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We introduce and study the mechanical system which
describes the dynamics and statics of rigid bodies
of constant density floating in a calm incompressible
fluid. Since much of the standard equilibrium theory,
starting with Archimedes, allows bodies with vertices
and edges, we assume the bodies to be convex
and take care not to assume more regularity than
that implied by convexity. One main result is
the (Lyapunov) stability of equilibria satisfying a
condition equivalent to the standard ‘metacentric’
criterion.

1. Introduction
Equilibria of floating bodies have been studied since
antiquity (see [1,2] and references therein). Results
on their stability and the associated concept of the
metacentre date back to the eighteenth century (see [3]
for a modern presentation) and continue to play a role
in areas such as naval architecture [4] or the study
of icebergs [5]. This field has recently also regained
mathematical interest. In part, this is in pursuit of the
famous question of Ulam [6] regarding whether there
are bodies other than spheres which have equilibria in
every orientation [7–10]. In part, classifying the equilibria
of different bodies such as certain polyhedra [7,11] and
their stability poses mathematical challenges. In fact,
even the treatment of the floating paraboloid originally
studied by Archimedes himself still leaves room for
clarification [12].

There is, on the other hand, as has also been
pointed out in [13], an associated time-dependent theory
described by a conservative mechanical system—and
that, to the best of our knowledge, has received no
rigorous study whatsoever. The present paper attempts
to be at least a starting point for filling this gap in the
literature.

2021 The Authors. Published by the Royal Society under the terms of the
Creative Commons Attribution License http://creativecommons.org/licenses/
by/4.0/, which permits unrestricted use, provided the original author and
source are credited.
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The dynamical system of the floating body has some analogy with, but more structure than,
the heavy top1—in three respects. First, there is for the floating body an additional physical
parameter, namely the density of the body relative to that of water. Second, there is a translational
degree of freedom not present for the heavy top afforded by the height of the floating body. Third,
the torque due to gravity acting on the heavy top, in the comoving frame, is essentially the vector
product of the instantaneous direction of gravity with the given vector which points from the
fixed point of the body to its centre of mass. For the floating body, by Archimedes’ principle, the
role of that latter vector is played by the vector, in the comoving frame, connecting the centre
of mass with the buoyancy centre, i.e. the centroid of the submerged part of the body—and that
is dynamical and depends on the detailed shape of the body. So, for example, the floating body
can have a wealth of equilibrium configurations, whereas the heavy top has just two, namely the
unstable upright and the stable hanging one.2

We start, in §2, with a crash-course on the rigid body in an external force field. One motivation
for doing this in spite of the vast literature on the subject is to fix notation and to carefully
distinguish between the ‘material space’ and the ‘physical space’: this is customary in the field
of continuum mechanics, and it avoids confusion, which treatments in the standard literature on
rigid body mechanics can lead to—and especially so in the present context. The book closest to our
approach is [14]. We also derive the equations for the heavy top, which is useful for comparisons
with the floating body.

In §3, we specialize to the force field according to the principle of Archimedes: a constant field
of strength g pointing along the downward normal to the water plane plus a constant, upward-
pointing buoyancy field supported under the water plane of strength g/s, where s is the density of
the body relative to that of water. Let us remark at this point that in so doing we are making many
simplifying assumptions: we discard hydrodynamic effects such as the presence of viscosity or
vorticity, related to phenomena such as dynamical buoyancy (lift) acting on the body. We are
not taking into account the work done by an accelerating body against the inertia of the fluid
as first described by Kirchhoff [15] for a fluid filling all of space. And, of course, we ignore the
backreaction on the body due to surface waves generated by the motion of the body as first treated
in [16].

Applying the scheme of §2 and factoring out horizontal translational motions, which decouple
from the other degrees of freedom, results in a dynamical system in the seven variables
(h, ḣ, Π, n) ∈ R

1 × R
1 × R

3 × S
2, where h is the height of the centre of mass relative to the water

plane, Π is the body angular momentum and the unit vector n is the direction of gravity in the
body frame. There is a conserved energy with kinetic term ḣ2/2 + (I−1Π, Π)/2, where I is the
tensor of inertia, plus a potential term Vs(h, n), which describes the deviation of the motion from
that of a free top. The dependence of the potential comes from the fact that the full Euclidean
symmetry of the free rigid body under E(3) is due to the presence of gravity and buoyancy
broken down to E(2) and {(h, n)} = R

1 × S
2 is equal to the factor space E(3)/E(2). In the case of

the heavy top, where the potential just depends on n, the relationship between the Hamiltonian
and the equations of motion is via a Poisson structure {, } on R

3 × S
2 [14]. When our equations

are written in first-order form and after the two ‘symplectic’ dimensions due to the degree of
freedom afforded by h have been added to the Poisson structure of the heavy top, it turns out that
our equations of motion are also of Poisson type w.r.t. the given Hamiltonian, but that viewpoint
is not further pursued here.

Our work in the subsequent sections centres around and is based on the potential Vs(h, n),
in particular its regularity properties for a compact, convex body. For a given body R

1 × S
2

splits into three regions, two of which correspond to the body being up in the air or completely
immersed. The third, intermediate, region is where the body is partially immersed; this is the
interesting one, because only here is there an interaction between the vertical (h-) degree of

1Recall that the heavy top is simply a top subject to a constant gravitational field with one point fixed; see for example [14].

