this illustrative derivation we will use two approximations. The first one is full
absorption at the resonance, so that Rlin(ωlin, φ = 0) ≈ 0. With Eq. (5.7), this
assumption leads to RS

lin(ωlin) ≈ −1 and thus

Rlin(ωlin, φ) ≈ 1− eiφ. (5.13)

The second approximation is that the other resonances are well-separated so that
they do not interact with ωlin and it is

Rcirc(ωlin, φ) ≈ 1. (5.14)

With this result, also Eq. (5.8) simplifies to

M±(ωlin, φ) =
1

2
eiφ
(

2e−iφ − 1 ∓1
∓1 2e−iφ − 1

)
. (5.15)

The global phase eiφ can be neglected in the following. Thus the two samples’ Jones
matrices are given by

M1(ωlin, φ) =
1

2

(
2e−iφ − 1 −1
−1 2e−iφ − 1

)
, (5.16)

M2(ωlin, 0) =
1

2

(
1 1
1 1

)
, (5.17)

where we used that the second sample is static and hence there is no motion-induced
phase φ = 0.
Similar considerations can be done for the circular transitions ωcirc resulting in

M1(ωcirc, φ) =
1

2

(
2e−iφ − 1 1

1 2e−iφ − 1

)
, (5.18)

M2(ωcirc, 0) =
1

2

(
1 −1
−1 1

)
. (5.19)
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input

output

sample 1

sample 2

φ

Figure 5.4: A schematic picture of the polarization interferometer with the two polariza-
tion paths indicated by the arrows. In reality, the two paths are not separated spatially.
The two samples act analog to beam splitters. In addition, the first sample imprints a
phase 2 − eiφ if only one input is considered, which can be set by the polarizer. Besides,
with the analyzer also only one output is selected.

If we assume, the incident light to be polarized along the σ̂0-direction, for linear as
well as circular transitions, the first sample acts like a beamsplitter and imprints a
phase 2e−iφ−1 onto the σ̂0-component. The second sample recombines the two paths
like a beamsplitter in both cases. For the beamsplitter analogy, we do not consider,
that in an optical beam splitter the reflected parts would acquire additional phases.
A schematic of the polarization interferometer can be found in Fig. 5.4. Note that
in reality, the two paths are not separated spatially. The interference and thus the
intensity at the output can be controlled by φ as shown in Eq. (5.12).

5.2 The experiment

An experiment to show the switching explained above was performed at beamline
P01 at DESY [116] in cooperation with groups around Thomas Pfeifer (MPIK Hei-
delberg), Ralf Röhlsberger (FSU/HI Jena) and Ingo Uschmann/Gerhard Paulus
(FSU/HI Jena).
Preparation, execution and the whole evaluation of the experiment was done in

the scope of this thesis. In this section, an overview over the experiment itself is
given.

5.2.1 Experimental setup

Hardware. The experimental setup is shown in Fig. 5.2. It contains a polarizer-
analyzer setup (inlets e and f) in crossed setting [134]. The moving sample (sample 1)
is a mm-sized 57Fe-enriched foil mounted on a piezoelectric element (Measurement
Specialities Inc. DT1-028K/DT1-052K) [123] (inlet a). Its magnetic hyperfine field
is aligned with a magnet (see inlet (b)) to achieve an angle of magnetization α =
+π/4. The whole component is placed on a rotation stage to adjust the angle with
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Agilent −30 dB 55 dB Piezo

50 Ω

BC

Agilent Piezo

50 Ω

BC

(a)

(b)

Figure 5.5: The Agilent-piezo circuit with (a) and without (b) the 55 dB amplifier. To
not have too high voltages at the amplifier, a 33 dB attenuator is used. The piezo is in
parallel with a 50 Ω resistor. To have the voltage be synchronized with the pulse arrival,
the agilent is triggered by with the Bunch Clock (BC).

the polarization plane θ1 as defined in Section 2.1. The static sample is again a mm-
sized 57Fe-enriched foil, but fixed between aluminum plates with a kapton foil as can
be seen in (c) and (d). The two metal plates have a small hole in the center to let
the beam pass as shown in (d). It is mounted within a magnetic field as can be seen
in (c). A rotational stage is used to adjust the angle of magnetization α2 ≈ −π/4
for best destructive interference. Light passing through the setup is collected with
avalanche photodiodes (APDs, not shown).

Software and electronics. An event-based detection system from RoentDek is
used to store the photon arrival time with respect to the pulse arrival, the current
Mössbauer velocity and the current reference range for bunch identification (see
Section 2.5.2, [41]).
For the piezo voltage supply an Agilent arbitrary waveform generator (Keysight

81160A-002 [124]), that will be called agilent in the following, is used. It can provide
arbitrary voltage patterns with ns resolution. The agilent’s output is either damped
by −30 dB and amplified with 55 dB afterwards increasing the voltage by a factor
of 17.78 (measurements with amplifier) or connected directly to the piezo (measure-
ments without amplifier) to reduce background noise as explained in Chapter 6. The
piezo is connected in parallel with a 50 Ω resistor to determine the transmission line
between agilent and piezo. Otherwise, there would be oscillations at the cable ends.
In addition, the agilent voltage only delivers the chosen voltage at an impedance of
50 Ω. The agilent can be triggered by the bunch clock, that simply gives a signal
for every synchrotron pulse arrival. The respective circuits are shown in Fig. 5.5.

5.2.2 Sample characterization

Sample properties can be characterized by fitting the desired properties to a mea-
sured time spectrum, i.e. counts as function of time. More details on the general
method can be found in Section 2.5.2.
Here, we fit the thickness d, internal magnetic hyperfine field B, angle of mag-

netization α and the angle between the magnetic field orientation and the beam
propagation direction θ. In a first step, evolutionary algorithms (see Section 2.5.4)
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5.2 The experiment

name d B α θ

sample on piezo 1.8829µm 32.648 T −0.24999π 0.48353π
static sample 1.9149µm 32.684 T +0.25195π 0.49809π

Table 5.1: Material properties of 57Fe-samples. d is the thickness, B the internal magnetic
hyperfine field, α the angle of magnetization and θ the angle between beam propagation
and magnetic field direction. The respective fits are shown in Fig. 5.6.
Note that there is a symmetry in α, such that the sign of α cannot be determined from
the single time spectra. From the experimental setup it is known, that the two samples
have a relative angle of π/2. Thus, the relative sign is determined.
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Figure 5.6: The material characterization fits for the sample on piezo (a) and static sample
(b). The magnetic field B, α the angle of magnetization within the sample plane and θ the
angle between beam and sample plane are fitted to the experimental data (black, solid)
with evolutionary algorithms (blue, dashed), which are optimized (red, dotted). Resulting
material properties are displayed in Table 5.1.

are used to find the rough global minimum of the comparison function. An op-
timization of the evolutionary algorithm result with standard fit routines such as
Nelder-Mead can be used to find the global minimum.
The material properties of the sample on the piezo and the static sample are

displayed in Table 5.1, the corresponding fits to find those properties in Fig. 5.6.
The agreement of the fitting results with the measurements can clearly be seen.