2By equilibria, we always mean solutions which are strictly static—not the ‘relative equilibria’ associated with steady
rotations.
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freedom and the directional (n-) degree of freedom: in the first-named regions there is just a
constant force field which exerts no torque on a rigid body in its rest frame. And, of course, for
s< 1, critical points of the potential—which correspond to equilibrium configurations—all occur
in the intermediate region. It now turns out that Vs(h, n) is C2 in this region even for a general
convex body: this justifies the use of the Hessian of the potential, whose definiteness properties
characterize stability. And it also justifies the use of the Poincaré–Hopf theorem first advocated
in the elegant paper [7]—in particular, as done there, for bodies with vertices and edges. It also
turns out that the potential is smooth in the partially immersed region for smooth bodies, but
globally at best C2 across its boundary, whose points correspond to the body touching the water
plane from above or below. On the other hand, the potential is C1,1, i.e. it has Hölder continuous
first derivatives, globally for all convex bodies, which implies that solutions to the dynamical
equations exist and are unique.

In §5, we treat the equilibrium theory, work out the Hessian of Vs at a critical point and prove
the Lyapunov stability of solutions evolving from stable critical points. Finally, in §6, we calculate
Vs explicitly in the case of the body being a triaxial ellipsoid and point out its most elementary
consequences such as its equilibria (confirming results in [7]) and the simplest time-dependent
solutions. Clearly, our findings in this section can only be a starting point for—and hopefully an
invitation for others to undertake—efforts to reach a full understanding of the allowed solutions
of the dynamical equations for the ellipsoid or more general shapes. In §7, we summarize our
findings. Appendix A supplies the basic argument for the regularity of the potential.

2. The rigid body
For the sake of conceptual clarity, we start with a quick review of the rigid body. We take rigid
body motions to be time-dependent, orientation-preserving, one-to-one maps φ : B ∈ (R3

B, δAB) →
(R3

S , δij), where R
3
B, resp. R

3
S are the material, resp. spatial copies of flat R

3 and B a compact,
connected domain in the former. We are throughout using the Einstein summation convention
and indices A, B, . . . for quantities on material space and i, j, . . . for quantities on physical space.
Capital indices are lowered and raised with δAB, and lowercase indices with δij. The volume
elements on both spaces are respectively written as εABC and εijk. We will assume that the centroid
(centre of gravity) of B is the origin, i.e. ∫

B
XA d3X = 0. (2.1)

The maps φ are subject to the constraint that they be isometries between these spaces. Thus (see
[17]) in Euclidean coordinates on both spaces they take the form xi = φi(t, X) = ci(t) + Ri

A(t)XA,
where

Ri
A(t)Rj

B(t) δij = δAB ⇔ Ri
A(t)Rj

B(t) δAB = δij. (2.2)

Next define the material angular velocity ΩA by

δij Ri
AṘj

B = −εABCΩ
C ⇔ Ṙi

A + εAB
CΩB Ri

C = 0. (2.3)

(We will here and throughout use a dot or d/dt for the time derivative interchangibly depending
on typographical convenience.) Together with (2.2), it follows that

δij Ṙi
AṘj

B = (δABδCD − δACδBD)ΩCΩD. (2.4)

We assume that Ri
A also preserves orientation, i.e. that

Ri
ARj

BRk
C εijk = εABC, (2.5)

which implies
εi

jkRj
AṘk

B = 2 δA[BRi
C]Ω

C. (2.6)

We henceforth restrict ourselves to bodies of constant density. The latter condition will be no
restriction for the force we are interested in. Now the (linear) momentum Pi of the body arises by

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

18
 N

ov
em

be
r 

20
21

 



4

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A477:20210595

..........................................................

evaluating the momentum of a point particle, namely the quantity ẋi along φi and integrating the
result over B. Thus

|B| Pi =
∫
B

(ċi + Ṙi
AXA) d3X = |B| ċi, (2.7)

where we have used (2.1). For the angular momentum Li, we obtain a sum of orbital and intrinsic
angular momentum. Namely, using (2.6) for the latter, we obtain the expression

Li = εi
jkcjċk + Ri

AIA
BΩ

B, (2.8)

where IAB = |B|−1 ∫
B[δAB(X, X) − XAXB] d3X is the inertia tensor of B. The equations of motion

for a rigid body with constant density and mass 1 in a force field Fi(x) then take the form

dP
dt

i
=F i and

dL
dt

i
=Mi, (2.9)

where F i, the total force, is given by F i(c, R) = |B|−1 ∫
B Fi(c + RX) d3X and the total torque is given

by Mi(c, R) = |B|−1 ∫
B ε

i
j
k(cj + Rj

AXA)Fk(c + RX) d3X. Thus

d2ci

dt2 = |B|−1
∫
B

Fi(c + RX) d3X, (2.10)

and, using (2.10), the c̈-term in the torque equation drops out and we obtain

(Ri
AIA

BΩ
B). = |B|−1

∫
B
εi

j
kRj

AXAFk(c + RX) d3X. (2.11)

Now, using (2.3), the l.h.s. of (2.11) can be written as

Ri
A(IA

BΩ̇
B + εA

BCΩ
BIC

DΩ
D) (2.12)

and, using (2.5), the r.h.s. can be written as

|B|−1
∫
B

Ri
A ε

A
B

CXBRj
CFj(c + RX) d3X. (2.13)

Thus, introducing the notation Π = IΩ and (f )A = Ri
AFi, the torque equation can be written as

dΠ

dt
+ Ω × Π = |B|−1

∫
B

X × f (c + RX) d3X. (2.14)

Adding (2.3), namely

Ṙi
A + εAB

CΩBRi
C = 0, (2.15)

the equations (2.10), (2.14) and (2.15) form a closed system for the variables (ci,ΠA, Ri
A). There

is no need to introduce coordinates on SO(3): the condition that the linear map Ri
A be in SO(3)

can be merely imposed as the initial condition. Alternatively, if one does use a parametrization
of SO(3) such as the Euler angles, the six relations (2.15) boil down to the three identities which
express ΩA in terms the Euler angles and their first time derivatives (e.g. [14]).

We add two remarks.

Remark 2.1. If the force field has a potential, i.e. Fi(x) = −∂iU(x), the equations (2.10), (2.14) can
be obtained by first evaluating, as done previously with momentum and angular momentum, the
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Lagrangian

L(x, ẋ) = (ẋ, ẋ)
2

− U(x), (2.16)

along the maps xi = φi(t, X) = ci(t) + Ri
A(t)XA, resulting in |B| times the expression

L(c, ċ, R, Ṙ) = 1
2
δijċ

iċj + 1
2

IABΩ
AΩB − |B|−1

∫
B

U(c + RX) d3X. (2.17)

One then varies the action
∫ Ldt w.r.t. ci and w.r.t. Ri

A, the latter variation under the constraint
(2.2), e.g. using Lagrange parameters. One also finds that there is a conserved energy of the form

H(ci, ċi, Ri
A, Π) = (ċ, ċ) + (I−1Π, Π)

2
+ |B|−1

∫
B

U(c + RX) d3X. (2.18)

Finally, when the potential has a translational symmetry, i.e. di∂iU = 0 for some constant vector d,
the associated component of linear momentum, i.e. (d, ċ), is conserved. When U has a rotational
symmetry, i.e. for some constant vector m there holds miεij

kxj∂kU = 0, the associated component
of the total angular momentum, i.e. mi(εi

jkcjċk + Ri
AΠ

A), is conserved.

Remark 2.2. The case of the heavy top in the present setting is obtained as follows: consider
as the potential the function U(x) = g(x, e3) with g a positive constant and require as an additional
constraint on the maps φ that they map a fixed vector ξA in R

3
B to the origin in R

3
S , i.e. φi(t, X) =

Ri
A(t)(XA − ξA). The conserved energy then becomes

H(n, Π) = 1
2 (Ī−1Π, Π) + g (n, χ ), (2.19)

where nA = Ri
A(e3)i, ĪAB is the inertia tensor w.r.t. the fixed point and χA = −ξA is the vector

pointing from the fixed point to the centre of gravity. The equations of motion are

dΠ

dt
+ Ω × Π = g

|B| n × χ . (2.20)

Note that Ri
A appears in (2.20) only through nA. Thus, in order to obtain a closed system, we can

replace (2.15) by the simpler equation

dn
dt

+ Ω × n = 0. (2.21)

In addition to H the spin w.r.t. the e3-axis, i.e. (n, Π), is conserved, as one can easily check. A
simplification occurs in the presence of ‘material axial symmetry’. Namely, suppose that χ is an
inertia axis and the remaining moments of inertia are equal: it is then not hard to see that these
conditions are equivalent to the single equation

χCεCD(AID
B) = 0, (2.22)

and that there is then the additional conserved quantity (χ , Π). This is the case of the Lagrangian
top, which is known to be integrable.

3. The floating body
We now specialize to the force field of our interest: this is a linear combination of a downward,
homogeneous gravitational field and an upward buoyancy force. We take, following Archimedes,

Fi(x) = −g (e3)i
[

1 − 1
s
Θ(−(e3, x))

]
, (3.1)

where Θ : R
1 → R

1 is the step function defined by Θ(u) = 1 for u ≥ 0 and Θ(u) = 0 for u< 0 and
e3 is the unit vector pointing into the positive x3-direction. Furthermore, g> 0 is the constant
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gravitational acceleration and s> 0 the ratio of constant mass densities s = ρbody/ρfluid. The water
fills the half-plane (e3, x)< 0. This force has a potential, namely

Us(x) = g(e3, x)
[

1 − 1
s
Θ(−(e3, x))

]
. (3.2)

Since the potential is constant in (x1, x2)-planes, translational motion is inertial and will be
ignored. We thus take

xi = φi(t, X) = h(t)(e3)i + Ri
A(t)XA. (3.3)

Going through the steps described in the previous section, we obtain the reduced Hamiltonian

H= ḣ2

2
+ (I−1Π, Π)

2
+ Vs(h, n), (3.4)

where Vs(h, n) = ∫
B U(φ(t, X)) d3X is given by

Vs(h, n) = gh
(

1 − |Bh,n|
s|B|

)
+ g

s|B|
∫
Bh,n

(n, X) d3X = g

[
h − 1

s|B|
∫
Bh,n

(h − (n, X)) d3X

]
, (3.5)

where Bh,n is defined as

Bh,n = B ∩ {X | h − (n, X) ≤ 0} (3.6)

and where nA is the normal to the water plane, as seen from the body, and pointing into the water

nA = −Ri
A(e3)i, (3.7)

where we note the different convention from that entering (2.19). The set Bh,n can be described as
the submerged part of the body, when the water plane as seen by the body has height h relative
to the centroid of the body, where h positive means that the centroid is above the water plane.
In (3.5), we have deliberatively written Vs(h, n) in two forms. The reason for this is that the first
form displays the positivity properties of the potential by splitting it into terms which are only
C1 separately, but in the second equation the two terms are C2; all of this is explained in the next
section.