5.2.3 Applied voltage patterns

Originally, we planned to apply a “magic waveform” [110].The principal idea is that
the ratio between the applied voltage and the resulting motion in frequency space
gives the response function of the whole system. Using this received response func-
tion, the necessary voltage pattern for special waveforms can be calculated in fre-
quency space and converted into time space by a Fourier transform [110].
Unfortunately, until now the “magic waveform” approach does not work good

enough for our purpose here. The problem is that the desired steplike functions
(see Section 5.1.3) need many and high frequencies to be represented properly in
frequency space. For a truncated frequency space, the function’s edges are not sharp
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Figure 5.7: The voltage patterns “one20nsJump” (a) and ”up-
Down_20ns_jumps_gap_10ns“ (b) applied to the piezo without amplifier. They
are started every 40th bunch. For measurements with amplifier if not stated otherwise a
peak-to-peak voltage of 1.2 V is used and amplified with 25 dB.

in time space and there are oscillations on the plateau. However, already those
oscillations on the zero voltage plateau would disturb the destructive interference.
Thus the motion would have no part where there is actually no motion. Not having
a static region is a problem, because we want to have results with no motion for
comparison to show how well the switching works on the level of single pulses.
Hence, we decided to apply voltage pulses like the ones in Fig. 5.7. There a

region with no voltage applied is available. The drawback is that we do not know
the exact piezo motion resulting from those voltage patterns because they have not
been characterized.
All measurements discussed in this part are collected with a motion that lasts over

40 bunches. That means that in contrast to the motion reconstruction measurements
in Chapter 4, where a motion starts every fourth pulse, here a motion is started every
40th pulse. As a result, after the application of the non-zero voltage pulse, which
is used for the pulse shaping, as shown in Fig. 5.7a, there are 39 bunches without
applied motion, such that the piezo motion can relax. Those long motion sequences
also provide access to new investigations such as the relaxation time of the piezo as
discussed in Section 6.3.

5.3 Experimental results for pulse shaping

5.3.1 Proof of principle

The clear signature of the experiment is an intensity increase in the perpendicular
component (π̂) after applying a phase shift. This increase can be seen from the
π̂-component with motion in Eq. (5.11) and without motion in Eq. (5.10).
The results of measurements with voltage “one20nsJump” (see Fig. 5.7a) for dif-

ferent delays of the motion, i.e. the voltage pulse starting at different times, are
displayed in Fig. 5.8. The signal with motion is about 10 to 60 times stronger than
the one without motion in the bunch before. The spectrum in which the instanta-
neous jump takes place will be called jump in the following, the bunch before that
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Figure 5.8: A few example time spectra as a proof of principle for the switching result.
The spectrum in which motion takes part (red) as well as the one before (blue) are shown
for measurement with (a) and without (b) amplifier. In addition, the enhancement, i.e.
ratio between spectrum with and without motion is shown (orange). The enhancement
is filtered by a median filter of size 5 (more details in main text). The gray dotted line
indicates an enhancement of 1. The number in the upper right corner of each panel is the
delay, i.e. the time shift of the start of the voltage pulse.

will be referred to as a reference.

We choose the bunch before as a reference instead of a time spectrum measured
separately at a different time, where no voltage at all was applied to the piezo,
because in future experiments switching light properties should take place from
bunch to bunch. As we can see from Fig. 6.3, the separately measured time spectra
without any voltage applied and the defined “reference” do not vary qualitatively.
From the noise analysis in Chapter 6, we can deduce that the induced motion has
decayed sufficiently enough in the 39 bunches until the one before the next voltage
pulse is applied. To quantify the difference, the enhancement

enhancement =
jump (spectrum with motion)

reference (spectrum without motion)
(5.20)

is defined. The so-defined enhancement slightly follows the curve of the spectrum be-
cause of the following reason. Assuming µ = jump without noise/reference without noise
to be the actual enhancement and using the signal to noise ration SNR = reference/noise,
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Chapter 5 Temporal pulse shaping

the enhancement in Eq. (5.20) is given by

enhancement =
µ · reference + noise
reference + noise

(5.21)

=
µ · SNR + 1

SNR
(5.22)

=

{
µ SNR� 1

1 SNR� 1
. (5.23)

Thus, the enhancement is only high if the signal is high. We have to keep this in
mind for the analysis of the enhancement.
Because small variations on small intensities have a huge effect, the enhancement

is smoothed with a median filter of size 5. This filter means that at every time
step, the actual value is replaced by the average over five values centered around
the particular time.
Without motion, the jump and reference spectra are nearly identical. When the

motion starts, the jump spectrum is enhanced by a factor of order of 10. At smaller
delays, i.e. the motion starts at earlier times, the enhancement is higher than for
greater delays. This effect is visible for the measurements with and without amplifier
and is due to the intensity dependency of the enhancement (see Eq. (5.23)).
In addition, we see that the enhancement curves for different delays look very

different. Those differences are because the intensities in the enhanced regions are
very different.
After the end of the motion, without amplifier the jump spectrum gets back to

the level of the reference and has a similar course, while for the measurement with
amplifier the jump spectrum is enhanced for a much longer time. In both cases
the longer time compared to the voltage pulse width is an artefact of the piezo
not following the applied voltage pattern exactly (see Section 4.4) and probably
undergoing damped oscillation after the quick changes in the applied voltage because
of its inertia. Unfortunately, we do not have a method to extract the exact motion
from only time spectra so far.

5.3.2 Delay calibration and different switch on times

As already explained in Section 2.5.2, due to e.g. cable lengths there are several
time delays so that time calibrations are necessary. From the enhancement, the
starting points of the jump of the motion can be estimated in the measurements
with different delays. This estimation is done by searching for the time, at which
the enhancement rises above 1 and the rise is steep enough to not be caused by noise
fluctuations in the enhancement. For the measurements with amplifier the spectra
are shown in Fig. 5.9a. This figure includes more spectra than the ones shown in
Fig. 5.8. A systematic error of 3 ns is assumed for the determination of the starting
point.
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Figure 5.9: The jump (red) and reference spectra (blue) used for the time delay calibration
with (a) and without (b) amplifier. In addition, the median filtered enhancement is shown
(orange). The black dot indicates the estimated beginning of the motion. Delays of the
respective measurements can be found in right upper corner.
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Figure 5.10: The enhancement as a function of time for different delays, i.e. starting
times of the motion, shown for measurements with (a) and without (b) amplifier. The
gray line indicates the calculated starting time, where the gray rectangle represents the
error, with and without amplifier according to Eqs. (5.24) and (5.25), respectively.