The equations of motion, from (2.10) and (2.14), are

d2h
dt2 = −g

(
1 − |Bh,n|

s|B|
)

(3.8)

and
dΠ

dt
+ Ω × Π = g

s|B|n ×
∫
Bh,n

X d3X. (3.9)

As in the case of the heavy top, in order to obtain a closed system, we can replace (2.15) by the
simpler equation

dn
dt

+ Ω × n = 0. (3.10)

And, as in the case of the heavy top, we have the additional conserved quantity (n, Π). Again,
there is a choice of how to interpret the quantity nA in this system: we can either take nA as an
element of R

3 \ {0} and pose (n, n) = 1 as the initial condition, which is propagated by virtue of
(2.21), or we view nA as an element in S

2. In the latter, equation (3.10) reduces to two evolution
equations, say for spherical coordinates (θ ,φ).

As opposed to the case of the heavy top, there does not seem to be the possibility for an
additional conserved quantity when B is axially symmetric except in the relatively trivial case,
where B is a sphere; in this case the equations (2.10) and (2.14) decouple and (2.14) becomes the
equation of a free spherical top.
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4. Properties ofVs(h,n) and implications
From now on we also suppose that the body B is convex. There are then functions [18] h−(n)<
0< h+(n) so that the set Bh,n touches the water plane from below at h = h− and from above
at h = h+. When h> h+, the body is ‘up in the air’, i.e. Bh,n is empty. When h− < h< h+, the
body is partially immersed, and when h< h− the body is completely immersed, i.e. Bh,n = B.
Analytically, h− and h+ are given by h−(n) = min{(n, X) : X ∈ B} and h+(n) = max{(n, X) : X ∈ B}.
These quantities are Lipschitz-continuous functions on S

2 (see, for example, theorem 2.7 of [18]).
Note also that the quantity

∫
Bh,n

(n, X) d3X appearing in (3.5) is zero for h ≤ h−(n) and h ≥ h+(n) and
positive otherwise and for fixed n reaches its maximum at h = 0, i.e. when the centre of gravity
lies on the water plane. The positivity of

∫
Bh,n

(n, X) d3X when h−(n)< h< h+(n) corresponds to

the intuitively obvious fact that the centre of buoyancy, namely the point |Bh,n|−1 ∫
Bh,n

X d3X, lies
below the centre of gravity, namely the origin.

We now turn to the issue of regularity.

Lemma 4.1. The functions on R
1 × S

2 given by A = |Bh,n| and B = ∫
Bh,n

(n, X) d3X are C1 for h−(n)<

h< h+(n), smooth (in fact: constant) for h< h−(n) as well as h> h+(n) and C0,1 globally. The function
C = h|Bh,n| − ∫

Bh,n
(n, X) d3X is C2 for h−(n)< h< h+(n) and C1,1 globally.

We remark that when ∂B is smooth all these quantities are clearly smooth when h−(n)< h<
h+(n). When in addition ∂B is smooth and has no flat portions, the first two are C1,1 globally and
the third one C2,1 globally but not smoother.

Proof. The basic picture is that, when h−(n)< h< h+(n), by taking, for integrals of smooth
functions over Bh,n, derivatives w.r.t. h or n one gets a volume term plus an integral of smooth
functions over the planar figure Sh,n = B ∩ {X|h = (n, X)}. This is perhaps well known within the
field of convex bodies, but we give a simple proof in appendix A. Furthermore, the surface terms
are by inspection continuous and bounded near h = h+(n) and h = h−(n). Thus A and B are C1

away from h = h+(n) and h = h−(n) with bounded derivatives, and h = h+(n) and h = h−(n) are
Lipschitz. Consequently, A and B are C0,1. Finally, the first derivatives of C have no surface term.
This ends the proof. �

We collect the fundamental properties of the potential in theorem 4.2.

Theorem 4.2. The function Vs(h, n) is globally C1,1. It is C2 for h−(n)< h< h+(n) and equal to g h for
h> h+(n)> 0 and equal to g h(1 − 1

s ) for h< h−(n)< 0. Furthermore, Vs(h, n) is bounded from below for
s ≤ 1, in particular Vs(h, n) ≥ 0 for s ≤ 1 and Vs(h, n)> 0 for s< 1.

Proof. There only remains the statement on the lower bound. Clearly Vs is bounded below and
achieves a global minimum, which for s< 1 has to occur at some value of (h, n) for which ∂hVs is
zero, in particular where h−(n)< h< h+(n) and where, by the second equation in (3.5),

∂hVs = 1 − |Bh,n|
s|B| = 0. (4.1)

Inserting this back into (3.5) and recalling the positivity of
∫
Bh,n

(n, X) d3X when h−(n)< h< h+(n)
ends the proof for s< 1. The case s = 1 is similar. Here, the minimum occurs for h ≤ h−(n) and is
zero. �

We now return to the equations of motion. These can be written as

d2h
dt2 = −∂hVs(h, n) (4.2)

and
dΠ

dt
+ Ω × Π = n × ∂nVs(h, n), (4.3)

together with
dn
dt

+ Ω × n = 0. (4.4)
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Remark 4.3. These equations do not form a Hamiltonian system on a symplectic space. But
their specific form expresses the fact that they are Hamiltonian in the sense of a Poisson structure,
namely the ‘heavy top Poisson structure’ (see [14]) with two symplectic dimensions added
corresponding to the ‘vertical’ degree of freedom. We will however not pursue this viewpoint
further.

Clearly, when the body is up in the air, its vertical motion is constant acceleration pointing
down. When the body is completely immersed, its vertical motion is acceleration pointing
up when s< 1, pointing down when s> 1 and zero when s = 1. And, as is well known, a
homogeneous field exerts no torque on a rigid body in its rest frame. Thus, in these regions, the
rotational motion is that of a free top. The interesting question for the dynamics is the interaction
between the vertical and the rotational degrees of freedom and how this depends on the shape of
the body (except for a spherical body, where there is no interaction whatsoever since Vs and hs are
independent of n in this case).

A consequence of the above findings is given in theorem 4.3.

Theorem 4.4. Let B be convex.

(i) There exists a unique solution of the system (4.2), (4.3), (2.21) with initial values
(h(0), ḣ(0), Π(0), n(0)).