Delays are given as the delay with respect to the trigger, that starts the voltage
pattern in Fig. 5.7a, as set at the Agilent. The bunch in which the jump takes place
is bunch 6 after the trigger. From the estimated starting points for the different
delays, we find the starting point for an arbitrary delay, that can be set with the
Agilent, measured with amplifier to be

twith amplifier
start motion = (−222± 3)ns + delay, (5.24)

where the starting point of bunch 6 is at t = 0 ns. Negative starting times correspond
to motions starting before bunch 6, e.g. in bunch 5. The error is the combined
statistical and systematic error.
Similarly, for the results in Fig. 5.9b we find

twithout amplifier
start motion = (−248± 4)ns + delay (5.25)

for data measured without amplifier. The deviation of the time calibration with
and without amplifier is caused by different cable lengths and internal delays in the
amplifier.
With this delay time calibration in Eqs. (5.24) and (5.25) the starting times of the

motion for measurements with different delays, e.g. shown in Fig. 5.8 can be cal-
culated. The enhancement for various delays measured with and without amplifier
can be seen in Fig. 5.10. The times on which the enhancement becomes significantly
higher than one due to the motion lie on a straight line described by Eqs. (5.24)
and (5.25), respectively. The straight lines are expected from time delay calibration.
The only small deviations show that the switch on times of the enhancement, i.e.
significantly higher intensities, can be chosen reliably.
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Figure 5.11: Jump (left) and reference (right) spectrum for different delays, i.e. start-
ing times of motion for measurements with (a) and without (b) amplifier. The colored
boxes indicate the starting point of the motion with errorbar calculated from Eqs. (5.24)
and (5.25) The normalization is chosen so that the integrated reference spectrum is 1.
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For the measurements without amplifier (Fig. 5.10b), the enhancement drops back
to about 1 roughly 40 ns after the starting time. Thus, in addition to a switching
on effect also a switching off effect due to the motion can be seen. The time in
which the jump spectrum is significantly enhanced (about 40 ns) is longer than the
pulse duration (20 ns) because the piezo motion does not follow the applied voltage
pattern exactly as can be seen from the comparison between Figs. 4.8 to 4.10. The
reason for the enhancement varying on a higher level behind the pulse than in front
of it are probably damped oscillations of the piezo as a response to the rapid voltage
changes of the pulse. To understand the shape of the enhancement, the exact piezo
motion should be known as finite velocities causing Doppler shifts play a crucial
role.
Comparing the jump and reference spectra for different delays gives additional

insights. From Fig. 5.11 it can be seen that the references agree very well with each
other. That shows that the reference spectrum is independent of the chosen delay.
For a perfect instantaneous motion, we would expect that during their respective
enhancement time, in which the motion is switched on, the jump spectra for the
different delays agree with each other (see Fig. 5.3), which is not the case. The
intensity of the quantum beat maxima drops with time. Hence, the noise becomes
more and more important in the enhancement as indicated by Eq. (5.23).
For the measurements with amplifier (Fig. 5.11a) the enhancement does not drop

back down to a similar level as before the motion started. In those measurements,
there is more noise in the reference spectrum as explained in Sections 6.3 and 6.4.
In addition, the enhancement during the motion is smaller than in the case without
amplifier. Hence, the noise created by the oscillation after the applied pulse becomes
more important.

5.3.3 Different voltages

In Fig. 5.12 jump and reference spectra as well as enhancement for different peak-
to-peak voltages of the motion in Fig. 5.7a measured with amplifier are shown. The
highest enhancements are generated with a peak-to-peak voltage of 1.0 V. Although
the enhancements look different, similarities can be found in the spectra. Starting
from about 85 ns, the spectra with motion agree with each other for all different peak-
to-peak voltages. Between 22 ns, the motion start according to Eq. (5.24), and 85 ns
the spectra with motion vary significantly for the different peak-to-peak voltages.
Those differences indicate that the controlled motion has dropped significantly after
85 ns and is dominated by the noise motion from the ring down of the system.
The differences in between are caused by different phase jumps. This hypothesis

is supported by the fact that 0.8 V and 1.4 V as well as 1.0 V and 1.2 V seem to be
very similar. Because there is a roughly linear relation between applied peak-to-peak
voltage, we can estimate the phase jumps corresponding to a certain applied voltage
from the two motions and their applied voltages in Section 4.4. We find, that 1.0 V
and 1.2 V lead to a phase of φ ≈ π. Hence, we expect them to be similar. For 0.8 V
and 1.4 V the phases differ from π by δφ, φ ≈ π ± δφ. Because φ = π destroys the
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Figure 5.12: Jump (solid) and reference (dashed) spectra (a) as well as corresponding
enhancement (b) for different voltages measured with amplifier. The delay is 240 ns so
that the motion starts 22 ns after the arrival of the pulse as indicated by gray box in (a),
respectively. The shaded box is the errorbar.

destructive interference maximally and the phase influence being symmetric around
π (see Eq. (5.12)), we expect the results for 0.8 V and 1.4 V to be similar.

5.3.4 Different jump lengths

We also performed measurements without amplifier for different jump lengths by
varying the voltage pulse width. Resulting spectra and enhancement can be seen in
Fig. 5.13. The motion starts 13 ns before the pulse arrival. For all measurements
a strong enhancement at early times is visible. Interestingly, the enhancements
for 20 ns and 60 ns show a second peak that the other do not show. The long
pulse (200 ns) shows an enhancement significantly above one for the whole bunch as
expected. Unfortunately, the results are hard to interpret if the piezo motion caused
by the applied voltage is not known.

5.3.5 Double pulses

After investigating the single pulse enhancement, we wanted to explore if it is possi-
ble to create double pulses by applying two voltage pulse. Because the polarization
interferometer is operated at minimal intensity motion in forward or backward di-
rection result in the same intensity output (see Eq. (5.12)). The difference of the
motion direction can only be seen in the phase, not the intensity. Hence, two voltage
pulses being in the same direction or in opposite directions have the equivalent sig-
nature in the interferometer. The two jumps are chosen to be in opposite directions
due to noise reduction (see Section 6.3). The voltage pattern is shown in Fig. 5.7b
and used without amplifier.
The jump spectra and enhancements for different gap widths are displayed in

Fig. 5.14. The height of the spectrum peaks at about 60 ns can be highly influenced
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Figure 5.13: Jump (solid) and reference (dashed) spectra (a) as well as corresponding
enhancement (b) for different jump lengths measured without amplifier. The delay is 235 ns
so that the motion starts 13 ns before the arrival of the pulse.
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Figure 5.14: Jump spectra (a) and enhancements (b) for motion ”up-
Down_20ns_jumps_gap_*ns“ for different gap widths at delay 240 ns so that the
motion starts 8 ns before the arrival of the synchrotron radiation pulse. The dark gray
line in (a) and area in (b) shows the jump spectrum and enhancement, respectively, for
motion ”one20nsJump“, i.e. a single pulse, at the same delay. Its enhancement is scaled
down by a factor of 5 for better visibility of the other enhancements. Note, that the single
pulse measurement also has a different voltage pulse height. The colored boxes indicate
the corresponding start of the second pulse calculated from Eq. (5.25) with errorbars.
Normalization is chosen, such that counts in the jump spectrum between 0 ns and 15 ns,
where in all measurements the same voltage is applied, are the same.
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5.4 Discussion of the experimental results

with the gap from being much less than the double peak at about 20 ns to much
higher. Different peak heights are probably caused by different displacements and
Doppler shifts due to finite rise times. In principle, the peak height is tunable with
the displacement and thus the degree of constructive interference. The double peak
at about 20 ns is caused by the choice of the delay. Only for the single pulse case
and no gap, they differ from the other measurements.
In comparison to the result of ”one20nsJump“, i.e. only one pulse, the influence of

the second pulse can be clearly seen in the enhancement, especially for small gaps.
Also changing the gap widths shifts the second enhancement peak accordingly on
the right order of timescale. However, the influence of the second pulse is getting
lower the longer the gap. This change might be because of the intensity influence on
the enhancement as shown in Eq. (5.23). In addition, the voltage pattern does not
perfectly convert into a piezo motion of the same shape, such that the gap regions
might not be the same in the different motions. The principal form of the first pulse
in the enhancement is very similar for all measurements as expected because the
first pulse of the voltage pattern stays the same while scanning the gap.
The discussed results are a clear first proof that double peaks could be achievable

and tunable with the proposed setup. Nonetheless, still a lot of work needs to be
done until controlled double pulses from this setup can be used for experiments.

5.4 Discussion of the experimental results

A first proof of principle analysis in Section 5.3.1 showed that with the polarization
interferometer, the sample response can be switched on. The intensity increase at
a certain time was further investigated in Section 5.3.2. It could be seen that the
measurements without amplifier give a more pulse like structure for the enhancement
as expected from the shape of the applied voltage and expected distortions by the
amplifier.
Next, the influence of different parameters such as peak-to-peak voltage and volt-

age pulse widths were examined in Section 5.3.3 and Section 5.3.4, respectively.
While the results for different voltages and thus different phase jumps are under-
stood in principle, the results for different widths are discussed, but have not yet
been understood.
Finally, in Section 5.3.5 it was demonstrated how double pulses could be created

with the polarization interferometer, in principle. However, currently the double
pulses are less controlled and less investigated.
The experimental results could probably be better understood if the piezo motion

would be known. It might be possible to retrieve at least a first guess from time
spectra by using the quantum beat analysis by Schindelmann et al. [108]. More
details on this technique are given in Section 4.5.3.
In general, it seems as if the piezo motion without amplifier is closer to the applied

voltage than in the setup with amplifier. The better performance could be expected,
because the amplifier has a limited bandwidth and does not amplify every frequency
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by the same factor. Hence, if the peak-to-peak voltage of 5 V, that can maximally
be provided by the Agilent, is sufficient, it might be advantageous to not use the
amplifier. With a piezo strain constraint d33 = −33× 10−2 Å/m [123], the 5 V
peak-to-peak voltage would be enough if no high peaks are contained in the voltage
pattern.
Besides the improvement of the piezo motion, a different way to improve the

temporal pulse shaping is noise reduction. The suppression of counts in the reference
spectrum is mainly limited by noise, that always causes small movements of the two
samples. Thus, even in the reference bunch some motion is present, such that the two
samples do not interfere perfectly destructively and some light can pass the setup.
The bigger those noise movements of the sample, the more light is detected in case
of no motion applied actively. Hence, the switching effect, that can be produced
with the controlled motion, is reduced. Those noises will be discussed in more detail
in Chapter 6.
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Chapter 6

Noise background analysis

The experimental setup of two samples in a row with a relative angle of magneti-
zation α of π/2 (see Fig. 5.2) can be interpreted as an interferometer with the two
arms being represented by the two orthogonal polarization states. The interferome-
ter is explained in more detail in Section 5.1.3. Already small motions of one of the
two samples can destroy the interference, such that the whole setup operated in the
intensity minimum is very sensitive to background noise and provides a new tool to
analyze it.
The background noise will be investigated in this chapter. First, in Section 6.1

the sensitivity of our system to sound waves is analyzed by directing loudspeakers
to one of the two samples. Next, the noise in spectra without piezo motion is
investigated in Section 6.2. The difference to a calculated static spectrum can be
explained with noise motions of the samples. One origin are shock waves traveling
through the acrylic glass as we will see in Section 6.3. Afterwards, the evolution
of interference throughout a cycle of 40 bunches is analyzed in Section 6.4. The
chapter is concluded with a discussion of the results in Section 6.5.

6.1 Morsing

At PETRA III, there is a regular test voice at 2:18am in the laboratories. During
a measurement, we noticed that at that time the count rate increased significantly
(factor of 3). Our interpretation was that the sound wave likely disturbed the
destructive interference.
To demonstrate that it actually was the sound from the loudspeaker, we placed

a loudspeaker next to one of the two samples (see Fig. 6.1). Next, we applied sine
waves with a frequency of 60 Hz to it. The duration of those pulses can be controlled
so that morsing is possible. In Fig. 6.2, the names of the three institutes related to
the experiment (Max Planck Institute for Nuclear Physics, Deutsches Elektronen-
Synchrotron and Helmholtz Institute Jena) are morsed with the loudspeaker and
can be detected as sequences of constructive interference in the polarization inter-
ferometer. Hence, the sound waves give a strong signature. Unfortunately, this
result means that also all other sounds in the laboratory, e.g. vacuum pumps or the
RoentDek box, will disturb the destructive interference. The strength of the noise
background will be analyzed in the rest of the chapter.
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Chapter 6 Noise background analysis

Figure 6.1: The setting of loudspeakers (blue ellipse) directed towards the sample on piezo
(orange ellipse). They are placed on foam mats to reduce structure-borne sound so that
the sound transmittance via air is dominant. Sine waves of 60 Hz with variable duration
are used for morsing. Results are shown in Fig. 6.2. Photo by Jörg Evers.
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Figure 6.2: Morsing the names of the three big institutes related to the experiment with a
60 Hz sine wave: MPIK ( -- .--. .. -.- ), DESY ( -.. . ... -.--), HIJ ( .... .. .---). The sound
waves disturb the destructive interference and show up as strong signatures in the count
rate.
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Figure 6.3: Different measured static time spectra are shown: “zero Voltage” (purple), i.e.
no voltage applied to piezo, and “no Amplifier” (blue), i.e. amplifier unplugged in addition,
are measurements from noise background checks. “ref with [amplifier]” (green) and “ref
without [amplifier]” (orange) are example reference ranges as discussed in Section 5.3. The
normalization is chosen so that the total number of counts in each spectrum is the same.
The drop of intensity at about 170 ns for the two reference spectra with and without
amplifier is due to the rising ramp of the reference voltage for bunch identification.

6.2 Noise in static spectra

6.2.1 Different static spectra

In Section 5.3 always the spectrum of the bunch before the one with motion was
taken as a static reference spectrum to see how the setup performs from pulse to
pulse.
However, more spectra without motion have been measured: time spectra with-

out voltage applied and amplifier unplugged in addition. They are compared to a
reference spectrum of the 40 bunch motion sequences measured with and without
amplifier in Fig. 6.3. The two separate spectra are nearly identical, which shows
that unplugging the amplifier in addition has no big influence. However, it could
be that the small variations are not only caused by noise, but by the amplifier elec-
tronics. While the reference spectrum without amplifier also agrees with the two
separate time spectra apart from minor differences in the peak heights, the reference
spectrum measured with amplifier differs significantly from the other spectra. This
deviation indicates that in the case without amplifier, in the reference bunch there
is nearly no more piezo motion while with amplifier there are small remainings of
the motion.
The intensity drops at about 170 ns in the reference spectra with and without

amplifier are due to the reference voltage for bunch identification. At its rising
edges, events cannot be sorted into the correct bunches properly.
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Figure 6.4: The calculated (gray) and measured with no voltage applied (blue) and
additionally no amplifier used (orange) static time spectra are shown. The normalization
is chosen so that all spectra have the same integrated number of counts.