(ii) When s< 1, the system stays in a bounded region of phase space.
(iii) When s ≥ 1, solutions are still global in time and, for s> 1, have lim|t|→∞ h(t) = −∞.
(iv) When s = 1, either h = const. or lim|t|→∞ h(t) = −∞.

Proof. Local existence is standard (e.g. [19]). Statement (ii) follows from the fact that the energy
is the sum of three non-negative terms, all of which blow up respectively in the unbounded
variables (ḣ,Π , h). Statement (iii) immediately follows from ḧ ≤ −g(1 − 1/s). Suppose s = 1: it is
clear that h has to ultimately enter the region h ≤ h−(n) at t = t0 or some n0. If ḣ(t0)< 0, it will sink
indefinitely. If ḣ(t0) = 0, n0 can still perform rotational motions of a free top. Either the body as
a result re-enters the region h> h−(n), in which case it receives its final downward kick, or else
h stays constant and, by uniqueness, was also constant in the past. This proves statement (iv).
Global existence for s ≥ 1 follows from

ḣ2 + (I−1Π, Π) = 2(E − Vs(h, n)) ≤ C1 + C2|h|, (4.5)

where we have used that |Bh,n| and
∫
Bh,n

(n, X) d3X are both bounded. Hence |h| can at most grow
quadratically in time and |Π| can at most grow linearly. �

5. Equilibria and their stability
We look at equilibria, namely the solutions given by

dh
dt

= 0 = d2h
dt2 = 0 and

dn
dt

= 0, Π = 0,
dΠ

dt
= 0. (5.1)

Clearly, (h, ḣ = 0, Π = 0, n) is an equilibrium iff

|Bn,h| = s|B|, n ×
∫
Bh,n

X d3X = 0. (5.2)

These are exactly the conditions first formulated by Archimedes. Recall that we assume∫
B X d3X = 0, so that the second equation is the condition that the line connecting the centre of

buoyancy with the centroid of the body is normal to the waterline. Note that when the centre
of mass is submerged this does not automatically imply that this normal intersects the waterline
inside the body. In the literature, the first condition is sometimes called a ‘floating condition’, and
the second an ‘equilibrium condition’. These conditions are equivalent respectively to ∂hV = 0 and
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∇nAV = 0, where ∇nA is the derivative tangential to S
2, viewed as the submanifold {n ∈ R

3
B|(n, n) =

1}. So ∇nA acting on scalars is simply HA
B∂nB , where HA

B = δA
B − nAnB. Note the identity

∇nA (n, X) = HABXB. (5.3)

In order to seek equilibria, we have to take s< 1 and solve the floating condition in (5.2).
Because of the monotonicity of |Bh,n| for fixed n in h for h−(n)< h< h+(n), there is a unique
solution hs(n), which is C1 in n. In fact, we find by implicit differentiation that

∇nA hs(n) = |Shs(n),n|−1
∫
Shs(n),n

HABXB d2S(X), (5.4)

where Sh,n = B ∩ {X|h = (n, X)}. Now consider the function

Us(n) = Vs(hs(n), n) = g
s|B|

∫
Bhs (n),n

(n, X) d3X, (5.5)

which by the above is C2 (as opposed to
∫
Bh,n

(n, X) d3X, which is only C1 in general). Let us remark
that the close result that the ‘buoyancy surface’ given by

1
s|B|

∫
Bhs(n),n

X d3X

is C1 has been proved, using more sophisticated machinery, in theorem 1.2. in [20].
Coming back to Us(n), it now follows that equilibria are pairs (hs(n0), n0) with n0 a critical point

of a C2-function on the compact manifold S
2, which leads to theorem 5.1.

Theorem 5.1. A convex body with 0< s< 1 has at least two equilibria. In fact, when equilibria are
isolated, there holds the Poincaré–Hopf theorem, namely (see [21])

N(max) + N(min) = N(saddle) + 2. (5.6)

We note at this point that there is a well-known relation between equilibrium configurations
and inverted (capsized) configurations, owing to the two identities given in lemma 5.2.

Lemma 5.2. (i) hs(n) = −h1−s(−n), (ii) Us(n) = ((1 − s)/s)U1−s(−n).
Identity (i) follows from

|Bh,n| + |B−h,−n| = |B|, (5.7)

and then (ii) follows from ∫
Bh,n

X d3X +
∫
B−h,−n

X d3X = 0. (5.8)

It follows from (ii) that U1/2(n) = U1/2(−n) and from (i) that, for bodies with central symmetry, h1/2(n) = 0,
i.e. centrally symmetric bodies with relative density 1/2 float with their centre of gravity at sea level.

We remark that in the case of equilibria of convex, homogeneous bodies with a smooth
boundary resting on a plane surface—which very heuristically can be regarded as the limit s
going to zero of the present situation—there holds the same formula (5.6), and here the question
has been asked by Arnol’d, and answered affirmatively in [22], of whether there exist bodies
for which N(max) = N(min) = 1. The same question can of course be asked here: is there a
body floating in just two configurations? For B a triaxial ellipsoid treated in §7, there holds
N(max) = N(min) = N(saddle) = 2.

Next note that, for B a ball, Us(n) is constant: a sphere can float in every direction. A famous
question by Ulam [6] has been whether there are bodies other than the sphere for which this true
(see [9] for a review). In fact, for s = 1/2, such bodies have recently been constructed in [10] and
in [8] for general dimensions.