6.2.2 Noise in static spectra

In Fig. 6.4, some static spectra from Fig. 6.3 are compared to simulated spectra
with the material properties given in Table 5.1. There are big qualitative differences
between the calculated and measured static spectra. Even if no voltage is applied in
the whole measurement, i.e. no motion of the piezo, the system is not static. This
observation indicates that there is some noise background that has a big influence
on the interference.

6.2.3 Relative detuning caused by noise

In addition to the destruction of interference, any noise motion causes a relative
detuning between the two sample because of Doppler shifts proportional to velocity.
We assume the noise to have frequencies on a much smaller scale than the one of
the decay so that they can be assumed as linear motions over the range of a single
decay. The detuning of the target’s resonances from each other partially destroys
the destructive interference between the two samples.
As explained in the supplement of [41] this random motions can be described by

an overall relative detuning. A fit of such a detuning to the measured data is shown
in Fig. 6.5a. It can clearly be seen that the calculated spectrum with fitted relative
detuning resembles the measured data much better than the one without. The fitted
detuning is

∆rel = (0.752± 0.10(syst.)± 0.014(stat.)) γ. (6.1)

The systematic error is the fit error, the statistical error from averaging over the
two measured spectra without voltage applied to piezo.
In addition, in Fig. 6.5b, not only a single detuning is fitted, but a Gaussian
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Figure 6.5: The measured static (red), calculated static (gray) and spectrum with fitted
detuning (blue) are shown. In (a) a single relative detuning is fitted, in (b) a Gaussian
distribution of relative detunings. The light colors correspond to no voltage applied, the
strong colors to amplifier unplugged in addition. For the fit a Poissonian metric is used.

distribution of detunings. The result is centered around

∆rel,0 = (3.24± 0.11(stat.)) · 10−3γ (6.2)

and has a width of
∆rel, width = (0.252± 0.005(stat.)) γ. (6.3)

The resulting time spectra are basically identical for a single fitted detuning or a
Gaussian distribution of detunings. Hence, for the rest of this chapter, the simpler
case of fitting a single detuning with only one fit variable is preferred. This model
is also the description used in [41].

6.3 Acoustic waves

6.3.1 Qualitative analysis

In Fig. 6.6 the integrated number of counts and the deviation of the time spec-
trum from a static reference spectrum per bunch are displayed for different motion
patterns and delays. Different peak heights are due to the normalization, which is
chosen so that there is one count on average per bunch in every measurement. The
motion starts in bunches 5 or 6 depending on the chosen delay. It can clearly be
seen that there must be another strong motion about 15 bunches later independent
of the delay. For the measurements with amplifier additional peaks can be seen.
This motion can be identified as a shock wave, that is created by the initial voltage
pulse, traveling through the acrylic glass plate on which the piezo is mounted for
stability and hitting the sample on its return. The velocity of this wave is

v =
8 mm

15 · 192 ns
≈ 2.8 · 103 m

s
, (6.4)
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Figure 6.6: The integrated number of counts (top) and deviation from static (bottom)
as a function of bunch number for different delays (see legends). The measurements are
performed with motion “one20nsJump” with (a) and without (b) amplifier as well as motion
”upDown_20ns_jumps” without gap and without amplifier (c). The solid lines show the
fits of Eq. (6.5) to the integrated number of counts. For the deviation from static the
residual sum in comparison with the measured reference spectrum is calculated, whereby
a Poissonian metric is used. Fit results can be found in Table A.1. The normalization is
chosen so that the average number of counts per bunch is one in each measurement. The
numbers indicate the peaks caused by the revival of the shock wave.
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Figure 6.7: The integrated number of counts (top) and deviation from static (bottom) as a
function of bunch number. The measurements are performed with motion “one20nsJump”
with amplifier for different peak-to-peak voltages (a) and without amplifier for different
pulse widths (b) as well as motion ”upDown_20ns_jumps” without amplifier for different
gaps (c). Definition of derivation from static and normalization are as in Fig. 6.6. The
numbers indicate the peaks caused by the revival of the shock wave.
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which is close to the speed of sound in PMMA of 2.54 · 103 m
s
. The effect is reduced

in the measurements without amplifier because the applied voltage at the piezo is
lower. Therefore, the amplitude of the piezo motion is lower, which creates a smaller
shock wave. This smaller shock wave takes less time to be on a same level as the
background noise so that the additional peaks nearly vanish completely. The third
peak at about bunch 36 can still be identified as a small rise in the number of inte-
grated counts as well as the residual sum for the measurement with “one20nsJump”
in (b).
At the position of the fourth peak at about bunch 13, the number of integrated

counts and the residual sum slightly rise. This hardly visible change might just be
within errors, but could also be a signature of the fourth peak. If the latter is the
case, the shock wave has not decayed completely until about bunch 5, which we
take as the reference spectrum. Thus, we wanted to reduce the shock wave further.
The idea is to counteract the sound wave created by the first voltage pulse with a
second sound wave with opposite amplitude by applying a second voltage pulse with
the same voltage amplitude, but in the other direction as shown in Fig. 5.7b. From
Fig. 6.6c it can be seen that this idea actually decreased the shock wave even more
and only one revival of the shock wave leaves a signature.
The principal results are mainly independent of the applied voltage, pulse width

and gap width as illustrated in Fig. 6.7. The main features such as a third peak,
relative height of second peak and rough decay times are similar to the respective
delay scans in Fig. 6.6 with (a) and without amplifier (b) as well as double pulse
motion (c). Note that a pulse length of 200 ns stretches out over two bunches.
Therefore, in this case the peaks range over two bunches.

6.3.2 Quantitative analysis

To study those shock waves quantitatively, an exponential decay function

f(t) = A1 exp

(
t− t1
τ1

)
θ(t− t1) + A2 exp

(
t− t2
τ2

)
θ(t− t2) + c (6.5)

is fitted to the first two peaks. Here θ(t) is the Heaviside-function and the values
t1 and t2 are fixed to the position of the peaks. Two different decay times τ1/2 are
fitted because in the first peak the piezo motion plays a role, while from the second
peak onwards shock waves dominate. The resulting fits are displayed in Fig. 6.6 and
its parameters can be found in Table A.1.
The mean decay times can be found in Table 6.1. While the mean of τ1 differs

significantly for the measurements (τ i1−τ j1 > 8σ), the mean values of τ2 agree within
their errors (τ i2 − τ j2 < 1.8σ). The first decay is mainly governed by the decay of
the actual piezo motion. As we have already seen in Section 5.3, with amplifier, the
motion of the piezo is much longer than without amplifier. With this knowledge,
it is understandable that the decay time is much longer than in the case without
amplifier.
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6.4 Building up interference over time

measurement mean τ1 [ns] mean τ2 [ns]

one pulse, with amplifier 1.81 ± 0.12 1.25 ± 0.18
one pulse, without amplifier 0.837± 0.020 1.07 ± 0.07

double pulse, without amplifier 0.603± 0.008 0.88 ± 0.10

Table 6.1: The mean decay times of the fits of function Eq. (6.5) shown in Fig. 6.6. Single
fit results can be found in Table A.1.