We now come to the issue of stability of equilibria. An isolated minimum of Vs(h, n) or Us(n) is
clearly stable; an isolated maximum is unstable. For more information, we have to compute the
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Hessian of the potential. First

∂2
hVs = − g

s|B| ∂h|Vh,n| = g
s|B| |Sh,n|> 0, (5.9)

where Sh,n has been defined after (5.4). Physically, the r.h.s. of (5.9) is (frequency)2 of a ship’s
vertical oscillations around equilibrium. In particular, ships are always stable against vertical
perturbations. Furthermore,

∇nA∇nBVs = g
s|B| ∇nA

∫
Bh,n

HBCXC d3X := HA
A′

HB
B′
∂nA′ ∇nB′ Vs

= g
s|B|

(
−HAB

∫
Bh,n

(n, X) d3X +
∫
Sh,n

HADXDHBCXC d2S(X)

)
. (5.10)

Thus for positive definiteness the positive surface term in (5.10) has to dominate the negative
volume term. If that is the case, we have the following.

Theorem 5.3. Let the convex body B have 0< s< 1 and (hs(n0), n0) be an equilibrium configuration
for which the quadratic form in (5.10) is positive definite. Then this solution is (Lyapunov) stable, i.e. the
time-evolved solutions with initial data sufficiently near to (h(0) = hs(n0), ḣ(0) = 0, Π(0) = 0, n(0) = n0)
remain close to the given one.

Proof. The potential Vs(h, n), whence H is C2 and has a positive definite Hessian near the
equilibrium configuration. Then the Taylor theorem applied to H and energy conservation say
that H is a Lyapunov function, which (e.g. [19]) implies stability.

In order to make contact with the standard literature where one is interested in stability against
specific kinds of perturbations we make the following observations. If δ0 is a vector on S

2 at the
equilibrium point n0, we have

∇δ0∇δ0Vs = g
s|B|

(
−(δ0, δ0)

∫
Bhs(n0),n0

(δ0, X) d3X +
∫
Shs(n0),n0

(δ0, X)2 d2S(X)

)
. (5.11)

Let us suppose (δ0, δ0) = 1 and write, as is customary, δ0 as

δ0 = n0 × t, (5.12)

with t ⊥ n0 and (t, t) = 1 so the vector t points along the axis of the infinitesimal rotation afforded
by δ0, yielding

∇δ0∇δ0Vs = g
s|B|

(
−

∫
Bhs(n0),n0

(n0, X) d3X +
∫
Shs(n0),n0

θAB tAtB d2S(X)

)
, (5.13)

where θAB is given by

θAB =
∫
Shs(n0),n0

[δAB (X, X) − XAXB] d2S(X). (5.14)

So θAB is the inertia tensor of the two-dimensional figure in which the body intersects the water
plane centred at the point at which the line through the centroid of B with tangent nA

0 intersects the
water plane. Let θ1 > θ2 be the eigenvalues of θAB with eigenvectors t1 and t2. Then the rotations
associated with these axes are respectively called ‘pitching’ and ‘rolling’ in naval architecture. �

The metacentre M(t) is defined by

M(t) =
∫
Bhs (δ0),δ0

X d3X − n0

∫
Shs(n0),n0

θAB tAtB d2S, (5.15)

and then stability under δ0 = n0 × t is given by the condition that the metacentre is above the
centre of gravity, i.e. that (n0, M(t)) is negative.

Actually, the metacentre defined in the literature is not based on the Hessian of Vs(h, n), but
coincides with that based on the Hessian of the potential Us(n). Namely then the integrand of the
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surface term in (5.13) becomes the inertia tensor w.r.t. the centroid of the figure Shs(n0),n0 , so the
associated metacentre lies in general below the one we have defined. In particular the condition
used in our proof of Lyapunov stability is weaker than—i.e. implied by—that usually employed.

6. The triaxial ellipsoid
Here, ∂B is given by the equation

qABXAXB = (X1)2

a2 + (X2)2

b2 + (X3)2

c2 = 1, (6.1)

where a, b, c are positive numbers. Let ψ be the affine map from B′ = B1(0), the unit-ball centred
at the origin, to B, with ψ given by

X =ψ(Y) = (a Y1, b Y2, c Y3). (6.2)

Let QAB be the inverse metric to qAB so that

QABnAnB = a2n2
1 + b2n2

2 + c2n2
3. (6.3)

Then

Bh,n =ψ(B′
h′,n′ ) with h′ = h

(QABnAnB)1/2 , n′
A = (a n1, b n2, c n3)

(qCDnCnD)1/2 (6.4)

and
det(ψ) = (det(qAB))−1/2 = abc. (6.5)

Note that n′ has again Euclidean norm = 1. Thus

|Bh,n| = abc |B′
h′,n′ |, (6.6)

and, since h′−(n) = −1 and h′+(n) = 1,

h−(n) = −(QABnAnB)1/2, h+(n) = (QABnAnB)1/2 (6.7)

and ∫
Bh,n

(n, X) d3X = abc (a2n2
1 + b2n2

2 + c2n2
3)1/2

∫
B′

h′ ,n′
(n′, Y) d3Y. (6.8)

Next note that by spherical symmetry of B′ both |B′
h′,n′ | and

∫
B′

h′ ,n′
(n′, Y) d3Y are independent of n′

and thus for |h′| ≤ 1 there holds

|B′
h′,n′ | = 2π

∫ 1

h′
dZ

∫√
1−Z2

0
ρ dρ = π

3
(h′3 − 3h′ + 2) = π

3
(h′ − 1)2(h′ + 2) (6.9)

and ∫
B′

h′ ,n′
(n′, Y) d3Y = 2π

∫ 1

h′
dZ Z

∫√
1−Z2

0
ρ dρ = π

4
(h′2 − 1)2. (6.10)

Thus, setting σ = (a2n2
1 + b2n2

2 + c2n2
3)1/2, we have for |h| ≤ σ that

Vs(h, n) = g

⎡
⎣h − h

4s

((
h
σ

)3
− 3

h
σ

+ 2

)
+ 3 σ

16 s

((
h
σ

)2
− 1

)2
⎤
⎦

= g σ

[
h
σ

− 1
16s

(
h
σ

− 1
)3 ( h

σ
+ 3

)]
. (6.11)

Furthermore,
Vs(h, n) = g h for h>σ (6.12)

and

Vs(h, n) = −g
(

1 − 1
s

)
h for h<−σ . (6.13)
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Clearly, Vs(h, n) is globally C2,1 in (h, n) and smooth for |h|<σ (see the remark in the statement of
lemma 4.1). To complete the model, we have to compute IAB. By similar methods, we find that

IAB = 1
|B|

∫
B

[(X, X) δAB − XAXB] d3X = 1
5

(QCDδCD δ
AB − QAB). (6.14)

As for equilibria, we have

V,h = − g
4 s

[(
h
σ

)3
− 3

h
σ

+ 2(1 − 2s)

]
, (6.15)

for |h|<σ . Now the cubic x3 − 3x + 2(1 − 2s) has three real roots, one of which lies in the interval
(−1, 1); call this xs. For example, we have x0 = 1, x1/2 = 0, x1 = −1.3 The potential Us(n) takes the
extremely simple form

Us(n) = Vs(σ (n)xs, n) = 3 g (xs + 1)2

4(xs + 2)
σ (n). (6.16)

Now there holds

∇Aσ = 1
σ

(δAB − nAnB) QBCnC = 1
σ

HAB QBCnC, (6.17)

so nA = nA
0 is a critical point of σ iff it is an eigenvector of the linear map QA

B (and thus also an
axis of inertia). Let nA

0 be such an eigenvector. Then

∇A∇Bσ |n=n0 = 1
σ

(HACHBD − HABnCnD)|n=n0 QCD = QAB − λ(n0) δAB

σ0
, (6.18)

where λ(n0) is the eigenvalue of Q associated with n0. Recall that QAB = diag(a2, b2, c2) and
IAB = (20πabc/3)−1diag(b2 + c2, a2 + c2, a2 + b2). Suppose a> b> c and λ(n0) = b. Then the first
axis corresponds to the smallest eigenvalue of IAB and to the smaller eigenvalue of θAB, and
whence to the rotation axis for rolling. Hence corresponding variations are along the third axis.
And indeed

∇A∇Bσ |n=n0 = 1
b

diag(a2 − b2, 0, c2 − b2), (6.19)

so we have instability against rolling and stability against pitching. And, of course, we have
stability at the absolute minima nA

0 = (0, 0, ±1) and instability at the maxima nA
0 = (±1, 0, 0).

Let us remark in passing that the expression (6.16) has a finite non-zero limit given by
(3g/8) σ (n) as s tends to zero. On the other hand, the potential for an ellipsoid lying on a plane
surface is proportional to r(n), the distance function relative to the centre of mass. Clearly, σ (n) =
(QABnAnB)1/2 and r(n) = (qABnAnB)−1/2 are different, but at least they have the same equilibria. Is
there a way to ‘renormalize’ the system so that the limit s going to zero makes sense and where
solutions somehow approach those of the anholonomic system describing an ellipsoid rolling on
a plane?

Recall that each equilibrium direction n0 is also parallel to an axis of inertia. Thus, looking
at equations (3.8), (3.9), (2.21), for each of the corresponding equilibrium solutions, there is a
one-parameter class of solutions, which also rotate uniformly around n0 and thus have non-zero
angular momentum (n, Π), i.e. of the form

(h(t) = σ (n0)xs, ḣ = 0, Π(t) ∼ In0 ∼ n0, n(t) = n0). (6.20)

If n0 is along the shortest semiaxis these solutions will also be stable, since uniform rotation of
a top along its longest and shortest axis of inertia is stable (e.g. [14]) and there is no interaction
between this rotation and the motion of h and n.

There are more solutions that one can find explicitly—up to quadrature; namely, those where
the height degree of freedom h and the directional degree of freedom n do not interact. These
are the first vertical motions with constant n0 relative to an equilibrium configuration (hs(n0), n0),
e.g. vertical oscillations about a stable equilibrium. Second, in the case where s = 1/2, there are

3More generally, there holds that x1−s = −xs (see lemma 5.2 and the remarks following it) and that xs is monotonically
decreasing as a function of s.
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spinning motions with constant h = hs(n0) = 0 of n around any semiaxis. For example, let this
rotation be w.r.t. the first axis, i.e. set

n = cosα f 3 + sinα f 2, Ω = α̇f 1, (6.21)

where (f A, f B) = δAB, thus satisfying (4.4). Now (4.2) is valid for h = 0, and (4.3) becomes a second-
order ODE for α with conserved energy given by

E = b2 + c2

10
α̇2 + 3g

8
(b2 sin2 α + c2 cos2 α)1/2. (6.22)

For example, when E = 3gb/8, these are creeping orbits connecting the two equilibria at α= π/2
and α= 3π/2, which are unstable against rolling. We stop here, leaving a fuller analysis to future
work by us or others.