The second decay is mainly governed by the motion due to the shock wave return.
It seems as if there is still a tendency, that for bigger initial motions probably causing
stronger shock waves, the decay time is bigger. Maybe τ2 depends on the spectrum
of the shock wave and spreading occurs. However, within the errors, the decay times
do not vary significantly from each other. Because the shock wave in principle is the
same in all three measurements, an agreement of the decay times is expected.

6.4 Building up interference over time

We now want to study how the coherence of the two samples evolves over the 40
bunches. To do so, the interference coefficient κ is defined as the prefactor of the
interference term in the fit function

fκ(t) = |E1(t)|2 + |E2(t)|2 + κ · 2< [E1(t)E2(t)∗] (6.6)

for two arbitrary electric fields. Here, those two field are the sample responses of the
two samples. An interference coefficient of κ = 1 represents full interference, while
κ = 0 indicates no interference at all. A deviation of κ from one can give a hint on
the amount of noise in the setup.
The interference coefficient κ and a relative detuning between the two samples ∆

like in Section 6.2.3 are fitted to the time spectrum of each bunch

fκ,∆(t) = |E1(t)|2 + |E2(t)|2 + κ · 2<
[
E1(t)i∆tE2(t)∗

]
. (6.7)

Results are shown in Fig. 6.8. For all three measurement types, the applied motion
destroys the interference. During the motion decay, the interference builds up again
until it reaches its undisturbed value of about one. Even though there is a relative
detuning (see Section 6.2.3), the interference is close to one in the static case. The
deviation from one indicates the background noise in the setup.
While for the measurements without amplifier the interference builds up again

after only a few bunches, for the measurements with amplifier the building up takes
until the next motion kick. Similarly, for the measurements without amplifier, most
of the time the relative detuning is close to 1γ as in static case (see Eq. (6.2)), while
with amplifier this baseline is about 4γ.
The interference coefficient κ varys significantly with the delay at the peaks, while

away from the peaks it is very similar for different delays. The reason is that for
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Figure 6.8: The resulting interference coefficient κ (top) and relative detuning between
the two samples ∆ (bottom) of the combined fit in Eq. (6.7) to the time spectrum in
each single bunch. The measurements are performed with motion “one20nsJump” with
(a) and without (b) amplifier as well as motion ”upDown_20ns_jumps” without gap (c).
For comparison, the two static measurements with no voltage applied (gray) and amplifier
unplugged in addition (black) are shown. The respective delays are displayed in the legends.
Normalization is chosen so that the total number of counts is the same.
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Figure 6.9: The resulting interference coefficient κ (top) and relative detuning between the
two samples ∆ (bottom) of the combined fit in Eq. (6.7) to the time spectrum in each single
bunch. The measurements are performed with motion “one20nsJump” with amplifier for
different voltages (a) and without amplifier for different pulse widths (b) as well as motion
”upDown_20ns_jumps” without amplifier for different gaps (c). For comparison, the two
static measurements with no voltage applied (gray) and amplifier unplugged in addition
(black) are shown. The respective delays are displayed in the legends. Normalization is
chosen so that the total number of counts is the same.
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different delays the time range in which the jump spectrum is enhanced differs, but
a fixed interference coefficient κ is fitted for the whole bunch spectrum.
Nonetheless, for the measurements with amplifier and the double-pulse voltage

pattern without amplifier, interference coefficients close to zero are achieved. For the
single pulse measurement without amplifier, the interference can not be disturbed
on a similar level. This observation indicates, that there might be potential for
optimization.
Like for the shock waves, the influence of different voltages, different pulse widths

and different gap widths is analyzed in Fig. 6.9. For different voltages, the in-
terference coefficient varies. The differences are expected because a lower voltage
translates into a smaller motion and thus less disturbance. For the first peak a
voltage of 1.2 V leads to the lowest interference. This result is in agreement with
results in Fig. 5.12, where a voltage of 1.2 V together with a voltage of 1.0 V lead to
the biggest enhancements.
In the plot for different pulse lengths, again the double peaks for the 200 ns long

pulse, that stretches out over two bunches, are visible. The other influences of the
pulse lengths have not yet been understood. Similarly, the minor differences for
different gap widths are not understood currently.
However, in all three plots of Fig. 6.9, there are no qualitative differences for the

scanned parameters, which indicates that the setup, i.e. with or without amplifier,
and kind of motion, i.e. single or double pulse, has the significant impact.

6.5 Discussion of the results

Because of the operation at minimal intensity, the polarization polarimeter provides
a platform to analyze background noise.
In Section 6.1, we saw that sound waves leave a clear signature in the time spectra.

Thus, noise can be reduced by placing sound sources, e.g. vacuum pumps or the
RoentDek box, far from the samples or even shielding the sample from sound waves.
In Section 6.2, some noise can be modeled by a relative detuning between the two

samples. This model can be used to simulate the influence of noise in measurements
of the polarization interferometer, e.g. the ones in Chapter 5. In addition, this
relative detuning can quantify the amount of noise in the system. Because only
fast measurable time spectra need to be measured, the amount of relative detuning
between the two samples provides a useful tool to analyze different approaches for
noise reduction live in the experiment.
Despite the noise from external sound waves or other vibrations, we have to deal

with the shock waves in the acrylic glass plate, that move the sample on its revivals.
In Section 6.3, we already showed that measurements without the amplifier at lower
voltages can reduce the shock waves. Further reduction is possible with a second
voltage pulse in the opposite direction so that two shock waves with opposite am-
plitudes are created. The reduction of shock waves is especially important if the
motion cycles should be reduced to be shorter than 40 bunches. This reduction is
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6.5 Discussion of the results

desirable because it increases the count rates in the bunch with motion. Besides
the reduction with lower voltages and voltage pattern shaping, a different material
instead of acrylic glass could have a positive impact.
Lastly, in Section 6.4 the coherence between the two samples was investigated.

For the measurements without amplifier, the interference builds up much faster
after being disturbed by the motion than for the ones with amplifier. This result
is directly related to the shock waves. The maximally achievable interference is
another indicator for the amount of noise.
The noise analyzed in this chapter is universal and does not depend on the polar-

ization interferometer. It also influences the setups for spectral redistribution [65]
and coherent control of nuclear excitons [41] as well as future setups. The knowl-
edge gained in this chapter can help to interpret unexpected results and improve
the experimental setups to reduce background noise.
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Chapter 7

Summary and Outlook

In this chapter, the thesis results are summarized and an outlook on future directions
is given.

Summary

The main results of this thesis can be divided into the two topics temporal phase
and polarization interferometry. The main goal of the first part was to reconstruct
phases (Chapter 3) and motions (Chapter 4). In the second part, experimental
results of the polarization interferometry for temporal pulse shaping (Chapter 5)
and noise background analysis (Chapter 6) were investigated.
In Chapter 3, we showed that the heterodyne phase reconstruction (HPR) scheme

based on temporal phase interferometry and presented by Callens et al. [78] had
difficulties to reconstruct the phase of the electric light field close to quantum beats.
This is because the oscillation term is dominated by coupling effects between the
two samples, that are neglected in [78] for simplicity. We analyzed those couplings
and introduced correction terms to HPR in the extended heterodyne phase recon-
struction (xHPR). In addition, this improved scheme increases the used data range
and thus the statistics for the same amount of measured data. In a beamtime in
May 2021, the method developed here was used as a primary analysis tool.
Reconstructing the phase of a measurement with and without motion gives ac-

cess to the motion as explained in Chapter 4. The performance of our new motion-
reconstruction method (HMR) has been analyzed and compared to other techniques.
In comparison with the formerly used evolutionary algorithm scheme, it is more
efficient regarding measurement time because of longer reconstruction times and
regarding evaluation time due to a simpler evaluation procedure. Thus, less mea-
surements are needed and the evaluation is faster. Hence, several motions can be
characterized in less time. Therefore, iterative motion optimization as well as us-
age of several moving samples are feasible with reasonable effort. In addition, the
only model assumption needed in HMR is that there is no coupling between the
moving sample on a piezo and the analyzer sample on a Mössbauer drive. This ap-
proximation is valid if at least four transitions are driven, such that quantum beat
minima do not drop to zero, and Mössbauer detunings close to the resonances are
excluded. Hence, HMR is an important step on the way to a model free motion
characterization. Being successfully tested in live evaluation at a beamtime in May
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2021, HRM will probably become the standard method for motion-reconstruction in
our experiments (see [41, 65]) and might also be interesting for others whose setups
fulfill the discussed requirements.

Not only the detection side of nuclear quantum optics, but also incident light
pulse manipulation was considered in this thesis. In Chapter 5, measurements from
the first experiment on mechanically-induced refractive index enhancement were an-
alyzed. The central idea is to use the motion-controlled refractive index to manipu-
late the interference between two samples in a polarization interferometer. Because
the output of the polarimeter is directly related to the interference between the
two samples, the motion can control the temporal shape of the output pulse. The
switching-on process due to the motion is clearly visible in the experimental data.
In the measurements without amplifier, also a switching-off effect can be seen, such
that single pulses can be created in a controlled way. Different voltages, i.e. dif-
ferent phases between the two samples, agree with the expectations. Furthermore,
different voltage pulse widths applied to the piezo are analyzed, but not understood
yet. Besides, we found evidence that tunable double pulses can be created with
the setup. In contrast to the double pulses created in [41], the intensities can be
controlled and in principle also pulse train sequences with more than two pulses
are possible. However, the motion and background noise control needs to be im-
proved significantly before temporal pulse shaping would be available for subsequent
experiments.

Chapter 6 focused on the noise background in the polarization interferometer.
We showed that external sound waves can disturb the destructive interference sig-
nificantly if emitted close to the sample. Furthermore, a new measurement mode,
that collects sequences of 40 pulses instead of formerly used four pulse sequences, is
introduced. This new method made the detection of shock waves traveling through
the acrylic glass, onto which the piezo is glued, possible in first place. Applying a
piezo motion in only one bunch enables a time window of 39 bunches to analyze
the decay of the piezo motion. The shock waves leave clear signatures upon their
revival. The effect of the shock waves can be reduced by lower voltages at the piezo
and the creation of two shock waves with opposite amplitudes. In addition, the
evolution of the interference between the two samples is investigated. Depending on
the decay of the shock wave, after the controlled disturbance with the piezo motion,
the interference builds up faster or slower for shorter and longer shock wave decay
times, respectively. Besides the analysis of internal noise like shock waves or exter-
nal noise, e.g. sound waves, first attempts on modeling the noise have been done.
Those attempts allow us to model some noise in theoretical simulations of further
experimental schemes.

Summarizing, temporal phase interferometry provides a great toolbox for recon-
structing electric field phases and phase-related observables, such as small motions.
Polarization interferometry can be used for temporal pulse shaping and the analysis
of background noise.
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Outlook

The presented results open a number of promising research avenues.
The possibility of reconstructing complex amplitudes of the electric light field

has not yet been in used in our data evaluation. Its additional phase information
compared to having only access to intensities might improve fitting routines, such
as the material characterization.
Although xHPR is already an improvement on HPR, further progress can be made

by the inclusion of second order correction terms for more accuracy. Even though
the second order correction terms have already been calculated, a simple second
order fit model is still an open project. Besides, it might be possible to find less
restrictive approximations that still give a simple fit model, but allow regions even
closer to the quantum beats. This would improve the fit results by higher statistics
because more data from a single measurement can be used in the analysis.
Furthermore, combining xHPR with the method for phase reconstruction by Go-

erttler et al. [79] might give better results, especially in the case where only two
lines are driven and quantum beat minima are important. Truncating the measured
data in Fourier space instead of fitting a cosine function at every time step solves
the problem with less visibility at quantum beat minima automatically. The Fourier
transform would be performable including the correction terms because they do not
have any time dependence.
Progress of xHPR/HPR might directly be transferred to the heterodyne motion

detection (HMR). Nonetheless, HMR itself improves the motion reconstruction and
opens up new possibilities. The advantage of longer reconstruction times in HMR
can be used to reduce the measurement time because fewer delay measurements
are needed. The resulting measurement time reduction allows us to optimize our
motions with the “magic-waveform” approach [110]: From a comparison between the
applied voltage pattern and the resulting motion, the response function of the whole
system to the voltage signal can be calculated. The inverse of the system response
function gives the necessary voltage for a desired motion. This had previously been
tried at beamtimes in 2019 and 2021 without HMR and seems to be promising. The
new possibility of reconstructing more motions with less measurement time using
HMR significantly improves the method by allowing us to perform several iterations
of the “magic-waveform” approach to optimize the results. The possibility of creating
arbitrary piezo motions would be the next step in piezo-controlled schemes. Not only
can step-functions be optimized, but also arbitrary motions are the key to temporal
pulse shaping.
In addition, we would like to analyze the stability of the “magic waveform” ap-

proach with respect to small variations. As we have seen in Section 4.4, different
reconstruction methods result in slightly different version of the motions. Thus it is
unclear, which reconstruction version is closest to the actual motion. Using different
motions in the “magic waveform” approach might result in different voltage patterns.
If the variations from the different motion versions are significant, a measure to es-
timate the deviation of a reconstructed motion from the actual motion has to be
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found.
In particular, such optimized motions could be the key to arbitrary pulse genera-

tion. In the evaluated experimental data, we showed that temporal pulse shaping is
possible in principle. However, the motions realized in the first experiment are far
from optimum. Thus the control and visibility of the shaped pulses should increase
with optimized motions. First approaches to achieve that with only one iteration of
the “magic-waveform” approach did not seem to give better motions, but iterative
usage might be the key here if it improves the resulting motions. The principal limit
of pulse shaping is given by the finite rise times of the piezo. Despite optimizing the
motion, a faster piezo could give the desired sharper edges.
The other possibility to increase the visibility of the shaped pulses is to decrease