A simpler system exhibiting some of the difficulties should be the two-dimensional analogue
of the present one of a floating ellipse, describing, say, an infinitely long floating log with an
elliptic an cross section. Without giving details, the system in this case has just 2 d.f., namely
the height h and the directional degree n ∈ S

1 given by n = (cosα, sinα), and the system is
Hamiltonian in the proper sense. When a, b are the semiaxes corresponding, respectively, to α = 0
and α = π , respectively, to α = π

2 and α = 3π
2 , the Hamiltonian is given—for simplicity, we just

state the case s = 1
2 —by

H= p2
h

2
+ p2

α

ab
+ V1/2(h,α), (6.23)

where

V 1
2
(h,α) = 2g h

π

⎛
⎝ h
σ

√
1 − h2

σ 2 + arcsin
h
σ

⎞
⎠+ 4g σ

3π

(
1 − h2

σ 2

)3/2

(6.24)

for −σ ≤ h ≤ σ and where σ (α) =
√

a2 cos2 α + b2 sin2 α, and

V1/2(h,α) = g|h| for |h| ≥μ. (6.25)

Again the potential is C2,1. The equations of motion are given by

dh
dt

= ∂H
∂ph

,
dph

dt
= −∂H

∂h
,

dα
dt

= ∂H
∂pα

,
dpα
dt

= −∂H
∂α

. (6.26)

7. Final remarks
We have in this paper introduced and studied a conservative system of ODEs obeyed by a
rigid body which is subject to the combined action of a constant gravitational field and the
static buoyancy force coming from the Archimedes principle. This system is the time-dependent
version of the equilibrium theory of floating bodies studied by mathematicians, physicists and
naval engineers over the centuries. Our main result has been the Lyapunov stability of those
equilibria, which are minima of the potential Vs(h, n). Although we have no new results relating
to the equilibrium theory itself, we hope that the potential Vs(h, n), which has been our main tool,
will also be useful for open issues in the equilibrium theory. For the dynamics, we believe that we
have only touched the surface of a rich structure. Further progress using analytical and numerical
means should be possible. A potential challenge, at least on the numerical side, could be the fact
that the potential is at most C2,1 at points in phase space which correspond to the body touching
the water line from above or below.
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Appendix A
We consider integrals of the form

Ih,n =
∫
Bh,n

f (X) d3X, (A 1)

where B is a convex body, h−(n)< h< h+(n) and f is a smooth function on B. We want to show
that I has continuous derivatives w.r.t. (h, n), namely that

∂hI(h, n) = −
∫
Sh,n

f (X) d2S, (A 2)

and for some family nα ∈ S
2 with |α| small and n0 = n,

I′(h, nα)|α=0 =
∫
Sh,n

(n0
′, X)f (X) d2S, (A 3)

where a prime denotes the derivative w.r.t. α. It suffices to consider integrals of the form (A 1)
where Bh,n is replaced by the layer Bh,n \ Bh̄,n for some fixed h̄ with h< h̄< h+(n). We call these

integrals Jh,n. Now assume without loss that n = (0, 0, −1). Taking h̄ sufficiently close to h, there is
a vertical (i.e. parallel to n) line which intersects both {(n, X) = h̄} and {(n, X) = h} and all parallel
planes in between. We then choose cylindrical coordinates (ρ,φ, Z) for this central line with Z =
−(n, X). Now any plane through this central line intersects the boundary of the convex body B
in a curve which is again convex and so between these planes ∂B can be written as ρ = R(φ, Z),
where R is strictly positive, continuous in φ (in fact: C0,1 in φ since the boundary of a convex body
is C0,1, but we do not use this at this point) and convex, whence C0,1, in Z. There is thus a function
R(φ, Z) such that the domain of integration is given by 0 ≤ φ ≤ 2π , −h̄ ≤ Z ≤ h, 0 ≤ ρ ≤ R(φ, Z) and
the integral given by

=
∫−h

−h̄
dZ

∫ 2π

0
dφ

∫R(φ,Z)

0
ρ f (ρ,φ, Z) dρ, (A 4)

from which the statement on ∂h follows. Proving equation (A 3) is a little more tricky. Here, the
domain of integration is given by 0 ≤ φ ≤ 2π , −h̄ ≤ Z, −(nα , X) ≤ −h, 0 ≤ ρ ≤ R(φ, Z). We first set
ρ = ρ̄ R(φ, Z) and without loss choose nα = (0, − sinα, − cosα). The domain of integration is given
by 0 ≤ φ ≤ 2π , −h̄ ≤ Z, −(nα , X) = Z cosα + ρ̄ R(φ, Z) sinφ sinα ≤ −h, 0 ≤ ρ̄ ≤ 1. We now for small
|α| seek a function Zα(φ, ρ̄, h) with Z0(φ, ρ̄, h) = −h such that

Zα cosα + ρ̄ R(φ, Zα) sinφ sinα= −h. (A 5)

To solve (A 5), the implicit function theorem cannot be used, since R is only Lipschitz in Z. But that
is still good enough in this case, as the lemma below shows. It also shows that Zα is differentiable
at α = 0, and so Z′

0(φ, ρ̄, h) = −ρ̄ R(φ, −h) sinφ. The integral is thus given by

Jh,nα =
∫ 2π

0
dφ

∫ 1

0
ρ̄ dρ̄

∫Zα(φ,ρ̄,h)

−h̄
R2(φ, Z) f̄ (ρ̄,φ, Z) dZ. (A 6)

Now the statement follows by differentiating (A 6) w.r.t. α under the integral sign and noting that

Z′
0(φ, ρ̄, h) = (n0

′, X)|Sh,n . (A 7)

Finally, the solution to (A 5) can for small |α| be reduced to the following.

Lemma A.1. Consider the equation

Z = αf (Z,α) + g(α), (A 8)

where f , g are smooth in α and f is Lipschitz in Z near Z0 = g(0) with Lipschitz constant K. Then (A 8) has
a unique family of solutions Zα with Z0 = g(0). Furthermore, Z0

′ = f (Z0, 0) + g′(0).

Proof. Taking 0<α < 1
K the r.h.s. of (A 8) defines a contraction map for Z near Z0, so Zα exists by

virtue of the Banach fixed point theorem (e.g. [23]). Then, inserting Zα back into (A 8) and taking
the difference quotient near α= 0 gives the last statement. �
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