the background noise in the reference spectra. Here, Chapter 6 gave us interesting
insights on what the noise background looks like and how this noise can be reduced.
Some noise reduction aproaches might even be measurable in the laboratory with-
out synchrotron radiation. For example, the shock waves should be visible, when
scanning the mechanical resonances of the piezo glued onto the acrylic glass plate.
Although some properties depend on used materials, e.g. the shock waves on

the thickness of the acrylic glass plate, the noise in general is not setup specific
and is most probably also present in other measurements like the ones on spectral
redistribution [65] and coherent control of nuclear excitons [41, 110]. Analyzing the
noise with an Allan deviation method introduced in [41, 110] in the context of nuclear
scattering might give additional insights. The polarization interferometer operates
at the intensity minimum, while the setups in [41, 110] do not. Hence, contributions
of uncontrolled motions in forwards and backwards direction, that might cancel each
other away from the minimum, might leave signatures in the Allan deviation in the
polarization interferometer.
In addition, the polarization interferometer can be used to detect the presence of

sub-Ångstrom motions on times scales, that are large enough so that significantly
more photons are detected in the case with motion than in the static case. This is
for sure the case for motions on the tens of ms level, but might also be possible for
faster motions. The signature would be similar to the one of morsing in Section 6.1.
Besides the polarization interferometer as the first experiment carried out in the

context of mechanically-induced index enhancement [94, 95], experimental schemes
to measure polarization conversion from linear to circular, which we also proposed
in this context, have to be developed further. From calculated frequency spectra
we already saw, that in the polarization interferometer setup the second, static
sample could work as a circular polarization filter. This configuration would imprint
signatures on the frequency spectra measured with different angles between polarizer
and analyzer. Further investigation on this project is needed before an experimental
setup can be proposed.
In conclusion, there are various interesting ideas based on the work presented in

this thesis, both on phase and motion reconstruction as well as the polarization
interferometry setup. Controllable piezo-motion is already a widely-used technique.
Thus, many experimental schemes would benefit from improvements in this direc-
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tion. In contrast, the polarization setup and mechanically-induced refractive index
enhancement in general are rather new schemes. They seem to be promising for light
polarization, such as temporal pulse shaping as well as polarization control. Their
principle applicability is not restricted to nuclear quantum optics, such that the
whole field of x-ray quantum optics and even optical quantum optics could benefit
from it.
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Appendix A

Additional material

A.1 Motion reconstruction

Reconstructed versus calculated static phase. A comparison between the mo-
tion results with static phase reconstructed with Callens scheme or calculated from
material properties is shown in Fig. A.1 for only linear lines driven and Fig. A.2 for
all lines driven. Like for the example plots in Fig. 4.2, the two motions in each panel
agree within their errors. Thus, the choice of how the static motion is received does
not influence the reconstructed motion.

Additional figures for linear lines. For completeness, additional figures for only
the linear lines driven corresponding to the respective figures with all lines driven in
the main text are shown in this paragraph. The corresponding figures for all lines
driven can be found in the referenced sections of the main text.
The pure HMR results of all motion parts as discussed Section 4.2 are shown in

Fig. A.3. The parts agree within the overlapping regions.
A comparison between the pure results and optimized splines as in Section 4.3 can

be found in Fig. A.4. Due to the smaller reconstruction times compared to all lines
driven, less support points are needed. For most motion parts N = 4 points are
enough. However, like for all lines driven a few motion parts need a higher number
of support points (here N = 8). Using even more points, N = 10, does not change
the results significantly.
The agreement between the reconstruction motion parts with Callens scheme and

evolutionary algorithms as discussed Section 4.5.1 is shown in Fig. A.5.

A.2 Noise

The fit results of the decay time fits in Section 6.3 are shown in Table A.1.
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delay A1 A2 c τ1 τ2 t1 (fixed) t2 (fixed)

(a)

262ns 5.245 3.658 0.695 1.860± 0.359 1.149± 0.522 7.0 22.0
272ns 6.305 3.37 0.659 1.660± 0.213 1.3 ± 0.4 7.0 22.0
292ns 6.267 5.623 0.601 1.844± 0.155 1.088± 0.178 7.0 22.0
312ns 7.001 4.008 0.594 1.857± 0.156 1.473± 0.267 7.0 22.0

(b)

250ns 27.927 4.577 0.671 0.745± 0.040 1.167± 0.191 6.0 21.0
255ns 22.119 5.673 0.694 0.791± 0.035 1.029± 0.117 6.0 21.0
260ns 16.91 5.402 0.687 0.937± 0.045 1.103± 0.133 6.0 21.0
262ns 14.285 4.625 0.763 0.876± 0.038 0.999± 0.108 6.0 21.0

(c)

180ns 42.117 1.172 0.784 0.541± 0.018 1.168± 0.328 6.0 21.0
200ns 16.8 3.371 0.818 0.755± 0.019 0.753± 0.096 6.0 21.0
220ns 78.598 6.126 0.71 0.464± 0.014 0.598± 0.107 6.0 21.0
240ns 24.186 1.638 0.809 0.653± 0.015 1.013± 0.159 6.0 21.0

Table A.1: The fit results of fitting Eq. (6.5) as shown in Fig. 6.6. Results are given for
different delays of motions (a) “one20nsJump” with amplifier, (b) “one20nsJump” without
amplifier, (c) “upDown_20ns_jumps” without amplifier. Errors are the standard variation
of the fitting result and are only given for the decay times τ1/2 because we are mainly
interested in those parameters.
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Figure A.1: Comparison of static phase being reconstructed with xHPR (red) and calcu-
lated from material properties (blue) for all motion parts of motion “ramp2019”. This is
measured with only the two linear lines being driven. Excluded points are not shown.
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Figure A.2: Comparison of static phase being reconstructed with xHPR (red) and calcu-
lated from material properties (blue) for all motion parts of motion “magic2021”. This is
measured with all six lines being driven. Excluded points are not shown.
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Figure A.3: All reconstructed motion parts for “ramp2019” measured with with only the
two lines driven. The colors correspond to the different delays as indicated by the legend.
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detail in main text). The motions parts agree within the errors. Excluded values are not
shown for clarity. The gray vertical lines indicate the arrival of a synchrotron pulse for a
delay of 0 ns.
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Figure A.4: The pure HMR data (gray dots) as well as the optimized splines for several
numbers of support pointsN (solid lines) are shown for the different motion parts of motion
“ramp2019”, which is reconstructed with only the two linear lines driven. The N that fits
the pure data best is printed in the respective right upper corner. For most panels, the
optimized splines for different numbers of support points look rather similar. However,
there are some for which a high number of support points (N ≥ 8) is needed to represent
the motion part properly.
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Figure A.5: The pure HRM data from Fig. A.3 (orange), the optimized spline (red)
and the optimized result from evolutionary algorithms (blue) are shown for the different
histograms from which they are extracted. The plotted optimized spline with support
number N as indicated in the right upper corner is the one with lowest deviation from
pure HMR data. For a comparison of different support number see Fig. A.4).
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